
IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-19, NO. 2 ,  MARCH 1983 15 

[13]  G. E. Bloom,  A. Eris, and  R.  Ruble, “Modelling, analysis; and duced ripple without need for adjustments,” U.S. Patent Applica- 
design of  a multi-output Cuk  converter,” in Proc. Seventh  Na- cation,  June  15,1979. 
tional Solid-state Power Conversion Conf., pp. 11.1-11.19,  Mar. [20] P.  Wood! “General theory of  switching  power  converters,” in 
1980. IEEE Power Electronics Specialists Conf., 1979  Record,  pp. 3-10 

output Cuk  converter,”  presented at  IEEE Power Electronics [21] S. Cuk, “Switching  dc-to-dc  converter with zero input  or  output 
Specialists Conf., June  1980,  Atlanta, GA. current ripple,” in IEEE Ind.  Appl. Soc. Annu. Meeting, 1978 

[ 151 W. T. McLyman, Transformer and Inductor Design Handbook. Record, pp. 1131-1145, (IEEE  Publication 78CH1346-61A). 
New York: Marcel Dehker. [ 221 H. Hirayama,  “Simplifying  switched mode converter design with 

[16] S. Cuk and  R. D. Middlebrook,  “Dc-to-dc  switching converter,” a new variable leakage transformer  topology,”  in Proc. Seventh 
US. Patent  4,184,197,  January  15,  1980. Foreign patents National Solid-state Power Conversion Conf: (Powercon 7), pp. 
pending. El.1-El.10, Mar. 1980. 

[17] S. Cuk, “Push-pull switching power amplifier,” U.S. Patent  [23]  R. P.  Massey and E. C. Snyder, “High-voltage singleended dc-dc 
4,186,437,  Jan.  29,1980. Foreign patents pending. converter,” in IEEE Power Electronics Specialists Conf., 1977 

[18] -, “Dc-to-dc switching converter  with zero  input  and  output Record,  pp. 156-159. 
current  ripple  and  integrated magnetics circuits,” U.S. Patent Ap- [ 241 R. D. Middlebrook, “Modelling and Design of the Cuk Converter,” 
plication, March 30,1979. in Proc. Sixth National Solid-state Power Conversion Coni 

[14] G.  E. Blpom and A. Eris, “Modelling and analysis of a  multi-  (IEEE  Publication  79CH1461-3 AES). 

[19] S. Cuk and  R. D. Middlebrook, “Dc-to-dc converter having re-  (Powercon 6),  pp.  G3.143.14, May 1979. 

New  Magnetic  Structures  for  Switching  Converters 

have been centered  around a very few standard switching  converter designs have been so notorious in noise generation  that  the 
topologies. Recently,  a number of new converter  topologies have been 
proposed in order  to  find  the best possible electrical interconnection of whole field of switching  power  supplies received a bad name 
.~ 

power processing ,elements: switches, storage components,  and trans- 
formers, that would  yield the highest  efficiency and best  performance. Early attempts  to  cure some of these noise performance 
However the equally important  and  complementary problem of their 
best magnetic interconnection  has been  completely overlooked. In 
some new converter structures, the  nature of the switching  process and 
existing  waveforms allows integration of previously separate  inductors 
and transformers into a single magnetic  structure. Several such mag- 
netic  core  structures  are  proposed  and analyzed, which lead to further 
converter  simplifications and  performance improvements. 

U 
I .  INTRODUCTION 

P UNTIL two decades ago, only  a small number of 
standard switching configurations have been in wide- 

spread  use, such as the basic buck,  boost,  buck-boost,  flyback, 
buck-forward,  push-pull,  half-bridge, and full-bridge  switch- 
ing converters. However each of these configurations  had  both 
theoretical  and practical  disadvantages, often requiring addi- 
tion  of some extra  components (such as input filtering  in the 
buck  or  buck-boost derived family of converters,  flux sensing 
to  prevent  saturation in push-pull converters, etc.) to cure 

problems by adding  brute-force filtering and heavy shielding 
resulted  in designs almost as heavy and  bulky as their linear 
power  supplies predecessors. Fortunately, space applications 
and  their  requirements  for small size,  weight, and highest ef- 
ficiency maintained  a  strong  interest  and  sponsored innova- 
tions  in switching power supplies. Just  within  the last  decade 
a  number  of new switching configurations  mushroomed,  pri- 
marily.because of  the need to  come  up  with  more  efficient  and 
“quiet” converter  topologies. 

