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A b s t r a c t .  An orthogonal drawing is an embedding of a graph such that 
edges are drawn as sequences of horizontal and vertical segments. In this 
paper we explore lower bounds. We find lower bounds on the number of 
bends when crossings are allowed, and lower bounds on both the grid-size 
and the number of bends for planar and plane drawings. 

1 I n t r o d u c t i o n  

Orthogonal  graph drawings are an important  tool for graph layout, e.g. for Da ta  
Flow Diagrams or Enti ty Relationships Diagrams. Two impor tant  measurements  
of the quality of a drawing are the grid-size and the number of bends. Every 4- 
graph has an orthogonal drawing of grid-size O(n) • O(n) with O(n) bends. 
Minimizing the number of bends is A/'79-complete [6], and so is the question 
whether a graph can be embedded in a grid of prescribed size [8, 5]. There- 
fore, one tries to find heuristics where the obtained worst-case sizes are a priori 
known and small. Different algorithms have been developed, depending on the 
connectivity and whether the graph is planar or not. See Table 1 for an overview. 

Triconnected Biconnected Connected 

Grid-size Bends Grid-size Bends Grid-.size Bends 

Nonplanar 
7 * 7 2 "  2 n + 2  [1] hp ~ n - 2  2n+2[1 ]  n[11 2 n + 2  [1] Simple hp ~ n -  

Multigraph n + l  [1] 2n+411]  n + l  [11 2n+4 [1] ~n-4 1 [41 Sn§ 

With Loops - 2n - 1 [4] 2n - 1 [4] 4n [4] 4n [4] 

Plane 

' ' [11] 2n + 2 [2] ~n + 1 [4] ~ n  + 2 [4] Simple hp ~n § 2 [4] ~n + 4 [4] n 6 

Multigraph n + l  [13] 2n+4114] n + l  [13] 2n+4114] 2 n - 1  [4] 4 n - 2  [4] 

With Loops - 2 n + l  [4] 4n+414]  2 n + l  [4] 4n+414]  

T a b l e  1. Known algorithms. "hp" means tha t  this is a bound on t h e  
half-perimeter.  We give the (to our knowledge) first citation of each result. The 
results marked * are by Papakostas  and Tollis (private communication).  

A full version of this paper can be found in [3]. This paper was written while the 
author was visiting TU Berlin and working at Tom Sawyer Software. 
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To measure the goodness of these algorithms, we want to find graphs which 
need at least a certain grid-size or at least a certain amount of bends. In this 
paper we deal with these lower bounds. We summarize our results in Table 2. 

Nonplanar Drawings Triconnected Biconnected 

Non-planar Simple II ~ n  ~ n  

Connected Non-Connected 

Planar Multigraph ~qn 

~ n  ~ n  

6 ~n  ~n Simple gn -- 2n 

2n 

With Loops - 3n 

7 : n  4n 

3n 6n 

Plane Drawings IITriconnected 

Simple Grid-size 2 : n + l  
Bends 4 : n + 4  

Multigraph [Grid-size I ~(n - 2) + 3 
~(n - 2) + s 

With Loops Grid-size 
Bends 

Biconnected Connected Non-Connectec 

n- i ~(n- 1) - I ? 
12 2 n - 2 .  - g - ( n - I ) - 2  ? 

n + 1 2n - 3 2n - 1 

2 n + 4 .  4n - 6 4n 

n + 2  2 n + l  4 n - 1  

3n 4n + 4 6n 

Tab le  2. Lower bounds for orthogonal drawings. ' .... means that  this case is 
impossible. "?" means that we didn't  find lower bounds better than for the 
connected case. The results marked * were already discovered by [15]. 

2 D e f i n i t i o n s  

Let G be a graph with n vertices. We always assume that  G is a ~-graph, i.e. it 
has a maximum degree of 4. G is called l-regular if every vertex has degree 4. 
By subdivision of an edge c we understand that we delete e, add a new vertex, 
and connect it with the two endpoints of e. Edges of the form (v, v) (loops) are 
not necessarily forbidden. Also, two vertices may be connected by more than one 
edge (multiple edge). Graphs without loops and multiple edges are called simple, 
graphs without loops, but possibly with multiple edges, are called multigraphs. 

