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CHAPTER 1

INTRODUCTION

Antenna radiation and target scattering parameters, characteristics and pat-
terns are measured on an instrumented facility called a “range”[1]. In the case
where the scattering from targets is to be measured, it is required that the scat-
tering body be illuminated by a plane wave of constant amplitude. Plane wave
illumination is similarly required to measure the far field radiation parameters of
an antenna. The measurement range thus has to be able to produce a uniform
plane wave with no cross-polarization errors (or a good approximation thereof )
over a specified volume where the target or antenna will be located, referred to as

the “target zone”. A local plane wave in the target zone can be created in two

ways; viz.,

1. Locating the target zone so that it is in the actual far zone of the source
antenna[2,3]. In order to meet the requirements for a plane wave approxi-
mation one finds that the actual distance separating the source antenna and

the target zone becomes very large, so that the measurement range can only

be implemented outdoors.

2. Using a collimator to transform the spherical wave radiated by a point source
into a plane wave[4]. This conversion can be accomplished in a relatively

short space, so that these types of ranges can be accommodated indoors,



and are referred to as “compact ranges”. Indoor compact ranges are nor-
mally housed in so called anechoic chambers, in order to simulate a free
space environment[5]. In true free space all energy radiated from a source
would propagate to infinity since there is per definition nothing to scatter
the energy back. The walls, floor and ceiling of an anechoic chamber are con-
sequently lined with electromagnetic absorbing material, so that (ideally) all
electromagnetic energy incident thereon is absorbed rather than scattered.
Two types of collimators have been proposed; viz., parabolic reflectors(6)
and lenses[4]. The lens concept has not proven to be very succesful, due to
the fact that metallic lenses are very frequency dependent and the manufac-
turing difficulties that are associated with large dielectric lenses. Parabolic
reflectors, on the other hand, have been very succesful and are widely used
in modern compact ranges. Compact ranges offer many advantages over
other types of ranges, and as a result a lot of effort is being directed towards
the improvement of their performance. For a general discussion on compact
ranges one is referred to references[4], [7]-[10]. A typical focus-fed compact

range configuration is shown in Figure 1.

This study proposes several design improvements that can be made to the

antenna system of a compact range to enhance the system performance; viz.,
1. Shaping the edge contour of the parabolic main reflector.
2. Adding blended rolled surfaces to the edges of the parabolic main reflector.

3. A dual chamber configuration in which the main reflector and target zone are

contained in one chamber and the feed assembly together with a Gregorian
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Figure 1: Typical focus-fed compact range configuration.

subreflector in the other. This study is mainly concerned with the absorber

fence separating the two chambers.

The first two suggested improvements are aimed at reducing the diffracted fields
from the main reflector. These diffracted fields interfere with the plane wave and
degrade system performance in that they create a ripple in the reflected plane wave.
A dual chamber configuration has several advantages. The use of a tilted Gregorian
subreflector reduces the amplitude taper in the reflected field considerably, and
virtually eliminates the cross-polarization errors. Since the main reflector and
target zone are isolated from the feed assembly and subreflector by the absorber
fence, minimal scattering from the subreflector or spillover from the feed illuminate
the main reflector or target zone. The suggested design improvements will thus
enable one to design a compact range with very small amplitude taper, ripple and

cross-polarization errors in the illumination of the target zone.



Chapter II discusses the techniques that are used to analyze the antenna and
dielectric structures in the rest of this study. A method, whereby the end point
contributions resulting from the application of the physical optics method to three-
dimensional bodies can be eliminated, is derived. Chapter III discusses the criteria
for and creation of plane waves and it is shown how rolled edges in general improve
the field quality in the target zone. Elliptical and blended rolled edges are analyzed
and compared for two-dimensional cases. The relationship between the order of
a blending function and the resulting continuity in the derivatives of the surface
radius of curvature across the junction is derived. An algorithm based upon this
relationship is proposed for designing optimized blended rolled edges. Design ex-
amples are given which clearly show the superiority of blended rolled edges over
elliptical rolled edges. Three-dimensional parabolic main reflectors are discussed in
Chapter IV. It is shown that a substantial reduction in the edge diffracted fields can
be achieved if the edge contour of the parabolic section has a concave shape rather
than the conventional convex shape. The design equations for three-dimensional
main reflectors with concave edge contours and blended rolled edges are given. Sev-
eral design examples are discussed to show that these design improvements result
in increased performance in the case of three-dimensional reflectors. Chapter V
discusses the benefits of a Gregorian subreflector feed system and proposes a dual
chamber compact range configuration in which the use of an absorber fence pre-

vents unwanted fields that are diffracted from the subreflector edge and spillover

from the feed from reaching the main reflector and target zone. In Chapter VI a

technique is described to compute the forward scattered field from a homogeneous
lossy dielectric slab with a wedge termination. This type of structure is used in the
implementation of the absorber fence in the dual chamber configuration. Chap-

ter VII contains the summary and conclusions that can be made from this study

4



and suggests further topics that can be studied. Two appendices are included,
dealing with applications of differential geometry and the derivation of closed form

expressions for the aperture integration over a half plane in free space.



CHAPTER 11

ANALYTICAL TECHNIQUES

This chapter briefly describes the existing techniques that are used to ana-
lyze the reflector and absorber structures in this study, with the exception of the
moment method. Since the derivation of these solutions are not the purpose of
this section, the equations relating to Geometrical Optics (GO) and the Uniform
Theory of Diffraction (UTD) are simply stated without a detailed discussion, and
the reader is referred to the references for more details. A new technique to calcu-
late the forward scattering from a homogeneous lossy dielectric slab with a wedge
termination is discussed in Chapter VI.

The moment method is based on a field integral equation solution, and is
assumed to be exact within the constraints of numerical accuracy and in so far
as the scattering body can be accurately modelled. A detailed understanding of
the moment method is not required for the analysis of structures discussed in
this study, nor for the physical interpretation of results. The reader is referred to
references [11,12] for details on the theory and application of the moment method.

Throughout this study an 3! time convention is assumed and suppressed.
All reflector surfaces are assumed to be perfectly conducting and smooth. In
two-dimensional problems, transverse electric (TE) polarization indicates the case
where the electric field vector is perpendicular to the plane of incidence, and trans-

verse magnetic (TM) polarization indicates the case where the magnetic field vector
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Figure 2: Astigmatic ray tube.

is perpendicular to the plane of incidence. Certain symbols are used throughout,
including the free space impedance (Zy), free space admittance (Yy), free space
wavelength (), and free space propagation constant (k = 2w/)). Vector quanti-
ties are indicated by boldface symbols (eg. E), unit vectors by boldface symbols
with hats (eg. n) and dyadic quantities by boldface symbols wih an arrow on top
(eg. R).

2.1 Geometrical Optics
Geometrical Optics is a ray tracing procedure in which the wavelength is
allowed to become infinitesimally small, ie., a high frequency limit is assumed. A

ray optical field{13] can be described in terms of an astigmatic ray tube as shown

in Figure 2. The electric field at [ associated with this ray tube is given by

E(l) = E(0) A(p1, p2,1) e (2.1)



where E(0) is the field at the reference (0), A is a spread factor and p1, pg are the

radii of curvature of the wavefront. The spread factor is given by

P1 P2
A(p1,p02,1) = (p1+ )(p2 + 1) (2.2)

and accounts for the conservation of energy in a ray tube. Note that there is a
congruence of the rays at the so called “caustics” (1,2 and 3,4 in Figure 2), so
that the caustics can be viewed as virtual sources of the wavefront. Examination
of Equation (2.2) shows that the GO field is unbounded at the caustics (I =
—p1,—p2). Although Equations (2.1) and (2.2) describe a three-dimensional field,
the two-dimensional version can easily be derived by setting the appropriate radius
of curvature equal to infinity.

The ray paths follow Fermat’s principle[14] which requires that the path tran-
sit time be an extremum. It is found that the electric and magnetic fields are
perpendicular to each other and the ray path.

In applying Equations (2.1) and (2.2) to the field reflected from a surface, one
finds that the reflected field can be expressed as[15]

r i . o> Pq p; -jka"'
B rsp) = Ble) - R \' GEEr T (23

where
E'(rsp) = reflected electric field at the field point (rg;)
Ei(rrp) = incident electric field at the reflection point (rsp)
pl2 = the principal radii of curvature of the reflected

wavefront emanating from r,,

s" = distance fromryp tor fp
fi = unit vector normal to the surface at ryp
8



= direction of incident propagation at ryp

8 = direction of reflected propagation at r,p
R, = acoustic soft/hard reflection coefficients
(TE/TM polarization)

R = dyadic reflection coefficient = R.,é &, + Rhéﬁér (2.4)

6, = - 2.5
LT Fxal (25)
é = & xéy,and (2.6)
& = sxé . (2.7)

Note that R, ; = F1 in the case of a perfectly conducting surface whose radius of

curvature is large in terms of a wavelength. In this case, one finds that

§ = & -2 -8)h,and (2.8)

E.R = —E'+2(i -E)a. (2.9)

The incident ray, reflected ray and unit vector normal to the surface at the point of
reflection all lie in the same plane (plane of incidence)[15], and the law of reflection
requires that the incident angle be equal to the reflection angle. A reflected field
at rg, will only exist if a reflection point (ryp) on the surface exists which satisfies

these requirements.

2.2 Wedge diffraction

The ray optical GO field discussed in the previous section only exists in those
regions where the line of sight between the source and the target point is not
obstructed. Consider a wedge with an angle (WA) illuminated by a line source as

shown in Figure 3. Three regions can be identified; viz.,
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Figure 3: Diffraction from a wedge.
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Region 1: Incident and reflected GO fields present.
Region 2: Only incident GO field present.
Region 3: No GO fields present.

These regions are bounded by the so called “incident shadow boundary” (ISB) and
“reflection shadow boundary” (RSB). The GO incident and reflected fields exist
only within these boundaries, and are zero outside. However, electromagnetic fields
must be smooth and continuous everywhere, so that the discontinuities across the
shadow boundaries are not allowable. The GO incident and reflected fields are thus
not capable of representing the true total field in a region where scattering bodies
are present. Keller developed the Geometrical Theory of Diffraction[16] (GTD) to
supplement the GO fields and correct these deficiencies. The GTD postulates a
diffracted field that emanates from the edge of a scattering body, so that the to-
tal field (ie., GO plus diffracted fields) is continuous. However, Keller’s diffracted
fields are not uniform since they are unbounded along the shadow boundaries.
Kouyoumjian and Pathak corrected the GTD when they developed the Uniform
Theory of Diffraction[17] (UTD). They found that when Keller’s diffraction co-
efficients are multiplied by a transition function, the total fields are continuous
everywhere, including across the shadow boundaries. A brief description of the
two-dimensional UTD will now be given.

The high frequency UTD first order diffracted field from a point (Q ) on the

edge of a two-dimensional wedge is given by

. | o ks
Uz(s) =U(QE) Dy, v (2.10)

where UZ and U % represent the diffracted and incident transverse electric (soft) and
magnetic (hard) fields respectively, D, j, are the soft /hard diffraction coeflicients,

and s is the distance from Qf to the field point. If a two-dimensional line source

11



generates the incident field, then the two-dimensional diffraction coefficients and

associated parameters are given by

Ds,h(¢a d"’ Li’ L™, L™, Rs,h’ n) =Dy + D2 + Ra,h(D3 + Dy) (2.11)

where

_e_j”/4 ™ + ﬂ )
Dy = t FlkLia* 2.12
1 2n\/§;l'—k co ( ' [ (ﬂ ] : ( )

_e-—j’r/4 T — ﬂ
Dy = t FlkL'a™ 2.13
2 273% co ( on ) [ ] ( )
—e~Im/4 T+ ﬂ+ ™m
= otat
D; = o Taok cot( 5 )F kL (B™)] (2.14)
Dy = = ot (T8 Prrea (st 2.15
4 = 27“/2? co ( omn ) [ a (,B )] ( . )
pE = ¢x4¢ (2.16)
2nwNE —
at(8) = 2cos’ (’”’Tﬂ) (2.17)
n = 2-— EVA y and (2'18)
™
R, = soft/hard reflection coefficient of the surface at Qg .

The parameters and angles are indicated in Figure 4. Note that N * are integers

which most nearly satisfy the equations

2raNT -8 = 7w ,and (2.19)

2naN~ - = -w. (2.20)
The transition function is given by
. o0 .
F(z) = 2jv/ze™* [ eI dr (2.21)
vz

and is plotted in Figure 5. Note that | F(z) | < 1 in the transition region (z < 2)

and F(z) =~ 1 outside the transition region (z > 2w). If z < 0, then one finds that

12
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Figure 5: Wedge transition function.

F(z) = F*(|z|) where * indicates the complex conjugate. The transition function

is quite suitable for numerical evaluation[18]. The rest of the relevant parameters

are as follows:
Li

LTO

Po
Lrn

r

Pn

s s

s +s

Po 3

Pot 8

1 2

s + a cos 8},
Pn S

Pnt 8

1 2

s an cos 0%,

radius of curvature of the o-face at Qg

radius of curvature of the n-face at Qg

principal radii of curvature of the reflected

wavefront at Qg in the plane of incidence

from the o and n faces, respectively
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(2.23)
(2.24)
(2.25)

(2.26)



¢' = the incident angle with respect to the o-face
¢ = the diffraction angle with respect to the o-face
s' = the distance between the source and Qr
s = the distance between the field point and Qg
0:; = the angle defined by n, -8 = — cos 0:;
with cos 0(‘; >0 ' (2.27)
6., = the angle defined by fin -8 = — cos 6}
with cos 0:1 >0, and (2.28)
Non = the unit vectors normal to the

o and n-faces at Q g, respectively .

The transition regions around the incident and reflected shadow boundaries are
shown in Figure 6. Note that these shadow boundaries occur at dF P = m,
respectively. The diffracted fields have maximum amplitudes along the shadow
boundaries, and are strong inside the transition regions. Qutside the transition
regions the diffracted fields decay rapidly.

As shown in Equation (2.10), the first order diffraction solution is directly
dependent on the magnitude of the field incident on the edge of the wedge. This
expression may lead one to believe that if a null field is incident on the edge, then
the edge diffracted field is zero. This is not the case, however, in that the slope of
the incident field will create currents on the wedge surface which result in a slope

diffracted field[19,20,21]. This diffraction is known as “slope diffraction”, and is

given by
1 ODgp U ks
ks o9 o4 9E) Vs

Ud(s) = (2.29)
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Figure 6: Transition regions around the shadow boundaries.
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where 0D, ;,/0¢' are the slope diffraction coefficients for the soft and hard cases,
respectively, and U} /8¢’ is the derivative of the incident field in the direction of
the edge at Qp as shown in Figure 7. From Equation (2.29) it is clear that the
magnitude of the slope diffracted fields are proportional to the slope of the incident

fields. The general form of the slope diffraction coefficients are given by

BD,, —e—Jkm/4 +,3" ; _
o5 - o {[°S°2 (n on )F’["’L @t (87)]

~o (125) Rikza (57

—R, p, [0802 (Tr + 'B+) Fy[kL™a™*(87))

2n

_ esc? (" ;nﬂ +) F, [kL"°a-(ﬂ+)]] } (2.30)

where 3% and a* are given in Equations (2.16) and (2.17), and

Fy(z) = 2jz[1 — F(=)] . (2.31)

2.3 Physical Optics

2.3.1 Theory of physical optics

An electromagnetic wave that impinges upon an object induces electric and
magnetic currents on that object. These induced currents flow in accordance with
Maxwell’s equations and the prevailing boundary conditions and in turn act as the
sources of a secondary field known as the “scattered field”. The Physical Optics
(PO) method obtains the scattered field by summing the contributions of all the
current elements. For example, the field radiated by a reflector antenna can be
calculated by the PO method if the currents induced on the reflector surface by

the incident illumination from the feed can be found.

17
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Consider now the magnetic field resulting from the vector potential (A), which

is given by [22]

H=VxA (2.32)
where
A = e~IklEfp=r'l gt 2.
(rsp) // 47r|rfp—r (2:33)
Js = induced surface current , and

rgp = field point .

In the PO format, the integration is carried out only over the illuminated portion

of the surface. The far zone scattered electric field is then given by [23]
E’(rs,) &~ —j kZy A (2.34)

where the far zone transverse vector potential At is the component of A which is

transverse to the direction of propagation; ie.,

A' = A-(A-#)#*, and (2.35)

#* = direction of scattered propagation .

Note that this definition for the electric field requires that the field point be in the

far field of the source current.

In genera.l,vthe current induced on the surface is given by

= h x H! (2.36)

where

=

= unit vector normal to surface , and

H' = total magnetic field on the surface .

19



The total magnetic field on the surface can be approximated by making a tangent
plane approximation; ie., the surface fields are assigned the values that they would
have if the body had been perfectly smooth and flat at the surface patch of inte-
gration. This tangential approximation restricts the application of the PO method
to cases where the surface radius of curvature is large compared to the wavelength;
ie., there is a lower frequency limit. Since it is assumed that the reflector surface
is perfectly conducting, it follows from the application of the bouncia.ry conditions

at the surface and image theory that the following conditions hold on the surface:

AxE = 0 (2.37)

AaxH = axH (2.38)
where

E' = total electric field on the surface
H' = incident magnetic field on the surface , and

H" = reflected magnetic field on the surface

so that
2 h x H' in the illuminated region
Js = (2.39)
0 in the shadow region .
This is known as the “physical optics approximation”, and is valid when the ra-
dius of curvature of the surface is large compared to a wavelength. The incident
magnetic field on the surface is taken to be the geometrical optics field.

Consider now an illuminated body as shown in Figure 8. Let the magnetic

field incident on the body be a plane wave which is given by

Hi(r) = Hy eIkl (2.40)
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where r is a position vector and k the direction of propagation of the incident field.

The illuminated and shadow regions on the surface are determined by

< 0 in the illluminated region

=
r

=0 on the shadow boundary , and (2.41)

>0 in the shadow region .

Note that the PO approximation assumes that J, is zero in the shadow region;
ie., there is an abrupt discontinuity in the assumed value of J, across the shadow
boundary, although the true current is smooth and continuous across this bound-
ary. This discrepancy introduces an error in the result obtained from the PO
method which creates false scattering centers at the incident shadow boundaries.
A way to compensate for this error will be discussed in Section 2.3.3. A similar

problem occurs in bodies with edges, in that the PO assumption for J, near the
edges is not correct. The Physical Theory of Diffraction (PTD) [24] has been

developed to compensate for this error.

2.3.2 Scattered field from a surface patch

In order to calculate the scattered fields of a reflector antenna using a PO
approach, one normally models the surface of the antenna by small planar patches.
Triangular patches are useful, since the three corners of such a patch lie in a flat
plane, and a unique vector normal to the patch can thus be constructed. This is
not always possible with patches that have more than three corners. The patches
are considered to be very small in terms of a wavelength, so that it can be assumed
that each patch is illuminated by a local plane wave, and that the field point is
in the far zone of the patch. The total field at a field point is then obtained by

summing the contributions of all the illuminated patches on the reflector surface.
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Let a patch be located in its own local coordinate system as shown in Figure 9,
with r' the position vector of a point on the surface of the patch in local coordinates.
Consider now a triangular patch in the far zone of a point source. The incident

field on the patch is considered to be a local plane wave, so that it can be expressed

as
: e (0,4) _ir(Riisiy
Ei(r) = e (Ri+i'r) (2.42)
where
R' = distance from the feed to the local origin on the patch
#' = unit vector in the direction from the feed to the local patch origin
e'(9, ¢) = polarization and magnitude of the incident electric field

independent of R , and

6,¢ = angular dependence of the incident electric field .

Since the incident electric field is assumed to be a local plane wave, the incident

magnetic field on the patch is given by
i Si s gty = YO jk(Ri4ir)y i
H(r')=Yy ¢ xE(r):k—ie h (2.43)

where
h=fxe. (2.44)
Making the PO approximation, the induced surface current on the patch is
given by
: 2Y0 _ ip( piyai ;
I,(r') = 2 8(r') x H'(r') = F?e"k(R'“"")ﬁ x hi . (2.45)
The vector potential at the field point is then given by

Ja I‘I I s_l';s.rl
AGeg) = [ Zr%e TR =) o (2.46)
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where the integration is performed over the entire surface of the patch, and

R* = distance from the local origin to the field point , and
F° = unit vector in the direction from the

local origin to the field point .

Substituting for J,, one finds that

Afrpp) =5 l;‘_t‘,i; e THE+R) 5 « bt (2.47)
™
where
I= / / . Tk (F*~#) g ot (248)
patc

By invoking Stokes’ theorem, I can be converted from a surface integral to a line

integral(4,25], so that
~(5/kT) 53— 1 (D - am)e¥*m*¥ sinc(ka, - w) if T#0,and
I (2.49)
la; x ag|/2 ifT =0

where

a;m = vector describing the length and orientation of
the m-th edge of the patch, arranged tip to tail

in a counter-clockwise direction

rm = position vector of the midpoint of the m-th edge
w = i (2.50)
nxw

D = 2.51
P |h x w| ( )
~ . X a

n = unit vector normal to the plate = i ek B (2.52)

laj x ag]

T = length of the projection of w onto the
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plane of the patch = |w — (w - )| , and (2.53)
sinc(z) = s11;:v . (2.54)

Note that the closed form expression above can be used for a flat plate with an
arbitrary number of edges, as long it is illuminated by a plane wave and the field
point is in the far zone of the patch.

The far zone transverse vector potential is thus given by

Yo I

Al(rp,) = me—f’“(ﬂ‘*’*’)[ﬁ x h — (A x h' . #*)#*] (2.55)

so that the resulting scattered electric field at the field point can be expressed as

—~]kI o 1 s
Epatch(Tip) = 5—piga® THE R ) g0 (2.56)

where

e’ =i x h' — (A x ht . #%)#* (2.57)
The total scattered electric field at the field point is then given by the contributions
from all the surface patches making up the illuminated part of the surface; ie.,

Etaotal(rfp) = Z E;)atch(rfp) . (2.58)

reflector surface

2.3.3 Subtraction of the end point contributions

The abrupt termination of the induced surface currents at the incident shadow
boundary causes the creation of false scattering centers which will corrupt the true
pattern of the scattered field. The end point contributions have been known to
exist for some time. However, most authors have assumed that the end point‘
contributions from curved surfaces are insignificant in that the PO integrand goes
to zero for grazing incidence and scatter. Gupta and Burnside[26] have shown

that this is not the case, however. In order to demonstrate how this error can be
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corrected, consider a 3-dimensional circular cylinder with radius (e¢) and length
(1) as shown in Figure 10. Let the cylinder be illuminated by a plane wave. The

electric field incident on the cylinder (E?) is then given by

E‘(n) = ¢ JH(E'+#n)ei( ) (2.59)
where
el(n) = polarization and amplitude of E* at n
R' = distance from the far zone source phase reference to the origin
n(Pn,2n) = position on the cylinder, or
n(pn,2n) = acosPpX + asinPpy + zn% , and (2.60)
f'i(o,-, ¢;) = incident field propagation direction, or
f'i(0,-, $i) = —(sinb;cos ;% + sin b; sin ;¥ + cos 6;3) . (2.61)

The incident electric and magnetic fields are related by
H' =Y, # x E’ (2.62)
such that the magnetic field incident on the cylinder can be expressed as
Hi(n) = Y, ¢~k R jk[asin6; cos(i—¢n)+zn cos O3 (i » ey . (2.63)

The current induced on the surface of the cylinder (J,) is given by the PO approx-

imation as
Jys(n) = 24(¢n) x H(n) (2.64)
or
J,(n) = 2Yoe—ijiﬁ(¢n) % (f,i >< ei)ejk[asin 6; cos(@; —dn)+2n cos 8;] (2.65)
27



Figure 10: Finite circular cylinder geometry.
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where the unit vector normal to the surface of the cylinder (11) is given by
N(dn) = cos PpX + sinPny . (2.66)

Notice that f(dy) x (£ x ') is independent of z,.
The vector potential at the far zone field point is given by Equation (2.33),

so that

A ) = [[ {o e MR s, (2.67)

where the integral is taken over the illuminated part of the cylinder, and

R* = distance from the origin to the far zone field pqint
#°(0s,¢6s) = scattered field propagation direction, or
i°(0s,4s) = sinfscos sk +sinbysing,y + coss% , and (2.68)
dSn, = adppdz, . ' (2.69)

Thus, the vector potential is given by

- %e—f’“(m”’) LI (2.70)
where
I, = /1/2 ekan(cosdi+cosbs) g, — I sinc(kep) (2.71)
12
$(0:,8,) = é(cose,-+coso,) | (2.72)
- /{::2 i(én) x hie®® dg.  and (2.73)
B = [sinb,cos(ds — pn) +sinbcos(di — du)] . (274)

The angles (¢,1,¢n2) define the illuminated part of the cylinder. Note that in
some cases, eg., axial backscatter from a body of revolution, it is advantageous to
treat the finite cylinder as an infinitesimal cylinder and then evaluate I, in the

appropriate coordinate system.
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The scattered electric field in the far zone is given by Equation (2.34) such
that

E*~ —j kZg Al . (2.75)
Let e*(¢$n) be the component of fi(¢n) X (i'i x e') that is transverse to ©?; ie.,
e*(¢n) = B(dn) X (F x €) — [A(¢n) x (¥ x ') - #*]#* . (2.76)

The scattered electric field is then given by

B’ - —jkae"jk(Ri"'Rs)IqsIz
- 2rR?

(2.77)

where

I¢ _ /:’n2 e3(¢n)ejka[sin 05 cos(ps—¢n)+sinb; cos(¢i——¢n)]d¢n . (2.78)
nl

The integral (I;) can be evaluated by the method of stationary phase [27],

which can briefly be described as follows. Consider the integral given by

¢n2

Iy(k) = / Fo(n)e™*®@n)dg, (2.79)
Pn1
where
¢n = real variable
k = real, positive and large

Fo(#n) = slowly varying amplitude function-that is
well behaved in the range of integration , and
®(én) = phase term that is real and continuous with

continuous derivatives in the range of integration .
For large k, [4(k) can be asymptotically approximated by
I¢ ~ I’P + Ie(¢n2) + Ie(¢n1) (2.80)
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where

I,p = stationary point contribution , and

Ie($n1,n2) = end point contributions .

The stationary point contribution is given by

2 g x
Ip = Fo(ns) me’[k¢<¢na>+zssn@"(e?na)l

where the stationary point (at ¢n,) satisfies

d®(¢ns) _
dpn

(I:"(‘ﬁns) =0
The end point contributions are given by Gupta and Burnside[26] as

(_1)mFm(¢n)ejk<b(¢n) én2
7k ¥ (9n) Pn1

Ie(k) = i

m=0

where

Fr(én) = dén [ ;:q),l ;:)] form>1.

Applying the expressions above to I, one finds that

Fo(¢n) = €°(¢n)
®(dn) = a[sinb cos(ds — dn) + sinb; cos(d; — ¢dn)]
®'(¢n) = a[sinb,sin(ps — dn) + sinb;sin(¢; — ¢5)] , and

‘I’”(¢n) = ”‘I’(¢n)-

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)
(2.86)
(2.87)

(2.88)

Note that the vector notation merely serves to combine three scalar equations into

one vector equation.

The numerical computation of the PO integral as described in Section 2.3.2

yields I as expressed in Equation (2.80). The “true” scattered field is represented
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by the stationary point contribution and can be obtained by subtracting the end
point contributions from I, since the end point contributions represent the false
scattering centers at the incident shadow boundaries. For the purpose of this
derivation it is assumed that the shadow boundary of interest occurs at ¢,2. The
first two terms of the end point contributions (I and I!) are determined next.

a) First term (m=0)

The first term of the end point contribution is given by

0 _ Fo(¢ng)es*®(#n2)
I (¢n2) = 75 (Gn2) (2.89)

or
e.9("15n2)(‘3jlca[sin 05 cos(Ps—ppn2)+sin b; cos(¢;—¢n2)]

jkalsin b, sin(¢s — dp2) + sinb; sin(@; — ¢n2)]

The first term of the end point contribution at @,2 to the far zone scattered

1)(¢n2) = (2.90)

electric field (Ej) is thus given by

—jks

—sks' €
Ef(nz) = ¢ " D§(¢n2) —,— (2:91)
where
§ = I.d§ (2.92)
and
L
d§ = _____—elm) 2.93
0(6n2) 2n[sin 0, sin(@s — Pnz) + sin§; sin(¢; — dn2)] (2.93)
ny = n(@y2,0) = acosdpoX + asin dpoy (2.94)
s = distance from the far zone source phase reference to nj, or
s = R'—asin 6; cos(d; — dp2) , and (2.95)
s = distance from ny to the far zone field point, or
s = R®’— asinf;cos(¢ps — dn2) . (2.96)
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The term d¢ will be referred to as the “modified scattering coefficient”. In

the case of a finite scattering cylinder, one thus finds that

-1 sinc[%l(cos 03 + cos Hi)]e’(qf)nz)

27 [sin Oy sin(s — dnz) + sin b; sin(d; — Pn2)] (2.97)

DS(¢n2) =

Note that this notation casts the end point contribution of the scattered electric
field in terms of an end point scattering coefficient (D§), evaluated on the surface of
the cylinder, at the shadow boundary in the z,yn—plane . The scalar components
of the end point contribution of the scattered electric field are given by

e—Jks

~ —19 / ~
E§y(n) = Ej(nz) - = e™7** D§(¢ns) - P (2.98)

8

where P represents each of the coordinate unit vectors; ie., X, y, and z. It is
evident from Equations (2.91) and (2.97) that D§ (and therefore Ej) is independent
of the cylinder radius (a).

