
A NEW MASS-CONSERVING ALGORITHM FOR LEVEL SET

REDISTANCING ON UNSTRUCTURED MESHES

Fernando Mut∗, Gustavo C. Buscaglia∗†, and Enzo A. Dari∗†

∗Instituto Balseiro, Universidad Nacional de Cuyo

8400, Bariloche, Argentina, e-mail: mutf@ib.cnea.gov.ar
†Centro Atómico Bariloche, CNEA

8400, Bariloche, Argentina (GCB and EAD also belong to CONICET)

e-mail: gustavo@cab.cnea.gov.ar, darie@cab.cnea.gov.ar

Key Words: Level-Set Method, Redistancing, Mass conservation

Abstract. The Level Set Method is becoming increasingly popular for the simulation of several

problems that involve interfaces. The level set function is advected by some velocity field, with

the zero-level set of the function defining the position of the interface.The advection distorts

the initial shape of the level set function, which needs to be re-initialized to a smooth function

preserving the position of the zero-level set. Many algorithms re-initialize the level set func-

tion to (some approximation of) the signed distance from the interface. Efficient algorithms

for level-set redistancing on cartesian meshes have become available over the last years, but

unstructured meshes have received little attention.

This presentation concerns algorithms for construction of a distance function from the zero-

level set, in such a way that mass is conserved on arbitrary unstructured meshes. The algorithm

is consistent with the hyperbolic character of the distance equation (‖ ∇d ‖= 1) and can be lo-

calized on a narrow band close to the interface, saving computing effort. The mass-rebalancing

step is weighted according to local mass differences, an improvement over usual global rebal-

ancing techniques.

Mecánica Computacional Vol. XXIII, pp. 1659-1678
G.Buscaglia, E.Dari, O.Zamonsky (Eds.)

Bariloche, Argentina, November 2004

1659

1 INTRODUCTION

The Level Set Method (LSM) has become a popular choice for numerically handling problems

with interfaces. The basic idea is to represent the interface (which we will denote by S as the

zero-level set of a level set (LS) function φ. The normal to the interface thus satisfies

~n(~x) =
∇φ

‖ ∇φ ‖
(1)

for all ~x such that φ(~x) = 0. The curvature of S can also be obtained from φ, i.e.,

κ(~x) = div ~n = div

(

∇φ

‖ ∇φ ‖

)

(2)

It is evident that, if ~β is any vector field such that cn = ~β · ~n is the interface speed, then φ must

satisfy the LS equation
∂φ

∂t
+ ~β · ∇φ = 0 (3)

at least locally at S.

In multiphase flows, S represents the boundary between two immiscible fluids. Let us as-

sume that just two fluids (A and B) are present inside a domain Ω, so that the region occupied

by fluid A is

ΩA = {~x ∈ Ω, φ(~x) > 0} (4)

If ~β (assumed smooth enough) is solenoidal inside ΩA, then the volume of fluid A (denoted by

|ΩA|) will be conserved since

d |ΩA|

dt
=

∫

S

cn dΓ =

∫

S

~β · ~n dΓ =

∫

ΩA

div ~β dΩ = 0 (5)

It is important to remark that though (3) is a transport equation, it does not arise from a

conservation law. Usual methods to deal with (3) have been designed to conserve mass when

φ is a density; i.e., they conserve
∫

ω
φ dω for some family of subdomains ω. This conservation

property is in fact useless in LS formulations, since it does not imply that the zero-level set of

φ will propagate at the correct speed, and thus in general mass of each fluid will be created or

destroyed at the interface due to numerical error.

Much effort has lately been devoted to improving the LSM so as to minimize numerical

inaccuracies in the zero-level set propagation.1–6 The underlying idea is that if the initial data

φ0(~x) = φ(~x, t = 0) is smooth in a neighborhood of S, then any high-order numerical method

for (3) will propagate the interface without significant error from t = 0 to some time t = T
provided that the mesh is fine enough. The time bound T arises because, in general, φ will not

remain smooth indefinitely and will thus be more prone to numerical inaccuracies.