G is called connected if for any two vertices there is a path between them. 
It is called biconnected if for any vertex v the graph G - {v} is connected. It is 
called triconnected if for any two vertices v, w the graph G - {v, w} is connected. 
A triconnected 4-graph with more than three vertices can never have a loop. 

A graph is called planar if it has a drawing without crossing (planar drawing). 
This defines a circular ordering of the edges incident to a vertex v (combinatorial 
embedding). A planar drawing splits the plane into different components, called 
faces. The unbounded component is called the outer]ace. The combinatorial em- 
bedding defines a planar drawing which is unique except for the choice of the 
outerface. A planar graph is called plane if both a combinatorial embedding and 
the outerface are specified. 
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An (orthogonal) drawing of G is an embedding of G in the plane such that  
all edges are drawn as sequences of horizontal and vertical line segments. It is 
called planar if no drawings of edges intersect. It is called plane if it is planar, 
if G was a plane graph, and the drawing exactly reflects the given embedding 
and the outerface. A point where the drawing of an edge changes its direction is 
called a bend of this edge. 

A column (row) of the drawing is called vertex-used if it contains a vertex, 
line-used if it contains a vertical (horizontal) part  of an edge, and used if it is 
vertex-used or line-used. The width of the drawing is the number of used columns 
minus 1, the height is the number of used rows minus 1. A drawing with width 
n l  and height n2 has grid-size nl • n2, half-perimeter n 1 -~ n2, and area n 1 �9 n2. 

3 Lower Bounds for Non-Planar Drawings 

Very little is known about lower bounds for the grid-size. There exist 4-graphs 
with crossing number ~2(n :) which therefore need a grid of the same area [16]. 
Leighton [9] proved that  the planar tree of meshes needs ~2(n log n) area in any 
orthogonal drawing. In both cases the constants are very small. 

We deal here with the number of bends, and develop various lower bounds, 
depending on the connectivity of the graph. The only known results are for 
simple biconnected graphs: Storer [11] showed a lower bound of ~n bends, and 

s (private communication). Papakostas and Tollis improved it to ~n 

3.1 Lower Bounds for Small  Graphs 

We use the following special graphs: The complete graph K5, the octahedron O, 
the quadruple edge graph Q, and the double loop L, which are shown below. We 
develop a few easy lemmas to get lower bounds for these graphs. 

Fig.  1 . / ( 5 ,  the octahedron, the quadruple edge, and the double-loop. 

L e m m a  1. In a drawing of a 4-regular graph, every used column has two bends. 
Formulated differently: if a drawing of a 4-regular graph has width w, then there 
are at least 2w + 2 bends. 

Proof. If a column is vertex-used, let u be the top vertex and w be the bot tom 
vertex in the column. By 4-regularity all connections at u and w are used. So the 
top connection from u must have a bend, and so must the bot tom connection of 
w. If a column is line-used only, every begin- and endpoint of a line is a bend. 
Hence we have at least two bends. 

In a drawing of width w there are w + 1 used columns (by definition of width), 
and therefore at least 2w + 2 bends by the above. [:] 
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L e m m a  2. A 4-regular graph has 2 [ v ~  + 4 bends in any drawing. 

Proof. We only sketch this proof. I t  is clear that  we need at least either [ v ~  
columns or [ x / ~  rows to accomodate the vertices. Since we have a 4-regular 
graph, we need two more rows and two more columns at the extreme ends. This 
proves the claim together with Lemma 1. [] 

L e m m a  3. A simple 4-regular graph has at least 12 bends in any drawing. 

Proof. The proof is an easy (but lengthy) case analysis to show tha t  in any 
embedding we must have at least 6 rows or 6 columns. We then have at least 12 
bends by Lemma 1 (or analogously for rows). We skip this for brevity. [] 

These two lemmas imply that  L needs 6 bends, Q needs 8 bends, and K~ 
and O need 12 bends in any drawing. 

3.2 C o n s t r u c t i n g  b i g g e r  graphs 

The lower bounds for non-connected graphs are easy to get by taking many  
copies of O, Ks,  Q, and L, respectively. To obtain bigger connected graphs, we 
need to study how subdividing an edge changes the lower bound. 

L e m m a  4. Subdividing an edge lowers the lower bound on the bends by at most 1. 