In general, let the axis of the cylinder be orientated along a unit vector (€).
The previous equations can then be expressed in vector notation by using the

following relationships:

cosl; = .8 , and (2.99)
cosf, = t°.¢& (2.100)

so that
cosfy + cosf; = & - (i* — i) . (2.101)

Furthermore, since 0 < §; , < 180°, one finds that

sin; = |fxeél ,and (2.102)
sin, = |F°xe| . (2.103)
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Let the component of # that is perpendicular to & and directed away from e be

given by
ri = —(i' - (- &)e) (2.104)
or
B (. &)e
ERICIOON

Similarly, let the component of #° that is perpendicular to & and directed away

(2.105)

from & be given by

rl = — (- 8)é (2.106)

or

(2.107)

|5 — (7° - e)é |

where the unit vectors f‘fL and 9 are shown in Figure 11. Furthermore, one finds

that
sin(s — ¢n2) = (H(¢n2) x £1)-& (2.108)
sin(gi — ¢nz) = (B($n2) X #4) & (2.109)
cos(¢s — $n2) = i) -A(¢n2),and (2.110)
cos($i — $n2) = FY - fi(¢n2) (2.111)
The end point scattering coefficient can thus, in general, be expressed as
D§ = I.dj (2.112)
where
—e’(¢n2)
dE(bn2) = ———— _—° 2 . (2.113)
§(#n2) = G5 x & (B(aa) ¥ 11) &+ | £ x & | (B(m2) x F1) - ©)
In the case of a finite scattering cylinder, one thus finds that
—1 sinc[kle - (£* — i)])e®(dn2.
D§($n2) = GAMl Je’(¢n2) — . (2.114)

2m(| 8 x & | (n(Pnz) x 1) &+ | #* x & | (A(fn2) X 1) - &)
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Figure 11: The znyn-projection of the scattering cylinder.
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The vector representation of Equation (2.114) is very convenient from a computa-
tional viewpoint, since the vectors need not necessarily be known in the cylinder’s
local coordinates.
Note that the incident field on the cylinder is considered to be a plane wave.
If, however, the far zone source is a point source (as in Section 2.2) and the incident
field on the cylinder is considered to be a local plane wave, then e! can be replaced
by '
. et
e = Eai (2.115)
where efl is the angular dependent part of e'. In this case, the far zone source
phase reference will be the location of the point source.

b) Second term (m=1)

The second term of the end point contribution is given by

L (¢n2) = _Flgi'g,zi:;wm (2.116)
where
Fi(¢n2) = din [jf;(,fgz)]m (2.117)
such that
I;(fn2) = (845, + 2e) " (2.118)

k2(q,:)3
The second term of the end point contribution at ¢,2 to the far zone scattered
electric field (EJ), is thus given by

e—jks

E{(ng) = e ' DS(¢,2) (2.119)

where

DS = I.d¢ (2.120)
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and

~§[B'(¢n2) + B(¢n2)] (2.121)

di(¢nz) = 2mkalsin 6 sin(@s — $n2) + sin b; sin(¢; — ¢n2)]*>

In the case of a finite scattering cylinder, one finds that

—jl_sinc[&}(cos 8 + cos 8;)][B' (¢n2) + B(¢n2)]

Di0n2) = o loin b, sin(ds — fua) + sinOrsin(di — dar)5 D)
where
B(az) = (s sin(y — )+ sin By sin(gs — )] - 222) Tt (21
and
B($n2) = [sin 0 cos(ds — duz) + sin b cos(di — dma)le*(Sna) - (2124)

In terms of a general cylinder with its axis orientated along a unit vector &, the

scattering coefficient can be expressed as

D§ = I.d} (2.125)
where
1t
d¢(é,, -j[B (¢n2)+B(¢n2)] )
(8n2) = T X & T (Aldnz) 1) - 6 [ 89 x & | (A(dma) % £) -8
. (2.126)

In the case of a finite scattering cylinder one thus finds that

—jl sinc[8lé - (#* — #)][B'($n2) + B($n2)]

Di(¢n2) o ka(l Pox e | (n(¢n2 X rl) ce+ | r‘sxe | (n(¢n2) X I‘_L) e)3
(2.127)
where
. d ’
B($a2) = (| %8 | (8(da) <) 6+ | 8 x8 | (a(8a2) x#1)-8) = 222 (2126
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and
B(pn2) = (| £ x & | (i($n2) - #)+ | #* x & | (A(¢n2) - B7))e’ (dn2) . (2.129)

If P(¢) and Q(¢) are vectors, then

d dP dQ
2P.Q = &= .Q+P-=% ,and 1
d¢( Q) a9 Q+ i (2.130)
d _ dP dQ
qu(P xQ) = PP x Q+P x e (2.131)
It thus follows from Equation (2.76) that
de!* db . ( dn ,) s
S x(Rixet) - x (¢ x e*) - | & 2.132
o= dom ( )=\ a5, (¥ x ef) - (2.132)
since i x e is independent of ¢p,. Differentiating Equation (2.66) yields
M ndnk + cosd (2.133
don sin gpX + cos Pny . .133)

In terms of the general cylinder with its axis orientated along a unit vector &, this

term can be expressed as
din
dén

The vector dii/d¢y, is a unit vector, since € and h are perpendicular to each other.

=& x fi(¢n) . (2.134)

Note that D§, and thus Ej, are functions of the radius of curvature of the cylinder
(a). The larger the radius of curvature becomes, the smaller the contribution from
the second term will be. In fact, one finds that the higher order terms in the series
given in Equation (2.83) are functions of (1/ka)". Since kis a large number, higher
order terms in the series thus become less significant.

In the case of axial backscattering from bodies of revolution, it was found that
the first term of the end point contribution (D§) goes to zero, but that the second
term (D§) gives the correct expression for the false scattering from the incident

shadow boundary[28].
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The total end point contribution at the incident shadow boundary contour on

a reflector illuminated by a point source at the focus (Ee"dei"t) can be found by

evaluating ,
. —jk
Eendpoint :f{ de eike (=) £~ here) de (2.135)
C s
in a counter-clockwise direction, where
C = incident shadow boundary contour on the surface

d® = modified end point scattering coefficient

= direction of incident propagation on C at the element (dc)

= direction of scattered propagation from C at the element (dc)

s = distance from the element (dc) on C to far zone field point , and
s = distance from the far zone source phase reference

to the element (dc) on C .

In the case of a numerical computation where the three-dimensional surface
is modelled by triangular patches, the finite scattering cylinders are fitted onto
the sides of the patches making up the incident shadow boundary contour. Fig-
ure 12 shows how the finite scattering cylinders are fitted onto the incident shadow
boundary contour of the rolled edge of compact range main reflector. E€ndpoint jg

then found by evaluating

. e~ Tk(s+s')
Eendpoint Zc: (D§ + Df)———— (2.136)
where
D® = end point scattering coefficient
s = distance from the shadow boundary on the cylinder

to the far zone field point (see Equation (2.96)) , and
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I} .
s = distance from the far zone source phase reference

to the shadow boundary on the cylinder (see Equation (2.95)) .

The PO solution in which the end point contributions have been eliminated will
fdrthwith be referred to as the “corrected PO method”.

This analysis of the PO method has been presented in a three-dimensional
coordinate system. A similar analysis can be done in two dimensions, in which
case the two-dimensional Green’s function is used in the PO integration, and the

fields have a 1/v/R amplitude dependence[26].
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(a) Detail.

FINITE SCATTERING

CYLINDERS SHADOW
BOUNDARY
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PARABOLIC REFLECTOR
WITH ROLLED EDGES
( FRONT VIEW)

(b) Finite scattering cylinders along the entire
shadow boundary contour of a blended rolled edge.

Figure 12: Location of the finite scattering cylinders at the incident shadow
boundary of a rolled edge of a parabolic reflector.
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CHAPTER III

EDGE TREATMENT FOR THE MAIN REFLECTOR

3.1 Plane wave criteria

Due to the nature of their operation, one is usually interested in the far zone
characteristics of radar and communications antennas, although in some special
cases the near zone characteristics are of interest. Since there are only transverse
field components present in the far zone, it is mathematically convenient to ap-
proximate the far zone fields by a plane wave; ie., the spherical phase front radiated
by an antenna is approximated locally by a planar phase front. This can only be a
local approximation, since true plane waves require infinite energy and can there-
fore not exist in reality. If all the field components in the planar phase front have
the same amplitude, then the plane wave is known as a “uniform plane wave”.

Consider an Antenna-Under-Test (AUT) being operated in the receive mode.
Measurements relating to the far zone characteristics of the AUT are based on
the assumption that it is illuminated by a uniform plane wave of given polariza-
tion. The definition of radar cross-section (RCS) also assumes that the target is
illuminated by a uniform plane wave. Although true plane waves do not exist, it
is nevertheless convenient to use them as a measurement standard. In practice,
a portion of a spherical or cylindrical wavefront is considered to be a local plane
wave if the phase and amplitude deviations over that portion of the wavefront do

not exceed specified limits.

42



POINT
SOURCE

\—'

APERTURE PLANE o

et
N;U

Figure 13: Plane wave approximation over an aperture.

Consider now a point source radiating a spherical wave as shown in Figure 13.
A plane wave is required over an aperture of width (D), that is removed a distance
(R) from the point source. Let this plane wave be approximated by the spherical
wave, such that the maximum phase deviation over the aperture does not exceed
A®maz. It is required to find the minimum separation (R,,;,) where this will
occur. The phase of the spherical wave (®) at a distance (r) from the point source
is given by

®(r) = kr | (3.1)

so that the phase at the center of the aperture is given by
®(R) = kR (3.2)
and the phase at the extreme end of the aperture is given by
®(R+d)=k(R+4d). (3.3)
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Note that d is the radial distance discrepancy between the spherical and planar

phase fronts at the extreme end of the aperture as shown in Figure 13 and is given

by
R+ d=1/R?+(D/2)? (3.4)
so that
d = R(y/1+ (D/2R)? —1) (3.5)
or
D2
dN-S-R for DK R. (3.6)

The maximum phase deviation over the aperture is thus given by
A@maz = kd (3-7)

so that
R ™%
mn 4AA Q'"lam .

Due to the quadratic nature of Equation (3.6), the resulting phase error is some-

(3.8)

times referred to as a “quadratic error”. Clearly, the larger R is, the smaller
A®maz will be, yielding a better plane wave approximation. Table 1 shows vari-
ous values of R,,;, versus A®,,,, obtained from Equation (3.8). Note that in the
case of RCS measurements, the phase error is included in both the incident and

scattered paths, so that

rD?
Rpin = — . .
min 2A AQmam (3 9)
Traditionally an amplitude deviation of 1 dB and a phase deviation of
Ainam = % (:22-50) (3-10)

in a phase front have been considered as an acceptable approximation for a plane

wave[29], resulting in

(3.11)




Table 1: R,,;, versus A®,,:.

LPrgz | Rmin
459 D?/\
22,50 | 2D?/)
11.25° | 4D?/)
100 | 4.5D2%/)
90 5D%/\
7.5 | 6D2/)
50 9D%/ )
4.5% | 10D?%/)

Recent studies[30] have shown, however, that although these criteria may be ac-
ceptable for measuring the patterns of antennas with —25 dB sidelobes, the mea-
surement of low RCS targets and antennas with low sidelobes (-30 dB and lower)
require that measurements be made at distances much larger than that given
in Equation (3.11), indicating a phase deviation much smaller than 22.5°. The

quadratic errors result in the following discrepancies(31]:
¢ Reduced main lobe amplitude.
¢ Increased sidelobe levels.
¢ Filling in of nulls.

In order to accurately measure low RCS targets and the patterns of antennas

with low sidelobes, it is thus imperative that the amplitude and phase deviations of
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the plane wave in the target zone of a compact range be as small as possible. The

design improvements proposed in this study are aimed at reducing these deviations.

3.2 Creation of a plane wave by a compact range

A plane wave can be created in the target zone of a compact range by illu-
minating a parabolic reflector with a point source located at the focus. This is a

result of the following geometrical characteristics of a paraboloid:

1. The two caustic distances for the reflected fields are both equal to infinity[32],
so that all the reflected rays are parallel to the axis of symmetry. This implies

that there is no amplitude decay after reflection.

2. The path lengths of all rays that originate at the focus and are reflected by

the parabolic surface to a plane that is perpendicular to the axis of symmetry
are equal. This plane can thus be viewed as the phase front of a plane wave.
Since all the reflected rays are parallel, this planar phase front will propagate
into the target zone. It will be shown that for a plane located at 2; > f.
(where f. is the focal length of the parabolic reflector), the path length is

equal to the constant z; + fe.

Notice, however, that due to the spatial attenuation associated with the poiﬁt
source at the focus, the rays illuminating the reflector have a 1/R amplitude de-
pendence before reflection. Since all points on the surface are not an equal distance
away from the focus, this spatial decay results in an amplitude taper in the re-
flected field. Although the reflected field is a plane wave, it is thus not a uniform
plane wave. This effect is shown in Figure 14(a). Compact ranges usually employ

offset main reflectors in order to reduce aperture blockage by the feed. The pri-
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mary feed antenna at the focus is then tilted to decrease the amplitude taper in
the reflected field[33,34].

The reflected field exists as a plane wave only over the surface of the parabola,
and stops abruptly at the surface termination. Since electromagnetic waves must
be smooth and continuous everywhere, there will be a diffracted field emanating
from the terminating edge to compensate for the discontinuity in the reflected field
and make the total field (ie., reflected plus diffracted fields) smooth and continuous.
This diffracted field interferes constructively and destructively with the plane wave,
causing unwanted amplitude and phase ripples in the total field in the target zone.
The edge diffracted fields are shown in Figure 14(b). In fact, the antenna and/or
target sizes that can be measured in presently available compact ranges are directly
related to the edge treatment of the main reflector. Burnside and Peters[35] have
recently shown that in order to measure lbw backscatter targets, a ripple of less
than 0.1 dB is required; whereas, a taper of less than 1 dB is satisfactory. Phase
deviations of 5° or less have also been suggested[36].

In order to relate the magnitude of the ripple in the total field to the level of
the diffracted field, consider Figure 15. Let e;, ego and e4 denote the total, GO
and diffracted fields, respectively. The maximum deviations of e; from ego will

occur when eg, and ey are either completely in phase or completely out of phase.

Case 1: ego and eq are in phase

The ripple amplitude is given by
Ry = (20log e, — 20log ego) dB (3.12)

or

Ry = 20log(1 + 10(Fd—Ego)/20y 4B (3.13)

47



/
f
AN

FEED AMPLITUDE
REFLECTOR VARIATION

(a) Taper due to spatial decay of feed radiation.
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(b) Stray signal due to edge diffraction.

Figure 14: Top view of a compact range, showing the reflected plane wave and
diffractions from the edge terminations.
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Figure 15: Ripple amplitude related to the diffracted field level.

where

Eq = amplitude of the diffracted field (dB) , and

Ego = amplitude of the GO field (dB) .

Case 2: ego and eq are out of phase

The ripple amplitude is given by

Ry = —20log(1 — 10(Fa—Fgo)/20y 4g (3.14)

Since Ry > Rj for a given value of Ej — Eg,, the ripple amplitude (R) will be
defined as

R = —20log(1 — 10(Ea—Fg0)/20y gp (3.15)

Notice that this definition implies that
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Table 2: Ripple amplitude (R) versus (Eg — Ego).

Eq— Eg4o (dB) | R (dB)
~-10 3.30
-20 0.83
-30 0.27
-40 0.09
-50 0.03
-60 0.01

where

E; = amplitude of the total field (dB) .

Several values for R versus (Eq — Ego) are shown in Table 2.

In order to eliminate the edge diffracted fields completely, one would have to
use an infinite paraboloid. However, since this is not practical, some form of termi-
nation of the parabolic section has to be found such that edge diffractions into the
target zone are minimized. Various options to reduce the energy that is scattered
from the edge termination of the main reflector into the target zone have been
investigated in the bast, including the use of absorber material as well as serrated
and rolled edges[33,37]. Serrated edges serve to disrupt the caustic effect of a con-
vex edge, and are being used on various compact range main reflectors[38,39,40].
It was found, however, that the addition of a large curved surface to the termi-
nation, as shown in Figure 16, can increase the performance of the main reflector
considerably[41]. The addition of such a curved surface to the parabolic reflec-

tor reduces the energy diffracted from the termination of the parabolic section,
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(b) Rolled edge modified reflector.

Figure 16: Addition of large rolled surface edge terminations to a parabolic
reflector.
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Figure 17: Continuity of reflected field using rolled edges.

since the rolled edge creates a reflected field which goes more smoothly from the
parabolic surface to the rolled surface (as shown in Figure 17) than in the case of
an abrupt termination with no edge treatment. Since the surfaces on either side
of the edge junction are not the same, there will still be a discontinuity in the re-
flected field across the junction. However, the discontinuity in the reflected field is
smaller, and the diffracted field weaker, than in the case with no edge treatment.
The rolled surface is added in such a way that the surface slope is contlinuous
across the junction. Furthermore, the rolled edge continuously curves away from
the focus and continues into the shadow region. This ensures that the GO rays
that are reflected from the rolled edge do not enter the target, zone.

An elliptic rolled edge was added to the reflector at the Ohio State Univer-.
sity ElectroScience Laboratory, resulting in greatly improved performance[41,42].

In gaining experience with rolled surfaces, the following rules of thumb were
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developed[32]:

1. The radius of curvature of the rolled surface at the junction between the
parabolic reflector and the rolled surface should be greater than a focal

length.

2. The minimum radius of curvature of the rolled surface should never be less

than a quarter of a wavelength at the lowest frequency of operation (Amaz/4).

The lowest frequency of operation of a compact range main reflector is thus related
to the minimum radius of curvature of the rolled edge. The upper frequency limit
is generally dictated by the surface tolerance of the reflector[43].

In addition to the adding of rolled surface terminations, it can be shown that
shaping the edge contour separating the pdrabolic section from the rolled surface
terminations will also enhance the performance of the main reflector. Such a
shaping has also been proposed by Kelleher[44] in conjunction with the control of

sidelobes from parabolic antennas.

3.3 Elliptic rolled surface terminations

3.3.1 Reduction of diffracted fields using elliptic rolled edges

In order to examine the effect of elliptic and blended rolled surface termina-
tions on the total field in the target zone, the two-dimensional case will be discussed
in the rest of this chapter.

Consider an elliptic rolled edge attached to a parabolic reflector at Pj(y;, z;)
as shown in Figure 18. Let the focal length of the reflector be f.. The ellipse has
semi-major and semi-minor axes of lengths (ae) and (be), respectively. The ellipse

is attached in such a way that the surface slope at the junction is continuous. The
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parabolic surface can be described by

y2

" 4fe

where the z-axis is the axis of symmetry. In anticipation of the three-dimensional

z

(3.17)

case that will follow, the y-axis is chosen as the vertical axis. The coordinates
of the junctions located at the top and bottom of the parabolic section of the

reflector, respectively, are then given by

y2'
J
2 =~ 3.18
T 4f, (3.18)
where
Yj = UYtop indicates the top junction , and
Yj = Ypot indicates the bottom junction .

In the case of the offset reflectors considered in this study, it is assumed that yp,
and ygop are both greater than zero.

It is convenient to define a local coordinate system for the ellipse such that its
major axis is aligned with the z¢-direction, and its minor axis with the ye-direction.
Let the origin of this coordinate system be at the junction (P;). In order to make
the slope of the surface continuous across the junction, the tangential vectors to

the parabola and ellipse at the junction should be parallel. Let the ye-axis thus be
defined by

~

Ye = _ﬁjunction (3.19)

where Njynction is the unit vector normal to the parabola at the junction, as given

in Appendix A. The ellipse coordinate axes are then given by

Xe = Tp¥ + xp32 , and (3.20)
Ye = Up2¥ + yp3z (3.21)
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Figure 18: The zeye-coordinate system for an elliptic rolled surface termination.
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where the direction cosines are given by

yp2 = (322)
v +4f2
_2fc
Ypz = — (3.23)
y2 +4f2
wp2(ytop,bot) = FYp3 and ‘ (3'24)
mp3(ytop,bot) = % Yp2 - . (3'25)

This will ensure that X, is parallel to the vector that is tangential to the parabola
at the junction. The transformation from the z¢ye-system to the yz-system is used

to specify a point on the rolled surface in the yz-system. It is given by

y(7) _ Tp2 Yp2 ze(7) N Y3 (3.26)

z(7) zp3 Yp3 | \ Ye(7) zj

where the parametric angle - of the rolled surface is valid in the region

0<y<m (3.27)

such that
v = 0 at the junction , and (3.28)
7 = 7m at the extreme end of the rolled surface . (3.29)

The ellipse can be described in the zeye-system by the following curve:

re(')’) = ze(')’)ie + ye('Y)S’e = (ae siny)Xe + be(1 — cosv)¥e . (3.30)

In terms of the yz-system, the elliptic rolled surface can thus be expressed as

rellipse(7) = yellipse(7)$’ + zellipse(‘)/)i (331)
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where

Yellipse(7) = (aesiny)zpy +be(1 — cosy)yp2 +y; , and (3.32)
Zellipse (V) = (@esiny)zpz + be(1 — cos Y)Yp3 + 25 - (3.33)
There is no need for a z.-component, since the ellipse lies in a flat plane.

It is shown in Appendix A that the radius of curvature of the parabola at the

junction is given by

\N2]2
Rparabolayy — 25, |1 + (ﬁ’—) (3.34)
2fe
and that the radius of curvature of the ellipse at the junction is given by
2
; a
Relipee(yy = i : (3.35)

It is thus apparent that, although the slop¢ of the surface is continuous across the
junction, the radius of curvature there is discontinuous. In fact, the parabola is a
concave surface (when viewed from the focus); whereas, the ellipse is a convex sur-
face. The radii of curvature on either side of the junction can thus be interpreted
as having different signs in addition to being discontinuous in magnitude. Conse-
quently, the reflected fields from the two surfaces are not equal, and a diffracted
field is created at the junction which compensates for this discontinuity. The ex-
pression for this diffracted field is given by Chu[45]. As mentioned before, this
diffracted field is much smaller than the one resultiﬁg from an untreated edge and

accounts for the increase in performance obtained by using rolled edges.

3.3.2 Design example (focus feed)

Consider now the parabolic reflector with f. = 12 and elliptic rolled surface

terminations shown in Figure 19. The values of a. and b, were chosen such that
2

=< = f,,and (3.36)
be

Q
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Table 3: Surface characteristics for S2.1.

No Blending

fe 12 RADIUS OF CURVATURE (ROLLED EDGE)

de 3 Junction Minimum Shadow Boundary
be | 0.75' bottom | top || bottom | top || bottom top
Wot | 5 |y | 0 |0°| 90° | 90° | 89° 81°
yop | 11' || R 12 |12' | 0.188' |0.188' || 0.188' | 0.308'
Zpat | 24

Table 4: Radii of curvature at the junctions of a parabola with f. = 12'.

where Ames corresponds to the wavelength at the lowest frequency of operation,
in this case 1 GHz. The surface is designated as S2.1 with characteristics given
in Table 3. The radii of curvature at y;p and yp,y of a parabola with f. = 12/
are given in Table 4. Comparison of Tables 3 and 4 shows the discontinuity in the
radius of curvature of the reflector across the junctions. The radii of curvature
of the elliptic rolled surfaces can be calculated using the expressions derived in
Appendix A and are shown in Figures 20 and 21 as a function of y.

The total field in the target zone was calculated using the corrected PO

RADIUS OF CURVATURE (PARABOLA)

bottom(ypes = 5')

top(ytop = 11"

R, 25.579' 31.947'
g — ’\ma:c
ae 4
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Figure 19: Two-dimensional parabolic reflector with elliptic rolled edges (52.1).
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Figure 20: Radius of curvature of the bottom elliptic rolled surface of S2.1.
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Figure 21: Radius of curvature of the top elliptic rolled surface of S2.1.
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method, with the end point contributions at the incident shadow boundaries of
the rolled surfaces subtracted. The parabolic section stretches from Ybot t0 Ytop, as
does the target zone. The reflector is illuminated by a transverse magnetic (TM)
line source with a uniform pattern located at the focus. The target zone is consid-
ered to be located at a distance (2pat) of 24’ away from the main origin along the
z-axis. Although Section 2.3.3 describes the three-dimensional case of the PO end
point subtraction,' the principle can also be applied to the two-dimensional case.
Investigation of reflectors with rolled edges has shown that results obtained with
the two-dimensional corrected PO method compares very favourably with those
obtained by the moment method[26]. In the case of two-dimensional surfaces, the
PO integral is evaluated numerically by applying Simpson’s rule. Samples are
taken at intervals of 0.03) along the surface. For the purpose of this calculation
it is assumed that there is no direct illumination from the source into the target
zone.

Once the total field is known, the GO reflected field can be calculated and
then subtracted from the total field. The residual field will by default be the fields
diffracted from the junctions at y;,, and Ytop, since no other significant scattering
mechanisms contribute to the total field in the target zone. ‘

The two-dimensional GO reflected field (E") at a point (yz,2) in the target

zone, is given by
e_jk(",+")
E"(yt,2) = Rs,h_\/;—, (3.38)

where

Rs,h = F1 (3.39)
' ytz
8§ = —=+ f.,and 3.40
ag T (340)
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s = zg— i (3.41)
4fc
so that
s +s=fotz. (3.42)

The fact that s’ + s is a constant indicates that the reflected field is indeed a plane
wave, since all the reflected field components in the target plane at z; will ha.v¢
the same phase. Note that the sign of the reflection coeflicient (R, 1) is associated
with the incident polarization. The geometry associated with Equation (3.38) is
shown in Figure 22.

The normalized magnitude and phase of the total field in the target zone, cal-

culated at 3 GHz, are shown in Figures 23 and 24. Figure 25 shows the magnitude

of the reflected field and the diffracted fields from the junctions. The corresponding

magnitudes and phases calculated at 6 GHz and 10 GHz are shown in Figures 26—

31.
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Figure 23: Normalized magnitude of the total field from S2.1 (3 GHz).
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Figure 24: Phase of the total field from $2.1 (3 GHz).
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Figure 25: Normalized magnitude of the reflected and diffracted fields from
S2.1 (3 GHz).

65



¥5.0 6.0 7.0 8.0 9.0 10.0
HEIGHT Y (FEET)

Figure 26: Normalized magnitude of the total field from $2.1 (6 GHz).
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Figure 27: Phase of the total field from S2.1 (6 GHz).
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Figure 29: Normalized magnitude of the total field from S2.1 (10 GHz).
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Figure 30: Phase of the total field from S2.1 (10 GHz).
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Figure 31: Normalized magnitude of the reflected and diffracted fields from
S2.1 (10 GHz).
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In the case of pure elliptic rolled surface terminations, the UTD can also
be used to calculate the scattered fields in the target zone. However, the UTD
diffraction coeflicients for the higher order blended junctions discussed in the next
section are not yet available, so that an alternative method, like PO, has to be
used.

It is evident from the results that the performance of this reflector is not up
to standard. There is a peak-to-peak phase deviation of 14° at 3 GHz (11° at
10 GHz). The diffracted field is barely 20 dB below the GO level over a 2' area of
the target zone at 3 GHz, and 20 dB below the GO level over a 4’ area of the target
zone at 10 GHz. The ripple amplitude level is thus in the order of 0.8 dB. From
these results it is also evident that the performance of the reflector improves with

increasing frequency. By examining the low frequency case one can thus perform

a worst case analysis.

3.4 Blended rolled surface terminations

3.4.1 Reduction of diffracted fields using blended rolled edges

The discontinuity of the radius of curvature across the junction of the elliptic
rolled surface causes a discontinuity in the reflected fields across the junction which
gives rise to an unwanted diffracted field. The creation of a more continuous
reflected field across the junction, and hence a smaller edge diffracted field, can be
accomplished by smoothly blending the surface of the rolled edge from a parabola
into an ellipse. The rolled surface is thus trénsformed from a pure ellipse into a

blended surface according to the expression[32,46]:

Sotend(7) = fparabola(')’)[l —b(y)] + fellipse(’)’)b(')’) (3.43)

where v is a parametric angle (see Equation (3.27)) and 4(7) is a blending function

which in general varies between zero (at the junction) and one (at the extreme end
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of the rolled surface); ie.,
b(0) = 0,and (3.44)

b(ym) = 1. (3.45)

The term f,qr4p0l0 implies the extension of the parabola beyond the junction. The
extended parabola is shown in Figure 32. Note that the blended surface is attached
to the parabola at P; in the same way as the ellipse, so that the slope of the surface
is smooth across the junction. Equations (3.19)-(3.25) define the local coordinate
system of the rolled edge.

It is shown in Appendix A that the use of a blending function as described,
will ensure that the surface radius of curvature is continuous across the junction;
ie., the radius of curvature of the blended surface at the junction is equal to that
of the parabola at the junction in both magnitude and sign. It will be shown later
in this section that the following conditions will also hold at the junction:

Rﬁ"“’) is continuous if b(m)(O) =0, m=12,...,n—-1 (3.46)

where Rﬁ"‘l) is the (n — 1)-th derivative of the radius of curvature with respect

to y, and 5(™) is the m-th derivative of the blending function with respect to ~.
The selection of a blending function that has b(m)(O) = 0, will create junctions
with increasing degrees of smoothness in terms of -the radius of curvature as m
increases. A smoother junction will, in turn, tend to minimize the diffracted fields
in the target zone. There is, however, a point of diminishing returns where this is
no longer true. This point will be discussed again in the next section. A blending

function with

b™(0) # 0,and (3.47)
M) = 0, m=1,2,...,n—1 (3.48)
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Figure 32: The z¢ye-coordinate system for a blended rolled surface termination.
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will be referred to as an n-th order blending function. Reference to Equation (3.46)
shows that the n-th derivative of the radius of curvature of a blended surface
incorporating an n-th order blending function is discontinuous across the junction,
while the m-th order derivatives (m = 1,2,...,n — 1) will all be continuous across
the junction.

