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1. Introduction

Masjed Jamei [1] obtained the following inequality

(arctan x)2 ≤ x ln(x +
√

1 + x2)√
1 + x2

(1)

which holds for all x ∈ (−1, 1), where ln(x +
√

1 + x2) = sinh−1 x. In [2], Zhu and Maleše-
vić were the first who affirmed Masjed Jamei’s conjecture that the inequality (1) holds on the
real axis (−∞, ∞), obtained some natural generalizations of this inequality, and represented
a conjecture on a natural approach of Masjed Jamei’s inequality, having been inspired
by [3–9]. Using flexible analysis tools, Zhu and Malešević [10] obtained a more general
concept on the natural approximation of the function (arctan x)2 −

(
x sinh−1 x

)
/
√

1 + x2,
and proved the above conjecture. In [10], Zhu and Malešević showed the analogue result
for tanh−1 x = (1/2) ln([(1 + x)/(1− x)] and arcsin x, which can be formulated as follows:
the inequality (

tanh−1 x
)2
≤ x arcsin x√

1− x2
(2)

holds for all x ∈ (−1, 1) with the best power number 2.
Masjed Jamei’s inequality topics have attracted the attention of several scholars.

For interested readers, please refer to the literature [11–13]. Among them, Chesneau
and Bagul [11] and Chen and Malesevic [12] further explored inequalities (1) and (2),
respectively. In particular, Chesneau and Bagul [11] recently drew the following conclusion
that the inequality

(sin x) ln(x +
√

1 + x2)√
1 + x2

≤ (arctan x)2 (3)

holds for all x ∈ (−π, π). In [11], Chesneau and Bagul raised an open question that the
above inequality (3) holds for all x ∈ (−∞, ∞).

From the above description, we find that the results of the paper [2] give us the
upper bound of the function (arctan x)2 while in [11] the authors were trying to find a
lower bound for (arctan x)2 but the scope of discussion was limited to a small interval,
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(−π, π). In order to compensate the limitation, a conjecture was proposed in [11] that the
inequality (3) may be established on (−∞, ∞).

Generally, the analogue result of the conclusion (3) can be established, that is, the fol-
lowing inequality

(sinh x) arcsin x√
1− x2

≤
(

tanh−1 x
)2

(4)

holds for all x ∈ (−1, 1). In [12], Chen and Malesevic attempted in a new way to find the

lower bounds for the function
(

tanh−1 x
)2

, reached the conclusion that the inequality

x arcsin x
1− 1

2 x2
≤
(

tanh−1 x
)2

(5)

holds for x ∈ (−1, 1), and raised an open question that the following inequality

x arcsin x(
1− 41

45 x2
)45/82 ≤

(
tanh−1 x

)2
(6)

holds for x ∈ (−1, 1).
We are interested in finding better lower bounds for the functions (arctan x)2 and(

tanh−1 x
)2

. A natural idea is about these three functions arctan x, ln(x +
√

1 + x2) and
√

1 + x2: what kind of structure will make them connected closely? A similar problem also
relates to those three functions tanh−1 x, arcsin x and

√
1− x2. This paper will first discuss

the lower bounds of the two functions (arctan x)2 and
(

tanh−1 x
)2

from the development
logic of mathematics itself, and then naturally apply the corresponding conclusions to the
mean value theory.

The rest of the paper is arranged as follows: In Section 2, we propose two lemmas
and give some concise proofs of the lemmas, named Lemma 2 and Lemma 3. Then using
Lemma 2 and Lemma 3, we prove the main results of the paper, namely Theorem 1 and
Theorem 2. In Section 3, applying Lemma 2 and Lemma 3, we strengthen the Mitrinovic–
Adamović inequality (see [14,15]) and Lazarević inequality (see [16]). In Section 4, we apply
the results of Theorems 1 and 2 to obtain new inequalities related to Seiffert-like means and
classical means.

2. Main Results
2.1. Lemms

In order to prove the main results of this paper, we need to introduce the following lemmas.

Lemma 1 ([17]). Let {ak}∞
k=0 be a non-negative real sequence with am > 0 and ∑∞

k=m+1 ak > 0,
and let

S(t) = −
m

∑
k=0

aktk +
∞

∑
k=m+1

aktk

be a convergent power series on the interval (0, r) (r > 0). (i) If S(r−) ≤ 0 then S(t) < 0 for all
t ∈ (0, r). (ii) If S(r−) > 0 then there is the unique t0 ∈ (0, r) such that S(t) < 0 for t ∈ (0, t0)
and S(t) > 0 for t ∈ (t0, r).