The most popular approach for initializing φ as a function that is smooth close to S is to

choose φ as the signed distance d to the interface. Of course, after some simulation time (smaller

F. Mut, G. Buscaglia, E. Dari

1660

than T) the function φ is re-initialized (or “redistanced”), so that LS distortion is kept under

control. This article presents a general method for computing d in unstructured meshes, which

is related to fast-marching methods developed for cartesian grids.7, 8 The method is developed

for simplices (triangles in 2D, tetrahedra in 3D), and is consistent with the hyperbolic character

of the distance equation ‖ ∇d ‖= 1.

However, no matter how accurately d is computed at the mesh nodes, the function φ which

coincides with d at the nodes will not preserve the exact location of the interface. This may

result in an additional spurious local mass loss or gain, which is added to that coming from

numerical errors in the solution of (3). Almost all re-distancing algorithms thus involve some

sort of mass-rebalancing step.5, 9, 10 Our method includes one such step that is local and involves

no adjustable parameter.

We are leaving aside many other sources of error that play a role in LS formulations of multi-

fluid flows. Among others, the numerical difficulty of correctly computing the transport velocity
~β close to the interface, where density and viscosity are discontinuous. Very comprehensive

accounts of the LSM for fluid interfaces are available.11, 12

2 REDISTANCING ALGORITHM

2.1 Preliminaries

We consider an arbitrary triangulation Th of the domain Ω, where h is a characteristic mesh

size, and the associated space Vh of continuous functions that are linear inside each simplex.

Let φh ∈ Vh be a function, and let S be its zero-level set. Our aim is to find a function φ̃h ∈ Vh

which approximates the signed distance function d to S, defined for any closed set S as

d(~x) = sign [φh(~x)] min
~y ∈S

‖ ~x− ~y ‖ (6)

This function satisfies ‖ ∇d ‖= 1 almost everywhere in Ω, but does not, in general, belong to

Vh. In what follows we will assume Ω to be bounded, and all curves (in 2D) or surfaces (in 3D)

to be compact (adding the adherence points if the curve or surface intersects the boundary of Ω.

The algorithm we consider is based on the following basic property of the distance function

to a compact set S:

Proposition 2.1 Let C be a surface in IRn (of co-dimension 1) which divides IRn into two open

sets, ω+ and ω−, such that S ⊂ ω−. Then, for any ~y ∈ ω+,

|d(~y)| = min
~x∈C

[|~y − ~x| + |d(~x)|] (7)

Proof: Let ~s ∈ S satisfy |d(~y)| = |~y − ~s|, and let ~a be the intersection of the segment ys
with C (which exists because C divides IRn). Notice first that |d(~a)| = |~a− ~s| because, if there

existed a point ~w such that |~a− ~w| < |~a− ~s|, then

|~y − ~w| ≤ |~y − ~a| + |~a− ~w| < |~y − ~a| + |~a− ~s| = |~y − ~s| = |d(~y)|

F. Mut, G. Buscaglia, E. Dari

1661

in contradiction with the definition of |d(~y)| as the minimal distance from ~y to any point in S.

Defining now

ξ(~y) = min
~x∈C

[|~y − ~x| + |d(~x)|] (8)

it is easy to show that ξ(~y) ≤ |d(~y)|. In fact,

|d(~y)| = |~y − ~s| = |~y − ~a| + |~a− ~s| = |~y − ~a| + |d(~a)| ≥ min
~x∈C

[|~y − ~x| + |d(~x)|] = ξ(~y)

It remains to show that ξ(~y) ≥ |d(~y)|. To see this, let ~z ∈ C satisfy ξ(~y) = |~y− ~z|+ |d(~z)| and

let ~w ∈ S satisfy |d(~z)| = |~z − ~w|. Then

ξ(~y) = |~y − ~z| + |~z − ~w| ≥ |~y − ~w| ≥ |d(~y)|

and the proof is complete. �

The previous proposition shows that the distance function can be computed “layer after

layer”, using the values computed on some surface C to compute the values of d at points

that lie “outside” C. With these new values, one can redefine C as the new boundary of the sub-

domain in which d is already known, and in this way march outwards from S until d is known

everywhere. The idea of a marching method7, 8 has been made evident in the previous argument.

