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ABSTRACT In recent years, the scalability issue of blockchain protocols has received huge attention. Shard-

ing is one of the most promising solutions to scale blockchain. The basic idea behind sharding is to divide the

blockchain network into multiple committees where each committee processes a separate set of transactions.

In this paper, we propose a mathematical model to analyze the security of sharding-based blockchain

protocols. Moreover, we analyze well-known sharding protocols including RapidChain, OmniLedger, and

Zilliga to validate our model. The key contribution of our paper is to bound the failure probability for one

committee and so for each epoch using probability bounds for sums of upper-bounded hypergeometric and

binomial distributions. In addition, this paper contribution answers the following fundamental question:

‘‘how to keep the failure probability, for a given sharding protocol, smaller than a predefined threshold?’’.

Three probability bounds are used: Chebyshev, Hoeffding, and Chvátal. To illustrate the effectiveness of our

proposed model, we conduct a numerical and comparative analysis of the proposed bounds.

INDEX TERMS Blockchain, failure probability, hypergeometric distribution, probability bounds, sharding.

I. INTRODUCTION

Blockchain is a technology that, when used, can have a great

impact in almost all industry segments including banking,

healthcare, supply chain, and government sector [9], [13].

It can be simply defined as a distributed digital ledger that

keeps track of all the transactions (e.g., asset transfer, stor-

age) that have taken place in a secure, chronological and

immutable way using peer-to-peer networking technology.

It does not rely on any trusted central entity (e.g., bank)

to validate transactions and extends the blockchain; the net-

work nodes (aka miners), using a consensus protocol, agree

on which node can create (i.e., mine) a valid block and

append it to the blockchain. For example, when Proof-of-

Work consensus protocol [5] is used, the node that first solves

a mathematical puzzle, adds the block to the blockchain and

gets rewarded (by the network and transaction fees). More

specifically, a transaction is broadcasted to all the nodes in

the network (9459 nodes in the case of Bitcoin [32] and 8083

for Ethereum [33]); upon receipt of the transaction, a node

that receives the transaction, it checks whether the transaction
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is valid. If the response is yes, it sends the transaction to its

neighbors; otherwise, it drops the transaction. Periodically

(e.g., each 10 minutes in Bitcoin [5]), a block (includes a list

of transactions; e.g., up to 4000 transactions in Bitcoin) is

created/mined; the node that mined the block (first to solve

the mathematical puzzle), appends the block to its copy of

the blockchain and broadcasts it to its neighbors. A node that

receives a block, it validates the block. If valid, it appends

the block to its copy of the blockchain and broadcasts to its

neighbors; otherwise, it drops it. Thus, in general, all nodes

have the same copy of the blockchain; if not, nodes build

on the longest chain. One of the key limitations of proof-

of-work based blockchains is scalability; indeed, the number

of transactions that can be processed per second is small

(e.g., up to 7 for Bitcoin [5] and 15 for Ethereum [6]). This

is unacceptable for most payment applications that require

1000s of transactions per second (e.g., Visa and PayPal).

The objective of blockchain scalability is to process a high

number of transactions per second (i.e., throughput) without

sacrificing security and decentralization [23]. Indeed, we can

easily considerably increase the throughput but we will lose

in terms of decentralization (which is a key characteristic of

blockchain) [23], [34].
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A number of solutions to scale blockchain have been

proposed; we can classify them into two categories:

(1) On-chain solutions: they propose modifications to the

blockchain protocols, such as sharding (e.g., [2], [14])

and block size increase (e.g., [15]); and (2) off-chain

solutions (aka layer 2 solutions): these are built on the

blockchain protocols; they process certain transactions (e.g.,

micro-payment transactions) outside the blockchain and only

record important transactions (e.g., final balances) on the

blockchain. Examples of layer 2 solutions include Light-

ning Network [12], Raiden Network [16], Plasma [8], and

Atomic-swap [24]. Security and decentralization should be

taken into account while solving the scalability issue in

public blockchains. This is called the scalability trilemma;

indeed, finding a balance between scalability, security, and

decentralization is very challenging. In this paper, we focus

on analyzing the security of scalability solutions that use

the concept of sharding; this is motivated by the fact that

sharding is one of the most promising solutions to the

scalability problem. The basic idea behind sharding is to

divide the network into subsets, called shards/committees;