The following blending functions have been considered:

1) Linear blending:

by) = L 3.49
m = L (3.49)
b(y) = % , and (3.50)
b(")(*y) = 0 forn>2. (3.51)

2) Square blending:

b(*/); = (1—)2 (3.52)

Tm
2
¥(y) = 7—;’ (3.53)
m
V'(v) = ‘)722—,and (3.54)
m .
b(n)(’y) = 0 forn>3. (3.55)
3) Cosine blending:
by) = (1 ”) (3.56)
= - |1—-cos — .
7 2 TYm
1 (= ™
b = = (———) in L 3.57
™) 2 \vm ° Tm , ( )
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. 2
1 (= ¥
¥'(v) = : (*) cos — 3.58
(" = 5 po pom (3.58)
¥ (y) = l(lr—):isinn (3.59)
Vo= 2\1m Tm .
) = 3 (2 Ceos 11 (3.60)
= —=|—) cos— .
7 2 \1m Tm
b'(v) = 1 (—W—)ssinﬂ , and (3.61)
2 \1m Tm ,
Wiy) = - (l)ﬁcosﬂ : (3.62)
2 \rm Tm
4) Cosine squared blending:
1 my 2
b("y) = 41 1-— COS;m— (3.63)
¥(y) = % (7%) ( in — — —sin 2”—7) (3.64)
2
1 (= Ty 2y
b’ = — (———) (cos — — cO§s —~ 3.65
™ 2 \mm Tm © Tm ( )
3
'(y) = b (—1-) (2 sin ry sin lr:y_) (3.66)
2 \'ym Tm Tm
b(y) = ! (l)4 (4 cos 2y cos 72) (3.67)
2 \mm Tm Tm
b (7) ! (_,,-_)5 (sin T _ §sin 2—"1) and (3.68)
7 2 \vm Tm Tm ’ )
vi 1(n)° 2my ™
" (v) 3 \7m cos — — 16cos — | . (3.69)

Tm Tm

The case where b(y) = 1 implies that no blending occurs, so that the blended
surface remains a pure ellipse. The elliptic curve has already been described as a
function of v in Equations (3.32) and (3.33). However, in order to describe the
general blended surface, it is necessary to define the extended parabola resulting

from b(y) = 0 as a function of v as well. Since the blending algorithm has to be
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applied ultimately to the design of a three-dimensional concave edged reflector as
well as to the two-dimensional case considered here, the extended parabola will be

defined as follows:

Let z,, be a maximum distance measured along the positive z.-axis,
starting at the junction. Let the parametric angle (y) be transformed

into a linear displacement along this axis, such that

re(y) = ./EE for0 <y <vm. (3.70)

Tm

Using Equations (3.18), (3.26) and (3.70), the extended parabola

can then be defined by

T
Yparabola(Y) = ¥ (-—"i) zp2 +yj , and (3.71)
Tm
2
Yvarabol (7)
Zparabola(Y) = % : (3.72)

The general two-dimensional blended rolled surface can thus now be expressed in

the yz-system as

Tolend(Y) = Yblend(V)Y + 2plend(7)2 (3.73)
where
yblend(’)’) = [’Y <:—::') ZTp2 + yj] (1 - b(')’)]
+[(ae siny)zpy + be(1 — cosy)ypa + y;1b(7) (3.74)
and
Zhlend(Y) ([7(mm/71z;:p 21 Y ]H) (1 = b(7)]
+[(ae siny)@p3 + be(1 ~ cos v)yp3 + 2;]b(7) . (3.75)

The direction cosines (zp2, zp3,Yp2, Yp3) are given in Equations (3.22)—(3.25).
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The radii of curvature of thé blended surface and parabola as well as their
derivatives with respect to y are derived in Appendix A. In order to investigate
the discontinuities in the derivatives of the radius of curvature across the junction,
the expressions for the derivatives of the radius of curvature of the blended surface
and the parabola will now be compared at the top junction (except for the first
order case where both top and bottom junctions are considered). Consider a first

order blending function; ie., 4'(0) # 0. At v = 0, one finds that

, dR, blend dR, parabola I
( dy ) = ( dy ) + 5'(0)eq (3.76)
where
.- +12f, [1 + (yj/2fc)2]2 Ge febe Y1+ (yj/2fc)? 1 -
' (zm/ym) (zm/Ym) (m/Ym)? 2 '

and y; is the y-coordinate of the junction. The (+) sign corresponds to the top and

bottom junctions, respectively. In the special case of linear blending, b'(0) = 1/,

so that
. +12f 1+ (y; /:ch)z]2 ae febe §/1 + (y;/2fe)* 1
b'(0)e; = + p) 5
Tm (‘cm/‘Ym) (-’Cm/’Ym) 2

(3.78)
Consider now a second order blending function; ie., 5(0) = 0 and 5"(0) # 0. At
v = 0, one finds that |

2R blend d2R parabola
c _ c
( dy? ) - ( dy? )

+5"(0)eq (3.79)

where

[ 15

o — 24fc [1 + (ytop/zfc)z]
2= (“’m/‘)’m)2

Qe fcbe e/l + (ytop/2fc)2 1
((zm/‘)’m) + (;zm/-ym)z - 5) . (3.80)
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In the special case of square blending, §"(0) = 2/42,, so that

"(0)ey =

5
481 [1 + (ytop/2fc)2] : Qe n febe \3/1 + (ytop/z.fc)2 _ 1
z2, (zm/¥m) (Zm/vYm)? 2/
(3.81)

In the special case of cosine blending, 4"(0) = 72/242,, so that

1=

_ 118.44f, [1+ (veop/2/e)?]

T

(zm/vm) ("3m/‘)fm)2 2
(3.82)

b"(O)ez ( Qe + febe \3/1 + (ytop/2fc)* 1
Although square blending and cosine blending are both second order blending
functions, square blending yields a smoother junction in terms of the continuity
of the second derivative of the radius of curvature at the junction, since the value
of the second derivative of the square blending function at the junction is smaller
than that of the cosine blending function for a given set of blending parameters
(@e,be,2m,ym). However, these parameters will not necessarily yield a blended
surface that adheres to all the design criteria, so that one cannot say that a square
blend will be better than a cosine blend in general. Consider now a fourth order
blending function; ie., b'(0) = 0,5"(0) = 0,5"(0) = 0 and 5*(0) # 0. At v =0,

one finds that

((14Rc) blend _ <d4RC)parabola

& dy’ + 67(0)eq (3.83)
where
7
L 80F [T+ (wop/2£)]2 [ febe Y1+ (wiop/2fc} 1 (3.34)
4= (:Bm/*ym)4 (-’l’m/')’m) (-'Bm/’)’m)2 2 )

In the special case of cosine square blending, b'¥(0) = 3#4/2731, so that

7
212 3 2
biv(0)€4 — 87675 [1 + (ytOP/2fC) ] ( Qe n febe \/1 + (ytop/zfc) 1

m;ln ('T-m/‘)’m) (-’llm/’)’m)2 B 5
(3.85)
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Based upon the expressions above, one now can make the following general-

1zations:

1. In the case of an n-th order blending function, the following will hold at the

junction (y = 0,y = ytop):

blend parabola
d"R d"R
(T) = () oem e
blend rabola .
d™R, _ d™R, pa _
(dym) = (dym) , m=1,2,...,n—-1 (3.87)
where
anfe[l + (yj/2f0)2](n+3)/2 Qe n febe \3/ 1+ (3/j/2f6)2 | 1
€n = —_
" (zm/Ym)™ (zm/vm) (‘cvrz/’)‘m)z 2

(3.88)

and a, is a constant.

2. The error term (e, ) will be zero if

(:c_m_) = ae + y/a2 + 2fcbe 31 + (v;j/2fe)? . (3.89)

Tm

where vy, is evaluated in radians. This will lead to continuity in the n-th
derivative of the radius of curvature across the junction. For the design
cases considered, however, it was found that blending parameters that sat-
isfy this equation do not yield blended surfaces that adhere to the design

requirements.

Table 5 indicates the orders of various blending functions with their derivatives at

the junction.

3.4.2 Design of blended rolled edges

This section describes a design algorithm for blended rolled edges. As of yet

there are no closed form design equations available that will yield optimum blended
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Table 5: Orders of various blending functions and their derivatives at the

junction.
First order Second order Fourth order
Linear Square | Cosine | Cosine squared
b'(0) 1/vm 0 0 0
5"(0) 0 2/75 | T/ 0
b"(0) 0 0 0 0
b*(0) 0 0 | —nt/2yd 3t /244

edges, so that the design is an iterative process which involves the calculation of
the scattered fields for every given set of blending parameters (ae,be, Zm,vym).
The blending parameters are changed from one iteration to the next according to
whether the diffracted fields become smaller or not. The final design will then be
based on that set of parameters that yields the smallest edge diffracted field in the
target zone. This cut-and-try approach is very unsatisfactory since one can never
be sure that the design is actually an optimum. Furthermore, the calculation of
the scattered field is a very cumbersome process, especially as a step in an iterative
process.

A new design algorithm was developed in the course of this study which is
based upon an analysis of the continuity of the higher order derivatives of the
radius of curvature of the surface across the junction. It allows the user to see how
the surface characteristics that influence the diffracted field change as a function of
the blending parameters. This enables one to select a set of blending parameters
that will yield an optimum design. Once the optimum blending parameters have

been selected, the scattered fields are calculated to verify the design.
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Figure 33: Axially symmetric reflector with a blended rolled edge.

This discussion centers around the design of a blended rolled edge for an
axially symmetric reflector as shown in Figure 33(47,48]. The yz-plane can thus
be considered without loss of generality. It is assumed that the focal length (f.)
and the height of the junction between the parabola and the blended edge (ytop)
are given. The size of the parabolic section is usually equal to or larger than ten
wavelengths at the lowest frequency of operation (10Anqe )[49]. The blended edge
is to be designed such that the minimum radius of curvature in the lit region of the
rolled edge (Rzni") is equal to a quarter of a wavelength at the lowest frequency of
operation (Amqz/4) and the maximum height of the reflector, measured from the
axis of symmetry of the paraboloid to the top of the rolled edge, is equal to ymqaz-
Note that the skirt shown in Figure 33 is not.included in the definition of ymaq.
The design problem is to find that set of blending parameters (ae, be, zm,ym) that-
will satisfy these requirements and results in the smallest diffracted field from the
junction into the target zone.

The first step in the design is to select a blending function. It is desirable to
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select a blending function with as high an order as possible, since this will ensure
that the higher order derivatives of the radius of curvature are continuous across
the junction. However, an arbitrarily high order of blending function may make
it impossible to satisfy the requirements placed on R,’:ni" and Ymaz since a higher
order blending function requires more space (ymaz — Ytop) in order to obtain a
smooth junction. Furthermore, there is a point of diminishing returns where the
continuity of higher derivatives of the radius of curvature acfoss the surface no
longer yield smaller diffracted fields over the entire target zone. This is due to the
fact that the transition region spreads out as the junction becomes smoother, as
shown in Figure 34. Since the diffracted field is strongest in the transition region,
a higher order blending function consequently results in a weaker diffracted field
which is prevalent over a larger area of the target zone. In the course of this study

it was found that a cosine blending function is a good choice when

Ymaz — Ytop < 5 Amaz (3.90)

and that a cosine squared blending function should be used when

Ymaz — Ytop > 5 Amaz - (3.91)

If
Ymaz — Ytop = 5 Amaz (3.92)
it is worthwhile to consider both cosine and cosine squared blending functions and
then to select the one that results in the smallest edge diffracted fields in the target
zone. Equations (3.90)-(3.92) can be used as a rule-of-thumb when selecting
a blending function. Since higher order blending functions inherently result in
smoother junctions, the manufacturing difficulties will also be a consideration.
In order to facilitate the iterative design process a computer program was

developed that determines the following values in table format:
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1. Radius of curvature and the first four derivatives with respect to y on ei-
ther side of the junction. Analytic expressions are used to evaluate these

quantities (see Appendix A).

2. Radius of curvature and corresponding «-value at the incident shadow bound-
ary. The location of the shadow boundary is found by making use of Equa-

tion (2.41).

3. Minimum radius of curvature and corresponding v-value along the entire

blended edge (lit and shadow regions).

4. Maximum height of the reflector (including parabolic section and blended

edge, ie. Ymaz) and maximum z-dimension.

The values above are determined for a range of ¢, and 4,, parameters when a. and
be are fixed. A set of tables are then generated for various combinations of a. and
be. From these tables the sets of blending parameters that satify the constraints
(R™™, ymae and Ytop) can be determined. A typical output using a cosine squared
blending function is shown in Table 6.

There are usually several sets of blending parameters that will satisfy the
design constraints. However for an n-th order blending function, the first n — 1
derivatives of the surface radius of curvature are continuous across the junction
but the n-th derivative is not. The optimum set of blending parameters will be
the set that satisfies the design constraints and minimizes the discontinuity in the
n-th derivative of the radius of curvature across the junction. Examination of
Equation (3.88) indicates that large values of z,,, small values of 7,, (ie. a large
Zm /ym ratio), and small values of ae and b, will generally yield better results, since

they will tend to minimize the error term (¢,). Note that the absolute minimum
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Table 6: Typical output of the optimization program for the design of blended

rolled edges.
COSINE SQUARED BLENDING FOCUS=24’ YTOP=15
DESIGN REQUIREMENTS: RCMIN = 0.246' (1 GHz) YMAX = 20

(10X) | (100X) | (100X)

XM |GM | RC | RC1 | RC2 RC3 RC4 | RSH | GSH | RMIN | GMIN | YMAX

ae = 2.60’ be = 2.40' (OPTIMUM)
11.00 | 110. | 55.20 | 0.982 | 0.713 { 0.113 3925. | 0.235 | 60. | 0.235 60. 19.76
11.00 | 116. | 55.20 | 0.982 | 0.713 | 0.113 4425. [ 0.275 | 63. | 0.275 63. 19.80
11.00 | 120. | 55.20 | 0.982 | 0.713 | 0.113 4771. | 0.301 | 65. | 0.301 65. 19.83

11.62 | 110. | 55.20 | 0.982 | 0.713 | 0.113 | 2778. | 0.211 | 60. | 0.209 60. 19.96
11.62*| 116. | 55.20 | 0.982 | 0.713 | 0.113 | 3140. | 0.246 { 63. | 0.246 63. 20.00
11.62 | 120. | 55.20 | 0.982 | 0.713 | 0.113 | 3390. | 0.271 | 65. | 0.271 65. 20.03

12.00 | 110. | 55.20 | 0.982 | 0.713 | 0.113 | 2265. [ 0.196 | 60. | 0.195 60. 20.08
12.00 | 116. | 55.20 | 0.982 | 0.713 | 0.113 | 2564. | 0.232 | 63. | 0.230 63. 20.12
12.00 | 120. | 55.20 | 0.982 | 0.713 | 0.113 | 2771. | 0.255 | 65. | 0.254 65. 20.15

[ Parabola 55.20 | 0.982 | 0.713 | 0.113 | 0.006

ae = 2.70 be = 2.40’ (INCREASED ae)
11.62 | 110. | 55.20 | 0.982 | 0.713 | 0.113 | 2805. | 0.222 ] 60. | 0.220 60. 19.99
11.62 | 116. | 55.20 | 0.982 | 0.713 0.113 3168. | 0.258 | 63. 0.258 63. 20.04
11.62 | 120. { 55.20 | 0.982 | 0.713 | 0.113 | 3419. | 0.283 | 65. | 0.283 66. 20.07
ae = 2.50' be = 2.40 (DECREASED ae)

11.62 | 110. | 55.20 | 0.982 | 0.713 | 0.113 2752. ) 0.201 | 59. | 0.199 60. 19.92
11.62 | 116. | 55.20 | 0.982 | 0.713 | 0.113 | 3112. | 0.235 | 63. | 0.234 63. 19.96
11.62 | 120. | 55.20 | 0.982 | 0.713 | 0.113 3362. | 0.258 | 65. | 0.258 65. 19.99

ae = 2.60/ be = 2.50' (INCREASED be)
11.62 | 110. | 55.20 | 0.982 | 0.713 | 0.113 | 2899. | 0.225 | 60. | 0.224 | 60. | 19.96
11.62 | 116. | 55.20 | 0.982 | 0.713 | 0.113 | 3274. | 0.264 | 63. | 0.263 | 63. | 20.01
11.62 | 120. | 55.20 | 0.982 | 0.713 | 0.113 | 3534. | 0.289 | 65. | 0.289 | 65. | 20.04

ae = 2.60’ be = 2.30 (DECREASED be)
11.62 | 110. | 55.20 | 0.982 | 0.713 | 0.113 | 2658. | 0.196 | 60. | 0.195 60. 19.95
11.62 | 116. | 55.20 | 0.982 | 0.713 | 0.113 3006. | 0.231 | 63. | 0.229 63. 19.99
11.62 | 120. | 55.20 | 0.982 | 0.713 | 0.113 | 3247. | 0.254 | 65. | 0.253 65. 20.02

* = optimumn design

FOCUS = focal length of parabolic reflector

YTOP = height of junction between parabolic section and blended rolled edge
RCMIN = minimum radius of curvature along the lit part of the blended rolled edge
YMAX = maximum height of surface

XM = maximum linear blending distance (z,,)

GM = maximum parametric blending angle (y)

RC = radius of curvature at the junction

RCn = n-th derivative of the radius of curvature at the junction

RSH = radius of curvature at the shadow boundary

GSH = angle at which shadow boundary occurs

RMIN = minimum radius of curvature along the surface

GMIN = angle at which minimum radius of cfirvature occurs

Lengths in feet, angles in degrees
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radius of curvature along the entire blended surface usually occurs in the shadow
region, so that the radius of curvature at the shadow boundary is the minimum
radius of curvature in the lit region (R7"). However, the absolute minimuwm radius
of curvature aiong the entire blended surface can also occur in the lit region, in
which case that value will then be Rzni". The actual minimum radius of curvature
in the lit region of the blended surface that is obtained for a given set of blending
parameters should not be smaller than R™in since that imp.lies a higher, lowest
frequency of operabtion. On the other hand, an actual minimum radius of curvature
in the lit region that is larger than R™" indicates an over-design and consequently
not an optimum. An actual maximum height that is smaller than ymqe similarly
is not an optimum design, since it was found that, in general, smoother junctions
can be obtained if more height is available to fit the blended rolled edge in.

The iterative design process thus involves the following steps:

1. Determine the focal length of the parabola and the height of the junction

between the parabolic section and the blended edge (ytop)-
2. Select a maximum total height (ymac)-

3. Select the lowest frequency of operation and let R?’i" = Amaz /4

4. Select a blending function of order n. The rules—of-thumb given in Equa-

tions (3.90)—(3.92) are useful guidelines in this choice.

5. Generate data tables for a wide range of blending parameters (ae, be, Zm,Ym)
to gain a general idea of the orders of magnitude of the blending parameters

that will satisfy the design constraints (R’Cni", Yiop and Ymaz )-

6. Generate data tables using the blending parameter values in all the regions

around those found in Step 5 until blending parameters are found that satisfy

87



the design constraints. Select that set of blending parameters that has the
smallest discontinuity in the n-th derivative of the radius of curvature of the

surface across the junction This step is repeated until an optimum is found.

7. Calculate the scattered fields.

Although it has not been done at this time, the algorithm is suitable for automa-
tion, so that the complete iteration can be done by a computer.

As an example, consider the data in Table 6. The design requirements were

as follows:
fo = 24 (3.93)
ytop = 15',and (3.94)
Ymaz = 20'. (3.95)

The lowest frequency of operation is 1 GHz, which corresponds to a free space
wavelength of Ajpmar = 0.984'. Since the minimum radius of curvature of the
blended edge in the lit region has to be equal to Ajmgz/4, the design requirement is
R™™ = 0.246. Table 6 indicates that an optimum design, using a cosine squared

blending function, was obtained for the following blending parameters:

ae = 2.60’ | (3.96)
be = 2.40' (3.97)
zm = 11.62', and (3.98)
ym = 116°. (3.99)

The design is an optimum since the blending parameters in Equations (3.96)-(3.99)
result in a blended edge that satisfies the design constraints in Equations (3.93)-

(3.95), and a small change in the parameters result in a larger discontinuity in
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Ri." across the junction. Note that for these parameters, the minimum radius
of curvature along the entire blended surface occurs at the shadow boundary.
Since cosine squared blending was used, the first three derivatives of the radius of
curvature are continuous across the junction, but the fourth derivative is not.
The effect of the error term defined in Equation (3.86) is clearly demonstrated

in Table 6; viz.,
1. For ae,be and zm fixed, (R )¥end apnroaches (Rivyparabola o¢ o decreases.
2. For ae,be and vy, fixed, (R)Mend 3p510aches (Rivyparabola oq o increases.

3. Increasing and decreasing the values of ac and b, (with 2 and 7y, fixed)
results in enlarging and reducing the discontinuity between (Rv)blend 4nd

(Riv)parabola 54 t}e junction, respectively.

Note that this algorithm is used to optimize the blended rolled edge in the yz-
plane, and is applicable to the three-dimensional reflector in Figure 33 because it
is axially symmetric. In order to expand the method to optimize edges in planes
other than the y2-plane, the equations for the derivatives of the radius of curvature

in Appendix A would have to be derived in three dimensions.

3.4.3 Design example (focus feed)

Consider now the parabolic reflector described in Section 3.3 (52.1), but with
a cosine blended edge and blending parameters z,,, = 7' and Tm = 120°. Note that
this blended surface is not optimized. The design illustrates the improvement that
can be obtained by blending when the dimensions of the ellipse axes (ae and b,)
are kept constant. This surface is designated as $2.2 and shown in Figure 35. The
surface characteristics are given in Table 7. The radii of curvature at the junctions

Ybot and yyop of a parabola with f. = 12' are given in Table 8. The quantities R’
bot p g q c
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Figure 35: Two-dimensional parabolic reflector with cosine blended rolled edges
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Table 7: Surface characteristics for $2.2.

Cosine Blending

fe 12/ RADIUS OF CURVATURE (ROLLED EDGE)

ae 3! Junction Minimum Shadow Boundary
be 0.75' | bottom top —}Jottom top | bottom top
Tm 7 5 0° 0° 780 780 81° 730
Ym 120° R. | 25.579' | 31.947' || 0.234' |0.209' || 0.248' | 0.256'
Ybot 5 R.| 0638 | 1513

Ytop 11 R" | 40.655 | 68.451

Zpat 24'

and R! denote differentiation with respect to y. Comparison of Tables 7 and 8
shows that in the case of the cosine blended edge, R. and R], are continuous across
the junction, but RY is not. Based on Equation (3.46), this result is to be expected
since cosine blending is a second order blending function. The radii of curvature
of the blended rolled surfaces are shown in Figures 36 and 37. Note that the rolled
surface is concave at the junction but convex at the extreme end, so that there is
an inflection point somewhere along the surface where the surface changes from
concave to convex. The radius of curvature of the surface goes to infinity at this
point as shown in Figures 36 and 37. Consequently, there is no discontinuity in
the reflected field in the area of this inflection point such that no diffracted field
results.

The reflector is illuminated by a TM line source with a uniform pattern located

at the focus. The target zone is considered to be located at a distance (zpqs) of
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Table 8: Radii of curvature at the junctions of a parabola with f. = 12'.

RADIUS OF CURVATURE (PARABOLA)

B bottom(ypey = 5') | top(ysop = 11')
R. 25.579' 31.947
R, 0.638 1.513
R" 0.133 0.161

~ = 120°

b T L T ¥ I | 1] 1 1 I ) T T L ; T ¥ ) T ; L Li L ﬁ
. 2. 3. 5, 6.

4.
T (FEET)

Figure 36: Radius of curvature of the bottom blended surface of S2.2.
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Figure 37: Radius of curvature of the top blended surface of S2.2.

24! away from the main origin along the z-axis. For the purpose of this analysis
it is assumed that there is no direct illumination from the source in the target
zone. The total field in the target zone can be calculated using the corrected PO
method, with the end point contributions at the shadow boundaries of the rolled
surfaces subtracted to yield the “true” total field. The GO reflected field can
then be subtracted from the total field to determine the fields diffracted from the
junctions. |

The normalized magnitude and phase of the total field in the target zone,
together with plots comparing the reflected fields with the fields diffracted from
the junctions are shown in Figures 38-46, calculated at frequencies of 3 GHz, 6 GHz
and 10 GHz, respectively. Comparison of Figures 38-46 with Figures 23-31 show

the improvement in performance of the cosine blended rolled surface (52.2) over
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the pure elliptic rolled surface (S2.1). Note that the blended rolled edges of 52.2
are based on an ellipse that has the same dimensions as the rolled edge of $2.1, so
the only difference between $2.1 and S2.2 is the blending of $2.2. It is thus clear
from these results that the blended rolled edges have increased the performance of
52.2 substantially compared to that of $2.1. At 3 GHz the diffracted fields from
S52.2 are 20 dB below the GO field over the entire target zone and 30 dB below
over a 3’ area of the target zone. The ripple amplitude of S2.2 is thus 0.27 dB
over a 3' area of the target zone compared to 0.83 dB over a 2 area for $2.1. The
peak-to-peak phase variation of §2.2 is 6° over the entire target zone compared to
14° for 52.1. At 10 GHz the performance improvement of $2.2 over S2.1 is even
better. The diffracted fields of $2.2 are 26 dB below the GO field over the entire
target zone, 40 dB below over a 4.5 area of the target zone, 50 dB below over a 3'
area and 60 dB below over a 2' area. These levels correspond to ripple amplitudes

of 0.45 dB, 0.09 dB, 0.03 dB and 0.01 dB respectively.

3.4.4 Design example (subreflector feed)

‘Consider now the case of a parabolic reflector with f, = 7.25' and a cosine
squared blended edge with blending parameters a, = 3.4, be = 0.75', z,, = 6.8’
and ym = 120°. This surface is designated as $2.3, and is shown in Figure 47.
Note that the surface has not been completely optinﬁzed, since the optimiza-
tion algorithm was developed after pattern calculations corresponding to a three-
dimensional version of 52.3 were done. Nevertheless, the example serves to illus-
trate the improvements that can be obtained with higher order blending functions.
The surface characteristics are given in Table 9, and the radii of curvature at Ytop
and ypo of a parabola with f. = 7.25' are given in Table 10. The quantities R, R!,

R and RY in Tables 9 and 10 denote differentiation with respect to y. Compar-
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Figure 38: Normalized magnitude of the total field from 52.2 (3 GHz).
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Figure 39: Phase of the total field from $2.2 (3 GHz).
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Figure 40: Normalized magnitude of the reflected and diffracted fields from

S2.2 (3 GHz).
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Figure 41: Normalized magnitude of the total field from $2.2 (6 GHz).
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Figure 42: Phase of the total field from S2.2 (6 GHz).
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Figure 43: Normalized magnitude of the reflected and diffracted fields from
52.2 (6 GHz).
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Figure 44: Normalized magnitude of the total field from S2.2 (10 GHz).
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ison of Tables 9 and 10 shows that in the case of the cosine squared blended edge,
Rc, R.., R!! and R" are all continuous across the junctions, but RZ"’ is not. Based
on Equation (3.46), this result is to be expected, since cosine squared blending is
a fourth order blending function.

In this case, the main reflector is illuminated by a Gregorian subreflector
system, which in turn is illuminated by a magnetic line source with a uniform
pattern. A discussion of the equations governing the illuminatién of the main
reflector by the subreflector is given in Section 4.5 for the three-dimensional case.
The two-dimensional case discussed here is analogous to the yz-plane of the three-
dimensional case, with the provision that the fields in the two-dimensional case
have a 1/v/R amplitude dependence.

The target zone is considered to be located at a distance (zpat) of 20" away from
the main origin along the z-axis. In calculating the scattered field in the target zone
it is assumed that there is no direct illumination from the feed or diffraction from
the subreflector into the target zone and that the reflector is illuminated only by
the GO field reflected from the subreflector. Fields diffracted from the edges of the
subreflector are deliberately ignored in order to establish the performance of the
main reflector when illuminated by an ideal subreflector system. The motivation
for this assumption will be given in Chapter V.

The total field in the target zone can be calculated using the corrected PO
method, with the end point contributions at the shadow boundaries of the rolled
surfaces subtracted to give the “true” total field. Subtraction of the GO reflected
field from the total field will give the fields diffracted from the junctions. The
normalized magnitude and phase of the total field in the target zone together
with plots comparing the reflected fields with the fields diffracted from the Jjunc-

tions, calculated at 3 GHz, are shown in Figures 48-56 for the cases where no

102



Table 9: Surface characteristics for S2.3.

Cosine Squared |

Blending
fe 7.25'
ae 3.4/ RADIUS OF CURVATURE (ROLLED EDGE)
be 0.75' Junction IR Minimum S};adow Boundary
Tm 6.8 bottom top bottom | top | bottom top
Ym 120° ¥ 0° 0° 81° 81° 84° 75°

Yoot | 5.5 Rc | 17.739' | 30.148' || 0.267' | 0.188' | 0.293' | 0.332'
Ytop | 115 R, || 1.217 | 3.037
asr | 525 | R" | 0.249 | 0.356
bsr | 4.308" | R™ Il 0.0145 | 0.0232

for 3 R || 56.069 | 265.649
B8 5.5°
a 20°
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Table 10: Radii of curvature at the junctions of a parabola with f. = 7.25'.