But what happens when one considers perturbations of the original problem? We have

already recalled that the exact function d does not belong to Vh. Let P be the set of nodal points

that are adjacent to the zero-level set of φh, in the sense that they are vertices of simplices

inside which φh changes sign. If one makes the simple assignment φ̃h(~X) = d(~X) for all
~X ∈ P , there is a volume loss (or gain) which could render the algorithm useless for physical

simulations. To be precise, assigning φ̃h(~X) = d(~X) results in
∫

φh(~x)<0
d~x 6=

∫

φ̃h(~x)<0
d~x.

The values of φ̃h at the nodes adjacent to the zero-level set must thus be “adjusted” so as

to preserve volume, and the function φ̃ must be calculated at the remaining nodes using the

adjusted values at P . In general, this “adjusted” distance φ̃h, linearly interpolated from the

nodal values, is not the distance to some “adjusted” set S ′. This is a perturbation of the problem

considered in Prop. 2.1, and it is appropriate to adapt the result to consider this case. Simulta-

neously, we will rephrase the result in a way that motivates the algorithm we are using (which

is not a marching method).

Proposition 2.2 Let S be a closed set in IRn and let ψ be a continuous, positive function on S.

Let us define

η(~y) = min
~x∈S

[ψ(~x) + |~y − ~x|] (9)

(notice that η(~y) = |d(~y)| if ψ = 0), and let ~y be arbitrary in IRn \ S. Then, for any surface C
(as in Prop. 2.1) such that S ⊂ ω− and ~y ∈ ω+,

η(~y) = min
~x∈C

[η(~x) + |~y − ~x|] (10)

F. Mut, G. Buscaglia, E. Dari

1662

Proof: Let

ξ(~y) = min
~x∈C

[η(~x) + |~y − ~x|] (11)

We must prove that η(~y) = ξ(~y). Let ~s verify η(~y) = ψ(~s)+ |~y−~s|, and let ~a be the intersection

of the segment ys with C. From (9),

η(~a) ≤ ψ(~s) + |~a− ~s| = ψ(~s) + |~y − ~s| − |~y − ~a| = η(~y) − |~y − ~a|

implying that

η(~y) ≥ η(~a) + |~y − ~a| ≥ ξ(~y)

It remains to prove that η(~y) ≤ ξ(~y). Let ~z ∈ C satisfy ξ(~y) = η(~z) + |~y − ~z| and let ~w ∈ S
satisfy η(~z) = ψ(~w) + |~z − ~w|. Then

ξ(~y) = ψ(~w) + |~z − ~w| + |~y − ~z| ≥ ψ(~w) + |~y − ~w| ≥ η(~y)

which completes the proof. �

Remark 2.3 In the proof above it is not difficult to see that ~y, ~w and ~z are aligned. Let ~b be the

intersection of the segment yw with C. If ~b 6= ~z, then

ξ(~y) = ψ(~w) + |~y − ~z| + |~z − ~w| > ψ(~w) + |~b− ~w| + |~y −~b| ≥ η(~b) + |~y −~b|

in contradiction with (10). The alignment implies that, if ~s is as before such that η(~y) =
ψ(~s) + |~y − ~s|, then for any ~z in the straight segment ys, η(~z) = ψ(~s) + |~z − ~s|. The curves

that join each point of the domain with the minimizing argument of the right hand side of (9)

are straight lines (“rays”, by analogy with optics).