Proof. Assume G needs b bends, and after subdividing one edge, we get Gs. Let 
Gs be drawn with c bends. If we remove the vertex tha t  came from subdividing, 
this adds at most one bend, so we get a drawing of G with c + 1 bends. Conse- 
quently c >_ b - 1. [] 

T h e o r e m  5. There are the following lower bounds for connected graphs: 
1. planar simple graphs: L~n bends 
2. simple graphs: ~ n  bends 

7 bends 3. planar multigraphs: 5n 
4. planar graphs with loops: 3n bends 

Proof. We demonstrate  only case (1) in detail, the other cases are analogous. 
Take an octahedron and subdivide one edge. We get a graph with 7 vertices tha t  
by Lemma 4 needs 11 bends. Take k copies and connect the vertices of degree 2. 
This graph is connected, has 7k vertices and needs l l k  = ~ n  bends. [] 

F ig .  2. Connected graphs tha t  need many bends in any drawing. 
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T h e o r e m  6. There are the following lower bounds for biconnected graphs: 

1. planar simple graphs: ~-n bends 
2. simple graphs: ~ n  bends 
3. planar multigraphs: 6 n = 2n bends 
4. planar graphs with loops: 3n bends 

Proof. Again we demonstrate only case (1). Take an octahedron and subdivide 
two edges on the outerface. We get a graph with 8 vertices tha t  by Lemma 4 
needs 10 bends. Take k copies and identify the vertices of degree 2. This graph 
is biconnected, has 7k vertices and needs 10k = ~qn bends. [:] 

o o 0 o  

Fig.  3. Biconnected graphs that  need many bends in any drawing. 

T h e o r e m  7. There are the following lower bounds triconnected graphs: 

1. planar simple graphs: gn6 bends. 
is bends. 2. simple graphs: y~n 

3. planar multigraphs: is bends. Y~ 

Proof. Again we demonstrate only case (1). Take an octahedron and subdivide 
the three edges on the outerface. We get a graph with 9 vertices that  by Lemma 4 
needs 9 bends. Take 2k copies and identify the vertices of degree 2 in such a way 
that  the resulting graph is planar and triconnected (see also Fig. 4). The graph 
then has (6 + 3)2k = 15k vertices and needs 9 . 2 k  -- ~ n  = is ~n bends. [] 

Fig.  4. Triconnected graphs that  need many bends in any drawing. 
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4 L o w e r  B o u n d s  f o r  P l a n a r  D r a w i n g s  

4.1 P l a n e  g r a p h s  

Assume after taking away all edges on the outerface of a plane graph H we get 
the graph G. Then we say that  H contains G on the inside. 

L e m m a  8. Let H contain G on the inside, where G has min imum degree 2. I f  
H can be drawn in a w • h-grid then G can be drawn in a (w - 2) x (h - 2)-grid. 

Proof. Consider a drawing FH of H in a w x h-grid. Deleting the edges on the 
outerface of H we get a drawing F c  of G. Since G has minimum degree 2, the 
highest row of FG must be used by a horizontal line. This line belongs to an edge 
e on the outerface of G. Since G is on the inside of H ,  e is not on the outerface 
of H. FH reflects the embedding of H ,  so we must have a line drawn above e in 
FH. Therefore FH has at least one more unit in top-direction. The same holds 
for the other three directions. [] 

T r i e o n n e c t e d  g r a p h s  Kant  showed lower bounds of 2(n - 2) + 2 on the grid- 
size and 4(n - 2) + 2 bends for triconnected plane graphs. We improve this 
slightly with the following graph class: 

D e f i n i t i o n  9. Define the graph classes {T[} and {Ti} as follows: 

- T~ is a 3-cycle. 
- T~ is obtained by taking a copy of T~_I, and adding three vertices in the 

outerface. Then we add a 6-cycle between the three new vertices and the 
three vertices of degree 2 of T~_ 1, such tha t  T[ contains T[_ 1 on the inside. 

- Ti is obtained by taking a copy of T~ and adding a 3-cycle between the three 
vertices of degree 2 of T~ such that  Ti contains T~ on the inside. 

See Fig. 5 for an illustration of this graph. 

L e m m a  10. Ti needs a width and height of 2i + 1 in any plane drawing. 