Lemma 2. The inequality

arctan(sinh t) >
t

(cosh t)1/3 (7)

holds for all t > 0 with the best constant 1/3.

Proof. Let us prove Lemma 2 in two steps.
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(1) Let

F(t) = arctan(sinh t)− t

(cosh t)1/3 , t > 0.

Then

F′(t) =
1
3
× 3(cosh t)1/3 − (3 cosh t− t sinh t)

(cosh t)4/3 .

We shall prove that F′(t) > 0 for all t > 0, which is equivalent to the following inequality

(cosh t)1/3 > cosh t− 1
3

t sinh t =
1
3
(3 cosh t− t sinh t) :=

1
3

r(t) (8)

which holds for t > 0. Since

sinh t =
∞

∑
n=0

1
(2n + 1)!

t2n+1, cosh t =
∞

∑
n=0

1
(2n)!

t2n,

we have

r(t) = 3 cosh t− t sinh t = 3
∞

∑
n=0

1
(2n)!

t2n − t
∞

∑
n=0

1
(2n + 1)!

t2n+1

= 3
∞

∑
n=0

1
(2n)!

t2n −
∞

∑
n=0

1
(2n + 1)!

t2n+2

= 3 + 3× 1
2!

t2 + 3
∞

∑
n=2

1
(2n)!

t2n − t2 −
∞

∑
n=1

1
(2n + 1)!

t2n+2

= 3 +
1
2

t2 −
∞

∑
n=2

1
(2n− 1)!

t2n +
∞

∑
n=2

3
(2n)!

t2n

= 3 +
1
2

t2 −
∞

∑
n=2

2n− 3
(2n)!

t2n.

The coefficients of the power series expansion of the function r(t) change from positive
to negative, and r(∞) = −∞, as known from Lemma 1, there is a unique point ξ on interval
(0, ∞) such that r(ξ) = 0, r(t) > 0 for t ∈ (0, ξ) and r(t) < 0 for t ∈ (ξ, ∞). So we should
only prove that the inequality (8) is true on (0, ξ). Let

f (t) = ln cosh t− 3 ln
(

cosh t− 1
3

t sinh t
)

, 0 < t < ξ.

Then f (0) = 0 and

f ′(t) =
3t cosh2 t− 3 cosh t sinh t− t sinh2 t

(cosh t)(3 cosh t− t sinh t)
=

2t + t cosh 2t− 3
2 sinh 2t

(cosh t)(3 cosh t− t sinh t)
.

By substituting the power series expansions of the functions sinh 2t and cosh 2t

sinh 2t =
∞

∑
n=0

22n+1

(2n + 1)!
t2n+1, cosh 2t =

∞

∑
n=0

22n

(2n)!
t2n
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into the function 2t + t cosh 2t− 3(sinh 2t)/2, we have

2t + t cosh 2t− 3
2

sinh 2t = 2t + t
∞

∑
n=0

22n

(2n)!
t2n − 3

2

∞

∑
n=0

22n+1

(2n + 1)!
t2n+1

= 2t +
∞

∑
n=0

22n

(2n)!
t2n+1 − 3

2

∞

∑
n=0

22n+1

(2n + 1)!
t2n+1

=
∞

∑
n=2

22n

(2n)!
t2n+1 − 3

2

∞

∑
n=2

22n+1

(2n + 1)!
t2n+1

=
∞

∑
n=2

[
22n

(2n)!
− 3

2
22n+1

(2n + 1)!

]
t2n+1

=
∞

∑
n=2

(2n + 1)− 3
(2n + 1)!

22nt2n+1

=
∞

∑
n=2

2n− 2
(2n + 1)!

22nt2n+1 > 0.

So f ′(t) > 0 for t ∈ (0, ξ). This leads to that f (t) is increasing on (0, ξ). Therefore
f (t) > f (0) = 0 for t ∈ (0, ξ). Then the inequality (8) is true, and F′(t) > 0 for all t > 0.
In view of the relation F(0) = 0, we have that the fact F(t) > 0 holds for all t > 0.