throughout the paper, we will use the terms shard and

committee interchangeably. Each committee will be work-

ing on different set of transactions rather than the entire

network processing the same transactions. Several sharding

protocols have been proposed in the literature; they include

Elastico [4], OmniLedger [3], RapidChain [2], Zilliga [11],

PolyChard [7] and Harmony [10]. Generally, sharding is

used in non-byzantine settings (i.e., settings not able to

resist the class of failures derived from Byzantine generals’

problem [35], e.g., RSCoin [17]); Elastico [4] is the first

sharding-based protocol that assumes the presence of byzan-

tine adversaries. Elastico, divides the network into multiple

committees where each committee handles a separate set of

transactions. The number of shards grows nearly linearly

with the size of the network. When the network grows up

to 1, 600 nodes, Elastico succeeds at increasing the through-

put (e.g., up to 40 transactions per second (tx/s)). However,

Elastico has shortcomings that include: (1) the randomness

used in each epoch (i.e, in each fixed time period; e.g., once a

week) of Elastico can be biased by malicious nodes; and (2) it

can only tolerate up to 25% of malicious/faulty nodes (total

resiliency) and 33% of malicious nodes in each committee

(committee resiliency). OmniLedger [3] has been proposed

to fix some of the shortcomings of Elastico. In particular,

it uses a bias-resistant public-randomness protocol to ensure

security. The OmniLedger consensus protocol uses a vari-

ant of ByzCoin [18], to handle and achieve faster trans-

actions (e.g., up 500 tx/s when the network grows up to

1, 800 nodes). OmniLedger claims the same resiliency, for

global and committee, as Elastico. Recently, Zamani and

Movahedi in [2] proposed RapidChain as a sharding-based

public blockchain protocol which succeeds at outperforming

existing sharding algorithms (e.g., [3], [4]) in terms of scala-

bility and security. Indeed, RapidChain can tolerate up to 33%

ofmalicious/faulty nodes and 50% ofmalicious nodes in each

TABLE 1. Resiliency bound.

committee. RapidChain claims a high throughput (e.g., up to

4, 220 tx/s when the network grows up to 1, 800 nodes).

In industry, Harmony and Zilliga have also succeeded in

increasing transaction throughput [10], [11]. Zilliga’s shard-

ing design allows the network to process transactions in par-

allel and reach high throughput (e.g., at Ethereum’s present

mining network, which is over 8083 nodes, Zilliqa is expected

to process about a thousand times the transaction rate of

Ethereum [11], [33]). However, Zilliqa has shortcomings that

include: (1) It does not divide the storage of blockchain data

(i.e., state sharding); and (2) Zilliqa’s sharding process is sus-

ceptible to a single-shard takeover attack [10]. Harmony [10]

has been proposed to fix some of the shortcomings of Zilliqa.

Harmony claims that is fully scalable (i.e., Harmony shards

not only the network communication and transaction vali-

dation like Zilliqa, but also shards the blockchain state); in

addition, Harmony proved that its sharding process ensures

high security thanks to its distributed randomness generation

process [10]. Harmony and Zilliqa claim the same local and

global resiliency as Elastico and OmniLedger [10], [11].

The table bellow summarizes common characteristics of

related protocols used in our analysis.

Probability bounds (aka, tail inequalities) are one of the

most basic and versatile tools in the life of theorical computer

science, with apparently endless amount of applications.

Almost every modern publication on algorithms or complex-

ity theory contains a statement and a proof of the bounds

[25]–[28]. There are several books in computer sciences

that discuss its various applications in great detail [28]–[30].

Additionally, many articles (e.g., [36], [37], [46], [47])

appeared that use the probability bounds to address some of

the algorithmic issues, such as decision analysis problems and

structural engineering design decisions.

In the literature, there are several sharding-based

blockchain protocols that use the binomial distribu-

tion to refer to the sampling without replacement (e.g.,

OmniLedger [3], Ethereum-sharding [14]); this is a problem

that can compromise the security of protocols since the

binomial distribution is not accurate when the sampling is

done without replacement. We use the binomial distribution

to refer to the sampling with replacement; when the sampling

is done without replacement, we use the hypergeometric

distribution [22]. We note that, we can use the binomial

distribution to refer to the sampling without replacement only

when the sample size is smaller than 10% of the size of the

blockchain network [22].