Proof. We first show a lower bound for T[, namely, it needs a width of 2i - 1. 
This is shown by induction on i. Since T~ is a triangle, it needs a 1 x 1-grid. Now 
consider T[, i >_ 2. By construction it contains T[_ 1 on the inside, so if we could 
embed T~ with width less than 2i + 1, then by Lemma 8 we could embed T~_ 1 
in a grid of width less than 2i - 1 = 2(i - 1) + 1, a contradiction. 

Now finally consider Ti. By construction it contains T~ on the inside, so it 
needs two more units in width than T~, which gives a lower bound of 2i + 1 on 
the width. The proof for the height is similar. O 

L e m m a  11. Ti needs 4i + 4 bends in any plane drawing. 

Proof. This is trivial: Ti is 4-regular and has a width of 2i + 1 in any drawing. By 
Lemma 1 it therefore must  have 2(2i + 1) + 2 = 4i + 4 bends in any drawing. [] 
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T h e o r e m  12. There are the following lower bounds for plane triconneeted graphs: 

- simple graphs: (2n § 1) • (2n + 1)-grid and ~n § 4 bends. 
multigraphs: 2 2) + 3) 2 - - x - - (~(n 2) +3) -gr id  and ~(n 2) + 8  bends. 

Proof. We are done in the simple case, since Ti has n -- 3i vertices. Obtain 
graph Ti as follows: subdivide two different edges on the outerface of Ti, and 
add a double edge between the two new vertices, such that  the double edge 
encloses Ti. Some calculation shows that  ~bi has 3i + 2 nodes, needs a width and 
height of 2i + 3, and 4i + 8 bends. This proves the claim for multigraphs. D 

Biconnected graphs Storer showed a lower bound of n - 2 on the grid-size 
of biconnected simple graphs [11]. Tamassia, Tollis, and Vitter showed a lower 
bound of 2n + 4 bends for multigraphs and 2n - 2 bends for simple graphs [15]. 
We use their graph class to show a slightly better  bound on the grid-size. 

D e f i n i t i o n  13. Define the graph classes {B~} and {Bi}  as follows: 

- B~ is a double edge. 
- BI is obtained by taking a copy of B~_I, adding two vertices in the outerface, 

and adding a 4-cycle alternating between the two new vertices and the two 
vertices of degree 2 of B~_I, such that  BI contains B~_ 1 on the inside. 

- Bi is obtained by taking a copy of B~ and adding a double edge between the 
two vertices of degree 2 of B~ such that  Bi contains B~ on the inside. 

The following lemma is proved exactly as in Lemma 10 and Lemma 11. The 
second claim was known before [15], though proved by different means. 

L e m m a  14. Bi needs a width and height of 2i + 1 and 4i + 4 bends. 

Fig.  5.2"4 and B4, both drawn optimally. 

l 

T h e o r e m  15. There are the following lower bounds for plane biconnected graphs: 

- simple graphs: (n - 1) • (n - 1)-grid and 2n - 2 bends 
- multigraphs: (n + 1) • (n + 1)-grid and 2n + 4 bends 
- graphs with loops: (n + 2) • (n + 2)-grid and 3n bends 
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Proof. For multigraphs we are done by Lemma 14 since B~ has 2i vertices. 
For simple graphs, let/~i be the graph obtained from Bi by subdividing one 

of each of the double edges. Some calculation shows tha t /~ i  has 2i + 2 vertices, 
needs a height and width of 2i + 1 and 4i + 2 bends in any drawing. 

For graphs with loops, l e t / ~  be the graph obtained from Bi by subdividing 
one edge on the outerface, and adding a loop incident to the new vertex, such 
that  the loop encloses B~. Some calculation shows that  Bi has 2i + 1 vertices, and 
needs a width and height of 2i + 3 in any drawing. This proves the lower bound 
on the grid-size. For the number of bends, the claim was shown in Theorem 
6. [:3 

C o n n e c t e d  g r a p h s  The known lower bounds for connected plane graphs are 
S(n - 2) bends for multigraphs, and 4(n - 2) bends for graphs with loops [15]. 
We improve these bounds and develop new ones for simple graphs. 

