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A simply supported plate �uttering in hypersonic �ow is investigated considering both the air�ow and structural nonlinearities.

ird-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the
nonlinear strain-displacement relation. 
e Galerkin method is applied to project the partial di�erential governing equations
(PDEs) into a set of ordinary di�erential equations (ODEs) in time, which is then solved by numerical integration method.
In observation of limit cycle oscillations (LCO) and evolution of dynamic behaviors, nonlinear aerodynamic loading produces
a smaller positive de�ection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a
LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity
is considered more complex motions are obtained, which is important in the evaluation of fatigue life. 
e parameters of Mach
number, dynamic pressure, and in-plane thermal stresses all a�ect the aerodynamic nonlinearity. For a specic Mach number,
there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature,
a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated,
based on which the nonlinear aerodynamic formulation has been simplied.

1. Introduction

With the increase of the �ight speed ofmodern �ight vehicles,
panel �utter, a localized aeroelastic problem representing a
small portion of the skin on the surface of hypersonic vehi-
cles, is attracting more and more attentions. Many researches
have been done in the analysis of panel �utter in supersonic
�ow (Ma < 5) using the linear aerodynamic theory such as
the rst-order piston theory [1–5] or linearized potential �ow
theory [6–8]. Particularly, Carrera and his coworkers applied
a nite element structural model coupling with rst-order
piston theory for aerodynamic model to calculate the �utter
boundaries of curved panels [9] and versatile thermal insula-
tion (VTI) panels with pinched boundary conditions [10, 11].

When a panel is �uttering at hypersonic speed (Ma >5), the nonlinearities involved with panel �utter arise from
both the structural and aerodynamic models [12, 13]. Aero-
dynamic nonlinearity was rst considered in conjunction
with structural nonlinearity by McIntosh Jr. et al. [14–16]

in analysis of simply supported panels �uttering in hyper-

sonic �ow. Two nonlinear aerodynamic terms, (��/��)2 and(��/��)(��/��), taken from the third-order piston theory,
were added to the linear piston theory to account for the aero-
dynamic nonlinearity [17]. Using the nite element method,
Gray and his coworkers [18, 19] presented the large-amplitude
LCO with the full third-order piston theory to assess the
in�uence of aerodynamic nonlinearity on the hypersonic
panel �utter.


e aforementioned studies suggest that (1) the nonlinear
aerodynamic loading pushes the panel into the cavity due to
the overpressure from the additional nonlinear aerodynamic
terms and (2) the nonlinear aerodynamic loading acts to
increase panel de�ection as “so� spring,” which decreases
the bending sti�ness of the �uttering panel [20, 21]. To the
contrary, the nonlinearmembrane stress due to the structural
nonlinearity serves as “hard spring,” which increases the
bending sti�ness of the �uttering panel [22, 23] and (3) the
interplay between the nonlinear mechanisms of “so� spring”
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Figure 1: E�ect of “so� spring” and “hard spring” considering
aerodynamic and structural nonlinearities.

and “hard spring” distinguishes the panel �utter at hyper-
sonic speeds from that at supersonic speeds. Specially, the
“so� spring” and “hard spring” are demonstrated simply in
Figure 1.
e existing literature, however, ismainly concerned
with the in�uence of aerodynamic nonlinearity on the LCO
amplitude, and Mach number satisfying Ma > 5 is the only
criterion for applying the nonlinear aerodynamic theory.