The key contribution of our work is the use of probability

bounds as an alternative solution when the simulations and
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computations are complex [29], especially when the size of

the committee gets larger. Indeed, if we are to calculate the

failure probability reported in Equation (23) (see Section III),

we often need to execute a simple expression function

that approximates this failure probability rather than per-

form complex computations using Equation (23). Partic-

ularly, using Chvátal’s bound this failure probability can

be approximated by function x → F(x) reported in Equa-

tion (35) (see Section III), which is very simple and easier to

compute.

Generally, the paper contribution consists of a solution

to analyze security of sharding-based blockchain protocols,

i.e., bound the failure probability and how to keep this failure

probability smaller than a given threshold. For example, in the

case of RapidChain, our solution allows us to find out that

when the network grows up to 4000 nodes, each committee

must contain more than 275 nodes to ensure that the fail-

ure probability for one committee is smaller than 8.64E-08;

therefore, we have a very reasonable risk of security (i.e., our

network will fail on average every 2242 years or more).

In this paper, we select three probability bounds to ana-

lyze the security of sharding-based blockchain protocols;

Chebyshev [47], Chvátal [21], and Hoeffding [19]. Gener-

ally, there are several scenarios in which we resort to com-

pute probability bounds. For instance, if one aims to ensure

that the failure probability is smaller than a given threshold

(e.g., 10−3), there is no need to compute the exact failure

probability which may be very difficult to calculate; indeed,

computing a probability bound (e.g., 10−3) in this case is

much simpler and sufficient (e.g., Chvátal’s bound).

To the best of our knowledge, there is no existing work that

analyzes security of Blockchain protocols using Hoeffding

and Chvátal inequalities except our contribution [1]. In this

contribution [1], we presented a probabilistic security analy-

sis that is specific to Elastico, OmniLedger, and RapidChain.

However, in this paper, we generalize the model to ana-

lyze any sharding-based blockchain protocol. Furthermore,

we consider and implement more bounds (than in [1]) in

addition to a more comprehensive evaluation of the proposed

model. The contributions of this paper can be summarized as

follows:
• We develop a general model to analyze the security for

any sharding-based blockchain protocol.

• We analyze Elastico [4], OmniLedger [3], and Rapid-

Chain [2] to validate the proposed model. We also ana-

lyze Harmony [10] and Zilliqa [11] protocols.

• We implement the classical bound of Chebyshev (that is

commonly used in the litterature [31], [37], [39], [47])

together with Hoeffding and Chvátal bounds to evaluate

our model and compare the three bounds.

• We propose an approach that determines the conditions

that need to be satisfied, by a sharding-based blockchain

protocol, in order to keep the failure probability smaller

than a given threshold.

The rest of the paper is organized as follows. Section II

presents the general proposed probabilistic model. Section III

validates the proposedmodel. Section IV evaluates the perfor-

mance of the proposed model. Finally, Section V concludes

the paper and presents future work.

II. ANALYTICAL MODEL

In sharding-based blockchain protocols, we propose to use

the hypergeometric distribution instead of the binomial dis-

tribution; this is because the process of assigning nodes to

shards can be defined as a sampling without replacement

(committees do not overlap); in this case, hypergeometric

distribution yields better approximation compared to bino-

mial’s [22]. Thus, the formation of committees/shards (or par-

tition of the network into shards/committees) will be modeled

by using hypergeometric distribution. In this paper, we use

also the binomial distribution to model the formation of

committees/shards when the sample size is smaller than 10%.

Generally, we use binomial distribution when the sample is

drawn with replacement [22].