Remark 2.4 It is also possible to prove that, at points where η is differentiable, |∇η| = 1 in

much the same way as |∇d| = 1, which is a particular case corresponding to ψ = 0. To see

this, first notice that along the “rays” the directional derivative of η is equal to one. It remains

to prove that along a direction perpendicular to the local ray direction the derivative vanishes,

assuming that it exists. Let ~y and ~s be as before, and let ~D be a unit vector orthogonal to the

segment ys. Because of the orthogonality,

|~y + ǫ ~D − ~s| = |~y − ~s| +
1

2

ǫ2

|~y − ~s|
+ O(ǫ4)

Now, using also (9),

η(~y + ǫ ~D) ≤ ψ(~s) + |~y + ǫ ~D − ~s| ≤ ψ(~s) + |~y − ~s| + O(ǫ2) = η(~y) + O(ǫ2)

From this it is immediate that, if η is differentiable at ~y, then its derivative along ~D must vanish.

F. Mut, G. Buscaglia, E. Dari

1663

2.2 Computing the distance

It is clear that the sign of φ̃h adds no difficulty, since it simply equals that of φh. We will thus

describe the calculation of φ̃h just on ΩA, where φh is positive. Let P be the set of nodal points

that are adjacent to the zero-level set of φh, in the sense that they are vertices of simplices

inside which φh changes sign, and let PA be the subset of P with positive values of φh (i.e.,

PA = P ∩ ΩA). We assume φ̃h given on PA (its calculation is described later). The rest of the

nodes in ΩA is denoted by RA.

Step 1 (Initialization): There exist several options for initializing φ̃h over RA.

a) Let I be a node in RA, and let CI be the set of nodes connected to I , I not included (notice

that CI ⊂ (PA∪RA). The initial guess we use for φ̃h is a distance-along-edges approximation,

i.e., the unique function satisfying

φ̃h(~XI) = min
J ∈CI

[

φ̃h(~XJ) + | ~XI − ~XJ |
]

In the process of initializing φ̃h with this option, the elements can be ordered so as to render the

algorithm more effective.

b) If one wants to calculate φ̃h up to a distance δ from S, one simply initializes φ̃h as equal to δ
over RA.

Step 2 (Evaluation): The simplices in the mesh are swept until φ̃h no longer changes. For each

simplex, and for each node I of the simplex (coordinates denoted by ~XI), φ̃h is interpolated

linearly on the opposite face FI , using the current values at the nodes. Then, a tentative new

value ηI of φ̃h at node I is calculated as

ηI = min
~x∈FI

[

φ̃h(~x) + | ~XI − ~x|
]

Finally, φ̃h(~XI) is updated to the value ηI if the current value is greater than ηI .

2.3 Volume preservation

The key in preserving volume in the algorithm is the correct computation of φ̃h on the set of

nodes adjacent to the interface (denoted by P). Les us define K(φh) as the set of simplices in

which φh changes sign, so that S ⊂ K(φh). The objective is thus to calculate φ̃h such that it

approximates the signed distance d while at the same time preserving the volume

V (φh) =

∫

K(φh)

H(φh(~x)) d~x (12)

where H is the Heaviside function (H(s) = 1 if s > 0, H(s) = 0 otherwise). The contribution

to this volume of each simplex K ∈ K(φh) is

VK(φh) =

∫

K

H(φh(~x)) d~x (13)

F. Mut, G. Buscaglia, E. Dari

1664

The algorithm is again structured in a sequence of steps.

Step 1 (Initialization): The function φ̃h is initialized, over the nodes in P , to a first estimate

φ̃0
h, calculated as the true signed distance to S.