D e f i n i t i o n  16. Define the graph classes {C~} and {Ci) as follows: 
- C~ is a loop. 
- C~ is obtained by taking a copy of C~_1, adding one vertex in the outerface, 

and adding a double edge between the new vertex and the vertex of degree 2 
of C~_1, such that  C~ contains C~_ 1 on the inside. 

- Ci is obtained by taking a copy of C~ and adding a loop at the vertex of 
degree 2 of C~ such that  C~ contains C~ on the inside. 

See Fig. 6 for an illustration of this graph class. The following lemma is 
proved exactly as in Lemma 10 and Lemma 11. 

L e m m a  17. Ci needs a width and height of 2i + 1 and 4i + 4 bends. 

D e f i n i t i o n  18. The graph class CMi is essentially defined as the graph class 
Ci, with the exception that  both loops are replaced by a quadruple edge with 
one edge subdivided. See also Fig. 6. 

The following lemma is proved similar as in Lemma 10 and Lemma 11. 

L e m m a  19. CMi needs a width and height of 2i + 5 and 4i + 12 bends. 

Fig.  6. C4 and CM4, both drawn optimally. 
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D e f i n i t i o n  20.  Define the graph  classes {CSi), {CS~) and {CS~') as follows: 
- CS~ ~ is a 3-cycle. 
- CS~ (i >_ 1) is obta ined by taking a copy of CS~' and adding  two vertices 

in the outerface.  Then  we add a 4-cycle a l ternat ing between the two new 
vertices and two vertices of  degree 2 of  CS~ p, such tha t  CS~ contains CS~ ~ 
on the inside. 

- CSi (i >_ 1) is obta ined by taking a copy of CS~ and adding one vertex in 
the  outerface.  Then  we add a 3-cycle between this new vertex and the  two 
vertices of degree 2 of CS~, such tha t  CSi contains CS~ on the  inside. 

- CS~+I (i > 1) is obta ined by taking a copy of CSi and adding two vertices 
in the outerface.  Then  we add a 3-cycle between the two new vertices and  
the  vertex of degree 2 of  CSi, such tha t  CS~+I contains CSi on the inside. 

F ig .  7. CS~ ~, CS~, and CS2; and an opt imal  drawing. 

L e m m a  21.  CSi needs a width and height of 6i - 1 in any plane drawing. 

Proof. We show only the width  by induct ion on i; showing also a lower bound  
for CS~ t of 6i - 5 and a lower bound  for CS~ of 6i - 3. CS~ ~ is a tr iangle t ha t  
needs a wid th  of 1 = 6 . 1  - 5. Assume the claim was shown for CS~ t. 

CS~ contains CS~ ~ on the inside and needs two more  units in width than  
CS~ ~, which gives a lower bound  of 6i - 3. CSi contains CS~ on the inside and 
needs two more  units  in width than  CS~, which gives a lower bound  of 6i - 1. 
Finally, CS" contains CSi on the inside and needs two more  units  in wid th  i§ 
t h a n  CSi, which gives a lower bound  of 6i + 1 = 6(i + 1) - 5. [] 

L e m m a  22.  CSi needs 12i - 2 bends in any plane drawing. 

Proof. CSi has two vertices of  degree 2. If  we remove those and connect  their 
neighbors  by an edge, we get a 4-regular graph  CS*, which needs the  same width  
as CSi, 6i - 1. By Lemma 1 CS* therefore needs 12i bends. CSi results f rom 
CS* by subdividing two edges, so by L e m m a  4 CSi needs 12i - 2 bends. [] 

T h e o r e m  23. There are the following lower bounds for plane connected graphs: 
- graphs with loops: (2n + 1) • (2n + 1)-grid and 4n + 4 bends. 
- multigraphs: (2n - 3) • (2n - 3)-grid and 4n - 4 bends. 
- simple graphs: (~(n6 _ 1) - 1) • (~(n6 - 1) - 1)-grid and ~ ( n -  1) - 2 bends. 

Proof. One shows easily t ha t  Ci has i vertices, CMi has i + 4  and CSi has 5i + 1 
vertices. The  results follow with L e m m a  17, 19, 21 and 22. [] 
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N o n - c o n n e c t e d  g r a p h s  For brevity we skip the definition and proofs for non- 
connected graphs. For simple graphs we did not find graphs with bet ter  lower 
bounds than those for connected graphs. 