In the present study, a simply supported square plate
�uttering in hypersonic �ow is considered. In addition to
the LCOs, more complex motions such as quasi-periodic
and chaotic motions are observed when the aerodynamic
nonlinearity has been considered. 
e e�ects of Mach num-
ber, dynamic pressure, and temperature on the aerodynamic
nonlinearity are investigated. 
e in�uence of aerodynamic
nonlinearity on the nonlinear dynamical response of the
panel is evaluated via comparing the nonlinear (third-order)
piston theory with the linear (rst-order) one.


e remainder of this paper is organized as follows. In
Section 2, the aeroelastic equations of motion of �uttering
panel with von Karman plate theory and both the linear
and nonlinear aerodynamic piston theories are formulated.

e e�ects of parameters such as Mach number, dynamic
pressure, and temperature on aerodynamic nonlinearity are
discussed in Section 3. LCO de�ection and bifurcation
diagrams versus dynamic pressure are both observed using
the linear and nonlinear aerodynamic loadings. 
e e�ect
of each nonlinear aerodynamic term in the full third-order
piston theory is also evaluated thoroughly. Finally, some
conclusions are drawn in Section 4.

2. Theoretical Analysis

2.1. Aeroelastic Equations. For a simply supported plate,
considering the inertial force, aerodynamic force, nonlinear
membrane stresses due to the large de�ection, and uniform

in-plane thermal stresses ��� and ��� , the aeroelastic equa-
tions can be written as follows:

�(�4���4 + 2 �4���2�	2 + �
4��	4 )

= (�2Φ�	2 + ���) �
2���2 + (�

2Φ��2 + ���) �
2��	2

− 2( �2Φ���	) �2����	 − ( − ∞) − ��ℎ�
2���2 ,

(1)

1�ℎ (�
4Φ��4 + 2 �4Φ��2�	2 + �

4Φ�	4 )

= ( �2����	)
2 − �2���2 �

2��	2 ,
(2)

where the thermal stresses are given by the quasi-steady
thermal stress theory

��� = ��� = − �ℎ��(1 − ]) . (3)

−∞ is aerodynamic pressure, which will be modeled with
both the rst-order and third-order piston theories.
e rst-
order piston theory is a linear formulation in terms of ��/��
and ��/��:

 − ∞ = 2�� [���� + (Ma2 − 2
Ma2 − 1) 1� ���� ] . (4)

For Ma ≫ 1, (Ma2 − 2)/(Ma2 − 1) → 1. By contrast, the
third-order piston theory considering the aerodynamic non-

linearity includes the nonlinear terms of (��/��)2, (��/��)2,(��/��)3, and (��/��)3,

 − ∞ = 2�� {[�1� 1� ���� + �1� ���� ]

+ � + 14 Ma [�2� 1� ���� + �2� ���� ]
2

+ � + 112 Ma2 [�3� 1� ���� + �3� ���� ]
3} ,

(5)

where ���, ��� (! = 1, 2, 3) are parameters with values of 0 or
1 for evaluating the in�uence of each nonlinear aerodynamic
term.
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e aerodynamic pressure with the rst-order piston
theory is taken as an example, substituting (3) and (4) into
(1) and (2), using appropriate nondimensionalization

" ≡ �$ ,
% ≡ 	& ,
' ≡ �ℎ ,
* ≡ 2�$3�� ,
- ≡ �$��ℎ ,
0 ≡ � ( ���ℎ$4)

1/2 ,
8��(�) = �

�
� $2� = ��� $2� ≡ −12 (1 + ]) ($ℎ)

2 ��

(6)

and then we can yield the nondimensional aeroelastic equa-
tions:

�4'�"4 + 2$
2

&2 �4'�"2�%2 + $
4

&4 �
4'�%4

= ( $2�&2 �
2Φ�%2 + 8��) �
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+ ( $2�&2 �

2Φ�"2 + $
4

&4 8��) �
2'�%2 − 2$2�&2 �

2Φ�"�% �
2'�"�%

− *[( -�*)
1/2 �'�0 + �'�" ] − �

2'�02 ,

(7)

�4Φ�"4 + 2$
2

&2 �4Φ�"2�%2 + $
4

&4 �
4Φ�%4

= �ℎ3$2&2 [(�2'�"�%)
2 − �2'�"2 �

2'�%2 ] .
(8)

2.1.1. �e Galerkin Method. For a simply supported three-
dimensional plate, an approximation for the panel shape can
be expressed with a set of bisine functions [24–26], which
automatically satises the support conditions,

'(", %, 0) = 	∑
�=1

$� (0) sin (AB") sin (B%) . (9)

Here only the rst spanwise mode is retained according to
Dowell’s work in 1966 [1], because compared to the bending
in chordwise, the bending in spanwise is much smaller. In
addition, the number of modes of panel in chordwise (�
direction), C, can be determined via divergence analysis,
which has been done in the authors’ previous work [3]; hence,
hereC is chosen directly.