Step 2 (Evaluation of a simplex-wise correction): In general, the initialization ends up with a

function φ̃0
h for which VK(φ̃0

h) 6= VK(φh), though the difference is quite small. We then solve,

on K, the nonlinear system

RK(∆K) = VK(φ̃0
h + ∆K) − VK(φh) = 0 (14)

to determine which (constant over K) value should be added to φ̃0
h to achieve local volume

preservation. The values ∆K are computed using a simple secant algorithm ∆
(i+1)
K = ∆

(i)
K −

R
(i)
K (∆

(i)
K − ∆

(i−1)
K)/(R

(i)
K − R

(i−1)
K), which converges in very few steps, and stored.

Step 3 (Node-wise correction): From the previous step, simplex-wise values that should be

added to φ̃0
h to preserve volume for all K ∈ K(φh) are available. We now compute a node-wise

direction ψh by averaging over the simplices that share a node. Let I be a node in P , and let NI

be the number of simplices in K(φh) that contain I , then we define

ψh(~XI) =
1

NI

∑

K ∈ K(φh)
I ∈ K

∆K (15)

The value of φ̃h on P is finally calculated over P as

φ̃h = φ̃0
h + C ψh , (16)

where C is the value of C such that
∫

K(φh)

H(φ̃0
h(~x) + C ψh(~x)) d~x =

∫

K(φh)

H(φh(~x)) d~x (17)

The nonlinear system for C is again solved by a simple secant method and converges in very

few iterations.

Remark 2.5 The mass-conserving correction (16) is of the same kind as those proposed in

other papers. A common approach is simply to propose ψh = 1, so that a uniform value is

added to φ̃0
h to correct the mass.3 This is however not optimal, since volume loss/gain is not

uniform over the interface. In fact, the loss/gain in volume tends to concentrate in regions of

higher curvature. In other approaches the function φ̃ is obtained as the steady state of the

heuristic equation

∂φ̃

∂t
+ S(φ)(|∇φ̃| − 1) = 0, φ̃(~x, 0) = φ(~x)

F. Mut, G. Buscaglia, E. Dari

1665

in which S is a sign function or a suitably smeared approximation thereof. We refer to the

book by Osher and Fedkiw,12 page 65, for a thorough discussion on reinitialization procedures.

Our approach is similar to that proposed by Sussman and Fatemi for structured grids,9 in that

it proposes a function φ̃h that has no free parameters and concentrates the correction locally

where the loss/gain in volume is higher, thus automatically accounting for curvature, mesh

distortion, etc.

3 NUMERICAL EXAMPLES

In this section we present a few numerical examples that focus on different aspects of the algo-

rithm. We start with an assessment of the distance computing algorithm on different, arbitrary

grids. We then show the effect of the redistancing algorithm on the transport of the so-called

Zalezak’s disk, a usual benchmark for Level Set formulations.5, 13

3.1 Assessment of the distance calculation

We first consider the unit squate (0, 1) × (0, 1) as the domain Ω, in which we randomly put

4 circles and 4 squares. The diameter of the circles and the edge-length of the squares are

randomly chosen between 0.08 and 0.16. All other variables (center position, orientation) are

also random. In this way we generate 9 zero-level sets that are shown in Fig. 1. Notice that

since overlapping of the circles and squares is allowed the sets S so generated are quite general,

though composed of simple, convex shapes. We test the distance calculation algorithm for these

zero-level sets on the three grids shown in Fig. 2. Mesh A is quasi-uniform unstretched with

10201 nodes and 20000 elements, Mesh B is locally refined unstretched with 10233 nodes and

20200 elements and Mesh C is both locally refined and stretched with 10073 nodes and 19888

elements. The distance φ̃h obtained on Mesh A can be seen in Fig. 3 for each of the nine cases,

plotted as isovalue contours. In Fig. 4 we compare the true distance to the computed distance

φ̃h, for each mesh. In these plots, the nodal values for all nine cases are incorporated. It can

be seen that the computed distance follows the true distance closely, with maximum differences

that are of the order of the mesh size (equal to 0.01 for Mesh A, variable for the others). A

similar comparison on 3D meshes, including locally refined and stretched grids. Sample results

are shown in Fig. 5, which we consider satisfactory.