RADIUS OF CURVATURE (PARABOLA)
bottom(ypes = 5.5') | top(ytop = 11.5")

R. 17.739' 30.148'

R. 1.217 3.037

R! 0.249 0.366

R" |l 0.0145 0.0232

R¥Y 0.00211 0.00087

end point contributions are subtracted, only first order end point contributions

are subtracted, and finally, first and second order end point contributions are sub-

tracted. The effect of the erroneous scattering terms that are imbedded in the
results obtained from the numerical PO integration are clearly visible when the
magnitude and phase of the total field without the subtraction of the end point
contributions (see Figures 48 and 49) are compared to the magnitude and phase of
the total field with the end point contributions subtracted (see Figures 54 and 55).
The high frequency ripples in Figures 48 and 49 are created by the false scattering
centers at the incident shadow boundaries on the blended rolled edges. Note that
the frequency of the ripple is much lower when these ferms are subtracted (see
Figures 54 and 55). This indicates that the resulting diffractions are originating at
the junctions between the parabola and the blended edges. Since these junctions
have a smaller spatial separation than the false scattering centers at the incident
shadow boundaries on the blended edges, the frequency of the ripple is lower. The
plot of diffracted fields with the end point contributions subtracted in Figure 56

clearly shows that the diffracted fields from the parabola/rolled edge junctions
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have maxima on the reflection shadow boundaries. The normalized magnitude
and phase of the total field in the target zone together with plots comparing the
reflected fields with the fields diffracted from the junctions, calculated at 1 GHz
and 10 GHz, are shown in Figures 57-62. Comparison of Figures 54-56 and 60-62
corresponding to S2.3 with Figures 23-25 and 29-31 corresponding to S2.1, and
Figures 38-40 and 44-46 corresponding to 52.2 show the improved performance
achieved by the reflector with a cosine squared blended edge and subreflector feed
over the other designs. The subreflector feed of 52.3 resulted in a dramatic de-
crease in the taper of the reflected field. This concept will be explored further in
Chapter V. Even though the focal lengths of S2.1 and S2.2 are longer than that of
52.3, it is clear that the performance of $2.3 is significantly better than that of the
other two. This is mainly the result of the higher order blending function that has
been employed in the rolled edges of S2.3. At 3 GHz the diffracted fields from $2.3
are 30 dB below the level of the GO reflected field over almost the entire target
zone and 40 dB below over a 3.5' area of the target zone. These levels correspond
to ripple amplitudes of 0.27 dB and 0.09 dB, respectively. The peak-to-peak phase
variation is less than 4° over the entire target zone compared to 6° for $2.2 and 14°
for S2.1. At 10 GHz the diffracted fields of S2.3 are 42 dB below the GO level over
the entire target zone and 60 dB below over a 4.5’ area. These levels correspond
to ripple amplitudes of 0.09 dB and 0.01 dB.

From Table 9 it is seen that the minimum radius of curvature of the rolled
edge in the lit region is 0.188'. Using thé Amaz /4 rule-of-thumb, this corresponds
to a minimum operating frequency of about 1 GHz. Figures 57-59 indicate that at
1 GHz the diffracted fields are 20 dB below the GO level over the entire target area
and 28 dB below over a 2' area. These levels correspond to ripple amplitudes of

0.83 dB and 0.35 dB respectively. The peak-to-peak phase variation is 9° over the
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entire target zone. Even though this reflector thus does not satify the 0.1 dB ripple
amplitude requirement at 1 GHz, it will be shown in Section 4.6 that optimizing the
design of the blended rolled edges allows one to achieve the desired performance.

Based on the numerical results and the experience gained while calculating
them, one is justified in saying that the use of blended rolled edges enables one
to design a reflector which meets the ripple amplitude requirement at higher fre-
quencies without too much difficulty, as shown in Figure 62. It is, however, much
more difficult to obtain an acceptable performance over a useful area of the target
zone at lower frequencies. This is due in part to the fact that the transition region
around the reflection shadow boundary spreads out as the frequency decreases, so
that a larger part of the target zone will be intercepted by the transition region
as shown in Figure 63. Since the diffracted fields are strongest in the transition
region, this creates a larger ripple in the plane wave. It is for this same reason
that it is advantageous to have the target zone as close as possible to the main

reflector.
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Figure 48: Normalized magnitude of the total field from S2.3 (3 GHz). No end

point contributions subtracted.
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Figure 49: Phase of the total field from S2.3 (3 GHz). No end point contributions
subtracted.
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Figure 50: Normalized magnitude of the reflected and diffracted fields from

S2.3 (3 GHz). No end point contributions subtracted.
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Figure 52: Phase of the total field from S2.3 (3 GHz). First order end point

contributions subtracted.
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Figure 53: Normalized magnitude of the reflected and diffracted fields from

S2.3 (3 GHz). First order end point contributions subtracted.
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Figure 54: Normalized magnitude of the total field from $2.3 (3 GHz). First and
second order end point contributions subtracted.
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Figure 55: Phase of the total field from $2.3 (3 GHz). First and second order end

point contributions subtracted.
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Figure 56: Normalized magnitude of the reflected and diffracted fields from
S2.3 (3 GHz). First and second order end point contributions subtracted.
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Figure 57: Normalized magnitude of the total field from $2.3 (1 GHz).
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Figure 58: Phase of the total field from S2.3 (1 GHz).
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Figure 59: Normalized magnitude of the reflected and diffracted fields from
S2.3 (1 GHz).
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Figure 60: Normalized magnitude of the total field from $2.3 (10 GHz).
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Figure 61: Phase of the total field from $2.3 (10 GHz).
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region when the target zone is near/far from the reflector

at high frequencies (a’ > a).
b,b':  Section of the target zone intercepted by the transition

region when the target zone is near/far from the reflector

at low frequencies (' > b).

Figure 63: The frequency dependence of the transition region around the
reflection shadow boundary.
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CHAPTER IV

A CONCAVE EDGED REFLECTOR WITH BLENDED ROLLED
SURFACE TERMINATIONS

4.1 Introduction

The blended rolled surface terminations can now be applied towards the design
of a three-dimensional main reflector. The main reflector surface is a paraboloid

with focal length (f), and it can be described by

z2 + yz
z = 4.1
7 (4.1)

where the z-axis is considered to be the axis of symmetry. The reflector is assumed
to be symmetric around the yz-plane, and offset in the positive y-direction. The
blended rolled surface terminations are based on a blend between the paraboloid
and ellipses with semi-major and semi-minor axes of lengths of a. and be, re-
spectively. In the three-dimensional case, one finds that additional performance
enhancement can be obtained by shaping the the edge contour separating the

paraboloid and blended rolled surface terminations.

4.2 Shaping the edge contour

The creation of the edge contour at the termination of the parabolic sec-
tion can be visualized by considering the edge contour to be the intersection of a

paraboloid by a flat plane as shown in Figure 64(a). It is found that the orientation
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of this plane has a great influence on the shape of the edge contour and the re-
sulting edge diffracted fields. A plane parallel to the zy-plane will create a convex
edge contour as shown in Figure 64(a), with the corresponding zy-projection of the
reflector shape shown in Figure 64(b). The case of an intersecting plane parallel to
the zz-plane is illustrated in Figure 65(a). Planes parallel to the zz-plane and the
yz-plane create “straight” edges; ie., the edges are perceived to be straight when
projected onto the zy-plane, as shown in Figure 65(b). The edge contours are ac-
tually curved (see Figure 65(a)), but for focal lengths and reflector sizes typically
associated with compact range main reflectors, the curvature will be slight. This
edge contour will forthwith be referred to as “rectangular”. Concave edge contours
are created when the planes parallel to the zz-plane and the yz-plane are tilted
as shown in Figure 66(a). The concave edge contours of this reflector shape are
clearly visible in the zy-projection of the edge contour as shown in F igure 66(b).
The unit vector normal to the edge contour (fi¢) at a point Q E (in the yz-plane)
directed away from the center of curvature but in the plane of the curvature is also
shown in Figures 64(a), 65(a) and 66(a). It will be shown that the direction of i,
and the radius of curvature of the edge contour at Qg have a profound effect on
the magnitude of the edge diffracted fields.

The zy-projection of the edge contours of conventional compact range reflec-
tors have been circular (convex) or rectangular in shape. Edge diffraction analysis
indicates, however, that convex or rectangular edge contours may not be the best
choice. A concave contour in fact, results in smaller edge diffracted fields in the
target zone.

To substantiate the above claim, consider the UTD expression for the electric
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EDGE
CONTOUR

(a) Creation of a convex edge contour.

(b) XY-projection of a convex edge contour.

Figure 64: Convex edge contour.
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EDGE

(a) Creation of a rectangular edge contour.

b) XY-projection of a rectangular edge contour.
g g

Figure 65: Rectangular edge contour.
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EDGE
CONTOUR

flg=(0,-sina;-cosa)

(a) Creation of a concave edge contour.

(b) XY-projection of a concave edge contour.

Figure 66: Concave edge contour.
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fields diffracted from a point (Qf) along an edge[17]; ie.,
Ed(s) = E(Qg)-D 4 ek (4.2)
where the spread factor (A) is given by

_ Pc
A_&ETB. (4.3)

Note that the edge caustic distance (p.) is given by

1_1_h-(8-8) (_élz“ 8) (4.4)
Pc  Pe Pg sin B,
where
e = unit vector normal to the edge contour
at Qg directed away from the center of
curvature, but in the plane of the curvature
s = distance from Qg to the field point
Ed(s) = diffracted electric field at the field point
E{(Qgp) = incident electric field at Qr
D = dyadic diffraction coefficient
pe = radius of curvature of the incident wavefront in the edge-fixed
plane of incidence
pg = radius of curvature of the edge at Qp
8 = unit vector in the direction of the incident propagation
8§ = unit vector in the direction of the diffracted propagation , and
By = angle between &' and the tangent to the edge at Qp .

The parameters in Equations (4.2)~(4.4) are shown in Figure 67. Let Qg
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SIDE VIEW

EDGE VIEW

Figure 67: Three-dimensional wedge diffraction geometry.
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be fixed at a point in space through which the edge will pass. It is then found
that all parameters in the spread factor, except pg and i, are also fixed if the
source and field points remain fixed. These two parameters determine the shape of
the edge contour in that they control the radius of curvature of the edge contour
and the orientation of the plane in which the edge contour lies. It is clear from
Figures 64(a), 65(a) and 66(a) that the different edge contours result in different
directions of fie and magnitudes of pg. By choosing an appropriate edge contour
through Qf, one can thus manipulate pg and fi, to minimize the spread factor and
thereby reduce the energy diffracted from Qg into the target zone. The reason for
this can be found by examining the physical significance of the spread factor as
given in Equation (4.3). This factor accounts for the conservation of energy along
a ray tube by enforcing the condition that all the energy entering the ray tube at
one end be transmitted to the other end. By changing the size of the edge caustic
(pc), rays diffracted from adjacent positions on an edge can be made to be more
divergent. This will alter the shape of the ray tube and decrease the value of the
spread factor.

Consider now a convex, straight and concave edge in the zy-plane, all of which
are illuminated by the same point source located along the z-axis. The diffracted
rays from the edges are shown in Figures 68-70. It is seen that the horizontally
diffracted rays from two adjacent points (Q; and Q2) are parallel in the case of the
convex edge. By reciprocity, when the edge is illuminated by a plane wave from
the target zone, rays diffracted from the entire edge contour will intersect at every
point on the z-axis as shown in Figure 68, so that the edge is a caustic. In contrast
to the convex edge, the straight edge will have a divergent ray pattern as shown in
Figure 69. The rays diffracted from the concave edge will diverge even more than

those from the rectangular edge (see Figure 70). The change from the divergent
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Figure 68: Diffraction from a convex edge.
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Figure 69: Diffraction from a straight edge.
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Figure 70: Diffraction from a concave edge.
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rays in the case of the concave edge to the highly convergent rays in the case of
the convex edge, is caused by the change in direction of the unit vector tangent to
the edge as the edge contour is traced from @ to @2. It is clear from these figures
that a more divergent ray pattern can be obtained by using a concave edge contour.
It is seen from Equation (4.2) that this will result in a reduction of the diffracted
field magnitude.

In order to compare the spread factor and diffracted fields for the three types
of edges discussed, consider a paraboloid with focal length equal to 12', and an
offset target zone of width 8' in the z-dimension and height 6' in the y-dimension.
Let the center of the target zone be 8 high, and located at a distance 24' away
from the origin along the z-axis, as shown in Figure 71. Let the shapes of the
three offset reflectors be that of the rectangular target zone projected onto the
paraboloid, and enclosed by the convex, fectangula.r and concave edge contours,
respectively. In the case of the convex edge, the target zone is modified to be 6'
wide in the z-dimension due to the symmetry required by the circular shape of
the edge contour. The zy-projection of the three reflector shapes are shown in
Figure 72. Note that the zy-projection of the rectangular edge contour coincides
with the zy-projection of the target zone, and that these reflectors have no rolled
edge terminations.

The concave edge contour is formed by considering a rectangle in the zy-plane,
hereafter referred to as the “defining rectangle”, of dimensions (zin, Zmaz) and
(Ymin > Ymaz ) around the zy-projection of the target zone. The zy-projection of the
target zone is considered to have dimensions (x5, ignt) and (Ybots Ytop). The
center of the defining rectangle coincides with the center of the zy-projection of
the target zone. Radial lines are drawn from the center of the defining rectangle

to its border. The concave edge is then formed by the locii of points on the radial
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Figure 71: Offset reflector and target zone used for the comparison of the edge
contours.
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Figure 72: XY-projection of the offset reflector shapes with different edge
contours.
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lines that are a fixed distance (ae) from the border of the rectangle as shown in
Figure 73. The relation between the dimensions of the defining rectangle and the

zy-projection of the target zone are thus given by

Tmaz = Tright + Ge (4.5)
Tmin = Tleft — Qe (4.6)
Ymaz = Ytop + Ge , and (4.7)
Ymin = Ybot — Qe . (4.8)

Note that the parameters (yy,in) and (ymqz) that are used in this context are not
the same as those in Section 3.4.2. The center of the zy-projection of the target
zone, and thus the center of the defining rectangle, is located at (0, Yavg ), where
Yavg is given by
__ Ymaz + Ymin __ Ytop t Ybot
Yavg = 2 = 2 .

Let (zaz,Yaz) be a point on the perimeter of the defining rectangle as shown in

(4.9)

Figure 73. The corresponding point on the concave edge contour of the paraboloid
[Pj(x;,yj,2)], is given by

GeTqyr

T; = Tag— (4.10)
\/m?n + (ya:t - yavg)2
Y5 = Yax — e(Yaz — Yavg) and (4 1.1)
i = Yaz , :
\/wczn + (yaz - yavg)z'
2 2
J J
z; = 4.12
T (4.12)

The entire concave edge contour of the paraboloid can be generated by tracing
(Taz,Yazr) around the perimeter of the defining rectangle. Note that the actual

maximum and minimum dimensions of the reflector will not necessarily be equal

to the values of ¢,in, Tmaz, Ymin and Ymae. The parameters defining the concave

edge used in this comparison are given in Table 11.
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Figure 73: Defining rectangle for a concave edge contour.
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Table 11: Parameters for the concave edge used in the comparison of the edge
contours.

R !
Tmin | =T

'
Tmaz 7

Ymin | 2’

Ymaz | 14/
fe 12
de 3

The NEC Reflector Antenna Code[50] was used to analyze the three reflectors,
using the UTD. Numerical values of a modified spread factor, which is given by

Pc
Pct+ 8

A® =

(4.13)

were calculated for rays diffracted into the target zone from points common to all
three edges. Since s is a constant when Qp is fixed, A? is a good measure of p..

The common diffraction points are shown in Figure 72, and are defined as follows:

Q4 = top of the target zone projection, in the yz-plane
@p = bottom of the target zone projection, in the yz-plane
Q¢ = left of the target zone projection, at the height of the centerline

(concave and rectangular edge contours) , and

@p = left of the target zone projection, at the height of centerline

(convex edge contour) .

The spread factor magnitudes are given in Tables 12 and 13 for vertical cuts

through the center of the target zone and in Table 14 for a horizontal pattern cut
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through the center of the target zone, for the various edge contours. The magnitude
of the y-polarized fields diffracted from the three reflectors into the target zone are
shown in Figure 74. The patterns were taken along a vertical cut through the
center of the target zone at 10 GHz and also calculated with the NEC Code. The

following observations and conclusions can be made from these results:

e The caustic effect of the convex edge is clearly demonstrated by the sharply
increasing values of A’ towards the center of the target zone. This is espe-
cially true in the case of the horizontal pattern cut. Figure 74 shows the
strong diffracted field from the convex edge in the center of the target zone.

This is a very undesirable characteristic.

¢ The numerical values of the modified spread factor for the “rectangular edge”

tend to stay close to 1. Since the edge is almost straight one finds that
pg — 00 (4.14)
so that it follows from Equation (4.13) that

A’ ~1. (4.15)

e In the case of the concave edge, A° is seen to decrease significantly across the

target zone, with the highest values along the reflection shadow boundaries.

o Figure 74 clearly shows that the fields diffracted from the concave edged
reflector into the target zone are smaller than those diffracted from both
the rectangular and convex edged reflectors. This is due to the fact that

the concave edge has a smaller spread factor than the other two edges as

indicated in Tables 12-14.
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Table 12: Modified spread factor for diffraction from Q4.

VERTICAL PATTERN CUT
Diffraction point: @ 4=(0.00,11.00,2.52)
Pattern position Modified spread factor (A*)
xpat | ypat | zpat | concave | rectangular | convex
0.00 | 5.00 | 24.00 | 0.563 0.983 0.960
0.00 | 5.50 | 24.00 | 0.581 0.986 1.052
0.00 | 6.00 | 24.00 | 0.601 0.988 1.175
0.00 | 6.50 | 24.00 | 0.623 0.990 1.353
0.00 | 7.00 | 24.00 0.645 0.992 1.646
0.00 | 7.50 | 24.00 || 0.673 0.994 2.275
0.00 | 8.00 | 24.00 || 0.701 0.996 7.353*
0.00 | 8.50 |24.00 || 0.734 0.997 2.540
0.00 | 9.00 [ 24.00 | 0.772 0.998 1.748
0.00 | 9.50 | 24.00 | 0.815 0.999 1.417
0.00 | 10.00 | 24.00 | 0.865 0.999 1.224
0.00 | 10.50 [ 24.00 || 0.925 1.000 | 1.094
0.00 | 11.00 | 24.00 | 0.9991 | 1.000f | 0.908f
Dimensions in feet

*Edge diffraction caustic

tReflection shadow boundary
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Table 13: Modified spread factor for diffraction from Q B

VERTICAL PATTERN CUT

Diffraction point: @ g=(0.00,5.00,0.52)

Pattern position Modified spread factor (A4?)

xpat | ypat | zpat || concave | rectangular | convex

0.00 | 5.00 | 24.00 || 1.000t | 1.000" | 0.998t
0.00 | 5.50 |24.00 | 0.926 1.000 1.092
0.00 | 6.00 | 24.00 | 0.867 0.999 1.218
0.00 | 6.50 | 24.00 | 0.818 0.999 1.400
0.00 | 7.00 | 24.00 | 0.776 0.998 1.697
0.00 | 7.50 | 24.00 || 0.740 0.997 | 2.318
0.00 | 8.00 | 24.00 | 0.709 0.996 | 6.211*
0.00 | 8.50 | 24.00 || 0.682 0.995 2.741

0.00 | 9.00 | 24.00 | 0.657 0.993 1.854
0.00 | 9.50 | 24.00 | 0.635 0.991 1.494
0.00 | 10.00 | 24.00 || 0.615 0.989 1.287
0.00 | 10.50 | 24.00 | 0.597 0.987 1.148
0.00 | 11.00 | 24.00 | 0.581 0.985 1.047

Dimensions in feet

*Edge diffraction caustic

tReflection shadow boundary

137



Table 14: Modified spread factor for diffraction from Q¢ and @p.

HORIZONTAL PATTERN CUT
Diffraction point: Q~=(-4.00,8.00,1.67)
Diffraction point: @ p=(-3.00,8.00,1.52)

Pattern position Modified spread factor (A*)

xpat | ypat | zpat || concave | rectangular | convex

(Qc) (Qc) (@p)
-4.00 | 8.00 | 24.00 | 1.001t | 1.000f
-3.00 | 8.00 | 24.00 || 0.921 0.999 0.9981
-2.00 | 8.00 | 24.00 0.854 0.998 1.206
-1.00 | 8.00 | 24.00 || 0.807 0.996 1.639
-0.50 | 8.00 | 24.00 | 0.783 0.995 2.165
0.00 | 8.00 | 24.00 0.762 0.993 LARGE*
0.50 | 8.00 | 24.00 || 0.736 0.991 2.954
1.00 | 8.00 | 24.00 | 0.718 0.989 1.948
2.00 | 8.00 | 24.00 | 0.688 0.985 1.309
3.00 | 8.00 | 24.00 | 0.659 0.979 1.052
4.00 | 8.00 | 24.00 | 0.631 0.974

Dimensions in feet

*Edge diffraction caustic

Reflection shadow boundary

138



¢ The performance of the concave edged reflector is thus clearly superior to
the other two, and one can ascertain that the use of such an edge contour

will, in general, lead to smaller edge diffractions in the target zone.

4.3 Three-dimensional rolled surface terminations

The ellipses forming the basis of the blended rolled surface terminations lie in
flat planes as described in Sections 3.3 and 3.4.1. In particular, the ellipse attached
at P; is defined in a local TeYe-coordinate system, with P; as its origin. In order
for the ellipse attached at Pj(zj,yj,2;) to be aligned with the parabolic surface it
is required that

Ye = —jynction (4.16)
where fj,nction is the unit vector normal to the paraboloid at the junction (P;).

The expression for Bjunction i derived in Appendix A. Thus, one finds that

ye(Pj) = ypli + 3/p2$' + yp3i (4.17)

where the direction cosines are given by

Ty

Yp1 = (4.18)

\/:c]2 + yJZ- +4f2

Y;

y 2 = e, a.nd (4.19)

g Vei+ui+4f2’

-2

Yp3 = fe . (4.20)

Let p be a unit vector in the zy-plane at the projection of P; onto the zy-
plane such that p is perpendicular to the radial line connecting the projection of

Pj and the center of the defining rectangle as shown in Figure 73; ie.,

—(Yaz — yavg) N Taz

pP= X+ Yy=px+py. (421)
\/‘ctzw + (Yaz — Yavg)? \/1'12” + (Yaz — yavg)2
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Figure 74: Magnitude of the diffracted fields from the reflectors used in the edge
comparison (10 GHz).
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The unit vector X can then be defined as

N yeXA
%o = P

e = m = :Bplft + wp2y + zp3i (422)
e

where the direction cosines are given by

—Yp3P2

Tpl = (4.23)
Ypg
app = 2221 (4.24)
Yrg :
Tp3. = Yp1P2 — Yp2P1 , and (4.25)
Ypg
Yoo = \/(4p3P2)? + (4p31)? + (yp1P2 — Up2p1)? - (4.26)

Consider now a projection in the zy-plane. The surface normal (Rjunction) points
toward the axis of symmetry of the paraboloid and in particular to the point
(0,0,2f:). In the case where the target zone is symmetric around the axis of
symmetry of the paraboloid, the center of the defining rectangle lies on the axis
of symmetry of the paraboloid, so that all the TeYe-planes will be perpendicular
to the zy-plane as shown in Figure 75(a). In the case of an offset target zone,
however, only the two zeye-planes attached to P;(0,y;,2;) will be perpendicular
to the zy-plane as shown in Figure 75(b). This is due to the fact that the radial
lines of the defining rectangle are parallel to Bjynction in the case of the symmetric
target zone, and in the case of the offset target zone, they are not. The two cases
are illustrated in Figure 76. The dark line in the interior of the reflectors shown
in Figure 75 indicate the junction betwecn the parabolic section and the rolled
surface terminations. Note that the grid lines on the surfaces of the reflectors in
these figures are not contour lines in that contour lines generally indicate some
parameter being constant.

In order to specify the rolled surface attached at Pj(zj,y5,2;) in the zy:z-

system, it is necessary to use the transformation from the TeYe-system to the
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zyz-system which is given by

z(7) Tpl Yp zj
ze(7)

y(v) | = Tp2 Yp2 + Y; . (4.27)
ye(')’)

z(7) Tp3 Yp3 zj

Following the discussion in Section 3.4, it is seen that in the case where b(y) = 1,

the pure elliptic rolled surface attached at P; is given by

z(y) = | (aesiny)zpy + be(1 — cosy)ypy + z; (4.28)
y(7) = (aesiny)zyy + be(1 — cos Y)Yp2 + yj , and (4.29)
z(7) = (aesiny)zps + be(l — cosY)yp3 + 2j . (4.30)

Similarly, in the case where b(v) = 0, the resulting extended parabola attached at

P; is given by

z(v) = v (%) Tp1 + ; (4.31)

y(v) = v (f/—Z) zp2 +y; , and (4.32)
2 2

z(7) = ;cy (4.33)

In the case of the general blending function, the blended rolled surface attached

at Pj(z;,y;,2;) can thus be described by

o) = [1(Z2) o+ 53] 0 - s

+{(ae siny)zp1 + be(1 — cosy)yp1 + z;18() (4.34)

y(v) = [7 (:—:) zp2 + yj] [1—b(7)]

+[(ae siny)zpz + be(1 — cos ¥)yp2 + y;Jb(7) , and (4.35)
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Ay) = [7(3m/7m)3’p1 + mj]24"*':‘:['7("’m/’)’m)‘l’]ﬂ + yj]2 [1 - b(y)]

+[(ae siny)zp3 + be(1 — cos ¥)yp3 + zj]b('y) . (4.36)

The method described here by which the blended rolled surfaces are attached
to the parabolic section is not restricted to concave edge contours, but can be
applied to other edge contours as well. Figure 77 shows a parabolic reflector with
a rectangular edge contour and blended rolled edges. A parabolic reflector with a

convex edge contour and blended rolled edges will be described in Section 4.6.

4.4 Main reflector design with focus feed

Two three-dimensional reflectors with f. = 12' and concave edge contours will
now be considered. They are designated as $3.1 and $3.2, and correspond to the
two-dimensional surfaces $2.1 and S2.2 in that $S2.1 and S2.2 are the yz-plane cuts
of S3.1 and S3.2, respectively. The surface characteristics of S3.1 and S3.2 are
given in Table 15.

The target zone is considered to be 8’ wide and 6' high, with the center of
the target zone 8' above the axis of symmetry of the paraboloid and situated at
a distance (zpaz) of 24’ away from the main origin along the z-axis, as shown in
Figure 72. In calculating the scattered fields from the reflectors it is assumed that
there is no direct illumination from the feed into the target zone.

The reflectors are illuminated by a Huygens source located at the focal point.
The Huygens source approximation is based on the assumption that it best rep-
resents the radiation and polarization properties of a horn feed antenna. A more
complete motivation for the use of a Huygens source will be given in Cilaptel' V.

Consider the feed antenna to be located in its own z syszg-coordinate system,

with origin located at the focal point of the main reflector so that % f= —Xas
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Table 15: Surface characteristics for $S3.1 and S3.2.

S3.1 S3.2
Blending | None | Cosine
fe 12/ 12!
Qe 3 3
be 0.75' | 0.75'
Tm 7
TYm 120°
Ybot 5 5
Yavg 8 8
Ytop 1! 1!’
Tle fi —4 —4/
Tpight 4 4
a 36.87° | 36.87°
Zpat 24' 24/
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Figure 78: Focus feed coordinate system.

shown in Figure 78. Let the z¢-axis be the axis of symmetry of the feed. The
zg-axis is tilted at an angle (o) relative to the —z-axis. In this case the angle («)
is chosen so that the zf-axis points towards the center of the projection of the

target zone on the main reflector; ie.,

Yavg
tanog = ———5—— . 4.37
fe - ygvg/‘lfc ( )

The transformation from the zyz-system to the zrysz¢-system is given by

Ty -1 0 0 T 0
yr | =| 0 cosa sina y |+t | —fesina | - (4.38)
zf 0 sina —cosa z fecosa

It is assumed that the Huygens source is ys-polarized, so that the radiated
far zone electric field is given (in feed coordinates) by
~jkR

R

€

Ef(R,05,¢5) = €' (05, ¢5) (4.39)
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where

e'(05,85) = Fo(85,05)05(85,85) + Fy(85,85)05(05,6¢) (4.40)

0
Fy(05,¢5) = (sin ¢ cos? —2i) F3(65,¢5) , and (4.41)
0
Fy(b¢,05) = (cos b5 cos? —2f-) Fg(05,¢5) - (4.42)
In this case, it is assumed that F =1 and Fg = 1. The spherical unit vectors are
given by
. . if
0y cos Oy cospy cosfysingy —sin fy
i _ ¥y (4.43)
é5 —sin ¢y cos P 0
25
so that
( cosf¢singscosa  cosfpsinggsina )
A cos g cos gy %
¢ —sinfysina +sinfy cos o )
. = y
¢y .
zZ
\ singy cosacos Py sinacos ¢
(4.44)

Given a point Pp(zp, yp, zp) on the surface of the main reflector, Equation (4.38)

can be used to transform it to Pp(z¢,yys,z5) in feed coordinates. The unit vector

from the feed origin to the point on the surface of the main reflector is thus given

in feed coordinates by

- P
Pp= L= (mfn’yfn’zfn) . (4.45)
Pyl

One further finds that

R = ,/;c} + y:‘;‘, + z‘; (4.46)

8¢ = arccos(zg,) , and (4.47)
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arctan(ysp/zf,) if zfy #0
d’f = 90° if T =0,y0 20, and (4.48)
—-90° fzp, =0,yp, <0.

Once 0 and ¢ are determined, the field incident on Pp can be calculated in terms

of X, ¥ and %, by substituting Equation (4.44) into Equation (4.39).

4.4.1 Design example (elliptic rolled edges)

Consider now $3.1 with pure elliptic rolled surface terminations, as shown in
Figures 79 and 80 for two different viewing angles.