Based on the expansion in (9), along with the boundary
conditions, the general and particular solutions for the Airy
stress Φ can be calculated [27–29]. 
en by multiplying (7)
with each basis function sin(DB"), sin(B%) retained in (9)
(D = 1, . . . ,C) and integrating along the panel length and
width, a set of C second-order ODEs will be obtained for
the coe�cients $�(0) of the harmonic modes. For the sake of
brevity, only the resulting reduced order ODEs are displayed
as follows:

E2$
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(10)

When using the third-order piston theory, the aerodynamic
part denoted by “⋆” contains seven additional nonlinear
aerodynamic terms
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Figure 2: Positive LCO de�ection peak versus dynamic pressure for a square panel at Ma = 5, 10, and 15 at di�erent temperatures: (a)�/�
cr
= 0; (b) �/�

cr
= 2.

where

a�,� =  [1 − (−1)
�+�]

2 − �2 ,

d�,� = {{{
0,  ̸= �,
1,  = �.

(12)


e expressions for coe�cients of X − [ can be found in [1].
We can solve (10) by the direct time integration method [30,
31].

3. Results and Discussions

In this section, a simply supported square plate in supersonic
�ow is explored, with thematerial properties and geometrical

dimensions as � = 71GPa, ] = 0.3, � = 2.34 × 10−6/∘C,�� = 2750 kg/m3, and ℎ/$ = 1/300. 
e �ow density is � =0.413 kg/m3. All gures are plots at a typical point " = 0.75,% = 0.5. A critical temperature �cr = B2ℎ2/[12(1 + ])�$2] is
dened.

3.1. Observation of LCO with Linear and Nonlinear Piston
�eories. At lower temperatures of �/�cr = 0 and �/�cr =2 shown in Figures 2(a) and 2(b), respectively, the panel
undergoes the LCO motions in a range of dynamic pressure
of interest, and the curves in terms of panel positive de�ection
peak versus dynamic pressure at Mach number of 5, 10, and15 are presented. 
e curves of +'� versus * from the linear
aerodynamic theory are very close for various Mach number.
By contrast, considering the aerodynamic nonlinearity, the

curves tend to be below the ones using the linear aerodynamic
theory, and a higher Mach number produces a lower curve.
With the increase of dynamic pressure, the deviation between
the linear and nonlinear aerodynamic theories increases rst
and then decreases. Particularly, when * = 1000∼1100 for Ma
= 15, the peak oscillates violently, which is actually because the
panel oscillates with changeable de�ection peaks rather than
a denite one like LCO. 
e physical phenomenon is truly
where the panel oscillates in a complex motion like quasi-
periodic or chaos instead of a simple harmonic oscillation,
which is due to the higher nonlinear aerodynamics with 3rd-
order piston theory under high Mach number.