There are several probability bounds that can be applied

in computer sciences; Markov and Chebyshev bounds

are the most common inequalities used in probability

theory [37], [38]. Chernouff’s bound is also very used in

literature [45], [46]. Markov’s bound is only applied to

non-negative random variables [38], whereas Chebyshev’s

bound can be applied to any random variable, e.g, see

Equation (11) for binomial random variable and see Equa-

tion (10) for hypergeometric random variable. In addition, for

any independent random variable we can apply Chernouff’s

bound [46]. Chvátal’s bound [21] and Hoeffding’s bound [19]

have analogue tail bounds for both binomial and hyperge-

ometric distributions [19], [20]. Hush and Scovel [41] and

Bardenet and Maillard [40] bounds are used for hyperge-

ometric distribution. For the binomial bounds, we can use

Leon and Perron [42] and Talagrand [43].

The three bounds, namely Chebyshev, Chvátal, and

Hoeffding, can be applied for both binomial and hyperge-

ometric distributions. We can also apply Markov’s bound;

however, Markov’s bound is the weakest (in terms of accu-

racy) because it is constant and does not change as the number

of nodes in a committee increases. Chernouff’s bound is not

reported in this work due to the difficulties to obtain the

moment generating function for the hypergeometric distribu-

tion [48].

In this section, we present the details of our probabilistic

model. More specifically, we present the details of (1) hyper-

geometric and binomial distributions; and (2) Chebychev’s

bound that defines a classical bound which is applicable for

any random variable, Hoeffding’s bound that is applicable for

binomial and hypergeometric random variable, and Chvátal’s

bound that defines an exponential bound which is applicable

for binomial and hypergeometric random variables.

A. NOTATIONS AND DEFINITIONS

Table 2 shows the list of symbols/variables that are used

to describe the proposed model. Note that the cumulative

VOLUME 7, 2019 185449
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TABLE 2. Notations.

hypergeometric distribution H (K ,N , n, k) is the sum of the

probability distribution function h(K ,N , n, i) for all i ≥ k .

Definition 1: Failure Probability or error probability. Fail-

ure probability is defined as the probability that the number of

malicious nodes exceeds the malicious nodes limit (i.e., max-

imum percentage of nodes/users that can act in a malicious

manner, e.g., in case of Elastico [4], the limit is 25% of the

nodes in the network) in the network/committee.

Definition 2: Failure Probability Bound. Given a

sharding-based blockchain protocol, the failure probability

bound is an upper bound function that estimates the failure

probability.

Definition 3: Committee Resiliency. The maximum num-

ber of malicious nodes that the committee can contain

whereas still being secure.

Definition 4: Total Resiliency. The maximum number of

malicious nodes that the whole network can contain whereas

still being secure.

B. PROBABILITY DISTRIBUTION

Let X and P(X = k) denote the random variable corre-

sponding to the number of malicious nodes in the sampled

committee and the probability that a committee contains k

malicious nodes out of n draws without replacement from

a finite population (entire network) of size N with K total

malicious, respectively.

1) HYPERGEOMETRIC DISTRIBUTION

Let X follows the hypergeometric distribution with parame-

ters K , N and n. We have:

The mean (expected value) is:

E(X) = n
K

N
= np (1)

and the variance is as follows:

Var(X ) =
np(1 − p)(N − n)

N − 1
(2)

The probability that a committee contains k malicious nodes

(P(X = k)) is expressed as follows:

h(K ,N , n, k) =

(

K

k

)(

N − K

n− k

)

(

N

n

) (3)

The failure probability for a committee with resiliency r is

defined as follows:

H (K ,N , n, nr) =

n
∑

k=⌊nr⌋

(

K

k

)(

N − K

n− k

)

(

N

n

) (4)

2) BINOMIAL DISTRIBUTION

Let X follows the binomial distribution with parameters n and

pwhere p = K
N
is the probability that a node is malicious. The

mean is expressed as follows:

E(X) = np (5)

and the variance is expressed as follows:

Var(X ) = np(1 − p) (6)

In general, when the hypergeometric distribution is used,

a comparison is performed with the binomial distribu-

tion [22]. More specifically, it is reported that if n is small rel-

ative to the population size N , then X could be approximated

by a binomial distribution [22]. Practically, we approximate

hypergeometric distribution by a binomial distribution when

the sample size is smaller than 10% of the population [22].