F. Mut, G. Buscaglia, E. Dari

1666

Figure 1: Nine zero-level sets used to the assessment of the distance calculation. Each ones contains 4 circles and

4 squares randomly put over domain.

F. Mut, G. Buscaglia, E. Dari

1667

Figure 2: Three different grids used to “test” the distance calculation algorithm. Mesh A is quasi-uniform un-

stretched with 10201 nodes and 20000 elements, Mesh B is locally refined unstretched with 10233 nodes and

20200 elements and Mesh C is both locally refined and stretched with 10073 nodes and 19888 elements.

F. Mut, G. Buscaglia, E. Dari

1668

Figure 3: Isovalue contours of the distance function.

F. Mut, G. Buscaglia, E. Dari

1669

Figure 4: Comparison between true distance and computed distance in three different meshes.

F. Mut, G. Buscaglia, E. Dari

1670

Figure 5: Comparison between true distance and computed distance in three different 3D meshes. Mesh A is

quasi-uniform unstretched with 11145 nodes and 54245 elements, Mesh B is locally refined unstretched with

13998 nodes and 77626 elements and Mesh C is both locally refined and stretched with 13552 nodes and 72909

elements.

F. Mut, G. Buscaglia, E. Dari

1671

3.2 A pure transport calculation

In this paragraph we couple the redistancing algorithm with a numerical method for transport.

The problem we consider is the rigid body rotation of the so-called Zalezak’s disk. The domain

is Ω = (0, 100)× (0, 100). The initial data correspond to fluid A inside a slotted circle centered

at (50, 75) with a radius of 15. The slot length is 25 and its width 5. The velocity field is given

by

~β =
π

314
(50 − x2, x1 − 50)

so that the disk completes one revolution every 628 time units.

The numerical method we use for (3) is a Streamline Upwind Petrov-Galerkin Finite Element

method, with Crank-Nicolson treatment of the time derivative. Let Vh be the space of piecewise

linear functions on the triangulation Th of Ω. Let φ0
h be the initial data for the level set function,

such that it is positive inside the disk and negative outside it.

To make explicit the numerical method, let φn
h denote the numerical solution at time t =

n∆t, where ∆t is the time step. Then, assuming φn
h given, φn+1

h is obtained as the unique

solution in Vh of the discrete variational formulation

∫

Ω

{[

φn+1
h − G(φn

h)

∆t
+

1

2
~β · ∇

(

φn+1
h + G(φn

h)
)

]

(

vh + τ ~β · ∇vh

)

}

d~x = 0 (18)

for all vh in Vh. In (18) we have introduced the mapping G : Vh → Vh, which allows us to

incorporate the re-initialization step. We thus compare the plain algorithm (G(φh) = φh) to

the re-initialized one (G(φh) = φ̃h). Also in (18), τ is the SUPG characteristic time, which we

calculate as τ = h/(4|~β|), with h the local mesh size.

In addition, we calculate the accuracy of the interface location using a first-order accurate

error measure.5

1

L

∫

|H(φexpected) −H(φcomputed)|dxdy (19)

where L is the lenght of the expected interface. This integral is calculated exactly.

We used a uniform unstretched triangulated domain of 80000 elements for all tests. The

distance algorithm was set to compute φ̃h up to a distance of 4 from the zero-level set (Zalesak’s

disk). Fig. 6 shows the disk at 4 different instants: t1 = 0, t2 = 157, t3 = 314 and t4 = 471. In

this example we can see an evident distortion of the iso-surface only due to the transport.

In Fig. 7 we show the evolution of the volume of fluid and the L1-distance in time for

∆t = 0.5 and θ = 0.5. This figure also contains a comparison between initial and final states.

In the exact solution the volume is preserved, since div ~β = 0.