The prior effort  in devising new, better  converter topologies 
has been documented in several Ph.D. dissertations [ l ]  , [2 ] ,  
in a two-volume book Advances  in  Switched-Mode  Power  Con- 
version [ 3 ] ,  [4], and,in  a series of  patents [SI -[8]. Through- 
out  this research effort  the emphasis was on the  topology of 
the electrical  interconnections among various components 
(switches, capacitors,  inductors,  and  transformers), as illus- 
trated on the general block diagram of Fig. l(a). Several new 
converter configurations [ 11, [4] have been proposed  and 
thoroughly analyzed [ 1 ] , [ 3 ]  . 
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Recognition of some of the  unique  features  of  the charac- 
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Fig. 1. Three  key steps in switching converter  developments.  (a)  Topology of electrical  interconnections. (b) Topology of 
magnetic  interconnections. (c) Blending of  electrical and magnetic topology  into single converter structure. 

the possibility of reducing the size, weight, and  cost  of  con- 
verter  magnetic  content, which is usually a dominant  part  in 
all switching converter  configurations,  without compromising 
converter  performance,  and  in  fact in  some  instances con- 
siderably  improving it. As illustrated  in Fig. l(b),  this  has 
led to equal  attention given to  the magnetic interconnection 
of inductors  and  transformers, resulting in single magnetic 
structures with multiple windings, which emulate  the  func- 
tion  of several inductors  and/or  transformers.  The final out- 
come  in Fig. l(c) is a converter in  which  switching  converter 
electrical  topology blends nicely with  its magnetics  topology 
to result in a  simpler, less costly,  and  better  performance 
configuration. 

In  Section I1 the  coupled-inductor  and  integrated magnetics 
technique is briefly reviewed. Several new alternative core 
configurations  are  introduced  in  Section 111 and  their relative 
merits discussed. The analysis of these complex  magnetic 
structures is introduced in Section IV, which  leads to  the  com- 
plete magnetics design (core sizes, number  of  turns, wire size, 
etc.) for  the given specifications at  hand.  In  Section V future 
directions  for  experimental  and  theoretical (analytical) work 
are outlined. 

11. REVIEW OF INTEGRATED MAGNETICS CONCEPT 
We define the  integrated magnetics concept as the process in 

which the  inductors  and  transformers are  merged into a single 
magnetic  circuit  with  multiple windings. It is obvious that this 
is not always  possible, since certain prerequisities have to be 
fulfilled beforehand.  For  example,  the single-output version 
of the  dc isolated Cuk converter has  the necessary prerequisite: 
equal and  proportional voltage  waveforms not only on  the 
inductors  but on the primary and secondary of  the isolation 
transformer, as  illustrated in Fig. 2 .  This  comes  about because 
of the volt-second  balance in  steady  state  on all magnetic com- 
ponents, leading to a  rectangular voltage waveform switching 
between  input V, and  output -V dc voltage. Furthermore, 
with  the change of operating  point  (duty cycle D etc.) the 
waveforms automatically  adjust to maintain  the volt-second 
balance and  hence  proportionality is preserved  despite source, 
load,  or  operating  point changes. Thus, as explained  at  length 
in [lo] or [4], all the prerequisites are satisfied to integrate 
the  isolation  transformer  together with the  two  inductors  into 

+ I 
Fig. 2. DC isolated duk converter possesses unique feature of equal 

(proportional) voltage waveforms on all magnetic  elements. 

a single magnetic  circuit with  four windings,  as  illustrated  in 
Fig. 3(a), by a simple extension  of  the line showing the mag- 
netic  core  from  the  transformer  into  the  two  inductors.  The 
particular  magnetic  core  configuration is shown in Fig. 3(b). 
Note  that  in Fig. 3(a), the line showing the magnetic  coupling 
through  core is purposely shown  not to connect  input  and 
output  inductors directly but  through  the isolation  trans- 
former, as its core  realization  in Fig. 3(b) also suggests. Because 
the  outer legs of the E1 configuration  containing  inductors 
have air gaps, the  flux generated  by the ampere turns excita- 
tions  on  the  input  inductor,  for  example, closes through  the 
inner leg of  the E1 core, which has a much smaller reluctance 
than  the  other  outer leg containing  the air gap. Hence,  the 
input  inductor is for all practical purposes  coupled  to  the 
isolation  transformer  and  not  (or very little) directly to 
the  output  inductor.  The same holds  true  for  the  output in- 
ductor, so that  this coupling  scheme is appropriately designated 
by the  core  notation  adopted in Fig. 3(a). 