(2) The result just proved is equivalent to the fact that the inequality

1
3
>

ln t
arctan(sinh t)

ln(cosh t)
:= A(t)

holds for all t > 0. In this way, when obtaining limt→0 A(t) = 1/3 or limt→∞ A(t) = 1/3,
we will prove that 1/3 is the best constant in (8). Considering the fact

lim
t→0

A(t) = lim
t→0

ln t− ln arctan(sinh t)
ln(cosh t)

= lim
t→0

[ln t− ln arctan(sinh t)]′

[ln(cosh t)]′

= lim
t→0

1
t −

1
arctan(sinh t)

1
1+sinh2 t

cosh t
sinh t
cosh t

= lim
t→0

1
t −

1
arctan(sinh t)

1
cosh2 t

cosh t
sinh t
cosh t

= lim
t→0

1
t −

1
arctan(sinh t)

1
cosh t

sinh t
cosh t

= lim
t→0

1
3 t + o(t)
t + o(t)

=
1
3

,

we have completed the proof of the Lemma 2.

Lemma 3. The inequality
t

(cos t)1/3 > tanh−1(sin t) (9)

holds for all t ∈ (0, π/2) with the best constant 1/3.

Proof. Let us prove Lemma 3 in two steps.
(i) Let

G(t) =
t

(cos t)1/3 − tanh−1(sin t), 0 < t <
π

2
.

Then

G′(t) =
1
3
× 3 cos t + t sin t− 3(cos t)1/3

(cos t)4/3 .
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We will prove that

3 cos t + t sin t > 3(cos t)
1
3

or
(3 cos t + t sin t)3 > 27 cos t

for t ∈ (0, π/2). We calculated that

k(t) = :
(3 cos t + t sin t)3 − 27 cos t

sin3 t
= 27

cos3 t
sin3 t

− 27
cos t
sin3 t

+ t3 + 9t2 cos t
sin t

+ 27t
cos2 t
sin2 t

= 27

(
1− sin2 t

)
cos t

sin3 t
− 27

cos t
sin3 t

+ t3 + 9t2 cos t
sin t

+ 27t
(
1− sin2 t

)
sin2 t

= 27t
1

sin2 t
− 27t− 27

cos t
sin t

+ t3 + 9t2 cos t
sin t

.

The power series expansion of the function cot t can be found in ([18], § 4.3.70) and
([19], § 1.3.1.4) as follows:

cot t =
1
t
−

∞

∑
n=1

22n

(2n)!
|B2n|t2n−1, 0 < |t| < π. (10)

By (10), we have

1
sin2 t

= csc2 t = −(cot t)′ =
1
t2 +

∞

∑
n=1

22n(2n− 1)
(2n)!

|B2n|t2n−2, 0 < |t| < π. (11)

Substituting (10) and (11) into the above expression of k(t), we have

k(t)

= 27t

[
1
t2 +

∞

∑
n=1

22n(2n− 1)
(2n)!

|B2n|t2n−2

]
− 27t− 27

[
1
t
−

∞

∑
n=1

22n

(2n)!
|B2n|t2n−1

]

+t3 + 9t2

[
1
t
−

∞

∑
n=1

22n

(2n)!
|B2n|t2n−1

]

= 27
∞

∑
n=2

22n(2n− 1)
(2n)!

|B2n|t2n−1 + 27
∞

∑
n=2

22n

(2n)!
|B2n|t2n−1 − 9

∞

∑
n=1

22n

(2n)!
|B2n|t2n+1

=
∞

∑
n=2

54n× 22n

(2n)!
|B2n|t2n−1 − 9

∞

∑
n=1

22n

(2n)!
|B2n|t2n+1

=
∞

∑
n=1

54(n + 1)× 22n+2

(2n + 2)!
|B2n+2|t2n+1 − 9

∞

∑
n=1

22n

(2n)!
|B2n|t2n+1

=
∞

∑
n=1

[
54(n + 1)× 4
(2n + 2)!

|B2n+2| −
9

(2n)!
|B2n|

]
22nt2n+1

=
∞

∑
n=1

an22nt2n+1 =
2
5

t3 +
∞

∑
n=2

an22nt2n+1,

where

an =
216(n + 1)
(2n + 2)!

|B2n+2| −
9

(2n)!
|B2n|, n ≥ 2.

The following estimates of the even-indexed Bernoulli numbers B2n can be found
in [18,20,21]:

2(2n)!
(2π)2n

22n

22n − 1
< |B2n| <

2(2n)!
(2π)2n

22n−1

22n−1 − 1
. (12)

By (12) we have that for n ≥ 2,
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an >
216(n + 1)
(2n + 2)!