The patterns of the three-dimensional reflectors can be computed using the
corrected PO method. As mentioned before, this method is used since the UTD
diffraction coefficients for higher order blended junctions are not yet available.
The numerical PO integration is performed by dividing the entire reflector surface
into small triangular patches as described in Section 2.3.2, so that the maximum
dimension of a patch does not exceed 0.1). Each of the trapezoidal patches shown
in Figures 79 and 80 are divided into two triangular surface patches. Since the
patches are very small, it can be assumed that each patch is in the far zone of
the source, and that each pattern point in the target zone is in the far zone of
a-patch. This implies that the incident field on a patch can be considered to be
a local plane wave, and that the field scattered from é patch can be calculated
using the far zone approximation of the PO integral. The total field at a pattern
point is obtained by summing the contributions of all the illuminated patches
on the reflector surface and then subtracting the end point contributions around
the incident shadow boundary contour on the blended rolled surface terminations
as described in Section 2.3.3. Note however that the second term of the end

point scattering coeflicient depends on the radius of curvature of the surface at
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Figure 79: Three-dimensional parabolic reflector with elliptic rolled edges

(53.1)(Front view).
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the incident shadow boundary. Due to the twisted planes in which the rolled
surface ellipses are located (see Figure 75(b)), this is a very tedious calculation;
consequently, the radii of curvature at the top and bottom shadow boundaries are
approximated by their values in the yz-plane. These values are obtained as part
of the optimization algorithm described in Section 3.4.2. The second order PO
correction terms have not been applied for the left and right rolled surface shadow
boundaries. Since the actual numerical computation of a PO pattern for a three-
dimensional antenna was found to be almost prohibitively expensive in terms of
computer time, patterns were calculated at 3 GHz only.

Once the total field is known, the GO reflected field can be calculated and
subtracted from the total field. The residual field will by default be the field
diffracted from the concave edge junction between the parabolic and rolled surfaces,
since no other significant scattering mechanisms contribute to the total field in the
target zone.

Keeping in mind that the caustic distances for the reflected field from a
paraboloid due to illumination from a point source at the focus are both equal
to infinity, one finds that the GO field (E") reflected from a point Qp on the

parabolic surface to the target zone is given by

E’(s) = [-E' +2(h - E*)aje 7% (4.49)
where
E' = incident electric field at Qr
N = unit vector normal to the surface at Qp (See Appendix A) ) and
s = distance from Qp to the field point .

Patterns were calculated along a cut through the yz-plane, located at a dis-

tance (2pat) of 24' away from the main origin along the z-axis. The normalized
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magnitude and phase of the total field together with plots comparing the reflected
fields with fields diffracted from the concave junctions are shown in Figures 81-89
for the cases where no end point contributions are subtracted, only first order end
point contributions are subtracted, and, finally, first and second order end point
contributions are subtracted. The tickmarks on the plots indicate the sampling
points in the target zone used in the numerical calculations. By comparing Fig-
ures 83 and 89 it is seen that, in this case of pure elliptic rolled surfaces, the
difference in diffracted fields for the cases where no end point contributions are
subtracted and first as well as second end point contributions are subtracted, is
small. This implies that the end point contributions are overshadowed by the rel-
atively large diffractions coming from the edge junction between the paraboloid
and the rolled edge. Comparison of Figures 87-89 with Figures 23-25 indicate
the good agreement between the patterns for the three-dimensional (§3.1) and

two-dimensional (52.1) reflectors.

4.4.2 Design example (cosine blended edge)

Consider now S3.2 with cosine blended rolled surface terminations as shown
in Figures 90 and 91 for two different viewing angles. The scattered fields from
this reflector were calculated along a cut through the yz-plane, located at a dis-
tance (2pqt) of 24' away from the main origin along the z-axis. The normalized
magnitude and phase of the total field in the yz-plane of the target zone together
with plots comparing the reflected fields with fields diffracted from the concave
junctions are shown in Figures 92-100 for the cases where no end point contribu-
tions are subtracted, only first order end point contributions are subtracted and,
finally, first and second order end point contributions are subtracted. Comparison

of Figures 98-100 with Figures 38-40 indicate the good agreement between the
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Figure 81: Normalized magnitude of the total field from S3.1(3 GHz). No end

point contributions subtracted.
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Figure 82: Phase of the total field from $3.1(3 GHz). No end point contributions
subtracted.

156



0.0

...............................................................
................................................................

L

-ZO.IO -10.0
7
|

-

~_

~

(DB)
-30.0

FIELD

-40.0
|
—~
==

Q—v..‘...........-.y..!.-........‘....vA..............................‘...4---------.---.--~~‘-~4;--..”..'..v...................
o | s :
il REFLECTED FIELD

- DIFFRACTED FIELD — — — — —
O L
o
0 -
| -
o : : . : : :
o. ] T T 1 I L] 1 L) L] ' L L) L) § ' 1 ) 1 1 I 1 L) T T I ¥ L) L]  § I

~5.0 6.0 7.0 - 8.0 9.0 10.0 11
' HEIGHT Y (FEET)

Figure 83: Normalized magnitude of the reflected and diffracted fields from
S3.1(3 GHz). No end point contributions subtracted.

.0



FIELD (DB)
-2.0 -1.5

—205

-3.0

5.0 6.0 7.0 8.0 8.0 10.0 1.0
HEIGHT Y (FEET)

Figure 84: Normalized magnitude of the total field from $3.1(3 GHz). First order
end point contributions subtracted.
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Figure 85: Phase of the total field from S3.1 (3 GHz). First order end point

contributions subtracted.
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Figure 86: Normalized magnitude of the reflected and diffracted fields from S3.1
(3 GHz). First order end point contributions subtracted.
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Figure 87: Normalized magnitude of the total field from $3.1 (3 GHz). First and
second order end point contributions subtracted.
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Figure 88: Phase of the total field from S3.1 (3 GHz). First and second order end
point contributions subtracted.
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Figure 92: Normalized magnitude of the total field from S3.2 (3 GHz). No end

point contributions subtracted.

patterns for the three-dimensional (53.2) and two-dimensional (S2.2) reflectors.
Comparison of Figures 94 and 100 indicate that the false contributions from the
end point terms do have an effect on the pattern in this case. This is also evident
from the high frequency ripple visible in Figures 92 and 93. Since the diffractions
from the junction between the paraboloid and blended rolled edge are smaller than
in the case with the pure elliptic rolled edge, the false scattering from the incident
shadow boundaries are more significant. The subtraction of the contributions from

the end point terms reduce the high frequency ripple errors as shown in Figures 98

and 99.

4.5 Main reflector design with Gregorian subreflector

Consider now S3.3, a parabolic reflector with f. = 7.25', cosine squared

blended rolled surface terminations and a concave edge contour. $3.3 corresponds
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Figure 93: Phase of the total field from $3.2 (3 GHz). No end point contributions
subtracted.
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to S2.3 in that it is the yz-plane cut of $3.3. The surface characteristics of S3.3 are
given in Table 16, and the surface is shown in Figures 101-103 for three viewing
angles. The target zone is considered to be 8' wide and 6' high, with the center of
the target zone 8.5’ above the axis of symmetry of the paraboloid, and situated 20’
away from the main origin along the z-axis. The main reflector is illuminated by
a Gregorian subreflector system. For the purpose of this discussion it is a,s_sumed
that the main reflector is illuminated by the GO field reflected from the subre-
flector only. Fields diffracted from the subreflector are thus deliberately ignored.
The purpose of this deletion is to investigate the performance of the main reflector
when illuminated by an ideal subreflector system. It is further assumed that there
is no direct illumination from the feed or diffraction from the subreflector into

the target zone. This is done in order to simulate the dual chamber configuration

described in Chapter V.
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Figure 94: Normalized magnitude of the reflected and diffracted fields from S3.2

(3 GHz). No end point contributions subtracted.

168



" 1 i 1 : i i
5.0 6.0 7.0 8.0 9.0  10.0  11.0
HEIGHT Y (FEET)

Figure 95: Normalized magnitude of the total field from S3.2 (3 GHz). First
order end point contributions subtracted.
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Figure 96: Phase the of total field from S3.2 (3 GHz). First order end point

contributions subtracted.
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Figure 97: Normalized magnitude of the reflected and diffracted fields from $3.2
(3 GHz). First order end point contributions subtracted.
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Figure 98: Normalized magnitude of the total field from $3.2 (3 GHz). First and
second order end point contributions subtracted.
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Table 16: Surface characteristics for S3.3.

Cosine Squared Blending
fe 7.25'
ae 3.4/
be 0.75'
Tom 6.8'
Tm 120°
Ybot 5.5

Yavg 8.5'
Ytop 11.5'

Tleft -4

Tright 4
asr 5.25'
by 4.308'
for 3'
B 5.5

a 20°
Zpat 20/
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Figure 101: Three-dimensional parabolic reflector with cosine squared blended

rolled edges (53.3)(Front view).
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Figure 102: Three-dimensional parabolic reflector with cosine squared blended

rolled edges (S3.3)(View angle: 6 = 30°, ¢ = 150°)



Figure 103: Three-dimensional parabolic reflector with cosine squared blended

rolled edges (S3.3)(View angle: 8 = 80°,¢ = —307).
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The Gregorian subreflector is a spheroid which is defined in terms of its own
Z4Ys2s-coordinate system. The origin of this coordinate system is located at the
center of the spheroid. The subreflector has a semi-major axis of length (asr) in
the direction of its axis of symmetry (z,-axis), and semi-minor axes of length (bsr)
in the directions of the z,-axis and ys-axis, such that asy > bsr. The focal points
of the subreflector are located at a distance (fsr) from the origin along the positive
zs-axis (f;}) and negative z,-axis (f;;) respectively, as shown in Figure 104. The

focal length is giveli by
for = \Jad — b2 . (4.50)

The main axis of the subreflector is tilted at an angle (8) with respect to the
axis of symmetry of the paraboloid, and the subreflector is placed such that £
coincides with the focal point of the parabolic main reflector (fc). The primary
feed is placed at the other focal point (f;,). All rays originating from the point
source at f;, and reflected from the subreflector will pass through £}, so that f},
is thus a caustic for all rays reflected from the subreflector.

The primary feed antenna is assumed to be a Huygens source and is orientated
such that its axis of symmetry (z¢-axis) is tilted at an angle (o) relative to the main
axis of the subreflector as shown in Figure 104. Chapter V is devoted towards the
design of a dual chamber compact range configuration, where the assumptioﬁs that
the diffracted fields from the subreflector and spillover from the feed can be ignored
are justified, and the purpose of the tilt angles is explained. The transformation

from main coordinates to subreflector coordinates is given by

Ts 1 0 0 T 0
ys | = | 0 cosf —sinp y |+ ver (4.51)
2 0 sinB cosf z Zel
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Figure 104: Subreflector coordinate system.
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where

Yel = Tosinfe (4.52)
Zel = —Tocosfe (4.53)
Be = Bect+PB (4.54)
Bee — arctan(—y;/2z1) ifz1 #0 (4.55)
90° ifzp=0
ro = yi+22 (4.56)
y1 = —fsrsinf, and (4.57)
21 = fe— farcosf. (4.58)

The geometry associated with this transformation is illustrated in Figure 105.

In order to calculate the scattered fields from the main reflector, it is necessary
to determine the incident field at any point Pp(zp,yp, 2p) on the main reflector.
The first step is to convert Pp to subreflector coordinates [Pp(zps, Yps, 2ps)] using
the transformation given in Equation (4.51). The next step is to find the point
(Py) on the subreflector that is the reflection point for the ray intercepting P,.

Let the subreflector be described in its own coordinate system by the following

parametric equation (see Appendix A):
Fypheroid(U, V) = (bsy sinu cosv)X,s + (bsr sinu sinv)y, + (asr cosu)z,  (4.59)

so that P, can be expressed as P,(u,,v,). Since the spheroid is a body of revo-
lution around the zs-axis, the parameter (v) is the spherical angle (¢), while (u)
corresponds to the spherical angle ().

Let r be the vector from P, to £}, such that
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and
F=1r1Xes +ro¥s + r32, (4.61)

where

Tms
Tms
rg = L’L_—zp’,and (4.64)

Tms

l no= B (4.62)
rms = 22, +y2y + (for — 2ps)2 . (4.65)
l It then follows that

P, = f}+1f,and (4.66)
I = |P.—f)| (4.67)
where
bsr cos vy sinu, = Irg (4.68)
bsr sinvy sinu, = Iry, and (4.69)
asr COSs Uy = fsr + 11'3 (4-70)

so that

arctan(rg/ry) ifry #£0

\ —90° ifr) =0,72 <0, and

bsr /79) sin v, sin u ifr 0
] — ( sr/ 2) r r 2 # (4.72)

(bsr/r1) cosvpsinu, ifrg=0.

The unit vector () and distance (I) are shown in Figure 106. The reflection

caustic distance (p.) has the same magnitude as [, but has a negative sign. Note
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Figure 106: Reflection point on the subreflector.

that v, = 180° in the case where r{ = r9 = 0 since u, = 0 is not permitted by

the dual chamber configuration described in Chapter V. From the above it is thus

seen that
Qgy COS Uy = fsr + dsr sin Uy (4.73)
where
bgp(ra/ro)sinv ifr 0
dyy = | Porlrsfra)sinenifra # (4.74)
bsr(r3/r1)cosvy if rg =0
and

asr\/ dg,. + bgr - fsrdsr

sinuy =
agr + dgr

(4.75)

The positive sign of the square root is chosen since sin u, > 0. The reflection point

on the subreflector is thus given by

P'r = (bsr sin Uy COS v',-)ig + (bsr sin Uy Sin Uy )ys + (asr COS Uy )23 (4.76)
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or
Py = 2roXs + Yra¥s + zrets (4.77)

where v, is given in Equation (4.71) and u, in Equation (4.75).
Once P; is known, the field incident on P, from the Huygens source at f;,
can be calculated. To do this, it is necessary to convert P, to feed coordinates by

using the following transformation:

yf | =] 0 cosa sina ys | | fersina | - (4.78)
zf 0 —sina cosa 2s far cosa

Let the distance (Ry) from the Huygens source to P be given by

Ry =[e} +y} + 2 (4.79)

so that
0y = arccos(zf/Ry) , and (4.80)
arctan(ys/zz) z5 #0
¢f = 4 90° zf =0and yr >0, or 65 =0° (4.81)
-90° zg=0and yr <O0.

Note that the choice of ¢; = 90° when 6 = 0° indicates that the Huygens.source
is ys-polarized. The field incident on Py can now be expressed in feed coordinates
as

i L e ¥Ry
ER(Rys,05,65) = €' (05, 6¢) R; (4.82)

where e! is given in Equation (4.40). Using the transformation given in Equa-

tion (4.78), e’ can be expressed in subreflector coordinates as
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e'(87,65) = [Fp(85,05)cosbycosds — Fylly,bs)sin byl
+{Fy(0f,¢5)(cos Oy sin ¢ cos a + sinff sin ) +
Fy(0f,0¢)cos ¢f cosalys
+[Fy(0f,¢5)(cos 8 sin ¢¢ sin @ — sin 5 cos ) +
Fy(0s,8¢)cos dgsinajz, . (4.83)
The incident field at Py on the main reflector is then given by
E"(Pp) = [-E% + 2(h - EL)d| 4 e ke (4.84)
where i is the unit vector normal to the subreflector surface at P, (see Ap-
pendix A), and
s=|Pp—P,| (4.85)

or

s = \/(:l:p, - :87'3)2 + (yps - y")z + (zps - zr.s)2 . (4.86)

Since s > [, one finds that the spread factor (4) is given by

I/(l—3s) in three dimensions , and (4.87)
ej"/zw/l/(s —1) in two dimensions .

As the electric field incident at Py is now known in subreflector coordinates; ie.,

A=

EY(Pp) = Egks + Eyfs + E.i, (4.88)
it can be converted to main coordinates by using the following transformation:

X, 1 0 0

X
¥s | =] 0 cos@ —sing y (4.89)
Zs 0 sing cosp Z

This transformation will give the incident electric field on the surface of the main

reflector in main coordinates, so that it is in a suitable form for use in the PO
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integration. Note that the total path length of a ray from the phase center of
the Huygens source to the target plane, which is located at a distance (2pat) from
the main origin along the z-axis, is constant and equal to 2a,, + f. + Zpat- The
reflected field from the main reflector into the target zone is thus still a plane wave.
The scattered fields from $3.3 were calculated along a cut in the yz-plane, located
at a distance (zpgt) of 20’ away from the main origin along the z-axis, at 3 GHz
using the corrected PO method. The normalized magnitude aﬁd phase of the total
field together with‘plots comparing the reflected fields with fields diffracted from
the concave junctions are shown in Figures 107-115 for the cases where no end
point contributions are subtracted, only first order end point contributions are sub-
tracted and, finally, first and second order end point contributions are subtracted.
Comparison of Figures 107-115 with Figures 48-56 indicate the agreement between
the patterns for the three-dimensional (S3.3) and two-dimensional ($2.3) reflectors.
The high frequency ripple in Figures 107 and 108 and the discrepancy in diffracted
fields between Figures 109 and 115 indicate that the contributions from the false
scattering centers at the incident shadow boundaries on the blended rolled edges
have a significant effect on the pattern. Since the diffraction from the junction

between the paraboloid and the rolled edges is small, the contributions from the

end points terms are much more pronounced. Comparison of Figure 115 with Fig-
ure 56 indicates that the two-dimensional prediction of the diffracted field is much
smaller than that obtained by the three-dimensional results. This discrepancy
most likely results from an inaccurate subtraction of the end point contributions
in the three-dimensional case.

Based on the results obtained from the two-dimensional analysis it was claimed
in Section 3.4 that a reflector with blended rolled edges will have a significantly

better performance than one with elliptic rolled edges. In this section it has been
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Figure 107: Normalized magnitude of the total field from S3.3 (3 GHz). No end
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shown that this claim holds true for three-dimensional reflectors as well. The
performance improvement that can be obtained by choosing higher order blending
functions as discussed in Sections 3.4.1 and 3.4.2 have now been verified for the

three-dimensional case.

4.6 Comparative design example

A final design example, intended as a 1/3 scale model, will now be considered.
A reflector with a concave edge contour is compared to one with a convex edge
contour. Both reflectors have the same optimized cosine squared blended rolled
edges. The reflectors are designated as S3.4 and S3.5 and shown in Figures 116-
117, respectively. Note that the yz-profile shown in Figure 118 is the same for both
reflectors, so that the dimensions of their target zones in the yz-plane are equal.

The z-dimension of the target zone of S3.5 is smaller than that of S3.4 in order
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to accomodate the circular edge contour. The surface characteristics are given in
Table 17.

The reflectors are illuminated by a Huygens source at the focus, tilted at an an-
gle (o) as given in Equation (4.37). Field patterns were calculated at 3 GHz along
a cut in the yz-plane, located at a distance (2pat) of 8' away from the main origin
along the z-axis. Fifty sample points were taken in the target zone. Figure 119
shows the normalized magnitude of the total field in the target zone; whereas,
Figure 120 shows the magnitudes of the normalized reflected and diffracted fields.
The phases of the total field in the targef zone are shown in Figure 121.

These results clearly indicate that a concave edge contour has superior perfor-
mance compared to a convex edge contour. The diffraction pattern of $3.5 shows
a large lobe in the center of the target zone, which can be attributed to the caustic

effect of the convex edge contour. The concave edge contour does not exhibit such
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Table 17: Surface characteristics for $3.4 and S3.5.

S3.4 S3.5
Blending Cosine Squared
Edge contour || Concave | Convex
fe 4 4
ae 1.25' 1.25'
be 0.53' 0.53'
Tm 3.61' 3.61'
Tm 110° 110°
Ybot 1.83 1.83'
Yavg 2.83' 2.83'
Ytop 3.83 3.83/
Tle ft -1.33 -1
Zright 1.33' 1
o 38.96° | 38.96°
Zpat 8 8/

a caustic effect, and an improvement of about 14 dB is obtained in the center of

the target zone, exactly where it is most needed.
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Figure 117: Three-dimensional parabolic reflector with a convex edge contour
and cosine squared blended rolled edges (53.5)(Front view).
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Figure 119: Normalized magnitude of the total field from $3.4 and $3.5 (3 GHz).
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CHAPTER V

A DUAL CHAMBER COMPACT RANGE CONFIGURATION

5.1 Introduction

This chapter describes a dual chamber compact range configuration, where the
main reflector and target zone are located in the main chamber and a Gregorian
subreflector together with the associated feed assemblies in the other. The two

chambers are separated by an absorber fence, with a small coupling aperture to

transmit signals from one chamber to the other. It will be shown that such a dual
chamber system incorporating a Gregorian subreflector has several advantages
over other configurations, especially in terms of the reduction of the amplitude
taper and cross-polarization errors in the reflected plane wave. Stray scattered
fields from the subreflector and spillover by the feed are virtually eliminated by
the absorber fence. System performance is analyzed with and without the absorber
fence to show that this is actually the case. It will also be shown how the coupling

aperture should be shaped to minimize diffractions from the fence itself.
5.2 Compact range configurations

A compact range usually employs an offset parabolic reflector to convert the
spherical wave radiated by a point source located at the focus of the reflector to a

reflected plane wave for illumination of the target zone, as shown in Figure 122(a).

An offset feed system is used to reduce aperture blockage, but requires that the
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axis of the feed be tilted at an angle (a) relative to the axis of the reflector[34] for
proper illumination. Even though an offset system has many advantages, it also has
several disadvantages. First, the spherical wave radiated by the point source has
a 1/R spatial attenuation, and since all the points on the reflector surface are not
an equal distance away from the focus this gives rise to an amplitude taper in the
reflected plane wave. The cross-polarization errors inherent with offset focus-fed
configurations is another shortcoming. Koffman has shown that v;’hen an aztally
symmetric parabolic reflector is illuminated by a Huygens source (ie., a = 0), the
cross-polarized fields in the aperture plane are eliminated[51]. A Huygens source
results from crossed electric and magnetic dipoles of equal strength, so that the
field radiated by a y-polarized Huygens source can be expressed as

kR

e_J

7

E(R,0,4) = (0sing + & cos ¢) cos?(6/2) (5.1)

The cross-polarization associated with offset parabolic reflector systems has been
studied by various researchers, among them Chu and Turrin[52], Dijk et al[53]
and Gans and Semplak[54]. In the case of an offset reflector illuminated by a
balanced feed like a Huygens source, it is found that the cross-polarization orig-
inates from the tilt angle (o) between the feed and the main reflector axes. The
cross-polarization vanishes when o = 0 and deteriorates as a increases.

Many of the problems encountered using a focus-fed system can be relieved
by using an offset subreflector fed system instead, even though a subreflector feed
system has its own disadvantages. Two types of subreflector configurations are
potential candidates for compact range applications; viz., a Gregorian system using
a concave elliptic subreflector as shown in Figure 122(b), and a Cassegrain system
using a convex hyperbolic subreflector as shown in Figure 122(c). It will be shown

that a Gregorian subreflector offers substantial advantages over a Cassegrain.
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Hannan has shown that the equivalent focal length ( fe) of a subreflector/main

reflector configuration is given by([55]

fe =m fc (5°2)
where
e+1
e 1] . (5.3)

In these equations, e is the eccentricity of the subreflector, a.nd fec is the real focal
length of the mainvreﬂector. Note that Equation (5.3) applies to the case where
the axis of the subreflector is aligned with the axis of the main reflector. Since
m > 1 for both Gregorian and Cassegrain subreflectors, fo > f. for both systems.
Consequently, one can use a main reflector with a shorter focal length, which
ultimately reduces the chamber size. In addition, the edge diffracted fields from
the main reflector into the target zone are also reduced because the target zone
can be located closer to the main reflector as shown in Section 3.4.4. A larger
equivalent focal length leads naturally to a reduced amplitude taper and smaller
cross-polarization errors in the reflected field. The taper is improved because the
distance from the virtual focus to the reflector surface is more nearly uniform{56].
The cross-polarization is related to the f/D ratio (where D is the diameter of the
main reflector) and improves if this ratio increases. Since the subreflector/main
reflector has a larger equivalent focal length than the focal length of the main
reflector alone, the angle between the feed and main reflector axes is reduced([52],
resulting in lower cross-polarization errors.

The reflected field amplitude taper and cross-polarization errors can both be
reduced further by tilting the subreflector axis by an angle (3) relative to the main
reflector axis and tilting the feed axis by an angle (a) relative to the subreflector

axis, as shown in Figure 122(b). The tilt (8) rotates the subreflector pattern
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relative to the main reflector, resulting in a reduced amplitude taper. Rudge and
Adatia[57], Dragone[58], Mizugutch et al[59], Tanaka et al[60] and Shore[61] have
shown that the cross-polarization errors in dual offset reflector systems can be
eliminated if, in addition, the axis of the feed is tilted by an angle (a) relative to

the subreflector axis such that

tan g— =m tan 'g : (5.4)

where m is given in Equation (5.3). The primary feed antenna is assumed to be
a balanced linearly polarized feed. The effect of the two tilt angles is to have the
depolarization arising from the two offset reflectors cancel each other. Note that
these equations are valid for both Gregorian and Cassegrain systems. In the case
where the subreflector axis is tilted by an angle (3), the equivalent focal length of

the system is given by[62]

1~ €’
= 7 fe -
1+e“—2ecosf

fe (5.5)

Even though subreflector systems have many desirable qualities, they have
some serious shortcomings. For example, the scattered fields from the subreflector
that illuminate the main reflector and target zone as well as the spillover from the
feed are highly undesirable. Adatia[63] has shown that the diffracted fields from
the subreflector also have a very detrimental effect on the polarization purity.
Rader([32] analyzed a Cassegrain subreflector for compact range applications and
found that the diffractions from the subreflector edges result in an unacceptable
field quality in the target zone. In order to reduce these diffractions he added
blended rolled edges to the subreflector, but then found that higher order reﬂecteci
fields from the rolled edges also cause too much ripple in the reflected plane wave.
These problems make a Cassegrain subreflector unattractive for compact range

applications.
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A Gregorian subreflector, on the other hand, allows one to use a dual cham-
ber approach as shown in Figure 123. Note that this antenna configuration is
the same as the one described in Section 4.5 with main reflector $S3.3. The yz-
cut of the antennas is also shown in Figure 47. The main chamber contains only
the main reflector and target zone. The Gregorian subreflector is oversized and
placed in the second chamber along with the feed assemblies. The two chambers
are separated by an absorber fence with a small coupling apertﬁre to transmit the
signals between thé chambers. All the desired geometrical optics (GO) reflected
rays from the subreflector pass through one of its focal points (see Figure 122(b))
which is coincident with the focal point of the main reflector. The coupling aper-
ture between the two chambers is then positioned at this location so that the
desired signal can propagate unperturbed from one chamber to the other. The
diffracted fields from the subreflector and spillover from the feed are attenuated
by the absorber fence before they can illuminate the main reflector and target
zone. This approach virtually eliminates the subreflector scattered field and feed
spillover problems, while retaining the benefits of a subreflector feed (ie., reduced
amplitude taper and cross-polarization errors). Note that this solution cannot be
applied to a Cassegrain subreflector, since the reflected rays from a Cassegrain
diverge instead of passing through a caustic point as shown in Figure 122(0).

In order to compare the performance levels of the different feed configurations,

consider the following three-dimensional reflector systems:

1. A Gregorian subreflector with both the subreflector and feed axes tilted
(B = 5.5%a = 20°) and illuminated by a Huygens source of the type de-
scribed in Equation (5.1). The subreflector has semi-major and semi-minor

axes of lengths 5.25' and 4.308', respectively. The dimensions of the sub-
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reflector and tilt angles (8 and «) are chosen to optimize the taper of the
reflected field[64], while maintaining the relationship between o and 3 given
in Equation (5.4). The main reflector has a focal length of 7.25' and cosine
squared blended rolled edges with a concave edge contour to reduce edge
diffractions (S3.3 described in Section 4.5). The yz-cut of this configuration

is shown in Figure 123.

- The same configuration as in the previous case, except that the subreflector

axis is aligned with that of the main reflector, and the feed axis is tilted
so that the reflected ray along this direction illuminates the center of the

projection of the target zone onto the parabolic reflector (8 = 0%, o = 179).

. A focus-fed system with a Huygens source at the focus of a parabolic reflector.

The feed axis is tilted to point at the center of the projection of the target
zone onto the parabolic section (a = 39° as shown in Figurel22(a)). The

main reflector has a focal length of 12'.

Figure 124 shows the normalized GO reflected field along a vertical cut through
the center of the target zone for the three cases. The amplitude tapers for cases 1,
2, and 3 are 0.05 dB, 0.3 dB and 1.3 dB, respectively. From this plot it is clear that
even though the main reflectors in the first two cases have shorter focal lengths
than that in the third case, the use of the subreflectors result in a substantial
reduction in the taper of the reflected field. The taper is reduced even more
when the subreflector axis is tilted relative to the main reflector axis. The cross-
polarized GO fields relative to the copolarized GO fields are shown in Figuré 125
along a horizontal cut through the center of the target zone. Note that the cross-
polarization of the system where the subreflector axis is aligned with that of the

main reflector (case 2) is much smaller than that of the focus-fed system (case 3),

207



o ......................
ol ST : L T——
i S T~ z | z
~. T~
. N o PN f
N § : —~ :
N : : LTS
1 N s : : .
N : § :
i N : § :
N\ : : :
W e N
o PN i : §
—_1 \ : i :
10 B N é :
o N : .:
=1 \ i :
AN ; s
o CN : :
- \ 5 :
L A :
— T \ :
“o \ |
B S
' N\ :
o AN
\ ?
\
4 \i
.-: 1 1 L) L l L) 1] 1 L] ' L) L] ) L] l ¥ L{ Ll L I L L] T L T L ¥ L] ] l

15.5 6.5 1.5 8.5 9.5 10.5 11.5
HEIGHT Y (FEET)

SUBREFLECTOR (8 = 5.5°% a = 20°, f, = 7.25')
—— —— SUBREFLECTOR (B8 = 0°,a = 17°, f. = 7.25')
— — — —FOCUS FEED (a = 39°, f. = 12)

Figure 124: Normalized copolarized reflected fields in the target zone associated with
various compact range configurations.