From  the  conceptual viewpoint,  this was the  first  time  that 
inductors  and  transformers, previously exclusively used 
separately  in  switching structures, were now  integrated  into a 
single magnetic  circuit with  multiple windings. 

Besides obvious  simplification of the converter  magnetic 
content (single core versus previous three cores), and  cor- 
responding savings in size and weight, one of the  additional 
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Fig. 3. (a) Zero-ripple duk converter. (b) Its single magnetic  circuit 

realization. 
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Fig. 4. Number  of  separate inductors  and transformers  can be merged 
into single magnetic  circuit  with  multiple windings provided inductor 
and transformer voltage waveforms  are proportional. 

main  advantages is virtual elimination of current ripple at both 
input  and  output sides, as illustrated in Fig. 3. Namely,  by 
proper magnetics design the  input  and  output  current ripples 
are  shifted  into  the isolation transformer windings, where 
they can be more readily tolerated (inside the black box). 
This  concept  may be  now  generalized as illustrated in Fig. 4 
as follows. 

In  any switching structure,  a  number of separate  inductors 
and  transformers can  be integrated  into  a single magnetic  cir- 

cuit  with  multiple windings,  provided the  inductor  and  trans- 
former voltage waveforms  before coupling are in  a  fixed  ratio 
of proportionality  to  one  another,  independent  of  the  operat- 
ing point. 

Note  that  the line  designating the  magnetic  core in Fig. 4 
represents  the general case in  which all windings are  coupled to 
one  another.  A  multitude  of alternative core  structures  exist 
when one  starts  to  examine various  air-gapped core  structures 
and  different coupling  arrangements. Let  us  now  explore 
some of them in more detail. 

111. NEW ALTERNATIVE MAGNETIC CORE  STRUCTURES 

Although  merging of the  inductors  and  transformer  into  a 
single core  configuration  of Fig. 3 resulted in  a simplified and 
zero-ripple  configuration,  it  has also led to some undesirable 
drawbacks. For  example,  the  isolation  transformer in the  con- 
verter of Fig. 2 (separate  transformers  and  inductors)  has  the 
ideal zero  dc bias feature  (dc blocked by coupling  capacitors 
on each side). In principle it  can be built on square-loop  un- 
gapped  core  structures,  hence resulting  in a  compact  and ef- 
ficient transformer  with  low leakages. However, when built  in 
the E1 configuration  of Fig. 3(b), the  isolation  transformer 
"sees" the air gaps of both  inductors. While this is helpful 
during a fast transient, preventing core  saturation  of  the 
isolation  transformer because of instantaneous volt-second 
imbalance  during the charging of coupling  capacitors, it does 
not serve any real purpose in the  steady  state. 

A.  Three-Bobbins  Single-Core Implementation 

An alternative E1 core implementation which eliminates this 
drawback and  maintains  good  isolation  transformer  features is 
shown in Fig. 5 .  This  time,  only  the  inner leg is gapped and 
carries the  coupled  inductors  only, while the  outer legs are 
ungapped and carry the  isolation  transformer windings. Thus 
as  seen  in Fig. 5(a), the  transformer windings  are  virtually not 
coupled to  the  inductor windings. Note, however, that  for 
better  coupling each outer leg would be made to carry  both 
primary and  secondary windings of isolation  transformer. 

Furthermore,  the presence of the inner  gapped leg would 
prevent saturation  of  the  transformer during  fast transients, 
while still providing basically the ungapped configuration in 
the  normal  steady-state  operation.  The only drawback appears 
to be in fact  that with the  configuration  of Fig. 5, the ripple 
current can be eliminated a t  only  one  end. 

The low-leakage split primary  and split secondary of the 
isolation transformer  shown  in Fig. 6 is commonly  practiced 
with  a UI core  implementation of the  isolation  transformer 
only.  The  additional  inner leg of  the E1 configuration  then 
serves to realize the  coupled-inductor  configuration  and  pro- 
vides the filtering at  both  input  and  output  ends. 