However, when the sample size gets larger relative to the

population size, it is recommended to use the hypergeometric

distribution (the hypergeometric distribution yields a better

approximation in this case) [22]. If the sampling is done

with replacement, we use the cumulative geometric distribu-

tion [20] or cumulative binomial distribution [22] instead of

the cumulative hypergeometric distribution to calculate the

failure probability [22]. Now, if we assume that X ∼ B(n, p)

(i.e., X follows the binomial distribution with parameters n

and p) where p = K
N

is the probability that a node is

malicious. Thus, the failure probability of one committeewith

resiliency r using the cumulative binomial distribution can be

expressed as follows:

P(X ≥ nr) =

n
∑

k=⌊nr⌋

(

n

k

)

pk (1 − p)n−k . (7)

C. TAIL INEQUALITIES

The main contribution of our work is to bound the failure

probability for one committee and so for one epoch using

three bounds functions. The tail inequalities are powerful

results that can compute these bounds [19]–[21], [31], [44].

Let X follows the hypergeometric distribution with parame-

ters K , N , and n. Firstly, we bound the failure probability for

one committee as well as for each epoch using Chebyshev’s

bound [47].

185450 VOLUME 7, 2019
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1) CHEBYCHEV’S BOUND [47]

If X is a random variable, then for any a ≥ 0 we have

P(| X − E(X ) |≥ a) ≤
Var(X )

a2
(8)

a) Chebyshev’s bound corresponding to the hypergeomet-

ric random variable.

Using Chebyshev’s bound, we propose to find a bound on

P(X ≥ nr).

P(X ≥ nr) = P(X − E(X) ≥ nr − E(X))

= P(X−np ≥ nr − np)

≤ P(| X − np |≥ nr − np)

≤
Var(X)

(nr − np)2

=
np(1 − p)(N − n)

(N − 1)(nr − np)2
(9)

Thus, we bound the failure probability of one committee with

resiliency r as follows:

P(X ≥ nr) ≤
np(1 − p)(N − n)

(N − 1)(nr − np)2
(10)

b) Chebyshev’s bound corresponding to the binomial

random variable.

We propose to bound the failure probability of one com-

mittee with resiliency r , i.e., to find a bound on P(X ≥ nr),

by using Equation (6) and Equation (9):

P(X ≥ nr) =
np(1 − p)

(nr − np)2
(11)

Now, we bound the failure probability of each epoch; we

calculate the union bound over nc committees, where each

committee can fail with probability pc. When the sample

size is smaller than 10% of the size of the blockchain net-

work, pc is calculated using cumulative binomial distribution.

Otherwise, we use the cumulative hypergeometric distribu-

tion. In the first epoch for each protocol, the committee

election procedure fails with bootstrap probability (e.g., for

RapidChain pbootstrap ≤ 2−26.36, see [2]). Thus, the failure

probability for one epoch, by using Chebyshev’s bound corre-

sponding to the hypergeometric random variable, is bounded

as follows:

pbootstrap + ncpc ≤ pbootstrap + nc
np(1 − p)(N − n)

(N − 1)(nr − np)2
, (12)

2) HOEFFDING’S BOUND

Hoeffding proposes another bound [19], which is expressed

as follows:

H (K ,N , n, k) ≤ G(x), (13)

where

G(x) =

(

(

p

p+ x

)p+x( 1 − p

1 − p− x

)1−p−x
)n

, (14)

p = K
N
and k = (p+ x)n with x ≥ 0.

Hence, we can bound the failure probability of one com-

mittee with resiliency r as follows:

H (K ,N , n, nr) ≤ G(x), (15)

where

x = r − p, (p ≤ R).

The binomial distribution coincidentally has an analogous

tail bound [21]; thus,

B(n, p, nr) ≤ G(x), (16)

where

B(n, p, nr) =

n
∑

k=⌊nr⌋

(

n

k

)

pk (1 − p)n−k .

The failure probability for one epoch (pe) is bounded as

follows:

pbootstrap + ncpc ≤ V (x), (17)

where

V (x) = pbootstrap + ncG(x), nc =
N

n
.

3) CHVÁTAL’S BOUND

Chvátal proposes another tail bound [21]; it is simple and ele-

gant (i.e., exponential function), but weaker bound compared

to Hoeffding’s [19]. We obtain the following bound:

H (K ,N , n, k) ≤ F(x), (18)

where

F(x) = exp−2x2n
.