208



6.0

-20.0
1 1
1
I
1
’
v
\

(0B)
/
\

FIELD
-40.0
/
A T
N
\

-60.0

e e a0 1 a0 &l
CROSS RANGE (FEET)

-§0.0

COPOLARIZED
—— —— CROSS-POL: SUBREFLECTOR (8 = 0°,a = 17°, f. = 7.25')
— = — = (CROSS-POL: FOCUS FEED (« = 39°, f. = 12)

Figure 125: Cross-polarized fields in the target zone associated with various
compact range configurations. Note that the cross-polarized fields are zero in the
case where both subreflector and feed axes are tilted.

209



and that the cross-polarization has been eliminated for the case where both the
subreflector and feed axes are tilted (case 1). The total field along a vertical
cut through the center of the target zone for case 1 is shown in Figure 113, and
includes the reflected field and the fields diffracted from the edges of the main
reflector. Note that this result is uniform to within a few tenths of a decibel which
makes for a very good approximation to a plane wave.

The advantages of using a Gregorian subreflector has been élearly demon-
strated in this section.‘ In the next section it will be shown how an extension
of the subreflector surface reduces the edge diffracted fields from the subreflector
that illuminate the main reflector . The rest of the chapter will be devoted to
showing how the dual chamber configuration can significantly reduce the effects of
the diffracted fields from the subreflector and spillover from the feed in the target

zone. Particular attention is paid to the absorber fence which is used to separate

the two chambers.

5.3 Geometry of a Gregorian subreflector

The Gregorian subreflector is a prolate spheroid defined in terms of its own
TsYszs-coordinate system with the origin located at the center of the spheroid, as
shown in Figure 104. It has a semi-major axis of length (a,y) in the direction of the
axis of symmetry (z5-axis) and semi-minor axes of length (Bsr) in the directions of
the z4,— and y,-axes, such that as, > bs,. The subreflector can thus be described

by the following parametric equation:
r(u,v) = bgyp cosv sinu X4 + bgy sinv sinu ¥s + aspcosu zg (5.6)

for vy < v < vy and u; < u < uy. The focal points of the subreflector are located

at a distance (fyr) from the origin along the positive z,-axis (f;}) and negative z,-
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axis (f;;), respectively. The eccentricity and focal length are given, respectively,

by

e = \/1—(bsr/asr)?, and (5.7)

Jor = agr - bazr . (5'8)

The subreflector is placed such that f;} coincides with the focal point of the main
reflector (f:). The primary feed antenna is placed at the other focal point (f;).
All rays originating from the point source at f;, pass through f}}. after reflection
from the surface of the subreflector, so that f;!. is a caustic point for all rays
reflected from the subreflector. The fact that f;} is a caustic implies that the
subreflector reflected field has a virtual point caustic at the focal point of the main
reflector. Recall that the main reflector converts the spherical field radiated by a
point source at its focus to a plane wave propagating in the direction of its axis
of symmetry; ie., into the target zone. The ray reflected from the bottom edge of
the subreflector will propagate along a reflection shadow boundary (RSB) at 6,
as shown in Figure 126. The ray illuminating the top edge will create a RSB in a
similar way, so that the reflected field will exist only in the region, 6, < 8 < 180°,
and will be zero elsewhere.

Consider now the bottomn edge of the subreflector. A diffracted field will
emanate from this edge in order to make the total field (reflected plus diffracted
fields) continuous. A Uniform Theory of Diffraction (UTD)[17] analysis shows
that the diffracted field has a maximum amplitude along the shadow boundary.
In order to minimize the effect of these diffracted rays on the illumination of the
main reflector, the subreflector surface should be extended so that the RSB at 6,
is directed away from the main reflector. This can be done by increasing ug (see

Equation (5.6)) which will result in a smaller value of 8,. Note that 8, should not
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be too small, since the RSB will then point to the target zone, which is an equally
undesirable situation. For the sake of future discussion, the fields diffracted from

the subreflector edges will be referred to as “primary diffracted fields”.

5.4 Analysis of the absorber fence

The purpose of the absorber fence is to isolate the two chambers and thus
prevent diffraction from the subreflector from illuminating the main reflector as
well as eliminating scattering from the subreflector and spillover from the feed from
reaching the target zone. The absorber fence consists of a slab of electromagnetic
absorbing material with a coupling aperture of width (w) around the focal point
of the main reflector as shown in Figure 127. Since all GO rays reflected from
the subreflector (ie., desired main reflector illumination) pass through the focal
point and hence through the aperture, they will not be perturbed by the absorber
fence. Note however that the concept of a ray implies a high frequency limit. In
practice, the frequency is not infinitely high, so that the reflected field forms a
caustic region which is confined to about a wavelength in diameter. The aperture
width should therefore be large enough to accomodate the reflected beam at the
lowest frequency of operation. Furthermore, the edges of the coupling aperture
create incident shadow boundaries (ISB) for the primary diffracted rays, so that
diffracted rays will emanate from these edges as shown in Figure 127. For the
sake of future discussion, the fields diffracted from the periphery of the coupling
aperture will be referred to as “secondary diffracted fields”.

In order to develop an idea of the magnitude of this problem, the UTD is used
to calculate a two-dimensional far field pattern at 10 GHz for the field scattered by
the subreflector shown in Figure 123, in the direction of the main reflector. Two

cases are considered; viz.,
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1. No absorber fence present.

2. Absorber fence with a coupling aperture of width (w) present. For the pur-
pose of this analysis it is assumed that the absorber material is infinitesimally
thin and that there is no reflection from the material nor any transmission

through it.

An electric line source with a uniform pattern is located at f;,. The subreflector
surface characteristics are given in Table 16.

Consider first the case where no absorber fence is present. The yz-coordinates
of the top and bottom edges of the subreflector are given by (ytop, 2t0p) = (0',2.253)
and (Ypot, 2bot) = (—4.576', —2.574"), respectively, where the origin of the coordi-
nate system has now been shifted to the focal point (f}}). Using the UTD solution,
the scattered far field pattern from the subreflector in the direction of the main
reflector is given by

EL(0) = E" + E{, + EZ, (5.9)

where E" is the reflected field, and Eg,p and Egot are the diffracted fields from
the top and bottom edges of the subreflector, respectively, as shown in Figure 128.

Using Equation (2.3) one finds that the far field pattern of the reflected field is

given by
e—J(2kasr—37/4)
E"(6) = . (5.10)
V(2a0r)/1(6) — 1
In this case the reflection caustic (p") is given by
p'(8) = ~'(8) (5.11)

where [ is the distance from the point of reflection on the subreflector to the

focus (f;}.). In the case of a half plane (n = 2), the diffraction coefficients in
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Equation (2.11) can be expressed as

D, =D'¢~¢ L)+ R,,D"($+¢',L") (5.12)
where
) . e—iT/4 i 4
Dip—¢,1f) = —_ |Flklla(¢— 4] (5.13)
2V2mk cos (Q—Q )
!
i _ 8 8
L= (5.14)
_o—jm/4 r !
D'(¢+¢,L") = 2‘5 = FlkL a(si + &)  (5.15)
i cos (%—Q-)
r _ 8 P’
L™ = pprapy , and (5.16)
R, = acoustic soft/hard reflection coefficients of the

surface at the point of diffraction .

The far field pattern of the diffracted field from the top edge is thus given by

oIkl . .
Ef(8) = Ji [D¥(¢e — ¢4, 1i) — D" (¢ + B, p} )] e 7top cos8 (5.17)
t

where

Pt = —Ziop,and - (5.18)
= 2a4 — |p}]. (5.19)
Similarly the far field pattern of the diffracted field from the bottom edge is given
by
— gkl

a

€

Ef4(0) = [D* (¢ — B4, 1§) — D™ ($y + B}, o} )]ei*(2bot 05 6+tr sinb) (5 90
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where

Py = —\/yl%ot + zgot , and (5.21)

b = 2a5 — |}l . (5.22)

This is obviously not the complete solution for the total scattered field, but serves
to show the first order effects of the indicated field components on the pattern in
the area of interest.

Consider now the case where an absorber fence is present. The coupling
aperture in the fence is symmetrical around the focal point and is 2' wide as
shown in Figure 129, With the rest of the configuration remaining the same. The

scattered far field pattern in the direction of the main reflector is then given by
Bo(9) = E" + By + Efigns + Eft (5.23)

where E7 is the reflected field, Egbt is the diffracted field from the bottom edge
of the subreflector, and E;-light and El‘i, fi are diffracted fields from the right and
left edges of the coupling aperture, respectively. The far field pattern of the field
diffracted from the right edge of the aperture of the absorber fence due to illumi-

nation from the bottom edge of the subreflector is given by

; : - ckw ‘
B h4(8) = Eiipy D(¢r — 8, 11)ed 1 cos (5.24)
where
' e M ir g r ' eIkl
3 r r
right = \/l_‘ [D*(¢5 — 85, 15) — D" (85 + ¢b,Pb)]7 yand  (5.25)
b i
. T
L = \/yfot +(§ — zpot)? . (5.26)

Similarly the far field pattern of the field diffracted from the left edge of the

aperture of the absorber fence due to illumination from the bottom edge of the
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subreflector is given by

. . . ckw
Eft14(0) = Efopy D'(d1 — ¢, 1)e ™ 2 (5.27)
where
, L l ' z L
Efpy = —[D"(¢4 ~ 85> 1) — D"(8} + b4, p5)] —7= , and  (5.28)
Vi Vi
. T :
= \/yfot + (5 + 2bat)? - : (5.29)

The diffraction coefficient (D7) is not included in the expressions for the diffracted
fields from the edges of the aperture, since it has been aésumed that there will be
no reflections from the absorber and consequently no discontinuity in the reflected
field. Note that the diffracted field from the top edge of the subreflector is shadowed
by the absorber wall so that it does not contribute in the main chamber. It will
be shown in Section 5.6 that shaping the aperture will cause the diffraction from
the aperture due to direct illumination from the feed to have a minimal effect on
the system performance.

Figure 130 shows the normalized total fields given by Equations (5.9) and (5.23);
whereas, the normalized reflected and total diffracted fields are shown in Fig-
ure 131. The normalized component fields are shown in Figure 132, with the phases
of the total and reflected fields shown in Figure 133. It is clear from Figure 130
that the addition of ‘the absorber fence has reduced the ripple in the reflected field
substantiably. Examination of Figure 131 shows that in the case where no ab-
sorber fence is present, the diffracted fields are about 31 dB below the level of the
reflected fields in the angular region where the main reflector is illuminated. In
the case where the absorber fence is present, the diffracted fields are about 40 dB
below the the level of the reflected field in the same angular region. Examination

of Figure 132 clearly shows the primary reflection shadow boundaries at § = 60.6°
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and 6 = 1807, as well as thé fact that the maxima of the diffracted fields occur
at the shadow boundary and then decay for directions away from the RSB. The
incident shadow boundaries of the primary diffracted field from the bottom edge
of the subreflector at # = 54° and 6 = 74° are also visible in Figure 132. These
results thus show that the use of an absorber fence as described would, in principle,

improve the quality of the field illuminating the main reflector.

5.5 Shaping of the coupling aperture in the absorber fence to minimize
diffraction’

Commercially available absorbing material is far from perfect[65], and rays
incident upon an absorber slab will be able to penetrate through it. The trans-
mitted rays will, however, be strongly attenuated. The amount of attenuation will
depend on the material characteristics (which are frequency dependent), but can
be controlled by the thickness of the slab. Practical considerations dictated by the
physical space available in the feed chamber will put a constraint on the maximum
slab thickness that can be used. In addition to the attenuation by the absorber,
the primary diffracted rays incident upon the absorber slab will also experience
a decay due to the nature of the diffraction process as they move away from the
shadow boundary as shown in the previous section.

In order to reduce the secondary diffraction, it is necessary to shape fhe ab-
sorber forming the periphery of the aperture. Keeping in mind that the amplitude
of the secondary diffracted fields are proportional to the difference between the
fields on either side of the ISB[66], a wedge-like shaping with wedge angle (¥)
is most appropriate. Let ¢ be a pattern angle measured from the subleﬂectol
as shown in Figure 134, with the ISB at #S,. The wedge ensures that the fields

just outside the absorber (Eq at 8¢ = 6, — ¢) and those just inside the absorber
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(E2 at ° = 65, +¢) are the sé.me as € goes to zero, and that the primary diffracted
rays are attenuated gradually as they move away from the shadow boundary into
the absorber; ie., as §¢ increases beyond 63, Since there is then no difference
between the fields on either side of the shadow boundary, the secondary diffracted
rays are not first order diffracted fields, but rather slope diffracted fields. Slope
diffracted fields correct discontinuities in the slope of a field on either side of a
shadow boundary. If the difference in the slope is small, the siope diffracted fields
can be much weaker than first order diffracted fields. Although the UTD slope
diffraction coefficients for a lossy dielectric wedge do not exist at present, the
principle still applies, as will be shown below.

In order for the slope diffracted secondary fields to be as small as possible,
the difference in slope of the field on either side of the shadow boundary should
also be as small as possible. Let p,;, be the distance that a ray travels through
the absorber, as shown in Figure 134. To keep the slope diffracted fields small it
is thus necessary to keep dpgp,/d#¢ small, since the attenuation is exponentially
dependent on pgy,, and the phase shift is linearly related to p,p,. This concept can
be translated into the geometrical consideration that the wedge angle (¥) should

be small, and that the angle with which the diffracted ray intercepts the face of the
wedge at the ISB (¥; as shown in Figure 134) be close to 90°. On the other hand, ¥

has to be large .enough so that the slab reaches a sufficient thickness to attenuate
the primary diffracted rays propagating in the direction of the main reflector.
Desirable and undesirable geometries illustrating these concepts are illustrated in
Figure 134.

A two-dimensional slab of absorbing material was analyzed using the method
of moments[67] to investigate the effect of the size of the wedge angle on the mag-

nitude of the fields diffracted from the apex of the wedge. (Note that the TE/TM
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convention used in [67] is different from the convention used in this study). The
method of moments is considered to be an exact solution within the constraints of
numerical accuracy and in so far as the scattering body can be accurately mod-
elled. However, because of the large number of variables involved its practical use
is limited to bodies whose physical dimensions are small in terms of a wavelength.
In the interest of computational efficiency, finite symmetrical slabs are considered
as shown in Figure 135. In order to perform the moment method éalcula.tion the
finite slab is divided info ng divisions in the z-direction and ny divisions in the
y-direction, resulting in nzny cells. The incident field is a TE-polarized plane
wave propagating in the z-direction. The patterns are calculated at a relatively
low frequency in terms of normal compact range use (3 GHz) because of the lim-
its imposed by the large number of variables that have to used with the moment
method solution. In an attempt to isolate the diffraction effects from the apexes
of the wedge, they are spaced a reasonable distance apart. It is assumed that the

lossy dielectric material can be characterized by a complex permittivity; ie.,
€ = eo(ep — jell (5.30)

where ¢ is the permittivity of free space. The permeability is assumed to be that
of free space (p9). As an example, the results for slabs with wedge angles of 906,
14° and 26.6° are shéwn in Figures 136-139. The emphasis of these results is on
comparing the levels of the diffracted fields. The three slabs are designated as Qy,
Q1 and Q respectively, with the geometrical and material parameters given in
Table 18. Figure 136 shows the normalized magnitudes of the total fields along a
pattern cut parallel to the y-axis at a distance (2pq¢) away from the main origin.
For the cases considered, the scattered fields can be obtained by subtracting the

incident fields from the total fields. The scattered fields relative to the incident
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the wedge angle ().

Table 18: Parameters of the finite absorber slabs for comparison of the effect of

Qo Q1 Q2
" 90° 14° | 26.6°
z1,y1 | 0,05 | 0,-0.1 | 0,-0.3
22,y || 0.1,-0.5 | 0.1,-0.5 | 0.1,-0.5
z3,93 || 0.1,0.5 | 0.1,0.5 | 0.1,0.5
ze,y4 | 0,05 | 0.1 0,0.3
¢ 1.5 1.5 1.5
! 1 1 1
Ng 6 8 8
ny 51 60 60
Tpat 1 1 1

Dimensions in meters
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fields are shown in Figure 137. Note that the scattered fields are equal to the
diffracted fields for y > 0.5m in these examples. Figure 138 shows the scattered
fields in detail in the region 0 < y < 1m. Note that the peaks of the scattered
fields do not occur at the geometrical ISB (y; 4 = 0.5m), but are shifted towards
the interior of the slabs. Figure 139 shows the phases of the total fields. Although
these results are certainly not conclusive proof, they do indicate that, for the
cases considered, a smaller wedge angle results in smaller diffracted fields. This
is consistent with the previous contention that a smaller wedge angle results in

smaller slope diffracted fields.

5.6 Design of an absorber fence

The analysis of a subreflector system with a realistic primary feed antenna
and complex absorber fence is a very complicated problem, primarily due to the
complexities involved in determining the scattering from a lossy dielectric wedge.
However, building on the concepts developed above, one can discuss the general
considerations that should be taken into account when designing an absorber fence,
and in particular the coupling aperture.

The first step is to identify critical ray paths; ie., rays on the boundaries of

desired and undesired illumination regions. The absorber fence should then be
designed so as to leave the desired rays undisturbed and attenuate the undesired
rays as much as possible and in such a way that the secondary diffracted rays
created by the absorber fence have a minimal detrimental effect on the desired
pattern. The coupling aperture of the absorber fence in Figure 123 is shown in
detail in Figure 140. The critical ray paths in Figure 140 are indicated by the

numbers 1-11; viz.,
(1),(2): Reflected from the subreflector to the bottom/top of the parabolic
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section of the main reﬂectdr. These rays should be well clear of any
part of the absorber fence, since they constitute the desired main re-
flector illumination.

(3),(4): Diffracted from the bottom edge of the subreflector to the
bottom/top of the parabolic section of the main reflector. These rays
should be strongly attenuated and therefore pass through a thick piece
of absorber.

(5),(6‘): Diffracted from the top edge of the subreflector to the bot-
tom/top of the parabolic section of the main reflector. These rays
should be strongly attenuated and therefore pass through a thick piecé
of absorber.

(7): Reflected from the subreflector and passes through the top apex of
the left side of the absorber fence aperture. As this ray moves deeper
into the absorber, it approaches the primary RSB from the top edge of
the subreflector. The ISB created by this ray should be directed away
from the bottom edge junction.

(8),(9): Diftracted from the bottom edge of the subreflector and passes
through the left /right side of the absorber fence aperture. Since it is
assumed that the subreflector has an extended surface, these rays will
propagate in a direction away from the main reﬂeétor.

(10): Reflected from the bottom edge of the subreflector along the
RSB. This ray should not be directed towards either the main reflector
or target zone.
(11): Direct from the primary feed antenna into the target zone; ie.,
spillover from the subreflector. This ray should be strongly attenuated

and pass through a thick piece of absorber.
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In order to satisfy the requirelhents of the critical rays, certain geometrical features
can be incorporated ato the design of the absorber fence. The fence is terminated
in wedges in the region of the aperture to facilitate a gradual attenuation of rays as
they pass into the absorber and to ensure that the secondary diffractions from the
fence are only small slope diffractions, as discussed in the previous section. The
proposed absorber geometry is not intended to be an optimum design, but serves to
illustrate the design approach. Figure 140 shows the yz-cut of a three-dimensional
antenna conﬁgura.tion. The complete design would of course be three-dimensional,
so that the left and right sides of the fence as shown in Figure 140 are representative

of any cut through the coupling aperture. Consider now features (A)~(D):

(A): This wedge is needed to gradually attenuate rays (3), (4) and (11).
Ray (8) propagates along the ISB created by the apex of the corre-
sponding wedge, so that the resulting field diffracted from A will have
a maximum amplitude in the direction of ray (8). Point A should thus
be chosen such that ray (8) propagates in a direction away from the
main reflector and target zone. Note that the ISB at A due to direct
illumination from the feed, and hence direction of maximum diffrac-
tion amplitude, is not pointed at the main reflector. The thickness of
the absorber should be sufficient to eliminate any effects due to thesé
diffractions.

(B): This wedge is needed to gradually attenuate ray (7), which prop-
agates along the ISB created by the apex of the corresponding wedge,
so that the resulting ﬁeid diffracted from B will have a maximum a,m-‘
plitude in the direction of ray (7). Point B should thus be chosen such

that ray (7) does not point in the direction of the parabolic section of
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the main reflector or the junction. Note that A and B together with
the slopes of the corresponding wedges should also be chosen such that
the path length of ray (4) through the absorber is long enough so that
it is sufficiently attenuated by the time it reaches the parabolic section
of the main reflector.

(C): This wedge is needed to start the gradual attenuation of ray (9).
This wedge should also be thick enough to attenuate ray (11).

(D): The length of absorber from D to the top edge of the subreflector
is needed to attenuate the primary diffracted rays from the top edge of

the subreflector.
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CHAPTER VI

FORWARD SCATTERING FROM A HOMOGENEOUS LOSSY
DIELECTRIC SLAB WITH WEDGE TERMINATIONS

6.1 Introduction

In this chapter the forward scattered field from a two-dimensional homoge-
neous slab of electromagnetic absorber with a wedge termination is analyzed. This
structure is related to the absorber fence described in Chapter V. In order to an-
alyze the absorber fence a technique is required whereby the forward scattering
from electrically large structures can be obtained, since the moment method tech-
nique used in Section 5.5 is only practical for structures that are small in terms of
a wavelength, and the UTD cannot be used since the diffraction coefficient for a
lossy wedge is not known.

The problem of scattering from a dielectric wedge, and particularly a lossy
dielectric wedge, is a complicated one to solve due in part to the difficult nature
of the boundary conditions. DeWitt[65] has investigated pyramidal and wedge
absorber structures that are used mainly to cover the walls, floor, ceiling and
other static structures in an anechoic chamber. He concentrated on the backscatter
characteristics of the absorber, but reported that many of the published solutions
for scattering from dielectric wedges are either too limited or too complicated for
practical use. In this chapter, a technique combining ray tracing and aperture

integration is proposed; whereby, the forward scattering from a homogeneous lossy

240



x>

FORWARD SCATTERED FIELD

LOSSY DIELECTRIC
SLAB WITH WEDGE
TERMINATION

<>
[}
\'€-<

INCIDENT FIELD

SOURCE

Figure 141: Forward scattering from a semi-infinite homogeneous lossy dielectric
slab with a wedge termination.

dielectric slab with a wedge termination is determined. Consider the slab with a
wedge termination and wedge angle (%) as shown in Figure 141. It is required to
find the field in the region = > 0, with a source located in the region (z <21,y <
y1). Let a planar aperture be defined along the entire y-axis. The fields in the
aperture are calculated through ray tracing, from which the equivalent currents
in the aperture are found. An aperture integration is then performed over the
aperture (—oo < y < 00) to find the total field at the field point.

Consider now that part of the aperture where the slab is present (0 < y <
0o). The aperture field in this region is found by tracing rays through the slab.
The equivalent current in the aperture is then expressed in terms of the fields
transmitted through the slab. Once the aperture current has been determined, the
contribution to the total field at the field point from this part of the aperture is
found by numerical integration. Since the integration would have to be performed

numerically from y = 0 to y = oo, this is not very feasible from a numerical
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viewpoint. However, since the slab is assumed to be very lossy (it is after all an
electromagnetic absorber), it is reasonable to assume that the field transmitted
through it will only be significant in that area of the aperture where the wedge
termination is present; ie., in the area around (0 < y < y;). The aperture field
in that part of the aperture where the parallel section of the slab is present (y; <
y < oo) will reduce as y increases, since rays propagating through the entire
width of the slab will be strongly attenuated. As an approximatioﬁ, the numerical
integration need thus only be performed from y = 0 up to some point (y = Ysmair)
where the transmitted field has been attenuated sufficiently to have an insignificant
contribution. This point (ygqy1) corresponds the aperture location where the field
becomes smaller than a predetermined level (EM™") and depends on the accuracy
of the solution required, the geometry and material characteristics of the slab and
the cost of running the integration on a computer. Note that the aperture field
will be smaller than or equal to ET™ for all y > y,mqu. In the case of a finite slab
with wedge terminations on both ends, the integration can be performed over the
entire length of the slab if the length of the slab is reasonable, as will be shown in
Section 6.2.

Consider now that part of the aperture where the slab is not present (—oco <
y < 0). It is shown in Appendix B that the integral in this region can be evai-
uated by the method of stationary phase. This leads to closed form expressions
corresponding to a direct ray (stationary term) and a diffracted ray (end point
term).

It is assumed that the homogeneous lossy dielectric material can be charac-

terized by a complex permittivity; ie.,

€= e(e — j€) (6.1)
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Table 19: Relative permittivities of typical absorber material.

Frequency (GHz) | . €
1 3.00 | 0.59
3 1.50 | 0.69
10 1.45 | 0.58
100 1.30 | 0.03

where €g is the permittivity of free space. The permittivity of absorber material
is highly frequency dependent as shown in Table 19, where €, and ¢! values for
a typical absorber material[65] are listed for various frequencies. The permeabil-
ity is assumed to be that of free space (ug). The two-dimensional TE case is
considered throughout, but the technique can also be applied to the TM and/or

three-dimensional cases.

6.2 Finite homogeneous lossy dielectric slab with wedge terminations
and plane wave illumination

Consider now a finite homogeneous slab of lossy dielectric material with wedge
terminations and plane wave illumination as shown in Figure 142. The plane wave
is assumed to propagate in the z-direction. In order to obtain the transmitted field
in the aperture, incident rays must be traced as they propagate through the slab.
Consider first a wedge termination. The wedge is defined in a zy-coordinate system
as shown in Figure 143, with the wedge corners designated as (z1,y1) and (3, y2).
For the purpose of this discuésion (z2,y2) is located at the origin. The apérture
is considered to be along the entire y-axis. Analysis of the ray path indicates

that there is a transmission coefficient (T}) at the free space/dielectric interface
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as well as a propagation constant (3;) and attenuation constant (a1) as the ray
propagates through the wedge. These parameters are determined in a z'y'-system
that is compatible with the side of the wedge. Once the ray has passed through
the first interface, it must be transformed into a coordinate system (zy-system)
that is compatible with the aperture plane, since the two sides of the wedge are
not parallel. A transmission coefficient (T3) at the dielectric/free space interface is
then found, after which the equivalent current in the aperture is determined, and
the aperture integratioﬁ performed. The GO spread factor (see Equation (2.2)) is

equal to one in the case of a plane wave incident upon a planar interface.

6.2.1 Free space/dielectric interface

Consider now a ray propagating in free space that is obliquely incident at an
angle (6%) on a lossy dielectric slab as shown in Figure 144. Let the incident field

be a homogeneous plane wave which is given by

Ei = Ce—ik(@ sindi+y cosb?) (6.2)
P = .

where k is the free space propagation constant and C is an arbitrary complex

constant. The incident magnetic field is given by Maxwell’s equations[22] as

H = 1V xE (6.3)
Wit -
or
: ' OE} OE!
H = J N z ol z 4
who (x oy 7 3w’) (64)

so that the tangential magnetic field at the interface (y' = 0) is given by

H;;: cos Ce—]k(m sin 8*+y cos 6*) (6.5)

who
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where w is the angular frequency of the field. Since the reflection angle is known

to be equal to the incident angle[22], the reflected fields are given by

El = Plce—jk(z'sinai—y' cosai) , and (6.6)
H;, _ —k cos ozrlce—jk(z' sin 6'—y cos 6') (6.7)
wo

where I'; is a complex reflection constant. Stratton[68] has shown that the field

transmitted into the dielectric can be expressed as -

E! = TyCem301(a'sinb' 4y cos') —ary' (6.8)

Applying Equation (6.4) to Equation (6.8), it follows that

t_ . ,
H;, _ Bycos” — jay Tlcye—]ﬁl(m' sin@' 4y cosot)e—aly’ (6.9)
Wit
where
T; = complex transmission coeflicient
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$1 = propagation constant in the dielectric

a1 = attenuation constant in the dielectric , and
¢° = real transmission angle .

Examination of Equation (6.8) shows that the transmitted field in the lossy dielec-

tric is an inhomogeneous plane wave. The phase planes propagate in the direction
By = %' sin6' + §' cos 6 | (6.10)
while the amplitude attenuates in the y'-direction. The transmitted field has to
satisfy the wave equation[22]; ie.,

V2EL + K3EL =0 (6.11)
where k; is the complex propagation constant in the dielectric, which is given by
ky = wy/fige = ky/el — jell . (6.12)

Applying Equation (6.11) to Equation (6.8), one finds that
af — g% = —k% , and (6.13)
2018 cosb = k2. (6.14)

The variables 'y, Ty, 6%, 81 and a; can be determined by using Equations (6.13)
and (6.14) and the boundary conditions that the tangential electric and magnetic

fields should be continuous across the interface at y' = 0; ie.,

Ei+E' = E!, and (6.15)
HY+H, = HY. (6.16)

Enforcement of the boundary conditions yield the relations
14 Fl = Tl (617)
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k cos 8*(1 — T'y)

k sin 6°

= (B cos @ —Jjay)Ty , and

= ppsinét .

Solving for Equations (6.13), (6.14) and (6.17)—(6.19), one finds that

8 k\[e{. + sin? ¢¢ + \/(eﬁ. — sin? 6%)2 4 ()2
1 =

a; = \/ﬂf—kze;.

2

; k sin
¢ = arcsin ( )
: B
:
T, = 2k cos @ and

'y = Ty —-1.

kcos; + 31 cos @ — ja,

6.2.2 Transformation of coordinates

(6.18)

(6.19)

(6.20)
(6.21)

(6.22)

(6.23)

(6.24)

In order to transform the ray parameters to a coordinate system compatible

with the aperture (zy-system), consider the transformation shown in Figure 145

which is given by

X =

Xcosd —ysind , and

Xsiné + ycosé

(6.25)

(6.26)

where § is the angle with which the z'y'-system is rotated with respect to the zy-

system. Note that § is related to the wedge angle (1) by the following equation:

8§+ =090°.