F ig .  8. Non-connected 4-graphs which need a big grid and many  bends. 

T h e o r e m  24. There are the following lower bounds for plane graphs: 
- graphs with loops: (4n - 1) x (4n - 1)-grid and 8n bends. 
- multigraphs: (2n - 1) • (2n - 1)-grid and 4n bends. 

4.2 C o m b i n a t o r i a l  e m b e d d i n g  can  b e  c h o s e n  

To the author ' s  knowledge no research has been done into lower bounds for 
planar drawings. We provide  some results here which are close to opt imal i ty  in 
the number of bends. 

T r i c o n n e c t e d  G r a p h s  For triconnected planar graphs there exists only one 
combinatorial  embedding. Therefore, if we consider all possible choices of the 
outerface of Ti, then we get a lower bound for any planar drawing of Ti. 

L e m m a 2 5 .  Ti needs a width and height of i and 4i - 2 bends in any planar 
drawing. 

Proof. Assume that  T[ had the vertices {vl, v2, V3} and that  we obtained T~ by 
adding the vertices {v3i-2, v3i-1, v3i}. Let F be the embedding of Ti defined in 
Definition 9, this induces an embedding of T~. We know tha t  T~ in this embedding 
needs a width of 2i - 1, and can also show that  it needs 4i - 3 bends. Assume we 
are given some planar orthogonal drawing of Ti, this induces a planar embedding 
F ~. The outerface of F ~ can have degree 3 or 4. 

If  the degree is 3, then we may assume that  the outerface of F ~ is either the 
outerface of F,  or one of the three faces adjacent to it. After deletion of the edges 
(V3i, V3i--1), (V3i--1, V3i--2), (V3i--2, V3i) we have a copy of T[ embedded as in F.  
So we need a width and height of 2i - 1 > i and 4i - 3 bends of T~. The three 
deleted edges form a triangle and need a bend, so we get a lower bound of 4i - 2 
bends. 

If the degree is 4, we assume after possible renumbering tha t  the outerface is 
{v3y-3, v3j-1, v3j, v3j+l } for some 1 < j < i. Splitting the graph at v3j-2, v3j-1 
and v3j we get a copy of T~ and a copy of T~_j+I, embedded as in F.  So the 
number  of bends in this embedding is at least 4 j - 3 + 4 ( i - j + l ) - 3  = 4 i - 2 .  At the 
very least the width and height of the drawing must  be m i n { 2 j - 1 ,  2 ( i - j +  1) - 1 }  
which is smallest for j = ~ and then equals i. [:3 
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ray - 1 

....... ~ ~ v ~  TI l 
Fig. 9. Ti embedded with outerface-degree 4 leads to a bend-optimal drawing. 

T h e o r e m  26. We have a lower bound of an ~ x g-grid and ]n - 2 bends for 
planar drawings of triconnected graphs. 

Biconnee ted  graphs  For biconnected graphs the combinatorial embedding is 
not unique. However, even though Bi has many different combinatorial embed- 
dings, all give the same planar drawing, except for possible renaming of the ver- 
tices and the choice of the outerface. Therefore, by considering different choices 
of the outerface, we get a lower bound for planar drawings of Bi. 

We do not explain the details here, and leave it to the reader to show that 
Bi needs an i • and 4i bends in any planar drawing. We can then again 
go over to/~i to get the lower bounds for simple graphs. 

T h e o r e m  27. There are the following lower bounds for planar biconnected graphs: 
- multigraphs: ~ x ~ and 2n bends. 
- simple graphs." (~ - 1) x (~ - 1) and 2n 6 bends. 

5 R e m a r k s  a n d  O p e n  P r o b l e m s  

In this paper we have considered lower bounds: for the number of bends in the 
non-planar case and on both the number of bends and the grid-size in the planar 
and plane case. Various results have been proved, which either give completely 
new lower bounds or considerably improved the old ones. 

For plane graphs, the results are almost optimal, and the difference is only a 
small constant, if at all. For planar graphs, the results are fairly good in terms 
of the number of bends, but improvement should be possible for the grid-size. 

Much work remains to be done for non-planar drawings. For the number of 
bends, there is a small gap in the factor between the lower and the upper bound. 
No algorithm is known that draws a planar graph with fewer bends if we allow 
for crossings. We suspect that such an algorithm should be possible. 