2(2n + 2)!
(2π)2n+2

22n+2

22n+2 − 1
− 9

(2n)!
2(2n)!
(2π)2n

22n−1

22n−1 − 1

=
2

π2n+2
216(n + 1)
22n+2 − 1

− 9π2

π2n+2
1

22n−1 − 1
= 18×

(
6n− π2 + 6

)
× 22n+2 −

(
48n− π2 + 48

)
π2n+2(4× 22n − 1)(22n − 2)

=
18×

(
6n− π2 + 6

)
π2n+2(4× 22n − 1)(22n − 2)

[
22n+2 − 48n− π2 + 48

6n− π2 + 6

]
.

Now, by mathematical induction, we can prove that

22n+2 >
48n− π2 + 48

6n− π2 + 6
, n ≥ 2. (13)

It is not difficult to verify that the above formula (13) is true for n = 2. Suppose (13)
holds for m, that is

22m+2 >
48m− π2 + 48

6m− π2 + 6
, m ≥ 2. (14)

By (14), we have

22m+4 = 4 · 22m+2 > 4 · 48m− π2 + 48
6m− π2 + 6

.

The inequality (13) is proved when proving

4
(
48m− π2 + 48

)
6m− π2 + 6

>
48(m + 1)− π2 + 48

6(m + 1)− π2 + 6

or
A
B

=:
4
(
48m− π2 + 48

)
6m− π2 + 6

>
48m− π2 + 96
6m− π2 + 12

:=
C
D

.

In fact,

AD− BC = 864m2 + m
(

2592− 162π2
)
+
(

3π4 − 138π2 + 1728
)
> 0

holds for all m ≥ 2 due to

∆ =
(

2592− 162π2
)2
− 4× 864×

(
3π4 − 138π2 + 1728

)
= 324

(
7π2 − 144

)(
7π2 − 16

)
< 0.

So we have obtained that an > 0 for n ≥ 2. This leads to that G′(t) > 0 for all t > 0.
In view of the relation G(0) = 0, we have that the fact G(t) > 0 holds for all t > 0.

(ii) The result just proved is equivalent to the fact that the inequality

1
3
>

ln t
tanh−1(sin t)

ln(cos t)
:= B(t)

holds for all t > 0. In this way, when obtaining limt→0 B(t) = 1/3 or limt→∞ B(t) = 1/3,
we will prove that 1/3 is the best constant in (9). Considering the fact

lim
t→0

B(t) = lim
t→0

ln t− ln tanh−1(sin t)
ln(cos t)

= lim
t→0

[
ln t− ln tanh−1(sin t)

]′
[ln(cos t)]′

= lim
t→0

1
t −

1
tanh−1(sin t)

1
cos t

− sin t
cos t

= lim
t→0

− 1
3 t + o(t)
−t + o(t)

=
1
3

,

we can complete the proof of Lemma 3.
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2.2. Main Results and Their Proofs

In order to explore better and more accurate inequalities on the relationship between
the inverse hyperbolic sine function and the inverse tangent function, we consider the
Taylor’s formula of the following function:

(arctan x)2 − ln2(x +
√

1 + x2)

(1 + x2)
α = x4

(
α− 1

3

)
− x6

(
1
2

α2 +
5
6

α− 1
3

)
+ o
(

x7
)

, x → 0.

Letting α = 1/3, we can obtain the following expression for x → 0,

(arctan x)2 − ln2(x +
√

1 + x2)

(1 + x2)
1/3 =

4
2835

x8 − 26
8505

x10 +
6436

1403 325
x12 − 10 678

1804 275
x14 + o

(
x15
)

,

and draw the following conclusion.

Theorem 1. Let x ∈ (−∞, ∞). Then the inequality

ln2(x +
√

1 + x2)

(1 + x2)
1/3 ≤ (arctan x)2 (15)

holds with the best exponent 1/3.

Proof. Since the functions on both sides of (15) are even functions, we can limit our
discussion to the interval (0, ∞) due to

ln2(x +
√

1 + x2)

(1 + x2)
1/3 < (arctan x)2, 0 < |x| < ∞

is equivalent to
ln2(x +

√
1 + x2)

(1 + x2)
1/3 < (arctan x)2, x > 0,

that is
ln(x +

√
1 + x2)

(1 + x2)
1/6 < arctan x, x > 0.

Let sinh−1 x = t, x ∈ (0, ∞). Then x = sinh t, t ∈ (0, ∞) and Theorem 1 is equivalent
to Lemma 2. This completes the proof of Theorem 1.

The second objective of this paper is to obtain the analogue result of the inequality (15).