(6.27)

Let the electric field that is transmitted into the dielectric (as given in Equa-

tion (6.8)) be expressed as

It ~f 1 1ot !t
Bt = Ty CeF i +/§)
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Figure 145: Wedge coordinate transformation.

where

—jB1siné | and (6.29)

&
I

—(aq + jBy cosb?) . (6.30)

2
<
i

The transmitted electric field can, however, also be written as
sl bt t s s
E! = TyCe®12t¥ nyh(eityd) (6.31)

Equation (6.31) represents the field that is transmitted into the dielectric in the

zy-system. Substituting Equations (6.25) and (6.26) into Equation (6.31), one

finds that
E! = T Ce *(az+iBz) o~y(ay+iBy) (6.32)
where
ay = apsiné (6.33)
ay = ajpcosé (6.34)
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Bz = P sin(Ot + 6) , and (6.35)

By = Picos(8" +§). (6.36)
6.2.3 Dielectric/free space interface

Consider now a ray propagating through a lossy dielectric such that it is
obliquely incident on a dielectric/free space interface as shown in Figure 146. Let

the incident field have the following form:

Ei = Ce~*(aatiPz) g=ylay+iBy) (6.37)

where C is an arbitrary complex constant, and az, 3, ay and By are given in
Equations (6.33)~(6.36). Applying Equation (6.4) to Equation (6.37), one finds

that the incident magnetic field is given by

Hy = 576 (az + jBe)e 2 @atiBa)g—ylay+ify) (6.38)

The reflected fields are then given by:
ET = TyCe™aztiBe)e—ylay+ify)  an4 (6.39)
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H; = —rzcﬁ%(az +3Bz)e (et iPe)evloytity) (6.40)

where I'y is a complex reflection coefficient. The field transmitted from the dielec-

tric into free space is given by

Ei = TzCe'fﬁo(z cos 8% +ysin 6) ,—ag(— sin 6% +y cos 6%) , and (6.41)
~TC
" = Bp cos 8% + jogsin §°
t ™ ( ) .
¢~ 3P0 (x cos 8 +ysin 6%) —ag(—zsin 6% +y cos ) (6.42)

where T} is a complex transmission coefficient and 6® is a real angle. Note that
the field in free space is attenuated in a direction perpendicular to the direction of
propagation. This is allowed by Maxwell’s equations, as shown below. It is neces-
sary to introduce a complex propagation constant of the form o + j8 for the field
transmitted into free space in order to match the complex propagation constant
of the tangential field in the dielectric slab at the interface. The transmitted field

has to satisfy the wave equation; ie.,

+

V2E! + K*EL =0 . (6.43)
Applying Equation (6.43) to Equation (6.41) one finds that
of — B8 = —k?. (6.44)

The variables I'y, Ta, 8%, 8o and ag can be determined by using Equation (6.44)
and the boundary condition that the tangential fields should be continuous across
the interface at ¢ = 0. Enforcement of the boundary condition yield the following

relations:

1+ = Ty (6.45)
ay = agcosf® (6.46)
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By = Posiné? , and (6.47)
(az +jBe)(1 —T3) = To(—aygsind® + jBycosb®) . (6.48)
Solving for Equations (6.44)-(6.48) one finds that

\} Bos + K2 + /BZ, + 2K%_ + K2

Fo 2 (6.49)
@ = VA-k (6.50)
0“. = arcsin (%}Z-) ' (6.51)
- 2(az + jBz)
B = (ag — agsin6%) + j(Bz + B cos §2) ’ and (6.52)
2= n-l (6.53)
where
Boy = of+ B2, and (6.54)
Bo- = ay—By. (6.55)

6.2.4 Total aperture fleld in the region y; <y < y3

Let the incident ray intercept the wedge at (zp,yp) as shown in Figure 143,

The refracted ray will be transmitted to a point (z2,yq) in the aperture, where

Yg(zp) = (z2 — zp) tan(yp — 6%) + yp . (6.56)
The transmitted magnetic field in that part of the aperture which is illuminated

by rays propagating through the wedge is given by

—-T1T5 [ Bg cos 8% + jag sin %
Zy k

for y; < Yq < Ywe, where

H;;p(yq) = ) e—jﬂlpabse—aly:xba (6.57)

Ywe = yq(z1) (6.58)

Pabs = /(z2 —2p)2 + (yq — yp)? , and (6.59)

Ynbs = Pabscos 6’ (6.60)
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if the plane y' = 0 is chosen as the phase reference. Note that H;p as given in
Equation (6.57) is applicable to rays entering the wedge part of the slab between
y1 and yz as shown by Figure 142. A similar analysis yields the aperture field
due to rays entering the wedge part of the slab between y3 and y4. The aperture
field due to rays entering the middle part of the slab (y; < y < y4) is obtained by
setting 8* = 0 when evaluating Equation (6.57). This is thus a special case where
the plane wave is perpendicularly incident on the slab. One finds that the aperture
field in the middle of the slab due to rays entering the slab between y; and yq is
given by

HOP = __Tgie—jkl(wz—wl) for y; < yq < s ‘(6.61)

2
where k; is given in Equation (6.12),

2k
T3 = ic+—kl y and (6.62)
2%,
Ty = . .
Ly (6.63)

6.2.5 Total forward scattered field

Consider now a homogeneous finite symmetric dielectric slab with wedge ter-
minations as shown in Figure 142. Since a moment method solution will be used
to compare the results obtained from the aperture integration technique, the sym-
nietry is utilized in the interest of computational efficiency. Symmetry is not,
however, required for the technique to be applicable. A pattern cut is taken at a
distance (zpat) from the origin along a line parallel to the y-axis. The aperture is
considered to be located along a line parallel to the y-axis, just outside the slab.
Note that z; = z4 = 0 in this case. The total field along the pattern cut is found

by integrating the surface current in the aperture and is given by[11]

—kZ oo 2
E;(y) = ) 0 /_oo J:(yq)Hé )(kp) dyq (6.64)
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Figure 147: Composition of the aperture fields for a finite dielectric slab.
where
J, = electric surface current in the aperture

H(gz) = Hankel function of the second kind and order zero

y = field point position along the pattern cut , and

p = ez —zpat)? + (yg - v)? - (6.65)

To perform the numerical integration from —oo to +0c0 would not be feasible.
This dilemma is solved, however, by subtracting and adding the incideﬁt field
from the transmitted field in that part of the aperture where the slab is present.
The total field in the aperture is then the superposition of the incident field, which
is present from —oo to +o0, and the scattered field (E? — E;), which is present
only in that part of the aperfure where the slab is present (y3 < y < y3). This
situation is graphically illustrated in Figure 147. The aperture integration need
thus only be performed over the length of the slab, since integration of E: (which

now extends over the entire aperture) will just give E; (with the phase adjusted
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accordingly) back at the field point. The total field at the field point will thus be
the superposition of the incident field and the integration of the equivalent current
produced by E% — E} over that part of the aperture where the slab is present.

Since the aperture is planar, the equivalent surface current is given by[22]

Jz(yq) = 2[H;p(yq) - H;("’Z)] for yo < Yq <uy3 (6.66)
where
; _e—jk:c
Hy(z) = Ze (6.67)

and HyP(yq) is given in Equations (6.57) and (6.61). Depending on the geometry
and material characteristics, areas in the middle part of the slab may exist where a
particular point in the aperture is illuminated by rays that are transmitted through
the middle of the slab as well as through one or both of the wedge sides. This
situation is shown in Figure 142.

The total field at a field point along the pattern cut is thus given by

: kZ :
Bi(y) = Bi(eput) ~ ~5° [V1HP(0) ~ Hyfe)l BG) (ko) dyg (669)
where
Ei(z) = eIk | (6.69)

Note that if kp is large, then the large argument form of the Hankel function can

be used; ie.,
AP (e) — \/%e—j(z—nm as = — oo (6.70)
so that
e—Jkp
/P

when kp is large. This equation is valid for all pattern points in this example.

; ; k ry : ,
E(y) = Ei(zpat) — ¢/ 420\/;; /y 2’ [HP(yq) — Hy(z2)] dy,  (6.71)
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Table 20: Parameters of finite absorber slabs.

@1 Q2 Q3 Q4
¥ 14° | 26.6° | 14° | 26.6°
21,91 || 0,-0.1 | 0,-0.3 | 0,-0.1 | 0,-0.3
9,93 || 0.1,-0.5 | 0.1,-0.5 | 0.1,-0.5 | 0.1,-0.5
3,93 || 0.1,0.5 | 0.1,0.5 | 0.1,0.5 | 0.1,0.5
z4,y4 | 0,01 | 0,03 | 001 | 0,0.3
¢, 1.5 1.5 3.0 3.0
e 1 1 0.59 0.59
Ny 8 8 6 6
ny 60 60 55 55
na 600 600 300 300
Zpat 1 1 1 1
Dimensions in meters

6.2.6 Results

In order to verify the validity of the aperture integration technique, the scat-
tered field obtained from Equation (6.71) is compared to that obtained bj a mo-
ment method solution as described in Section 5.5. Four cases are considered; viz.,
geometries Q1 and @, (as discussed in Section 5.5) as well as geometries Q3 and
Q4. The geometrical and material parameters are given in Table 20. Note that Q3
and @4 are the same size as Ql and @3, respectively, but their material character-
istics are different. Q3 and Q4 are not as lossy as @1 and Qq, but they are much

denser. Simpson’s method is used to implement the integration in Equation (6.71
p € q
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with ne sample points in the apertui‘e. Patterns are calculated at 3 GHz for Q@ and
Q3, and at 1 GHz for Q3 and Q4. Figures 148-152 compare the results obtained
by applying the moment method and aperture integration techniques to @1, Fig-
ures 153-157 for Q2, Figures 158-160 for Q3, and Figures 161-163 for Q4. Due to
the symmetry, the results are shown in the region y > 0 only. Figures 148, 153, 158
and 161 show the magnitude of the total field along the pattern cut as well as the
aperture field and incident field. Figures 149 and 154 show the detail amplitude of
the ripple in the total field for Q; and Q; at large distances. The scattered field
can be obtained by subtfacting the incident field from the total field in the case of
the moment method, and is given by the integration term in Equation (6.71) in the
case of the aperture technique. For the geometries, material characteristics and
pattern cut considered, the scattered field will be equal to the diffracted field in
the region y > y3. The scattered fields are shown in Figures 150, 155, 159 and 162.
Figures 151, 156, 160 and 163 show the phase of the total field along the pattern
cut as well as the phase of the incident field; whereas, Figures 152 and 157 show
the ripple in the phase of the total field in detail for @1 and Q3. The discrepancies
between the results obtained from the moment method and aperture integration
techniques indicate that the latter is indeed only an approximation. Neverthe-
less, it does predict the scattered field, and thus also the fields diffracted by the
wedges, to an acceptable accuracy. The main advantagé of this technique is that
electrically large structures can be analyzed in a computationally efficient manner.
The inaccuracies in the results obtained by the aperture integration technique are
probably due to the fact that not all mechanisms have been accounted for. The
most obvious is the effect of reflected rays in the interior of the slab. These rays
are multiply reflected in the interior of the wedge before being transmitted into

free space. This effect would be most noticeable near the apex of a wedge, since
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the path length of a ray in this region through the lossy absorber will be short.
Since the attenuation is exponentially dependent on this path length, the attenu-
ation will also be small. As the ray moves away from apex into the interior of the
slab, the path length in the absorber and hence also the attenuation will increase
so that multiply reflected rays will be too weak to have much effect. The effect
due to this mechanism will be smaller in the case of lossier material. Since the
refracted fields are discontinuous across the edges (z;,y;) anci (z2,y2), diffracted
fields will emanate from these points to make the total field continuous. These
diffracted fields will also contribute to the aperture field. Unfortunately, the form
of this field is not known which leads to the motivation for the use of the aper-
ture integration technique. The case of rays that are reflected from the side of
the wedge back into free space have not been taken into account as they will not

influence the pattern in the region of interest.

6.3 Semi-infinite homogeneous lossy dielectric slab with a wedge ter-
mination and line source illumination

6.3.1 Aperture regions

The results of the previous section indicate that the proposed aperture in-
tegration technique can be used to analyze the forward scattering from a‘ finite
homogeneous lossy dielectric slab with wedge terminations that is illuminated by
a plane wave. The technique will now be extended to the case of a semi-infinite
slab with a wedge termination that is illuminated by a line source. Since the
source is now assumed to be a line source, the incident fields on the slab ‘have
cylindrical wavefronts rather than the planar wavefronts as in Section 6.2. The
plane wave transmission coefficients can still be used, since the ray is assumed

to exhibit local plane wave characteristics. Other than in the plane wave case,
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however, the refracted rays in this .case need to be multiplied by a spread factor
(see Equation (2.2)) that will account for the conservation of energy in a ray tube
refracted through the free space/dielectric interface.

Let the wedge be defined in a zy-coordinate system as shown in Figure 164,
with the source located at (z,,ys), and let (z2,y2) be located at the origin for the
purpose of this discussion. For the purpose of this analysis it is further assumed
that the source is located such that y, < y; and 2, < z;. As in the previous
section, the aperture is taken to be along the entire y-axis. Note that in the case
of a semi-infinite slab, the aperture can be divided into two regions; viz., that part
in which the slab is present (y > y2), and that part where it is not (y < yz).b The

total forward scattered field in the region z > 0 can thus be expressed as

- k o0 e_jkp'
E(p,8) = e/ Z0\ | [~ HP(yy) dyq (6.72)

N

or
Ej(p,4) = E2* + Ef° (6.73)

where

p = radial pattern distance

¢ = pattern angle

HyP(yg) = tangential magnetic field in the aperture

sa
E;

contribution to E] from the aperture where
the slab is not present (y < y)
E:d = contribution to E? from the aperture where

the slab is present (y > y,)
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Figure 164: Refraction through a lossy dielectric wedge with line source
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and

p = \/(wz —z) + (yg —y)? . (6.74)

Note that (z2,yq) is the point in the aperture and (z,y) is the field point; ie.,

r = psing,and (6.75)

y = —pcosd. (6.76)

The fields can thus be expressed as

. k Y '_jkp,
Ef = -tz [ HIP(ye)S dyg , and (6.77)
21 J—oo Y \/;
. k fo's) —jkp’
Bt = e [ ) g (6.78)
27 Y2 \/;

In the high frequency case (where k is large), the integral in Equation (6.77) can
be evaluated by the method of stationary phase to yield

B* ~ E3* + B (6.79)

where E';“i is the direct incident ray resulting from the stationary point term,; ie.,

e_jkps
: E = 0<¢<¢
gri= | VP 0 (6.80)
0 otherwise

and Eg“d is the ray diffracted from (z3,y3) resulting from the end point contribu-

tion, such that

Ezd i DP(¢g, ¢ L)eﬁkp (6.81)
2 \/p—o 0, b \/— .
where
ps = Vl(z—2s)2+ (y— ys)? (6.82)
po = V(2 — )2+ (y2 — ys)? (6.83)
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p = V-2 +(y - ) (6.84)
¢9 = arccos (u) (6.85)
PO
—jn/4 _ 2
ep _ e I/ % sin ¢y .lg (cos ¢g — cos ¢>)
D°P(¢o, ¢, L) T p— ¢)F [ o\ ainde (6.86)
L = pp0+pp , and (6.87)
0

F = transition function (see Equation (2.21)) .

Equations (6.80)-(6.87) are derived in Appendix B. The closed form expressions
obtained from the stationary phase approximation method thus eliminates the
need to evaluate the integral in Equation (6.77) numerically from —oo to ys.

In order to evaluate E29, the integral in Equation (6.78) must, however, be
performed numerically. Note that the integration need not be performed from y,
to oo, but as an approximation it need only be performed from y = y3 to that
Point (Ysmqyr) in the aperture where the aperture field falls below a specified level
(ET™) as discussed in Section 6.1. The tangential magnetic field (Hy?) must be
found at every point in the aperture by tracing rays through the dielectric slab as
in the previous section. Let the point where a ray enters the slab be designated as
(zp,Yp), and the corresponding point where the same ray intercepts the aperture
be designated as (z3,y,). Two cases need to be considered; ie., rays entering the

wedge (y2 < yp < y1) and rays entering the parallel section (n1 < yp).

6.3.2 Oblique incidence on a flat slab illuminated by a line source

Consider now the case where the rays enter the parallel section of the slab at
an oblique angle (0}) as shown in Figure 165. The subscript (f) refers the ﬂai part
of the slab. In contrast to the case of plane wave incidence where 0} is the same for
all rays, the case of line source illumination discussed here results in a different 0}

for each ray. These rays will illuminate the aperture in the region (yf < yq < 00),
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Figure 165: Refraction through a lossy dielectric slab with plane wave
illumination.

where the ray intercepting the aperture at (z2,yy) enters the parallel section at

(x1,y1) as shown in Figure 164, such that

yp = (z2 — ¢1) tan 0% + 1 (6.88)

where Gtﬂ is the transmitted angle relative to the normal (%) at (z1,y;) (see Equa-
tion (6.22)). The equations governing the free space/dielectric interface where the
ray enters the slab have been derived in the previous section, and are given in
Equations (6.20)—(6.24). Since the two faces of the slab are parallel, the coordi-
nate transformation of Equations (6.25) and (6.26) does not apply here, and the
transmitted field in the lossy dielectric slab thus attenuates in the z-direction only.
In order to derive the parameters applicable at the dielectric/free space interface
where the ray intercepts the aperture, consider a field incident on the dielectric/free‘

space interface from the dielectric side, such that

) _ : ty o gt
Bi = s+ cost}) ~y(iBy siné) (6.89)
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where C is an arbitrary complex constant and 0} is a real angle. Applying Equa-

tion (6.4) to Equation (6.89), one finds that the tangential incident magnetic field

is given by
Hi = C"'(,Bl cozz?) —jal)e—m(a1+jﬂl cosf}) ~y(jBy sin}) (6.90)
The reflected fields are given by
E' = TsC Flar+iby 0089})6-31(#‘71 sin 6%) _and - (6.91)
1 = oot I vty o) i) (g oo

wio

where I's is a complex reflection coefficient. The fields transmitted into free space

can be expressed as

El = TyCeik(zcos8®+ysinb?) 4 (6.93)
e . .
Hzt/ - —TSCCOZSO e~ Jk(z cos 6%+ysin %) (6.94)

where T is a complex transmission coeflicient and 6% is a real angle. Note that
in the case of the parallel slab, the field that is transmitted into free space does
not attenuate, in contrast to the field that is transmitted into free space through a
wedge. (Recall that such a ray attenuates in a direction perpendicular to the direc-
tion of propagation). The variables I's, T5 and % can be found by enforcing the
boundary conditions that the tangential fields be continuous across the interface

at z = 0; 1ie.,

14T = Tp (6.95)
B sin 03: = ksin8®, and (6.96)
(B1cos b — jay)(1 = T5) = Tikcosd® . (6.97)

Comparing Equation (6.96) with Equation (6.19), one finds that

6° = 0} (6.98)
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so that the ray transmitted through the slab into free space propagates in the same
direction as the incident ray. Solving for Equations (6.95) and (6.97) , one finds

that

2(81 cos % — jaq
Ty = (8 f_- ), . and (6.99)
kcosG} + B cosﬂf —Jjaq

s = Ty—1. (6.100)

The total tangential magnetic field in the aperture due to rays entering the parallel

slab is thus given by

i - —3(kpair +B1Pgbs)
—Yy T1T5 cos 6% A e “1Yabs & . for ys < yq
H;pa(yq) — f VPair
0 elsewhere
(6.101)
where
Pair = \ﬂwl — 24)% + (yp — ys)? (6.102)
Pabs = \/(wl —29)2 + (yp — yq)2 , and (6.103)
Yabs = T2 71 - (6.104)

In the case of a cylindrical wave incident upon a planar interface the spread factor

is given by[27, p. 170]

Pair €O B} |
A= it : (6.105)
MPyps COS Of + Pair COS Gf
where ‘
k cos 9}
= —i 3.1
™m 3y cos th (6.106)

Note that the factor (1/,/ps;r) has been incorporated into Equation (6.101) to

account for the spatial attenuation from the line source.
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The problem remains to solve for the entry point (z1,yp), given any point
(Yq > ys1) in the aperture and a fixed source location (zs,y,). The equation of the

incident ray can be expressed as

yp = (¢ — z4) tan 0} + ys (6.107)
and the equation of the refracted ray as

Yqg = (22 — z1) tan Otf +yp . (6.108)

Equating y,4 in Equations (6.107) and (6.108), one finds that solving the following

non-linear equation
(z1 — z4) tan 0? + (zg — 1) tan 03: +(ys —yq) =0 (6.109)

with the relation between 0} and 0} given in Equations (6.20) and (6.22), will
yield 0} and Off. This equation can be solved iteratively by using an appropriate
computer routine, and the entry point (z1,yp) can then be found by substituting

t into Equation (6.107).
6.3.3 Oblique incidence on a wedge illuminated by a line source

Consider now the case where a ray enters the wedge part of the slab at an
oblique angle (0:1,) at (¢p,yp) as shown in Figure 164. The subscript (w) refers to
the wedge part of the slab. Note that Ofu is different for each ray. Such a ray will
illuminate the aperture in the region (y2 < yq < ywe), where the ray intercepting
the aperture at (z2,yye) enters the wedge at (v1,y;) as shown in Figure 164.
The aperture field resulting from a plane wave illuminating the wedge is given in
Equation (6.57). In this case, however, the wedge is illuminated by a line source.

The total magnetic field in the aperture due to rays entering the wedge is thus
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given by

Bo cos 8% + jag sin 6%

P ~3(kPasr+B1Pqbs)

HyP"(yq) = -Yo Th T3 (

k ) A e—alyab.’

(6.110)

for y2 < yg < ywe where p,p, and y,p, are given in Equations (6.59) and (6.60),

and

A = Pair €OS 0%}
MPabs €08 0y + paip cos B,
| k cos 0
m = —0%w .nd
B1 cos 6,

pair = \(2p—s)2 + (yp — us)? .

(6.111)

(6.112)

(6.113)

Note that the factor (1/,/pg4;;) has been incorporated nto Equation (6.110) to

account for the spatial attenuation from the line source.

The problem still remains to find the entry point (zp,yp), on the wedge given

a point (z2,y) in the aperture and a fixed source location (z4,ys). Consider the

ray that intercepts the wedge perpendicularly. Let the entry point for this ray be

(zi,i), and the point where the ray intercepts the aperture be (z3,yws) as shown

in Figure 164. The entry and intercepting points are given by

z] a
s (Frmaten) ()

Y = a(m, - mi) + Ys
(zg — z4)(2g — 21)

Yws = +ys , and
Y1 — Y2
Ty — ]
a = —,
Y2 —y

Having determined the point (z;,y;), one finds that

. <
Yywe = (zg —zq)tan(y F Hfl,) if ¢; > 2
Ny = unit vector normal to parallel slab (=—x%).
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(6.115)

(6.116)

(6.117)

(6.118)

(6.119)



angle between iy and fiy (= wedge angle)
angle of ray transmitted into the dielectric
relative to —n,, (see Equation (6.22))

unit vector normal to wedge, and

To solve for (zp,yp), one uses the fact that (xp,yp) lies on the wedge, so that

T
Y20

or

zp =ayp +0b
where a is given in Equation (6.117) and
b==z1 —ay; .
The equation of the incident ray is given by
Yp = (Tp — ) tan vp; + Ys

where
i . <
Tni =% F by 1fyq>yws-

The equation of the refracted ray is given by

Yp = Yq — (T2 — zp) tan yny

where
. t . <
Yni =¥ F O, if Yq > Yuws -

Solving for Equations (6.121)—(6.126), one finds that

_ (2 —=)(yp—w1) | "

Yg — T2tanynt + btanyy  ys 4 btany,; — x4 tanqy,;

Yp =
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1 —atanyy 1 —atan~yy,;

(6.120)

(6.121)

(6.122)

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)



Equation (6.127) can be solved itératively by using an appropriate computer rou-
tine, if one keeps in mind that 0:'” and 6, are related by Equation (6.22). Once
g, and 6%, have been found, (zp,yp) can be determined from Equations (6.127)
and (6.120).

The total magnetic field in that part of the aperture where the slab is present

(y 2 yp) is thus given by

HyP(yq) = HyP*(ya)U(yq — yp1) + HyP" (vq)[U(yq — v2) — U(yg — ywe)] (6.128)

where
1 if >0
U(z) = (6.129)
0 if z<0. ‘
Note that H;p" is given in Equation (6.101) and Hy?" is given in Equation (6.110).
Equation (6.128) can be substituted into Equation (6.78) to give the field scattered

from the slab (E2%). The total field is then given by Equation (6.73).

6.3.4 Results

In this section the forward scattered fields from a semi-infinite absorber slab
with a wedge termination is calculated for three cases. Consider the geometry of
Figure 164. It is assumed that an electric line source with a uniform pattern is
located at (z5,ys) = (—4.576',1.574') and that the absorber slab is 0.5’ thick; iev.,
z3 — =1 = 0.5". Note that the position of the source corresponds to the location
of the bottom edge of the subreflector in Figure 123, where it is assumed that the
coupling aperture is 2’ wide. The origin in this case is located at the apex of the
wedge, rather than at the focal point of the subreflector.

The total field given in Equation (6.73) is calculated for three slabs, desig-
nated as Qs, Q¢ and Q7, with wedge angles () equal to 7.1°, 14.0° and 17.4°,

respectively. The absorber parameters are given in Table 21. Patterns are cal-
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Table 21: Parameters of semi-infinite absorber slabs.

Qs Qs Q7
¥ 7.1° 14.0° 17.4°
z1,y1 | —0.5',4' | —-0.5',2' | —0.5",1.6'
z9,y2 | 0,0 o', 0 o',0
e 1.5 1.5 1.5
e 1 1 1

culated at 3 GHz along a line parallel to the y-axis at a constant z-displacement
of 5. The aperture integration is performed by Simpson’s method, with aperture
spacings of 0.1A. The aperture field is integrated from y = y5 to y = 11.87', at
‘which point the aperture field (E*™) is 45 dB below the level that the field would
have been if there was no absorber present.

The field patterns for the total field (see Equation (6.73)), field due to the
end point contribution from (z3,y3) (see Equation (6.81)) and the scattered field
obtained from the aperture integration over the slab (see Equation (6.78)) are

shown in Figures 166-168 for Q5, Q¢ and Q7, respectively. Note that the scattered

field obtained from the aperture integration over the slab does not have a peak
along the geometrical ISB (y;,5 = —1.72' at = = 5'), but that the peak is shifted
towards the interior of the slab. This effect was also observed in Section 5.5 where
finite slabs were illuminated by a plane wave. It is due to the ray bending associated
with propagation through the dielectric medium.

The total fields for the three cases are compared in Figure 169. It is clear from
this figure that the magnitude of the ripple in the total field decreases as the wedge

angle () decreases, as expected. Note, however, that although the ripple decreases
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as ¥ decreases, the total field in the region around the apex (y;,, < y < 8)
increases as 9 decreases. This is due to the fact that a smaller wedge angle results
in a thinner slab in the region of the apex, so that the transmitted field in this
region is stronger. In the region away from the apex (y > 8'), one finds that the
field values are the same for the three cases (except for the ripple). This is to be
expected since the rays are travelling primarily through the parallel section of the
slab, and all the slabs have an equal thickness. In the region y < y;, one finds
that the field values are also the same for the three cases (except for the ripple).
This is to be expected, since the total field in this region is given by the direct and
end point contributions of the integration over the free space half plane, with the
diffracted field from the slab superimposed. Since the wedge with the largest wedge
angle (Q7;% = 17.4°) has the strongest diffracted field, one would thus expect the
total field from this slab to have the largest ripple in the region y > y;,. Similarly,
one would expect the wedge with the smallest wedge angle (Q5;% = 7.1°) to have
the smallest ripple in this region. This is indeed the case, as shown in Figure 169.

As indicated in Section 5.6, the wedge terminations of the coupling aperture
of the absorber fence has to be designed such that diffractions from the absorber
fence is minimized. It has been shown that a smaller wedge angle results in smaller
diffracted fields. In addition, the transmitted fields through the absorber fence have
to be attenuated sufficiently. A smaller wedge angle leads to a thinner slab near the
apex, which result in stronger transmitted fields. The design of the absorber fence,
and in particular the wedge angles of the coupling aperture terminations, will thus

be based on a compromise between small diffractions and weak transmitted fields.
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Figure 166: Scattered fields from Qs (3 GHz).
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Figure 167: Scattered fields from Qg (3 GHz).
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Figure 168: Scattered fields from Q7 (3 GHz).
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CHAPTER VII

SUMMARY AND CONCLUSIONS

This study has shown that the performance of a compact range can be enhanced
by improving the design of the main reflector and incorporating a dual chamber
configuration with a Gregorian subreflector feed system. The quality of the plane
wave illuminating the target zone is improved with respect to a reduction in the
amplitude taper, ripple and cross-polarization errors.

It has been shown that the diffractions ‘from the edges of the parabolic main
reflector are reduced if rolled surface terminations are added to the parabola. First
generation rolled edges were elliptic in shape, resulting in a continuous surface slope
across the parabola/rolled edge junction, but it has a discontinuity in the surface
radius of curvature across the junction. The edge diffracted fields can be reduced
even more by smoothly blending the rolled surface terminations from a parabola
into an ellipse. Blended rolled edges ensure that the radius of curvature as well
as the slope of the surface are continuous across the junction. By choosing an
appropriate blending function, one can design the rolled edges such that the first
and higher order derivatives of the radius of cﬁrva.ture are continuous across the
junction as well. The impetus for obtaining a smoother junction is that a smoother
Junction results in a more continuous reflected field which leads to a weaker edge
diffracted field and ultimately less ripple in the total field. A relation between

the n-th order blending function and the corresponding error term that results in
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a discontinuity of the n-th order derivative of the radius of curvature across the
junction was derived, and it was shown how the blending parameters should be
chosen to minimize the error term. An algorithm for designing optimized blended
rolled edges was consequently developed, based on an analysis of the error term.
Several two-dimensional design examples were discussed, and the reduction in edge
diffracted fields resulting from blended rolled edges were clearly illustrated.