Comparing Figures 2(a) and 2(b), the aerodynamic non-
linearity is augmented with the increase of temperature.
Specically, for 750 < * < 1100 in Figure 2(b), the
nonlinear aerodynamic loading produces totally di�erent
results. In Figure 2(b), the responses under two specic
dynamic pressures of * = 900 and * = 1000 at Ma = 15
are considered to make the comparisons easily visible. As
shown in Figures 3(a), 3(c), and 3(e) and Figures 3(b), 3(d),
and 3(f), the phase portraits, de�ection shapes, and stress
distributions in � direction for * = 900 and * = 1000,
respectively, using the linear and nonlinear aerodynamics, are
presented. 
e results show that, at * = 900, the dynamic
motions with the linear and nonlinear aerodynamic theories
are both LCO motions shown in Figure 3(a), but the positive
de�ection peak is reduced and the negative de�ection peak
is increased. 
e de�ection shapes in Figure 3(c) are similar
but with di�erent amplitudes. 
e nonlinear aerodynamic
loading has a larger in�uence on the stress distribution as
shown in Figure 3(e). By contrast, for * = 1000 shown
in Figure 3(b), the nonlinear aerodynamic theory obtains
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Figure 3: A square panel at Ma = 15, �/�
cr
= 2 under di�erent dynamic pressures: (a) phase portraits at * = 900; (b) phase portraits at* = 1000; (c) de�ection shape in � direction at * = 900; (d) de�ection shape in � direction at * = 1000; (e) stress distribution in � direction

at * = 900; (f) stress distribution in � direction at * = 1000.
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Figure 4: Positive LCO de�ection peak versus Mach number under several dynamic pressures for a square panel at di�erent temperatures:
(a) �/�

cr
= 0; (b) �/�

cr
= 2.

a quasi-periodic motion in contrast to the LCO periodic
motion from the linear aerodynamics. In Figures 3(d) and
3(f), the de�ection shapes and stress distributions are totally
changed when the nonlinear aerodynamics is considered.

From Figure 2, we have shown that, for a given Mach
number, there exists a critical dynamic pressure beyond
which the deviation between the linear and nonlinear aero-
dynamic theories is large enough that the aerodynamic
nonlinearity has to be considered. 
e temperature also has
an in�uence on the critical dynamic pressure. Figures 4(a)
and 4(b) plot the curves in terms of +'� versus Ma for three
dynamic pressures of * = 600, 900, and 1200 at �/�cr = 0
and �/�cr = 2, respectively. Mach number is varied between2 < Ma < 20. First, for a given *, the deviation between
the linear and nonlinear aerodynamics is augmented with the
increase ofMa. Second, for a givenMa, the deviation between
the linear and nonlinear aerodynamics reaches a maximum
at * = 900, which agrees with the conclusions from Figure 2.
For a higher temperature at �/�cr = 2, the same phenomena
can be observed and the deviation between the linear and
nonlinear aerodynamics is increased further. 
erefore, for
a given criterion value to evaluate the relative deviation
between the linear and nonlinear aerodynamic theories, for
example, o = 3%, there is a critical dynamic pressure for a
specicMach number.
e critical *cr is dened as a dynamic
pressure beyondwhich the linear and nonlinear aerodynamic
theories produce di�erent results with a relative deviation
larger than o. For a larger Mach number, a lower *cr is
obtained. With the increase of temperature, *cr is reduced
further.

To sum up, the linear aerodynamic theory shows similar
results for various Mach numbers, whereas, with the non-
linear aerodynamic theory, a larger Mach number produces
a lower panel positive de�ection peak. With the increase

of dynamic pressure or temperature, the e�ect of the aero-
dynamic nonlinearity becomes more obvious. Particularly,
for some specic dynamic pressures and temperatures, the
nonlinear aerodynamics may produce di�erent types of
dynamic behaviors from the ones obtained using the linear
aerodynamics. 
e de�ection shape and stress distribution
are changed accordingly, and the nonlinear aerodynamics
has a larger in�uence on the stress distribution. By plotting
the positive de�ection peak +'� versus Ma under several
dynamic pressures, for a given Mach number, there is a
critical dynamic pressure *cr, beyondwhich the aerodynamic
nonlinearity has to be considered.