Theorem 2. Let x ∈ (−1, 1). Then the inequality

(arcsin x)2

(1− x2)
1/3 ≤

(
tanh−1 x

)2
(16)

holds with the best exponent 1/3.

Proof. Since the functions on both sides of (16) are even functions, we can limit our
discussion to the interval (0, 1). Let arcsin x = t, x ∈ (0, 1). Then x = sin t, t ∈ (0, π/2)
and Theorem 2 is equivalent to Lemma 3. This completes the proof of Theorem 2.
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3. Some Improvements of Mitrinovic–Adamović and Lazarević Inequalities
and Remarks

First, we know that the Mitrinović–Adamović inequality (see [14,15]) can be described
as follows: (

sin t
t

)3
> cos t, 0 < t <

π

2
(17)

or
sin t

t
> (cos t)1/3, 0 < t <

π

2
. (18)

The hyperbolic version of the above result is Lazarević’s inequality (see [16,22]):(
sinh t

t

)3
> cosh t, t > 0 (19)

or
sinh t

t
> (cosh t)1/3, t > 0. (20)

Now, connecting two key inequalities (9) and (7) with the above two inequalities, we
can obtain the following interesting results.

Theorem 3. Let 0 < t < π/2. Then

sin t
t

>
t

tanh−1(sin t)
> (cos t)1/3. (21)

Proof. We only prove the first inequality of (21), which is

tanh−1(sin t)− t2

sin t
> 0, 0 < t <

π

2
.

In ([18], § 4.3.69, § 4.3.68), we can find the following power series expansion of the
functions 1/ cos t and 1/ sin t as follows:

1
cos t

=
∞

∑
n=0

|E2n|
(2n)!

t2n, |t| < π, (22)

1
sin t

=
1
t
+

∞

∑
n=1

22n − 2
(2n)!

|B2n|t2n−1, 0 < |t| < π. (23)

By (22) and (23) we have

tanh−1(sin t)− t2

sin t

=
∫ t

0

1
cos t

dt− t2

sin t
=

∞

∑
n=0

|E2n|
(2n + 1)!

t2n+1 − t2

[
1
t
+

∞

∑
n=1

22n − 2
(2n)!

|B2n|t2n−1

]

=
∞

∑
n=2

|E2n|
(2n + 1)!

t2n+1 −
∞

∑
n=2

22n − 2
(2n)!

|B2n|t2n+1 =
∞

∑
n=2

[
|E2n|

(2n + 1)!
−

∞

∑
n=2

22n − 2
(2n)!

|B2n|
]

t2n+1

= :
∞

∑
n=2

bnt2n+1,

where

bn =
|E2n|

(2n + 1)!
− 22n − 2

(2n)!
|B2n|, n ≥ 2.
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The following estimates of the even-indexed Euler numbers E2n can be found in [18]:

22(n+1)

π2n+1
32n+1

32n+1 + 1
<
|E2n|
(2n)!

<
22(n+1)

π2n+1 . (24)

From (12) and (24), we have

bn >
1

(2n + 1)
22(n+1)

π2n+1
32n+1

32n+1 + 1
− 22n − 2

(2n)!
2(2n)!
(2π)2n

22n−1

22n−1 − 1

= 2× 6× 62n − 3× 32nπ(2n + 1)− π(2n + 1)
π2n+1(2n + 1)(3× 32n + 1)

> 0.

This completes the proof of Theorem 3.

Theorem 4. Let t > 0. Then

t
arctan(sinh t)

< (cosh t)1/3 <
sinh t

t
. (25)

Theorem 5. The contribution of the two conclusions (7) and (9) in this paper is that (9) subdivides
the Mitrinović–Adamović inequality and (7) gives a lower bound for the function (cosh t)1/3.

Second, by comparing the inequality (15) with the one (3), we conclude that

Theorem 6. Let x ∈ (−∞, ∞). Then

(sin x) ln(x +
√

1 + x2)√
1 + x2

≤ ln2(x +
√

1 + x2)

(1 + x2)
1/3 ≤ (arctan x)2. (26)

Proof. We only prove the first inequality of (26) holds for x > 0. Obviously, we have(
1 + x2

)1/3
≤
√

1 + x2. (27)

At the same time, we can prove that

ln(x +
√

1 + x2) > sin x (28)

holds for all x ∈ (0, ∞).
First, we prove that the inequality (28) holds for x ∈ (0, π). Let

g(x) = ln(x +
√

1 + x2)− sin x, 0 < x < π.