The edge diffracted fields from three-dimensional reflectors can further be reduced
by shaping the contour‘ of the junction between the parabolic section and rolled
edge contours. It was shown that a concave edge contour has superior performance
over conventional convex and rectangular edge contours. Design equations for a
complete three-dimensional main reflector incorporating blended rolled edges and
a concave edge contour were developed. Several three-dimensional main reflectors
were analyzed using a new corrected physical optics method; whereby, the end
point contributions from false scattering centers on the incident shadow boundary
of the main reflector are removed. The results confirmed that the edge diffractions
from a three-dimensional main reflector can be significantly reduced if the reflector
has a concave edge contour and blended rolled edges.

A dual chamber compact range configuration was proposed; whereby, the main
reflector and target zone are contained in one chamber and an oversized Gregoriah
subreflector with feed assemblies in the second, smaller, chamber. The chambers
are isolated from one another by an absorber fence, with a small coupling aperture
to transmit signals between them. It was shown that the use of a subreflector sys-
tem results in a significant reduction in the amplitude taper and cross-polarization
errors in the illumination of the target zone. In addition, the absorber fence vir-
tually eliminates the effects of diffraction from the subreflector and spillover from

the feed on the desired illumination.
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In order to minimize the secoﬁdary diffractions from the absorber fence, the cou-
pling aperture should be shaped. It was shown that a wedge termination is most
appropriate, and that the selection of a wedge angle depends on a compromise
between weak diffracted and transmitted fields. In order to analyze the scattering
from the coupling aperture, a new technique to calculate the forward scattering
from a homogeneous, lossy absorber slab with a wedge termination was developed.
The technique combines the tracing of rays through the absorber with aperture in-
tegration. Several finite slabs with wedge terminations and plane wave illumination
were analyzed, and the results compared with those obtained from the moment
method. It was found that the new aperture integration technique can predict the
scattering from the absorber slabs within an acceptable accuracy. The technique
was then expanded to enable one to determine the forward scattering from a semi-
infinite absorber slab with a wedge termination and line source illumination. The
results confirmed that a smaller wedge angle results in less ripple in the scattered
field but also in a stronger transmitted field.

Several topics for further research have become apparent during the course of this

study; viz.,

1. Investigation of ways whereby the physical optics integration of three-dimensional

main reflectors can be performed faster and cheaper.

2. The extension of the equations for the derivatives of the blended rolled edges
to three dimensions, and the optimizatién algorithm to three-dimensional
reflectors. The present algorithm analyzes one plane, which enables one
to design optimized circularly symmetric reflectors. A three-dimensional
extension would enable one to optimize in three-dimensions, which would

be particularly useful for designing optimized reflectors with concave edge
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contours. One would probably find that the blending parameters would have
to change continuously around the perimeter of the edge contour in order
to obtain an optimized three-dimensionsal design; ie., a “blending of the

blending parameters”.

. The optimization algorithm can be automated, so that a computer can deter-

mine the optimized blending parameters with minimal human intervention.

. The development of an optimized shaping of the concave edge contour of the

main reflector.

. Improvement of the aperture integration technique for determining the scat-
tering from a lossy dielectric slab with a wedge termination. Higher order
internal reflections can be taken into account, especially near the apex of the
wedge. The technique can be extended to include multilayer cases and more

complicated geometries.

. Development of an analysis of the dual chamber design which includes the
effects of the coupling aperture diffractions in order to predict the field quality

in the target zone.
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APPENDIX A

APPLICATIONS OF DIFFERENTIAL GEOMETRY

In this appendix, differential geometry[69] is used to derive expressions for
the unit vector normal to a 3-dimensional surface, the radius of curvature and
tangential vector of a 2-dimensional curve as well as the radius of curvature and

its derivatives for a blended rolled edge.
A.1 Unit vector normal to a surface
Let a surface in three dimensions be given by the following parameterized
equation:
r(u,v) = [z(u,v), y(u,v), z(u,v)] . (4.1)

The partial derivatives of r are given by

Ox Oy 0z
Py = [5;, a—u,%] ,and (A2)
_ [o= oy o |
fo = [6v’3v’3v] " (A-3)

The unit vector normal to the surface can then be expressed as

Py X Ty

n(u,v) = ———
(1,v) | ry X ry |

(A.4)

Depending on the application, one may be concerned with the inward or outward

normal to the surface. They are related by
fijn = —fout - (A.5)
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Figure 170: Paraboloid.

In the case of bodies of revolution, the inward normal points towards the axis
of symmetry, and the outward normal away from it. Two special cases are now

considered; viz., a paraboloid and a spheroid.

A.1.1 Paraboloid

Consider a paraboloid with the z-axis as its axis of symmetry as shown in

Figure 170. This surface can be expressed as

2 2
u“ +v
r(u,v) = [u, v, a5 ] (A.6)
where
u = gz displacement
v = y displacement , and

fe = focal length .
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In this case one then finds that

u
ry = [1, 0, E] , and (A.7)
v
ry = [0, 1, g] (AS)
c
so that
. —u —v 2fc
N, (u,v) = , , . (A.9)
" [\/u'2+v2+4fc2 Y\/u2+v2+4fc2 \/u2+v2+4fc2

Notice that ii;, points towards the point (0,0,21.).

A.1.2 Spheroid

A spheroid is an ellipsoid with two axes lengths the same, such that it is a body
of revolution. Consider now a spheroid with the z-axis as its axis of syminetry. Let
the axis length along the direction of the z-axis be ae, and along the direction of

the z- and y-axes be be. This configuration is shown in Figure 171. The spheroid

can be described by the following parametric equation:
r(u,v) = [be cosvsinu, be sinvsinu, ae cosu ] (A.10)

where 0° < v < 360° and 0° < u < 180°. Since the spheroid is a body of revolution
around the z-axis, the parameter v is the spherical angle (¢). The parameter u

corresponds to the spherical angle (), and they are related by

b .
tand = = tanu . (A.11)
Qe
In this case then,
ry = [becosvcosu, besinvcosu, —ae sinu | , and (A.12)
ry = [—besinvsinu, becosvsinu, 0] (A.13)
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Figure 171: Spheroid.

so that

—cosvsinu —sinvsinu —cosu
nin("’a v) = b ’ b ’
e €

Qe
The unit vector normal to the surface is then given by

Nin

n;, = ' _ .
nznl

(A.14)

(A.15)

Notice that in the case where a. = b, the spheroid becomes a sphere. In this case

fiout is equal to the spherical radial unit vector, and u = 6.

A.2 Radius of curvature and tangential vector of a 2-dimensional curve

Consider a curve in the yz-plane, given by the parameterized equation

r(7) =10, y(7), =(7)] -

The curvature (k) at v is given by

() = | r'(7) xr"(y) |
()
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where

a,

r(y)

r'(y) = & =10 y'(7), #'(7)] , and
21‘
r"('y) = dd‘y(;l) = [07 y"(7)’ z~(7)] ‘

The radius of curvature (R.) at v is then given by

1
Re(y) = —
C(‘Y) ii(‘)’)
so that
s
R = ——
0(7) ' l" X I‘" I
However,
U/ I=| ylzll _ yllzl |
so that 3
iy @24
(7) = |y2" — 42|

The vector tangential to the curve is given by

t(v) =r'(y)
so that
2t )
- ltl - 1,t2) .
and since f -t =0, one finds that
h = (t2’ —tl) .

Two special cases will be considered; viz., an ellipse and a parabola.
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(A.19)

(A.20)

(4.21)

(A.22)

(A.23)

(A.24)

(4.25)

(A.26)
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Figure 172: Ellipse.
A.2.1 Ellipse

Consider the ellipse described by

r(v) = [0, be sinvy, ae cos~y .

(A.27)

The semi-major and semi-minor axes lengths are ae and be, respectively. Notice

that the angle v is not a real angle, but a parametric one. In this case one, finds

that
Yy = becosy
y" = —besiny
z = —aesiny, and
"
= —de COSY
so that

t(y) = [0, be cosy, —aesiny] , and
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3
(a2 sin?y + b2 cos? )2

Re(y) = acbe (A.33)
At v =0 and 4 = 90°, one finds that
b2
R(0) = -* (A.34)
Qe
a2
R(90%) = 53 , and (A.35)
(4
dRC o 0 A
e = 0. A.
™ (0°,90°) 0 (A.36)

Note that it is assumed that ae > be so that R.(0) < R.(90°). This is also evident

from Figure 172.

A.2.2 Parabola

Consider the parabola described by

r(y) = [ 0, 7, g] : (A.37)

In this case v is the height (y) shown in Figure 173, and f. is the focal length.
Thus, one finds that

y(r) = 1 (A.38)
y'(v) = 0 (A.39)
Z(y) = -;z,and (A.40)

1
() = T (A.41)

so that
t(y) = [0, 1, 5}:] , and (A.42)
T

Rc(y) = 2f. [1 + (E) ] : (A.43)
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Figure 173: Parabola.

The derivatives of R. with respect to y are given by

%’-’C— 1+ (v/2Fe)?
2

R'(y) = il +§f-c—\/1+(y/2fc)2

8f3\/1+ (y/2fc)?

&
iy
&

|

" 9y 33/3
Rc = - y &
) 831+ (y/2fc)?  32f2 1+ (y/2fc)?
R, = -
(y) 8fc\/ 1+ (3://2fc)2 lﬁfc5 \/3 1+ (y/2fc)2
9y4

+ e
1287 /1 + (y/2fc)?

A.2.3 Blended rolled edge

nd

(A.44)

(A.45)
(A.46)

(A.47)

The blended rolled edge is described in Section 3.4. In this section expressions

will be derived for the radius of curvature (R.) and the first four derivatives of R,

in the yz-plane.
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It is useful to evaluate the derivatives of R, of the blended surface with respect
to y rather than 4. This serves as a standardization for comparison of different
types of blending, and makes it convenient to compare the derivatives of R, of the
blended surface at the junction with that of the parabola (see Equations (A.44)~
(A.47)). In addition to deriving the general expressions for the radius of curvature
of the rolled edge (R.) and its derivatives for all 7, the derivatives of R, at the top
junction (7 = 0) will also be evaluated as a special case. This is necessary in order
to examine the continuity of the derivatives of R, across the junction. A similar
analysis can be performed at the bottom junction. In the rest of this section a
prime will denote differentiation with respect to v, and (¥, 2;) will indicate the
coordinates of the junctions.

The general two-dimensional blended rolled surface is expressed in the yz-

plane by Equations (3.73)-(3.75) such that

olend(Y) = ¥(7)¥ + z(7)2 (A.48)
where
y(r) = (By+y;)[1=b(y)] +[Csiny + D(1 - cosy) + y;]b(y) (A.49)
B .
) = BB Gy 4 (Bing + P = cosm) + 251) (A50)
where
ﬂ:(zm/%n)
B = A.51
\/1+(yj/2fc)2 ( )
+a,
C = (A.52)
I+ (y5/28)?
beyj
D = (A.53)
2fe\/1+ (yj/2fc)?
iareyj
E = , and A.54
2fer/L+ (i 20 (A5
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—be

JI+ (w5202

(A.55)

The (&) sign refers to the top and bottom junctions respectively. The following

expressions are useful in evaluation of the derivatives of R, at the junctions:

Cy;
E-= =0
2fc
D .
F-28 = —bey/1+(y;/2fc)? , and
2f.

0+?f’fcl = ka1 + (3/2fc)?

where the (1) sign refers to the top and bottom junctions respectively.

1) Radius of curvature

The radius of curvature is given by Equation (A.23) such that

Rey) = 2®)

~ Ry(%)

where

Ru(v) = @)+ ()2, and

R(v) = |¥" =" |.

In this case, one finds that

y'(7) b(C cosy + Dsiny — B)

+b'(Csiny + D(1 — cosv) — By) + B

y"('y) = b(Dcosy — Csiny) + 2b'(C.-' cosy + Dsiny — B)
+b"(C siny + D(1 — cosy) — By)

B(By + yj))

() = b (E cosy + Fsiny —
2fe
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(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)
(A.63)

(A.64)



44 (Esin'y + F(1 - cosy) + zj —
4f.

B?
'(y) = b (Fcos7 — Esiny — ——)

2fc
B(B ;
+2b' (E cosy + Fsiny — Ly—'_—yJ))
2fe
vy (Esin‘y+F(1—cos7)+zj— Y
[
At the junctions (4 = 0) one finds that

y'(0) = B
y"(O) = 2b’(C—B)
£(0) = By, and
2fc "’
" _ ! By, B?
2'(0) = 2b (E—zf:) of,

so that

Ru(0) = |B|3€/1+ (/2fc)? , and

C.
Ri(0) = 15}:+2b’ (E—z}’:) .

Substituting Equation (A.56) into the equations above, one finds that

Rlcdend = 2f. 3/1 + (’yj/2fc)2 _ Rga,rabola .

(By + yj)z) L BBr+y)

(By+y;)?\ B2
__—) T

, and

(A.65)

(A.66)
(A.67)

(A.68)

(A.69)

(A.70)

(A.71)

(A.72)

The use of a Blending function will thus ensure that the radius of curvature is

always continuous across the junction. Note that is this true for the top and

bottom junctions.

2) First derivative

The first derivative of R, with respect to y is given by
dR. dRc dy 1 dR.

dy ~ dy dy ¢ dv
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where

dR, RiR, — R|R.
dvy (R)?

In this case, one finds that

Ry(7)
Rj(7)

y"(7)

zlll(

= 3y/(y)2 + (NPy" + 2"
>
_ :t(ylzm _ My if g7 2y

= —b(Ccosy+ Dsiny) + 3b'(D cosy — Csinvy)

+3b"(C cos vy +D siny — B)

+b"(Csiny + D(1 - cosy) — By) , and
2

[

B(B ;
+3b" (E cosy + Fsiny — %—w)
B 2
+b" (Esin'y + F(1 — cosvy) + zj — g_’y{f_y_j)_) .
Cc

(A.74)

(A.75)
(A.76)

(A.77)

B
—b(Fsiny + E cos7y) + 30’ (F cosy — Esiny — -2—) (A.78)

In order to examine the continuity of the first derivative at the top junction, it is

neccesary to evaluate dR;/dy at v = 0. Assume that b(-y) is a first order blending

function, so that 5(0) = 0 and 4'(0) # 0. One then finds that the following holds

at the top junction:
y'(0) = B
J'(0) = 2W(C-B)

y"(0) = 35'D +3b"(C - B)

_ By,
2.

By;
! J
0) =
*0 = 77,
By. B2
" _ ! _ J
2 (0) = 2b (E 2fc)+2fc,and
32
2"0) = 3 (F - —) + 3" (E
(0) 57,
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(A.81)

(A.82)
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Since B > 0 at the top junction, it follows that:

Ri(ytop) = y'2" — y""2" . (A.85)

One thus finds that
B3
Ri(0) = A (A.86)
2
Rj(0) —-3b'B (be,/l +(y;/2f)? + %) ‘ (A.87)
Ru(0) = B*¥1+(y;/2f.)?, and (A.88)

RUO) = 688 (acll +(ui/200%) - BYT+ (5 /200)  (A89)
BT (/27 |

]

412
so that
blend 2y . 2
iR, I PN YT
( dy ) (r=0) = 2f (4.90)
b 12f,

+—§2— (ae[l + (yj/zfc)zl

+f;;e [1+ (y;/2£e)* - g Vit (yj/sz)z) '

Using Equation (A.44), it follows that the following is true at the top junction:

blend parabola
(%) = (%) +8'(0)ex (4.91)
where
_12£ell 4 /2007 [ ae  febe {1+ (/26 1
T (zm/7m) ((zm/'fm)' : (a:m/'ym)2 2/ (A°92)

3) Second derivative

The second derivative of R, with respect to y is given by

(A.93)



where
d (dRc\ _ d (dR 1) _ y'(d’Re/dy®) ~ y"(dRe/dn) (4.94)
dy\dy ) dy\dv o) (¥')? '
so that
d’R. _ y'(d*R./dy?) — y"(dR./d
2c=y( c/v)'ay( c/dv) (4.95)
dy (¥')
It is found that
d?R, _ Ry(RiRy, — RRy) - 2R|(R|R), — RjRy) (4.96)
dy? (Ry)®
where
Ri) = 8 + (R + (") + ()2 + 512 (A.97)
+3(y’y" + zlzll)
(¥')? +(<')?
R;I(’)’) — :!:(y'zw + yuzm yINle w I) if ylzll < y Z (A98)
y¥(y) = (b—68")(Csiny — D cos v) — 46/(C cosy + Dsiny) (A.99)
+4b"'(C cosy + Dsiny — B)
+b™(Csiny + D(1 — cosy) — By) , and
zi"('y) = b(Esiny — F cosy) — 4b'(F siny + E cosv) (A.100)
B?
+68" (F cos E'si )
[T
. B(B~ + .
+4b" (E cosy + Fsiny — (—ugjl)
2fc
) B Y
+b** (Esin7 + F(1 - cosy) + zj - M) .
4f.
Consider now b(y) to be a second order blending function, so that 5(0) = 0;

'(0) = 0 and 5"(0) # 0. One then finds that the following holds at the top

junction:
y'(0) = B (A.101)
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y"(0) = 3v"(C - B) (A.103)
y(0) = 6b"D+4b"(C - B) (A.104)
Z(0) = 123;“ (A.105)
n B2
2'(0) = T (A.106)
M0) = 3" (E—g;’j) , and (A.107)
' 2 .
2(0) = 6b" (F-%)Hb"’ (E—l—;%) | (A.108)
so that
B3
Ri(0) = 7. (A.109)
Rj(0) = 0,and (A.110)

B? B?
Rj(0) = —6t"B (be,/l + (y/2fe)? + 5};) - 3b"§z(0 ~ B) . (A.111)

Since y"(0) = 0 and R}(0) = 0, one finds that
(]

d’R. RR, - R/R,
Gz =0= M2
y (Riy')

(A.112)

where

Ru(0) = B3\3/1+(yj/2fc)2,and . (.A.113)

oy 3B+ (yi/2f)? 385 A

ul0) = Y R TYTN BN TY A" (A
9B (e[l + (y;/240)%] ~ BYN + (/27 ) -

Combining the equations above with Equation (A.45), one finds that the following

is true at the top junction:

d2R blend 2R parabola
C _{a e
( dy’ ) - ( dy* )

+8"(0)eg (A.115)
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where
. L 1+ (yj/2fc)? e febe 31+ (yj/2fe)? 1 4116)
2= ("’m/')’m)2 (zm/vm) ("3m/'7’m)2 2] - )

4) Third derivative

The third derivative of R, with respect to y is given by

d®R. 1 d (d’R.
P ( iy? ) (4.117)
where
d (d°R d (v'(d®R./d~v?) — "(d
dy \ dy dvy (¥)
so that

PR _ (4)*(FRe/dy’) - 3y'y"(d*Re/dv’) + 3(+")? — 4'y"|(dRe/dy)

dy? ')®
(A.119)
It is found that
d®R. Ry
% W (A.120)
where
Ry3s = (R)*(R,Ry + RiR, - R[R, — R]'R,) (A.121)

—4RRi(RiR;, — R Ru)
+[6(R))® ~ 2R R]|(Ri R, — RjRy)

RY(7) = 32+ (="2'y™ +3("y" + ") + 2 (A122)

9(ylyll 4z o Il)[ylylll + (yll) + (:H 2 II]
P+

+

3(y'y" + zl,,n)3
V(¥ + (=)
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1 n

R'(y) = +[y'2Y + 2(y"zi” _ z"yi”) ~ Ay if gz z ' (A.123)

5) Fourth

y'(y) = (b- 10b")(C cosy + Dsiny)
+(10b’" — 5b')(D cosy — C'sinv)
+5b¥(C cosy + Dsiny — B)
+b%(C siny + D(1 — cosy) — By) , and
2%(y) = (b—100")(Esiny + Fcos¥y) '
+5b'(E siny — F cos7)
B?
+106" (F cosy — Esiny — —)
2fc

B(By + y;)
2fc

+bY (Esin7 + F(1 —cosvy) + z; —

+5b" (E cosy + Fsinvy —

4fe

derivative

The fourth derivative of R, with respect to y is given by

where
d d3R.
dy \ dy?

so that

where

d*R. _d (d®R;\ 1 d (&R,
dyt “dy \ dyd |

(B + y;)?

(A.124)

(A.125)

).

(A.126)

) -5 ((y’)2(d3R“/ dr®) - 3y/'y"(Re/dy?) + [3(v")*
“ (¥')°

R = (¥)%(d*Re/dy*) - 6(y)*(d*Rc/dv®)
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—y'y"|(dR./ d‘r))

(A.127)

(A.128)

(A.129)



+[159'(5")? - 4(y')?y"")(d*Re /dy?)

+10y'y"y" — (4')%y"™ — 15(y")%)(dR./dv) .

Furthermore, one finds that

d*R. Ry
dr = W (A.130)
where
Rys = (R)’[RiRY +,2(RfRZ'—R§"RL)—R;’”Ru] (A.131)

—6(R:)* Ri(RiRy + RiRy — R By, — R}" Ru)
+[18Ry(R})® — 6(R;)*R})(R Rl — R} Ry
+{18R;RIR] — 2(Ry)*R}" — 24(R))*)(R, Ry, — RjR)
RY(Y) = 3y + (=)2ly'y" + 4(y"y™ + 2"2") (A.132)
+3([ylll]2 + [zIII]2) + zlzv]
+12[y'yi" +3(y"y"' + z"z"’) + zlziv](ylyll + z'z")
V)2 + ()2
+9[y’y'" +(y")2 + (zll)2 +zlzm]2
V)2 + ()2
( Iyll +z'z")2[y'y"' +(yll)2+(zll)2 +zlz"l]
VW' + ()
+9(ylyll + zlzll)4
V(¥')? + (2)?
R'(y) = #[y'2" +3(y"z" - 2"y") (A.133)

+2(y"'zi” _ z"'yi”) _ zlyvi] if 2" 2 Ay
y”"(’y) = (b— 158" + 15b'")(D cosy — C'sin7) (A.134)
+(6b' — 20" )(C cosv + Dsin~y)

+6b”(C cosy + Dsiny — B)

+b%(Csiny + D(1 — cosy) — Bv) , and
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%(y) = (b-158")(F cosy — Esinvy)

+(6b" — 206" )(E cosy + F'sin )

. B?
+156* (F cosy — Esiny — —)
+6b" (Ecos'y + Fsiny —

+bY (Esin'y + F(1 - cosv) + zj —

2fe
B(B~y + y;)
2f.

(By + y;)*
4fc

(A.135)

Consider now b(v) to be a fourth order blending function, so that 5(0) = 0, ¥'(0) =

0, 4"(0) = 0, b"'(0) = 0 and b**(0) # 0. One then finds that the following holds at
4

the top junction:

0
0
56%(C — B)

156D + 6b6"(C — B)

5bu’ (E _— _é—i‘/_,) N a.lld
JC

15&”(F-
2fc

2fe
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(A.136)
(A.137)
(A.138)
(A.139)
(A.140)
(A.141)

(A.142)

(A.143)
(A.144)
(A.145)

(A.146)

(A.147)



so that
R)(0) = —2%3; (A.148)
Ri(0) = 0 (A.149)
R/(0) = 0 (A.150)
R"(0) = 0,and (A.151)
Ri*(0) = —15Bb" (be\/m+ %2;) C (A152)

. 2
_1567(C — B)% .
C

It is then found that
d*R. (y=0)= RiRY — RIVR,
dy* (R)*(¥')*

(A.153)

where

Ru(0) = B Y1+ (y;j/2fc)*, and (A.154)

. 7
Ri*(0) = 98 (A.155)

16f&4/1+ (y;/2fc)?
~ 9B7y?

3218 Y1 + (y;j/2fc)?
. 9Byt

25618 91 + (y;/2fc)?

F15B%° (acll + (y3/2£)7) - BYL+ (v3/2£)?) -

Combining the equations above with Equation (A.47), one finds that the fol-

lowing is true at the top junction:

44 R, blend d4 R. parabola N
( 4y ) = (—dy—‘i) + b*"(0)eq (A'ISG),
where
60f. \7/1 + (yj/2fC)2 Qe fcbe \3/ 1+ ('yj/2fC)2 1 -
€4 = 4 + 5 - =1 . (4.157)
(zm/¥m) (zm/vm) (Zm/Ym) 2
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APPENDIX B

CLOSED FORM EXPRESSIONS FOR THE APERTURE
INTEGRATION OVER A HALF PLANE IN FREE SPACE

In order to solve the problem described in Section 6.3, it is required to de-
termine the scattered field resulting from the aperture integration performed over
a planar aperture extending over the half plane (—co < y < 0) in free space as
shown in Figure 174. The two-dimensional transverse magnetic (TM) scattered

field at a field point (z,y) is then given by Equation (6.77) as

. k 0 e—Jkp
E;(z,y) = —e’"/“ZO\/z—”/_OO HIP(y) 7 dy' (B.1)

where 3 is a point in the aperture, and

p=vzt+(y —y)?. (B.2)

Note that the angle (¢) which p makes with the —y-axis is given by

¢ = arccos (y'; y) ‘ (B.3)

as shown in Figure 174. Consider an electric line source to be located at (zgyys).

The electric field incident upon the aperture from this source is given by

. €~—jkp' )
Eilx =0,y) = —=- (B.4)
" V2
where
PI:\/T3+(3/ "!/s)z (B.5)
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Figure 174: Aperture integration over a half plane in free space.
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so that the tangential magnetic field in the aperture is given by

. — y '
— sin ¢'e~TkP

HP(Y') = (B.6)

Y ZO\/f7

where

S
¢' = arccos (gs—,;,—y—) . (B.7)

The scattered field can thus be expressed as

. ~k— 0 Sill ’e~jk(P,+P)

ey < [ [0 SITHI

e pp
The integral in Equation (B.8) can be evaluated by the method of stationary phase

as explained in Chapter 2, so that

E;" ~ Ezgp + Ezep (B.9)
where EZ§,, is the contribution from the stationary point, and EZg, is the contri-
bution from the end point (at y = 0). The end point at y = —oo is too far away

to have any effect.

Following the notation of Equations (2.79)-(2.83), one finds that

o) =~(p' +p) (B.10)
or
O(y') = —(y/e2 + (5" —3s) + /o2 + (¥ —y)?) . (B.11)
It follows that
2 )
‘I"(y')=~(y e Y ,y) (B.12)
P p
or
®'(y') = cos ¢’ — cos¢ . (B.13)
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(x,y)

~<>A

Figure 175: Stationary point in the aperture integration over a half plane in free
space.

The stationary point (yf,P) occurs where
(I)(y.’sp) =0 (B.14)

so that y;p is that point in the aperture where

cos ' = cos dsp (B.15)
as shown in Figure 175.
Furthermore, one finds that
!
. +
<I>"(y'sp) = —sin? ¢’ (e_,_/)) (B.16)
pp |
so that
et < 2 40 PI +p -
| 2" (ysp) | = sin“¢’ [ ——] , and (B.17)
P p
sgnl®”(yl,)] = -1 (B.18)
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where p and p' are interpreted as p = p(y' = yf,p) and p' = p'(y’ = yf,p).
Substituting Equations (B.17) and (B.18) into Equation (2.79), one finds that

the stationary point contribution to the scattered field is given by

e—Ik(0' +p)
Ele =S (B.19)

/Y.

Equation (B.19) can thus be expressed as

e—jk/)s ! ]
Y 0< ¢ <¢

Elgp(z,y) =4 V7 (B.20)
0 otherwise

where

ps = Yz ~2a)2+(y—ys)?, and (B.21)

o = arccos (:“i{) . (B.22)
PO

This term represents the incident ray from the source at (z,,ys) to the field point

t (z,y). Note that EZ§p is equal to zero when the stationary point (y;p) is no
longer in the aperture.

Consider now the end point contribution ( E;gp) due to the end point at y = 0.

Substituting Equation (B.15) into Equations (B.13) and (2.83), one finds that the

end point contribution can be expressed as

poa L “(gh, do) s eIt (B.23)
J - 01 PO .
zep — \/P ’ \/ﬁ
where
—37/4gin o
D° ', — -Mf_, 0 B.24
(40, bo) V2rk(cos Py — cos dg) ( )
plo= \/ xd yf;;., and (B.25)
p = \/;r.2 + !/2—, and (B.26)
¢y = arccos (1) . (B.27)
PO
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Note that Equation (B.23) is cast in the form of a ray diffracted from the end
point. |

However, the diffraction coefficient (D®) becomes singular at the shadow
boundary; ie., where d){) = ¢¢. This singularity is similar to the one that occurs in
Keller’s GTD diffraction coefficients[16]. The discontinuity in the diffraction coef-
ficients cause the total field (ie. incident plus diffracted fields) to be discontinuous
at the shadow boundary. Koumyoumjian and Pathak developed the UTD[17] to
correct this problem, and found that the total field becomes continuous when the
diffraction coefficients are multiplied by a transition function (F'). The coefficient
in Equation (B.24) can now be heuristically multiplied by the same transition
function, so that modified diffraction coefficient (D®P) is given by

—in/4 o 4l 1 2
ep( 1t _ e ™/ %sin ¢ kL (cos ¢ — cos 450)
D(¢q, ¢0, L) G-y -cos¢0)F [ > in do (B.28)

where the transition function is described in Section 2.2 and

I
= fofo (B.29)
Po + PO

The end point contribition to the total scattered field can thus be expressed

as
Et = —————. ' DEI(qS’ ¢ L)———. (B 30)
Z€ 0 0y Lt ¢
P 1/P’ \/ﬁ

The inclusion of the transition function causes the total field (E;%) given in Equa-

tion (B.9) to be continuous.
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