It is now  apparent  that  either in the magnetics implementa- 
tion of Fig. 5(b) or Fig. 6 the  magnetic  core provides the  flux 
path  for  both  the  transformer  flux Gt and  the  coupled-inductors 
flux @i, except  for  the  inner leg which  has  mainly the  coupled- 
inductor  flux & and  a negligible portion of the  transformer 
flux G t .  In order  to avoid core  saturation,  the  total  flux swing 
must be less than  the  saturation value for  a given core cross- 
section  and material type.  Thus,  for  the  outer legs, the follow- 
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Fig. 5. (a) Coupled-inductor  dc isolated Cuk converter.  (b) Its single 

E1 core implementation using three  bobbins. 

isolation  transformer 
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Fig. 6. Low leakage configuration of magnetic structure in Fig. 5. 

ing limitation  must be met regardless of the relative values of 
@i and G t :  

@i + @t @s (1) 

since the  inductor  and  transformer fluxes are additive. 
The magnetic circuit design and  optimization of this com- 

plex  magnetic structure can now be reduced  to  the  solution 
of two problems: 

1) How do  the  inductors  and  transformer share the  total 
flux swing Gs available for  the  core of given cross-section? 
Alternatively,  what are the  portions  of  the  total  flux 
swing Gs assigned to  the  inductor  and  transformer 
respectively? 

2 )  How do  the  inductor  and  transformer windings share the 
available window area? 

In  particular, we are also interested  to  find  out if there'is an 
optimum choice of flux swing allocation, which will lead to 
the smallest core size and  yet still achieve the required induc- 
tor  and  transformer conversion functions. 

Let us now see how  the relative flux  allocations would affect 

the geometric configuration of the chosen El  core,  that is, the 
relative cross-section area of the  inner leg versus the  outer 
legs. If the transformer flux Gt  is small and negligible com- 
pared to the  inductor  flux,  the inner leg cross-section  should 
be twice the area of the  outer leg, to achieve best  core  utiliza- 
tion  throughout  the  geometry of the core. This is so because 
the  inductor  flux divides into  two  equal  parts. 

Hence, the  standard off-the-shelf E1 core  geometry could be 
used. However, if the  inductor  and  transformer share the flux 
swing equally,  then ideally all three legs should be of equal 
cross-sectioned  area.  Hence, the  standard three-phase E1 core 
geometries would be suitable. Any  flux allocation  in  between 
these two  limits would naturally have the  inner cross-section 
appropriately  adjusted within the limits of the single and 
double cross-section of the  outer legs. 

However this rather impractical solution can be completely 
avoided.  Namely  taking into  account  the converter  circuit 
configuration of Fig. 5(a) and  the possibility for  saturation 
of the  isolation  transformer during fast transients, suggests the 
standard single-phase E1 configuration. This is needed to 
protect against saturation of the inner leg when the trans- 
former  flux closes through  it. 

B. Core Implementation with Orthogonal  Fluxes 
Orthogonal fluxes had been investigated  in the past for  a 

variety of  applications [ 111 , [ 121 . Here we propose one  such 
specific application  for switching  power  conversion  field. In 
the  core  configuration of Fig. 5, the  two  fluxes @i and Gt are 
added in the same plane. However there is no reason  why 
they  could  not be  in different planes. In  particular, when the 
two fluxes  are in  two perpendicular  planes, ideally there is 
no coupling between  them  just as the circuit of Fig. 5(a) in- 
dicates, if the fluxes are exercised along linear portion of their 
B-H characteristics. Yet  there is a  conceptually very interest- 
ing core realization using a single magnetic core as shown  in 
Fig. 7, which  actually leads to significantly better  utilization 
of the  core material. 

In  the case of  the  ferrite  pot  core,  illustrated in Fig. 7(a), the 
two windings of the  coupled-inductor are  wound as usual on 
the bobbin and placed inside the gapped pot core. The isola- 
tion  transformer windings  are then  added  treating  the  pot  core 
as a  toroid  and using the  middle hole for  the winding: the 
resultant  flux density  vector B, is the vectorial sum of the  two 
perpendicular components Bi and Bt,  as illustrated in  Fig. 7(a). 
As illustrated in Fig. 8 for  the case of equal transformer  and 
inductor  flux densities Bt and Bi, a full 70  percent of the 
saturation  flux density B, (or f i / 2 B S  = 0.707 B, to be more 
exact) is available for  both  transformer  and  inductor design, 
compared to only 50 percent in the case of their  addition in a 
single plane  as  in  previous case. Hence a  better  utilization of 
the  core  material is achieved.  This  would then translate into 
a lower  loss, and  more cost-effective design. 