Cases (a), where no-reinitialization is present, and (b), where reinitialization is done with the

mass-correction step, show a similar behavior. This is mainly because the time step and mesh

size are small enough for the transport of the level-set to be done without significant error. How-

ever, case (c) where the mass-correction step is not present, shows that the errors introduced in

the reinitialization step accumulate destroying the global mass conservation. From the figure we

F. Mut, G. Buscaglia, E. Dari

1672

t=0

t=471

t=314

t=157

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 6: Zalesak’s disk at 4 different instants: t1 = 0, t2 = 157, t3 = 314 and t4 = 471. The first one corresponds

to the initial state. A uniform unstructured unstretched grid of 80000 elements was used. ∆t = 1 and θ = 0.5 was

set in the transport algorithm.

can see that these errors are located in zones with greater curvature. Some authors recommend

to restrict redistancing to a minimum because of this phenomenon. This example shows that our

mass-conservation procedure allows redistancing at all time steps without problem. Moreover,

it shows that this mass-correction step must be done in a local sense.

The second example was done with a fully-implicit scheme replacing the Crank-Nicolson

presented before. The idea is to investigate the effects of more diffusive transport algorithms.

Fig. 8 shows the evolution of the volume of fluid and of the L1-distance in time for ∆t = 0.5.

F. Mut, G. Buscaglia, E. Dari

1673

 0.051

 0.052

 0.053

 0.054

 0.055

 0.056

 0.057

 0.058

 0.059

 0 100 200 300 400 500 600 700

V
o
lu

m
e

Time

a) noreini
b) reini−mc
c) reini−nomc

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 100 200 300 400 500 600 700

L
1
 d

is
ta

n
c
e

Time

a) noreini
b) reini−mc
c) reini−nomc

(A)

L1dist = 5.331e−4

(B)

L1dist = 1.1698e−3

(C)

L1dist = 9.908e−3

Figure 7: Zalesak’s disk: Volume and L1-distance evolution for ∆t = 0.5 and θ = 0.5. Comparison between initial

and final states (after one revolution). Domain is a uniform unstructured unstretched grid of 80000 elements.

From the comparison between initial and final states it is evident that the diffusive behavior is

concentrated in zones with greater curvature. This is consistent with the increase of the volume

of fluid in case (A), since the slot quickly disappears. In case (B), reinitialization of the LS

reduces the damage to the slot reducing the global mass loss. The geometry is also preserved

much more accurately.

Finally, the last test was thought to show the effect of reinitialization with large time steps.

In Fig. 9 we show the evolution of the volume of fluid and the L1-distance in time for ∆t = 2
(Crank-Nicolson scheme).

In case (A) the total mass loss is 1.35%, and in case (B) the amount of mass loss is 0.19%.

F. Mut, G. Buscaglia, E. Dari

1674

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 100 200 300 400 500 600 700

L
1

 d
is

ta
n

ce

Time

a) noreini
b) reini−mc

 0.056

 0.057

 0.058

 0.059

 0.06

 0.061

 0.062

 0.063

 0.064

 0 100 200 300 400 500 600 700

V
o

lu
m

e

Time

a) noreini
b) reini−mc

(B)

L1dist = 5.400e−3

(A)

L1dist = 9.7358e−3

Figure 8: Zalesak’s disk: Volume and L1-distance evolution for ∆t = 0.5 and fully-implicit scheme. Comparison

between initial and final states (after one revolution). Domain is a uniform unstructured unstretched grid of 80000

elements.

From the comparison between initial and final states we see again that the reinitialization step

helps preserve the original geometry.