Then

g′(x) =
1√

x2 + 1
− cos x =

1−
√

x2 + 1 cos x√
x2 + 1

:=
j(x)√
x2 + 1

,

where j(x) = 1−
√

x2 + 1 cos x. Since

j′(x) =
sin x + x2 sin x− x cos x√

x2 + 1
=

sin x√
x2 + 1

sin x + x2 sin x− x cos x
sin x

=
sin x√
x2 + 1

(
x2 + 1− x

cos x
sin x

)
:=

sin x√
x2 + 1

p(x),

where
p(x) = x2 + 1− x

cos x
sin x

, 0 < x < π.
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Using (10), we have

p(x) = x2 + 1− x

[
1
x
−

∞

∑
n=1

22n

(2n)!
|B2n|x2n−1

]

= x2 + 1− 1 +
∞

∑
n=1

22n

(2n)!
|B2n|x2n = x2 +

22

2!
|B2|x2 +

∞

∑
n=2

22n

(2n)!
|B2n|x2n

=
4
3

x2 +
∞

∑
n=2

22n

(2n)!
|B2n|x2n > 0

for all x ∈ (0, π). This leads to that j′(x) > 0 on (0, π) and j(x) is increasing on (0, π).
Therefore j(x) > j(0) = 0, which means g′(x) > 0 on (0, π) and g(x) is increasing on (0, π).
So g(x) > g(0) = 0 holds for x ∈ (0, π).

Then we prove that the inequality (28) holds for x ∈ (0, ∞). When x ∈ (2kπ + π, 2kπ + 2π)
and k ≥ 0, we have sin x < 0 and the inequality (28) is true. So we can assume x ∈
(2kπ, 2kπ + π), k ≥ 0.Let u = x− 2kπ. Then we obtain that the variable u changes on (0, π),
which is exactly the interval discussed in above. So we can obtain the following conclusions:

ln(x +
√

1 + x2) > ln(u +
√

1 + u2) > sin u = sin x, x > 0

and
ln2(x +

√
1 + x2) > (sin x) ln(x +

√
1 + x2), x > 0. (29)

Therefore, the desired result follows easily from (27) and (29).

Remark 1. The inequality (15) is better than (3) on the real axis (−∞, ∞).

Third, by comparing the inequality (16) with the one (6), we conclude that

Theorem 7. Let x ∈ (−1, 1). Then

x arcsin x(
1− 41

45 x2
)45/82 ≤

(arcsin x)2

(1− x2)
1/3 ≤ (arctan x)2. (30)

Proof. We only prove the first inequality of (30). Let

H(x) = arcsin x−
x
(
1− x2)1/3(

1− 41
45 x2

)45/82 , 0 < x < 1.

Then

H′(x) =

(
1− x2)1/6

(
1− 41

45 x2
)127/82

−
(

1− 10
9 x2

)(
1− 7

15 x2)
(1− x2)

2/3
(

1− 41
45 x2

)127/82 :=
h(x)

(1− x2)
2/3
(

1− 41
45 x2

)127/82 ,

where

h(x) =
(

1− x2
)1/6

(
1− 41

45
x2
)127/82

−
(

1− 10
9

x2
)(

1− 7
15

x2
)

, 0 < x < 1.

For x ∈
(

3/
√

10, 1
)

, (
1− 10

9
x2
)(

1− 7
15

x2
)
< 0,
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we have h(x) > 0. In the following, we will prove that

(
1− x2

)1/6
(

1− 41
45

x2
)127/82

>

(
1− 10

9
x2
)(

1− 7
15

x2
)

holds for x ∈
(

0, 3/
√

10
)

.
Let

q(x) =
1
6

ln
(

1− x2
)
+

127
82

ln
(

1− 41
45

x2
)
− ln

(
1− 10

9
x2
)
− ln

(
1− 7

15
x2
)

, 0 < x <
3√
10

.

Then

q′(x) =
548

2025
x5 1− 1225

1233 x2

(1− x2)
(

1− 10
9 x2

)(
1− 41

45 x2
)(

1− 7
15 x2

)
>

548
2025

x5
1− 1225

1233

(
3√
10

)2

(1− x2)
(

1− 10
9 x2

)(
1− 41

45 x2
)(

1− 7
15 x2

)
=

58
2025

x5 1

(1− x2)
(

1− 10
9 x2

)(
1− 41

45 x2
)(

1− 7
15 x2

)
> 0.