The  implementation  with  the readily available pot core  with 
a  center  hole, however, may  not be very practical and suitable 
because of the  rather  odd area available for  the  transformer 
winding. Nevertheless, a specially constructed  toroid having 
two halves shown  in Fig. 7(b) could be a suitable solution. 
The  isolation  transformer windings then  could be placed inside 
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(b) 
Fig. 7. Transformer and coupled-inductor  fluxes in perpendicular 

arrangement lead to a better core  utilization. (a) Pot core  implemen- 
tation. (b) Toroidal  implementation. 

Fig. 8. Full 70 percent  of total flux swing can  be used by  both trans- 
former and  coupled-inductors  simultaneously. 

the  toroid, while the  coupled-inductor windings could be 
wrapped around  it  in  the usual fashion. For easier recognition, 
the  magnetic  cores  are  shown  shaded  in Fig. 7. The price 
paid  for  better  utilization  of  the  core material  in the  con- 
figuration of Fig. 7 is in greater complexity  of  the  structure 
and relative  inflexibility  in  making any changes  in design 
after  it is wound,  compared to  that  of Fig. 6. Also the ques- 
tion of how close to an ideal isolation  transformer  with  low 
leakages can be obtained with a  configuration  of Fig. 7 re- 
mains to be answered through  experimental verification and 
analytical prediction. However irrespective of  its final prac- 
tical utility  and usefulness,  this example clearly demonstrates, 
at least conceptually,  how  the  actual  core  geometry configura- 
tion  and  concept  of sharing same magnetic flux  paths  among 
various  magnetic components  (inductors  and transformers)  can 
actually  lead to better  core  utilization  and  more efficient 
design. 

The  experimental investigation of  the  orthogonal fluxes was 
very instrumental in discovering another very useful  applica- 
tion  for switching  converters.  During the  experiment,  it was 
found  that  the  orthogonal fluxes do interact,  due  to  the  non- 
linear nature  of  the  core material. Therefore,  an  additional 
perpendicular winding  can be used as a sense winding to de- 
tect  the  impending  saturation  of  the  transformer core in 
switching converters  [13] , and prevent their  catastrophic 

W 

Fig. 9. (a) Single magnetic  circuit will all four windings  coupled on 
common core. (b) Single bobbin gapped E1 core  implementation. 

failures. After  this slight digression from  our  main  stream, 
let us now  look  at  some alternative integrated magnetics 
implementations. 

C. Single-Bobbin  Single-Core Implementation 
While the  implementation  of Fig. 5 has  many desirable fea- 

tures,  it also has some  practical disadvantages. For  example, 
to implement  the  core  configuration of Fig. 5, one  needs  three 
bobbins, all of which are  nonstandard  items since that  type  of 
core is exclusively used with the single center-leg bobbin. 
Thus,  probably  the simplest alternative, which  does not  re- 
quire any specially gapped core (such as that in Fig. 3(b),  nor 
any special bobbin  arrangement,  but uses standard  off-the- 
shelf components, is the  one shown  in Fig. 9(b). 

Two  isolation  transformer windings with Nt turns  each,  and 
two  inductor windings with Ni turns each are all put  on  a 
single bobbin  and  mounted  on  the center-leg of  the E1 core 
(Fig. 9(b)). For the  implementation  with  a  ferrite  or  square- 
loop  core  material  the center-leg of the  core is gapped to 
provide dc  current  capability.  Although as before  there are 
two fluxes, & due  to  the  transformer  operation  and q+ due  to 
inductor  operation,  each  of  the center-leg fluxes  branches  into 
half  fluxes  which travel to the  outer legs. Thus regardless of 
the relative proportion  of  the  two fluxes r#~i and &, the  core 
cross-sections  are optimally utilized  with the center-leg having 
the  standard  double cross-section. 