F. Mut, G. Buscaglia, E. Dari

1675

 0.0573

 0.0574

 0.0575

 0.0576

 0.0577

 0.0578

 0.0579

 0.058

 0.0581

 0.0582

 0 100 200 300 400 500 600 700

V
o
lu

m
e

Time

a) noreini
b) reini−mc

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 100 200 300 400 500 600 700

L
1
 d

is
ta

n
c
e

Time

a) noreini
b) reini−mc

(B)

L1dist = 7.9645e−4

(A)

L1dist = 3.265e−3

Figure 9: Zalesak’s disk: Volume and L1-distance evolution for ∆t = 2 and Crank-Nicolson scheme. Comparison

between initial and final states (after one revolution). Domain meshed with a uniform unstructured unstretched

grid of 80000 elements.

F. Mut, G. Buscaglia, E. Dari

1676

4 CONCLUSIONS

In this work we developed an algorithm to compute the signed distance function on general

unstructured meshes in two and three dimensions. A mass-rebalancing step, which is weighted

according to local mass differences, is proposed in the general algorithm in order to maintain

the total mass during the reinitialization step.

A first set of tests was done to measure the errors in the estimation of distance. All tests

show that the errors are bounded by the mesh size.

Then, we use the well-know Zalezak’s disk test to focus on the general behavior of the

algorithm in transport cases. We find that a mass-correction step during the reinitialization is

needed, and moreover, that this step must be done in a local sense in order to preserve the

original geometry. In addition, we observe that when numerical methods used to solve the

transport equation have significant errors (e.g. excessive diffusion) the reinitialization step helps

to both preserve the geometry and to reduce global mass loss. One should however point out

that the techniques proposed in this article only work if the mesh is fine enough. For too-coarse

meshes in which the error is governed by spatial discretization no improvement is found by

applying the techniques proposed in this article.

ACKNOWLEDGMENTS: This work was partially supported by ANPCyT through grants

PICT 12-6337 and 12-9848.

REFERENCES

[1] Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher. A level set formulation of eulerian

interface capturing methods for incompressible fluid flows. Journal of Computational

Physics, 124, 449–464 (1996).

[2] D. Adalsteinsson and J.A. Sethian. The fast construction of extension velocities in level

set methods. Journal of Computational Physics, 148, 2–22 (1999).

[3] S. Aliabadi and T.E. Tezduyar. Stabilized-finite-element/interface-capturing technique for

parallel computation of unsteady flows with interfaces. Comput. Methods Appl. Mech.

Engrg., 190, 243–261 (2000).

[4] O. Soto and R. Codina. A numerical model for mould filling using a stabilized finite

element method and the vof technique. Int. J. Numer. Meth. Fluids, (2000).

[5] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for

improved interface capturing. Journal of Computational Physics, 183, 83–116 (2002).

[6] D. Lakehal, M. Meier, and M. Fulgosi. Interface tracking towards the direct simulation

of heat and mass transfer in multiphase flows. Int. J. Heat and Fluid Flow, 23, 242–257

(2002).

[7] J. A. Sethian. Fast marching methods and level set methods for propagating interfaces.

von Karman Institute Lecture Series, Computational Fluid Mechanics, (1998).

[8] Timothy J. Barth and J. A. Sethian. Numerical schemes for the hamilton-jacobi and level

set equations on triangulated domains. Journal of Computational Physics, 145, 1–40

F. Mut, G. Buscaglia, E. Dari

1677

(1998).

[9] M. Sussman and E. Fatemi. An efficient, interface-preserving level-set redistancing algo-

rithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput.,

20(4), 1165–1191 (1999).

[10] D. L. Chopp. Some improvements of the fast marching method. SIAM J. Sci. Comput.,

23(1), 230–244 (2001).

[11] J. A. Sethian and P. Smereka. Level set methods for fluid interfaces. Annu. Rev. Fluid

Mech., 35, 341–72 (2003).

[12] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume 153.

Springer, (2003).

[13] M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing al-

gorithm and its aplication to interfacial incompressible fluid flow. SIAM J. Sci Comput.,

20(4), 1165–1191 (1999).

F. Mut, G. Buscaglia, E. Dari

1678