So the function q(x) is increasing on
(

0, 3/
√

10
)

. Due to q(0) = 0 we have q(x) > 0

for x ∈
(

0, 3/
√

10
)

. This leads to h(x) > 0 for
(

0, 3/
√

10
)

. So h(x) > 0 holds for all

x ∈ (0, 1), which means H′(x) > 0 for all x ∈ (0, 1). In view of H(0) = 0, we have that
H(x) > 0 holds for all x ∈ (0, 1). This complete the proof of the first inequality of (30).

Remark 2. The inequality (16) is better than (5) and (6).

4. Some Applications of Theorem 1 and Theorem 2 in the Mean Value Theory

Mean value inequality is an eternal topic in the field of mathematical inequalities.
Averaging is the most common way to combine the inputs and is commonly used in
voting, multicriteria and group decision making, constructing various performance scores,
statistical analysis, etc. In this section, assume that x and y are two different positive
numbers, G(x, y),L(x, y),A(x, y) andM2(x, y) are the geometric, logarithmic, arithmetic
and quadratic means, respectively, where

G(x, y) =
√

xy, L(x, y) =
y− x

log y− log x
, A(x, y) =

x + y
2

, M2(x, y) =
(

x2 + y2

2

)1/2

.

For convenience, we note thatM < N impliesM(x, y) < N (x, y), whereM and N
are means with two different positive numbers x and y. In order to explore the various
relationships between the above means, we can take the geometric mean G(x, y) as a
reference and make transformation

√
y/x = ew to obtain the following results:

L(x, y)
G(x, y)

=
sinh w

w
,
A(x, y)
G(x, y)

= cosh w,
M2(x, y)
G(x, y)

=
√

cosh 2w, w > 0.

Then via the relationships connected with hyperbolic sine function and hyperbolic
cosine function,

1 <
sinh w

w
< cosh w <

√
cosh 2w, (31)
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we can obtain a chain of inequalities

G < L < A <M2. (32)

For the study of the classical mean inequalities, see [22–29].
The traditional method of dealing with mean inequality is to replace the relationship

between two means with the relationship between two corresponding hyperbolic functions
through a change of variables. In recent years, scholars have been exploring another novel
methods to study the relationships between classical means and newly introduced means.
Among them, the so-called Seiffert function method is worth introducing.

In 1998, Kahlig and Matkowski [30] introduced a new concept in the field of means,
the ratio of a homogeneous bivariable mean M in (0, ∞) to a classical mean N can be
expressed as a function of (x− y)/(x + y), which is called index function ofMwith respect
to N or an N -index ofM:

M(x, y)
N (x, y)

= fM,N

(
x− y
x + y

)
,

where fM,N : (−1, 1) −→ (0, 2) is a unique single variable function (with the graph laying
in a set of a butterfly shape).

Assuming f : (0, 1)→ R+, Witkowski [31] constructed a new binary function:

M f (x, y) =

{
|x−y|
2 f (t) x 6= y

x x = y
, (33)

where

t =
|x− y|
x + y

.

When the function f (t) satisfies

t
1 + t

≤ f (t) ≤ t
1− t

,

Witkowski [31] proved thatM f (x, y) is a symmetric and homogeneous mean. In this
case, the function f (t) with the property above produces a corresponding mean, and there
is the following relationship between the two functions f (t) andM f (x, y):

f (t) =
t

M f (1− t, 1 + t)
. (34)

In this way, the two functions f (t) and M f (x, y) determine the one-to-one corre-
spondence through these two relations (33) and (34). For this reason, we can rewrite
f (t) =: fM(t). In general, f (t) is called the Seiffert function of the meanM (see [32,33]).

As a Chinese idiom says, how can you catch tiger cubs without entering the lair of the
tiger? In order to make the above new method of dealing with mean value inequalities more
useful, we have made the following appropriate modifications. We change the parameters
sign of a meanM f about two parameters with u and v, and assume that 0 < u < v. So
there must be three positive numbers x, y, and λ, so that{

u = λ 2x
x+y

v = λ
2y

x+y
, 0 < x < y.

Then we have that 0 < t < 1,

t =
y− x
x + y

,
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and

M f (u, v) = M f

(
λ

2x
x + y

, λ
2y

x + y

)
= λM f

(
2x

x + y
,

2y
x + y

)
= λM f (1− t, 1 + t) (35)

= λ
t

fM(t)
.