Note  that, unlike in  the previous case, the  inductor windings 
are  strongly coupled  with  the  transformer windings as well as 
among themselves, as reflected on  the  circuit  schematic  of 
Fig. 9(a), showing core coupling (double lines) among all 
four windings. Note  that  the  transformer  and  inductor wind- 
ings are  coupled in  such a way that  their  ampere-turns  add. 
The  currents  entering  the  dot signs (only  one winding  each is 
shown in  Fig. 10 for simplicity) results  in adding the  two 
fluxes.  Increasing  ac flux  in  the  inductor  corresponds  to trans- 
former  flux increasing  in the same direction. Hence the same 
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Fig. 11. Two winding isolation  transformer  shown schematically. In 
practice windings N1 and N 2  are distributed  around  core to minimize 
leakage inductance. 

N t  I N t L  N , I * N I I m  

(b) 
Pig. 10. Flux superposition in single-bobbin E1 core  configuration. 

limitation as before (1) must be satisfied. This  flux  super- 
position is illustrated on Fig. 10(b), in which a  core  with same 
linear  core material  (and effective ye) is used. 

Finally,  there is an  additional  limitation  imposed by the 
coupling method itself. Note  that as shown  in Fig. 2 ,  owing 
to  the basic 1 : 1 relationship among  transformer  and  inductor 
voltage waveforms  before the couplings, the  turns  ratios are 
ideally limited  to 1 : 1 : 1 : 1. Consequently  one would  require 
ideally equal  numbers of turns  on  the  inductors  and  the trans- 
former,  hence Nt = N j .  Because of the coupling among all four 
windings, the  problem of determining  how  the switching cur- 
rent ripple divides among various  windings is a  formidable  one, 
since it involves the modeling of leakages in a four-winding 
transformer. Nevertheless, it is possible that  zero  current 
ripple on  both  ends,  or even only  on  one side, may  not be 
achievable. Let  us now try  to derive some  analytical results 
for  the  two  configurations  proposed  in  Section 111-B and 
Section 111-C. 

IV. ANALYSIS OF COMPLEX MAGNETIC STRUCTURES 
For simplicity in presentation we will assume that  the  con- 

verter  in Fig. 5 or Fig. 9 operates  at D = 0.5 duty cycle, 
resulting  in current level I in all four windings. Let  us now 
briefly review the design equations. 

A.  Transformer Design  via Area  Product A ,  Approach 
Here the same current density J is adopted  for  both  primary 

N 1  turns  and secondary N 2  turns of the  isolation  transformer 
shown  in Fig. 1 1 .  For  a rectangular-wave  periodic excitation, 
the  primary voltage Vl and  secondary voltage V2 which can 
be supported  on  a given core are obtained  from Faraday's law 
as 

where B,  is the  maximum allowable flux  density  and f s  is the 
switching frequency. 

Winding area W is fully  utilized  when 

1 
(a) cb) 

Fig. 12. (a)  Definition of core geometry. (b) Design of  coupled-induc- 
tors carrying dc  current. 

Substitution  of N 1  and N2 from ( 2 )  yields after rearrangement 

Usually a  converter is designed for very high efficiency (on  the 
order of 1-2 percent power loss). Thus VlIl  FZ V2 I , ,  and (4 )  
becomes 

D 

where P is the power  handling capability  of  the  transformer. 

B. Coupled-Inductor Design via Area Product A ,  Approach 

coupled-inductor (Fig. 12) such  that 
The magnetic potentials of the  two windings add in the 

(NIII + N 2 1 2 ) = R @  (6) 

where R = Zm/pS is the  reluctance  of  the magnetic flux  path 
and can  be  expressed  as 

where L 1  is self-inductance of the  input winding. With this 
(6) becomes 

Full  utilization of the window  area  results in 
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Multiplying left  and right sides of (8) and (9) we get 

L 
A ,  = WS= ___ 2B, kJ 

2 

where I, = 2L1 is the  inductance which corresponds to  the 
input  current ripple before  the coupling. 

In the special case I ,  = 0 (single inductor) 
1 r2 

A ,  =- 
L 1  

B,  kJ . 

In  our case, however, N 1  = N2 and I l  = I2 = I so 

2L12 
A ,  = - 

B,  kJ 

or,  the area product is only  doubled  from ( 1   1 ) .  To ensure that 
the  core is not  saturated: 

N1 I1 + Nz I ,  < RB, S. (13) 

In our special case of  coupled-inductors (D = 0.5, N1 = Nz = N, 
I l  =Iz  = I )  we get 

where I, = I t  Ail2 is the  peak  current. 