3.2. Observation of Bifurcation Diagrams with Linear and
Nonlinear Piston �eories. For the parameter sets with a
larger dynamic pressure and a higher temperature, the panel
may oscillate in a more complex pattern. 
e in�uence
of aerodynamic nonlinearity on the evolution of complex
behaviors is our crucial concern in the present study. Figure 5
shows the bifurcation diagrams at Ma = 6, �/�cr = 6
using the linear and nonlinear aerodynamics. 
e sweep in
dynamic pressure is done from * = 1200 to * = 100 with
a step increment of Δ* = −5. With the increase of dynamic
pressure, an evolution from a buckling to chaos and then to
a LCO can be observed in both Figures 5(a) and 5(b), which
is similar to the results of an airfoil model studied by Dai et
al. [30]. Between 1000 < * < 1200, a period-1 motion is
obtained with the linear aerodynamics, while the nonlinear
aerodynamic loading produces a period-2 motion. Generally
speaking, the aerodynamic nonlinearity does not in�uence
the bifurcation diagram very much at Ma = 6, �/�cr = 6.

Nevertheless, what may happen for a larger Mach num-
ber? First, we increase the Mach number up to Ma = 10 and
even Ma = 15 with the temperature the same as �/�cr = 6.
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Figure 5: Bifurcation diagrams for a square panel at Ma = 6, �/�
cr
= 6: (a) rst-order piston theory; (b) third-order piston theory.
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Figure 6: Bifurcation diagrams for a square panel at Ma = 10, �/�
cr
= 6: (a) rst-order piston theory; (b) third-order piston theory.

Using the linear and nonlinear aerodynamics the resultant
bifurcation diagrams in terms of local de�ection extrema
versus dynamic pressure are shown in Figure 6 for Ma =
10, �/�cr = 6. It is obvious that the bifurcation diagram in
Figure 6(a) is almost the same as the one in Figure 5(a). 
is
agrees with the conclusion aforementioned that the linear
aerodynamic loading produces similar results for various
Mach number. Compared to Figure 6(a), the nonlinear aero-
dynamic loading obtains a very di�erent bifurcation diagram
as shown in Figure 6(b). First, the bifurcation diagram in
Figure 6(a) shows that, with the increase of dynamic pressure,
the panel oscillates as LCO when * > 450. In contrast,
the panel undergoes some chaotic and nonsimple periodic

oscillations as shown in Figure 6(b). Specically, Figure 7
shows the phase portraits and Poincaré maps for several
dynamic pressures in Figure 6. 
e results show that the
linear aerodynamic loading results in period-1, period-2, and
period-4 motions, while the nonlinear aerodynamic loading
produces mainly chaotic motions except the period-2 and
multiperiodmotions for * = 1100 and * = 1200, respectively.

For a higher Ma = 15, Figure 8(a) shows that the linear
aerodynamic loading still obtains the similar bifurcation
diagram to that for Ma = 6 and Ma = 10. However,
the aerodynamic nonlinearity results in a more complex
bifurcation diagram as shown in Figure 8(b). First, the chaos
region from the nonlinear aerodynamics (220 < * < 455) is
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Figure 7: A square panel at Ma = 10, �/�
cr
= 6 under di�erent dynamic pressures: (a) Poincaré map at * = 450; (b) phase portrait at * = 825;

(c) Poincaré map at * = 900; (d) Poincaré map at * = 1000; (e) phase portrait at * = 1100; (f) Poincaré map at * = 1200.
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Figure 8: Bifurcation diagrams for a square panel at Ma = 15, �/�
cr
= 6: (a) rst-order piston theory; (b) third-order piston theory.

broader than that from the linear aerodynamics (210 < * <435). For 435 < * < 455 a quasi-periodic motion is observed
with the linear aerodynamics. Second, between 480 < * <760, LCO motions are obtained from both the linear and
nonlinear aerodynamics.
enonlinear aerodynamic loading
produces a smaller +'� and larger | − '�| than those
from the linear aerodynamics. 
is is consistent with the
conclusion in [14] that the nonlinear aerodynamic loading
acts with an overpressure to push the panel into the cavity.

ird, the bifurcation diagrams are totally di�erent between760 < * < 1200, for which the linear aerodynamic
loading results in periodic motions including period-1 and
multiperiodmotions. By contrast, the nonlinear aerodynamic
loading almost produces all chaotic motions except for the
period-1 motions between 1080 < * < 1140.