Via (34), we can obtain that

fG(t) =
t√

(1− t)(1 + t)
=

t√
1− t2

, (36)

fL(t) =
t

(1+t)−(1−t)
ln(1+t)−ln(1−t)

=
1
2

ln
1 + t
1− t

= tanh−1 t, (37)

fA(t) =
t

(1−t)+(1+t)
2

= t, (38)

fM2(t) =
t√

(1−t)2+(1+t)2

2

=
t√

1 + t2
. (39)

If the following relation holds

t√
1 + t2

< t < tanh−1 t <
t√

1− t2
, (40)

then using (35), we obtain (32). The chain of inequalities (40) is not difficult to prove. That
is to say, we can also prove (32) by the Seiffert function.

The first Seiffert mean P(x, y), the second Seiffert mean T (x, y), and Neuman–Sandor
meanR(x, y) are, respectively, defined [34–38] by

P(x, y) =
|x− y|

2 arcsin t
, T (x, y) =

|x− y|
2 arctan t

, R(x, y) =
|x− y|

2 sinh−1 t
.

Incidentally, we can find the logarithmic mean is a Seiffert-type mean:

L(x, y) =
|x− y|

2 tanh−1 t
.

Obviously, we have

fP (t) = arcsin t, (41)

fT (t) = arctan t, (42)

fR(t) = sinh−1 t. (43)

Next, we apply the conclusions of Theorem 1 and Theorem 2 to obtain the relationships
between the Seiffert-like means and the classical means mentioned above. According to the
above definitions (38), (39), (42), (43) and the relationship (35), we have

sinh−1 t =
λt
R , arctan t =

λt
T

and
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fA(t) = t =
λt
A ,

fM2(t) =
t√

1 + t2
=

λt
M2

.

So

sinh−1 t
arctan t

=
T
R , (44)(

1 + t2
)1/6

=

(
M2

A

)1/3
.

The result of Theorem 1 can be subsequently converted into the following inequality:

(
1 + t2

)1/6
>

sinh−1 t
arctan t

, 0 < t < 1.

Note that using (44), we can obtain the fact(
M2

A

)1/3
>
T
R ,

which is
M2R3 > AT 3. (45)

Similarly, according to the above related concepts (36), (37), (41) and Formula (35),
we have

arcsin t =
λt
P , tanh−1 t =

λt
L

and
fG(t) =

t√
1− t2

=
λt
G .

Then we obtain that

arcsin t
tanh−1 t

=
L
P , (46)

(
1− t2

)1/6
=

(
G
A

)1/3
.

The result of Theorem 2 is equivalent to the following inequality:(
1− t2

)1/6
>

arcsin t
tanh−1 t

, 0 < t < 1.

Note that using (46), we can obtain the fact(
G
A

)1/3
>
L
P ,

that is
GL3 > AP3. (47)

Therefore, applying Theorems 1, 2, we obtain two novel inequalities (45) and (47)
connected with Seiffert-like means and classical means.

Remark 3. The application of the main conclusions of this paper is not limited to this section.
In fact, applying fractional integral operator to the both sides of the inequalities (15) and (16)
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respectively, we can obtain inequalities similar to (3.1) in [39] and (2.3) in [40]. Similar exploration
can become a research topic and direction in the future.

5. Conclusions

In this paper, we obtain two new inequalities:

ln2(x +
√

1 + x2)

(1 + x2)
1/3 ≤ (arctan x)2, −∞ < x < ∞, (48)

(arcsin x)2

(1− x2)
1/3 ≤

(
tanh−1 x

)2
, − 1 < x < 1. (49)

On the one hand, because of

(sin x) ln(x +
√

1 + x2)√
1 + x2

≤ ln2(x +
√

1 + x2)

(1 + x2)
1/3 ≤ (arctan x)2, −∞ < x < ∞,

x arcsin x
1− 1

2 x2
≤ x arcsin x(

1− 41
45 x2

)45/82 ≤
(arcsin x)2

(1− x2)
1/3 ≤

(
tanh−1 x

)2
, − 1 < x < 1,

the above two inequalities (48) and (49) are better than the conclusions and open problems
in the previous literature. On the other hand, because of

(cos t)1/3 <
t

tanh−1(sin t)
<

sin t
t

, 0 < t <
π

2
,

t
arctan(sinh t)

< (cosh t)1/3 <
sinh t

t
, t > 0,

the equivalent forms of the above two inequalities (48) and (49) refine and strengthen the
Mitrinović–Adamović and Lazarević inequalities.

Finally, we apply the results of Theorems 1 and 2 to the theory of mean value inequali-
ties and obtain new inequalities related to Seiffert-like means and classical means.
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