An even bigger problem are lower bounds on the grid-size for non-planar 
drawings. The current proofs give only a fairly small constant. It would be also 
interesting to see more techniques for proving lower bounds on the grid-size of 
non-planar drawings. 

Finally, we would like to pose the open problem of lower bounds for graphs of 
higher maximum degree. Usually, graphs with higher degree are drawn orthogo- 
nally by assigning boxes instead of points to vertices. With such a representation 
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every planar graph can be drawn without bends (see 1D visibility representa-  
tions [10, 12]). But  not all graphs can be drawn without bends: such a drawing is 
a 2D visibility representation, and can exist only for graphs which are the union 
of two planar graphs. I t  would be interesting to see which graphs can be drawn 
without bends at all, and what are lower bounds for those that  can' t .  

References  

1. T. Biedl, Embedding Nonplanar Graphs in the Rectangular Grid, Rutcor Re- 
search Report 27-93, 1993. Available via anonymous ftp from rutcor.rutgers.edu, 
file/pub/rrr/reports93/27.ps.gz. 

2. T. Biedl, G. Kant, A better heuristic for orthogonal graph drawings, Proe. of the 
2rid European Syrup. on Algorithms (ESA 9~), Lecture Notes in Comp. Science 
855, Springer-Verlag (1994), pp. 124-135. 

3. T. Biedl, New Lower Bounds for Orthogonal Graph Drawings, Rutcor Research 
Report 19-95, 1995. Available via anonymous ftp from rutcor.rutgers.edu, file 
/pub/rrr/reportsg5/19.ps.gz. 

4. T. Biedl, Orthogonal Graph Drawings: Algorithms and Lower Bounds, Diploma 
thesis TU Berlin (to appear). 

5. M. Formann, F. Wagner, The VLSI layout problem in various embedding models, 
Graph-Theoretic Concepts in Comp. Science (16th Workshop WG'90), Springer- 
Verlag, Berlin/Heidelberg, 1992, pp. 130-139. 

6. A. Garg, R. Tamassia, On the computational complexity of upward and rectilinear 
planarity testing, Proc. Graph Drawing '94, Lecture Notes in Comp. Science 894, 
Springer Verlag (1994), pp. 286-297 . 

7. G. Kant, Drawing planar graphs using the Imc-ordering, Proc. 33th Ann. IEEE 
Syrup. on Found. of Comp. Science 1992, pp. 101-110, extended and revised version 
to appear in Algorithmiea, special issue on Graph Drawing. 

8. M.R. Kramer, J. van Leeuwen, The complexity of wire routing and finding min- 
imum area layouts for arbitrary VLSI circuits. Advances in Computer Research, 
Vol. 2: VLSI Theory, JAI Press, Reading, MA, 1992, pp. 129-146. 

9. F.T. Leighton, New lower bounds techniques for VLSI, Proc. 22nd Ann. IEEE 
Syrup. on Found. of Comp. Science 1981, pp. 1-12. 

10. P. Rosenstiehl, R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of 
planar graphs, Discr. and Comp. Geometry 1 (1986), pp. 343-353. 

11. J.A. Storer, On minimal node-cost planar embeddings, Networks 14 (1984), pp. 
181-212. 

12. R. Tamassia, I.G. Tollis, A Unified Approach to Visibility Representations of Pla- 
nar Graphs, Disc. Comp. Geom. 1 (1986), pp. 321-341. 

13. R. Tamassia, I.G. Tollis, Efficient embedding of planar graphs in linear time, Proc. 
IEEE Int. Syrup. on Circuits and Systems (1987), pp. 495-498. 

14. R. Tamassia, I.G. Tollis, Planar grid embedding in linear time, IEEE Trans. Circ. 
Syst. 36 (9), 1989, pp. 1230-1234. 

15. R. Tamassia, I.G. Tollis, J.S. Vitter, Lower bounds for planar orthogonal drawings 
of graphs, In]. Proc. Letters 39 (1991), pp. 35-40. 

16. L.G. Valiant, Universality considerations in VLSI circuits, IEEE Trans. on Comp. 
C-30 (2), 1981, pp. 135-140. 