To make the comparison in Figures 8(a) and 8(b) easily
visible, several dynamic pressures are considered further as
shown in Figure 9. For * = 600, Figure 9(a) presents
the period-1 motions from both the linear and nonlinear
aerodynamics but with various +'� and −'�. For * =850 in Figure 9(b), a period-2 and quasi-periodic motions
are observed with the linear and nonlinear aerodynamics,
respectively. Similarly, Figure 9(c) shows a period-1 and
period-2 motions for * = 1110 from the linear and nonlinear
aerodynamics, respectively. Figures 9(d) and 9(e) show the
Poincaré maps for * = 1000 and * = 1200, and the chaotic
motions are observed with the nonlinear aerodynamics; by
contrast, period-4 and period-1 motions are obtained with
the linear aerodynamics. Obviously, the evolution of dynamic
behaviors considering the aerodynamic nonlinearity is much
more complex, especially for a larger Mach number under
a larger dynamic pressure. 
e complex behaviors from the
nonlinear aerodynamics are due to the interplay between the
nonlinear membrane stresses and nonlinear aerodynamics,
that is, the interplay between the “hard spring” and “so�

spring” aforementioned. For panel �utter designs, the predic-
tion of panel fatigue life is a crucial concern. 
e algorithms
for predicting fatigue life for LCO, nonsimple harmonic, and
quasi-periodic versus chaotic motions are di�erent; thus, the
nonlinear aerodynamic theory may have to be employed for
a reliable fatigue life prediction.

3.3. E�ects of Each Nonlinear Aerodynamic Term in �ird-
Order Piston�eory. 
enumerical simulations above are all
based on the full third-order piston theory accounting for the
nonlinear aerodynamics. Of course, the additional nonlinear
aerodynamic terms in (11) increase the computational costs
compared to the linear piston theory. Hence, in this section
we aim to evaluate the e�ects of each nonlinear term in
the full third-order piston theory and then retain the most
signicant one and neglect the others. In detail, we switch
on/o� the terms of�2�, �2�, �3�, and�3� sequentially and plot
the curves in terms of +'� versus * at Ma = 20, �/�cr = 0.

Figure 10 presents the curves aforementioned comparing
with those from the linear piston theory (�1� = �1� = 1).
Particularly, Figure 10(a) shows the results by an inclusion of
each second-order term. 
e curve denoted by �2� = 1 is
consistent with the curve denoted by the rst-order piston
theory, while the curves denoted by �2� = 1 and �2� =�2� = 1 are consistent with the curve denoted by the third-

order piston theory. Hence, the term of (��/��)2 is proved to
be the most signicant in the full third-order piston theory.
Similarly, Figure 10(b) shows the results by an inclusion of
each third-order term, the curves denoted by which are all
consistent with the curve denoted by the rst-order piston
theory. 
erefore, we can come to a conclusion that each
third-order nonlinear term has little in�uence on the full
third-order piston theory.
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Figure 9: A square panel at Ma = 15, �/�
cr
= 6 under di�erent dynamic pressures: (a) phase portraits at * = 600; (b) phase portraits at* = 850; (c) phase portraits at * = 1110; (d) Poincaré maps at * = 1000; (e) Poincaré maps at * = 1200.
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Table 1: Discussion issues for a �uttering panel: comparisons with literature results.

Discussion issues Eastep and McIntosh Jr. (1971) Gray et al. (1991) Cheng and Mei (2004) Present work

Nonlinear term e�ects √ √ \ √
LCO de�ection peak √ √ √ √
Bifurcation diagram \ \ \ √
E�ects of Ma, *, �/�

cr
\ \ \ √

a/b = 1, Ma = 20, T/Tcr = 0
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Figure 10: 
e e�ects of each nonlinear aerodynamic term: positive LCO de�ection peak versus dynamic pressure for a square panel at Ma
= 20, �/�

cr
= 0: (a) each term of second-order piston theory; (b) each term of third-order piston theory.