C Transformer and  Coupled-Inductor Designs Combined 
Three-Bobbin Single-Core Design: Let us now first analyze 

the  three-bobbin alternative of Section 111-A and Fig. 5 and 
Fig. 6. We assume that  the  transformer  has Nt primary and Nt 
secondary  turns ( 1 : l  turns  ratio)  and  coupled-inductors also 
1: 1 turns  ratio  but in  general Ni turns each  where Ni # N t .  
Finally,  the  transformer  flux $t and  inductor  flux $i are as- 
sumed to be  a fraction  of  the  saturation  flux $,, thus 

@t = a@, 

@ i = ( 1  - a)$ ,  (15) 

where a is a  free parameter.  Through  equal cross-sectional 
areas S, (1 5 )  reduces to  the  relation  for  flux densities 

B,  = aBm 

B i = ( I - & ) B , .  

To keep  the  transformer with Nt  turns  excited  just  to 
Bt < B,  flux  density level, ( 2 )  becomes 

To keep  the  coupled-inductor  flux  excitation  just  to Bi GBm 
flux density level with Ni turns, (14) becomes 

Since Bi + Bt = B ,  , using Nt and Ni turns  of (1 7) and (1 S), 
the full flux  capability  of  the core is utilized. 

Note  that  for  now a remains  a free  parameter,  that is how 
much  flux swing is assigned to  the  transformer  and  how  much 
to  the  coupled-inductor is yet  to  be  determined. However, its 

range of change is apparently ae(0 , l ) .  Boundaries a = 0, or 
a = 1 are not included  (that  directly  excludes  either trans- 
former  or  coupled-inductor).  The choice of (Y then  directly 
affects  the  optimum  number  of  turns Nt and Ni. However 
we still have to fit both transformer Nt and  inductor Ni turns 
into a single winding  area S. Thus  the  additional  constraint 
becomes 

where k is as before,  the  window  utilization  factor (fill factor) 
typically in  the range of 0.4 (ferrite  pot cores) to 0.6 (toroidal 
cores). Note also that  the same current density is assumed for 
both  transformer  and  inductor windings. 

The  substitution  of ( 1  7) and (1 8) into ( 1  9) leads after  re- 
arrangement to 

2 LIIP V d  A,  = WS= + 
(1 - a) B, kJ 2aB, kJf, * 

This can be put in the  form: 

where 

The area products A,i and Apt  in (22)  are  minimum area 
product  requirements if inductor  and  transformer were built 
separatel'y. From (22)  another  interesting  relation is obtained: 

since the  absolute ripple is Ai = V,DT,/L. 
Thus, if the  separate  inductors are to provide small ripple 

current (relative to  its average dc value) in  the  same  converter 
with a separate  isolation  transformer,  the  coupled-inductor 
area product (hence its size) is substantially larger than  that 
needed  for  the  transformer. 

Note  that  once  the electrical requirements are  specified 
(ripple current Ai,  dc current level I ,  power VgI, switching 
frequency f,) as well as design parameters (B,  for given core 
material, and  current density J), both Apt  and Apt are uniquely 
determined  from (22).  However the overall area product A ,  
for  combined  inductor  and  transformer is still undetermined, 
since it is a strong  function  of  the  parameter a, as  seen in 
Fig. 13, which is a plot  of  its  functional  dependence (21). 
Namely, for a -+ 0 and (11 + 1 ,  A ,  + 03. Since in that range it 
is a  positive quantity  and  does  not have discontinuities,  it  has 
a minimum. 

By use of calculus on (21)  

dAP(a) a2Api - (1 - a)2Apt  -- - 
d a  (1 - aya2 

= O  (24) 

or 
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Fig. 13. Area product  dependence on 01 !! Bt/Bm 

Thus  the  minimum size of the  inductor,  transformer magnetic 
circuit is obtained when the  ratio of their  flux  utilizations is 

The  optimum value Apop t  is  obtained by use of (25)  in  (21) 
as 

and  for 

Note  that  this  optimum value is somewhat larger than if 
we simply sum the area products  of  inductors  and trans- 
formers when  built separately,  that is 

APopt  > A ,  sum = A p t  + A p j .  (29) 

However the larger area product is not a direct indication 
of worse volumetric design. For  example, if we build two 
separate  toroidal  inductors  with each having area product 
A ,  = WS, building them  on  a  common  core  with  two  toroids 
stacked  (coupled-inductor) will result in  doubled area product. 
However as shown  in (10) or (4), the  coupled-inductor case 
actually results  in  almost  twice smaller size than  the  two 
separate  inductors. 