Based on the in�uence of each nonlinear aerodynamic
term, for the panels studied in the present paper, the third-
order piston theory can be simplied as

 − ∞ = 2�� [ 1� ���� + ���� + � + 14 Ma(���� )
2] . (13)

Using the simplied third-order piston theory, that is, the
linear piston theory added to the second-order term of(��/��)2, the derivation of the nonlinear aeroelastic equa-
tions will be much simpler and consequently the computa-
tional time for solving the ODEs will be reduced.

3.4. Comparisons with Literature Results. Based on the dis-
cussions above in terms of the e�ects of nonlinear aerody-
namics to the LCO de�ection, to the bifurcation diagrams
and e�ects of each nonlinear aerodynamic term, here a
comparison between the available literature results and the
present work is presented. We mainly provide the discussion
issues for each research work, which is shown in Table 1.

e comparison results show that the present work provides
extended discussions about the e�ects of nonlinear aerody-
namics to the panel �utter in hypersonic �ow. 
rough the
current work, the nonlinear aerodynamics produce di�erent
bifurcation boundaries, whichwill in�uence the panel fatigue

life prediction. In addition, the combination of parameters
Ma, *, and �/�cr interacts with nonlinear aerodynamics,
which has not been discussed in the literatures available.

4. Concluding Remarks


e present study evaluates the aerodynamic nonlinearity by
comparing the third-order piston theory with the rst-order
piston theory. A simply supported square plate �uttering at
hypersonic speeds is studied considering both the air�ow and
structural nonlinearities. 
e third-order piston theory and
von Karman plate theory are used accounting for nonlin-
ear aerodynamic loading and nonlinear strain-displacement
relation, respectively. 
e Galerkin method and numerical
RK4 are applied to obtain the ODEs and perform the time
integration. LCO de�ection and bifurcation diagrams versus
dynamic pressure are both observed with the rst-order and
third-order piston theories. 
e in�uences of Mach number,
dynamic pressure, and temperature on the aerodynamic
nonlinearity are evaluated, and they all a�ect the choice of
the nonlinear aerodynamic theory.
e following conclusions
can be drawn from the numerical results:

(1) With the rst-order piston theory, the results for
various Mach number are almost the same LCO
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motions. By contrast, the third-order piston theory
produces the LCO motion with a smaller positive
de�ection peak for a higher Mach number.

(2) With the increase of Mach number, the deviation
between the rst-order and third-order piston the-
ories is increased. 
e same phenomena can be
observed with the increase of dynamic pressure and
temperature.

(3) For a specic Mach number, there is a critical
dynamic pressure *cr, beyond which the nonlinear
aerodynamic theory has to be used. A smaller *cr is
obtained for a higher temperature.

(4) A LCOmotion obtained with the linear aerodynamic
theory may turn out to be a quasi-periodic or chaotic
motionwhen the aerodynamic nonlinearity is consid-
ered.And, the third-order piston theory can be simply

represented by adding the nonlinear term (��/��)2 of
the third-piston theory to the linear piston theory.

Nomenclature

$, &: Plate length, plate width, m�: Plate sti�ness, Nm�: Young’s modulus, N/m2ℎ: Plate thickness, mC: Number of modes in Galerkin method
Ma: Mach numberA, c: Harmonic mode number��� ,��� : In-plane thermal force in �, 	 directions, N/m − ∞: Aerodynamic pressure, N/m2�: ��2/2, dynamic pressure, N/m28�� , 8�� : Nondimensional in-plane thermal loadsD, g: Harmonic mode number�: Temperature di�erential, K�: Time, s�: Velocity, m/s�: Panel transverse de�ection, m�, 	: Streamwise, spanwise coordinate, m�: 
ermal expansion coe�cient, /∘C�: (Ma2 − 1)1/2
]: Poisson ratio�, ��: Air density, plate density, kg/m3Φ: Airy stress function.

Subscripts

: Peak.
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