For  the special case of a = 0.5, 

A p ( 4  = 2(Api + A p t )  (30)  

so the  optimum area product can be bounded  on  both sides 
through  the  inequality 

W , i  + A p t )  >Apopt >Api + A p t .  ( 3  1) 

Finally,  the  total  combined area product A, can be ex- 
pressed in another useful form as 

A ,  =- 
a! 

where result (23)  was used in (32).  
Note  that  in all of  the above analysis, the general case was 

considered  such that  inductor N j  and  transformer Nt turns 
were different. As a  consequence  the  parameter a was a free 
parameter  and  the above optimization analysis was carried out. 

However,  when coupled-inductors are also magnetically 
coupled to the isolation transformer, a is not tl free parameter. 
This is so in our other single bobbin alternative of Section 
111-C for which N t  =Ni because of the 1:  1 turns  ratio of 
transformer to  inductor coupling. 

D. Analysis of Single-Bobbin  Single-Core  Configuration 
For  the magnetic  circuit of Fig. 13, an additional require- 

ment is imposed owing to  the 1: 1 : 1 : 1 turns  ratio  condition 
as 

Nt 
Ni 
-= 1. 

However from (1 7 )  and ( 1  8) 

Ai I - a -  Nt-- - -- 
Ni 2IP 

1. 

(33)  

(34)  

Thus  the  parameter a is no longer  free but is directly dic- 
tated by the choice of the relative ripple current in the  induc- 
tors,  that is, a = a, and 

Ai -25- =- 
1 - a, 21p . 

The  corresponding area product Ap(as) becomes 

( 3  5) 

which indicates that  the area products  and, because of the 
common cross-section S ,  the window areas allocated to  trans- 
former  and  inductors are equal (half  usable  window  area). 
This is, of course, under  the  assumption  of equal current 
density J in transformer  and  inductors. 

Using (23)  and  (35),   (36) also can be expressed  as 

(37)  

which is the same as obtained  for a: = 0.5 as seen from (30)  
and  shown in Fig. 13. Although  this is clearly worse than 
the  optimum value given by (27), the following example 
demonstrates  that  it is quite close to  the minimum value of 
the previous design. For  typical values 

Apj = 9Apt 

Apopt = 16Apt 

Ap(a,) = 20Apt. 

Hence, it is only 25 percent higher than  the  minimum possible 
value with the previous design. 

Finally,  a  note  about  the magnetizing current im of the 
isolation transformer  in this design. Assuming a linear  flux 
versus ampere-turns  characteristic (a ferrite  core with an air 
gap is very closely linear) we have 

(39) 
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or 

Thus  the magnetizing current  and  the ripple current in induc- 
tors are  equal.  Hence in  order to reduce  magnetizing current, 
a design parameter ripple current in inductors  has  to be chosen 
small enough (say 10-20 percent). 

V. CONCLUSION 
Several new and promising magnetic circuit configurations 

are proposed as alternative  implementations  of  the  integrated 
magnetics  approach  introduced previously [4] , [ 101 . These 
magnetic  structures  for  the  first  time  combine  the  inductors 
and  transformers  on  a single magnetic  core. The analytical 
treatment is somewhat  more  complex,  but  the benefits in 
more  efficient use of core  material, smaller, more  efficient, 
and  compact designs certainly far  outweigh any analysis  dif- 
ficulties.  Nevertheless a simplified  analysis covering only first- 
order  effects is easily carried out,  and  equations are developed 
for  the design of these complex magnetic structures.  In  one 
particular  configuration with three  bobbins even an  optimiza- 
tion can be carried out  to  determine  the  most favorable ratio 
of  flux sharing between  the  inductors  and  transformers, such 
that  the  resultant designs give the lowest overall size. 

Experimental verification of these and  some  other  alterna- 
tives is currently in  process, as  well as determination  of  how 
some  second-order effects (such as leakage  inductances) affect 
overall converter  performance. 
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