Thus, the failure probability for one epoch is bounded as

follows:

pbootstrap + ncpc ≤ U (x), (19)

where

U (x) = pbootstrap + ncF(x), nc =
N

n
.

D. YEARS TO FAILURE

In this subsection, we propose to quantify/measure the secu-

rity of the network. More specifically, we compute the aver-

age number of years to failure using the failure probability of

committee/epoch per sharding round. The average number of

years to failure is given by:

A =
Es

Ns
, (20)

where

Es =
1

pe
(21)
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III. APPLICATION

In this section, we will apply our model on two classes of

protocols; class A that contains Elastico [4], OmniLedger [3],

Zilliga [11], and Harmony [10] (protocols that claim the

same committee resiliency and total/global resiliency, which

are 1
3
and 1

4
respectively), and class B that contains Rapid-

Chain [2] (that claims 1
2
of committee resiliency and 1

3
of total

resiliency). The aim of this section is to validate our model by

applying it to protocols of classes A and B.

A. PROBABILITY DISTRIBUTIONS

For all these protocols (i.e., Elastico [4], OmniLedger [3],

Zilliga [11], Harmony [10], RapidChain [2]), the sampling

is drawn without replacement (i.e., the committees can not

overlap). This is the reason we chose the hypergeometric

distribution to calculate the failure probability for one com-

mittee and then for each epoch. The failure probability for

one committee for the class A protocols (they have the same

committee resiliency 33%, see Table 1) using the cumulative

hypergeometric distribution is expressed as follows:

H (K ,N , n,
n

3
) =

n
∑

k=⌊ n3 ⌋

(

K

k

)(

N − K

n− k

)

(

N

n

) . (22)

Similarly, we can express the failure probability for class B

using the hypergeometric distribution as follows:

H (K ,N , n,
n

2
) =

n
∑

k=⌊ n2 ⌋

(

K

k

)(

N − K

n− k

)

(

N

n

) . (23)

Now, the failure probability of one committee for class A

using the cumulative binomial distribution is expressed as

follows:

P(X ≥
n

3
) =

n
∑

k=⌊ n3 ⌋

(

n

k

)

pk (1 − p)n−k . (24)

Likewise, the cumulative binomial distribution for class B is

given by:

P(X ≥
n

2
) =

n
∑

k=⌊ n2 ⌋

(

n

k

)

pk (1 − p)n−k . (25)

B. TAIL INEQUALITIES

As stated earlier, our aim is to analyze security by computing

failure probability bounds. We will apply probability bounds,

presented in Section II, in order to bound the failure proba-

bility. Firstly, we apply Chebyshev’s bound [47].

a) Chebyshev’s bound corresponding to the hypergeomet-

ric random variable.

The failure probability of one committee for protocols in

class A using Equation (9) is bounded as follows:

H (K ,N , n,
n

3
) ≤

np(1 − p)(N − n)

(N − 1)( n
3

− np)2
, (26)

Likewise, we bound the failure probability of one commit-

tee for class B, as:

H (K ,N , n,
n

2
) ≤

np(1 − p)(N − n)

(N − 1)( n
2

− np)2
, (27)

We consider that all protocols in class A have the same

bootstrap probability as in RapidChain [2]. Using Equa-

tion (12), we can bound the failure probability for each epoch

as follows:

For class A

pbootstrap+ncH (K ,N , n,
n

3
) ≤ 2−26.36+nc

np(1−p)(N−n)

(N−1)( n
3
−np)2

,

(28)

and for class B

pbootstrap+ncH (K ,N , n,
n

2
) ≤ 2−26.36+nc

np(1−p)(N−n)

(N−1)( n
2
−np)2

,

(29)

b) In the same way, we apply Chebyshev’s bound corre-

sponding to binomial random variable.

The failure probability for each epoch using Equation (11)

is expressed as follows:

For class A

pbootstrap+ncH (K ,N , n,
n

3
) ≤ 2−26.36+nc

np(1 − p)

( n
3

− np)2
, (30)

and for class B

pbootstrap+ncH (K ,N , n,
n

2
) ≤ 2−26.36+nc

np(1 − p)

( n
2

− np)2
, (31)

Secondly, we can bound the failure probability for one

committee for class A protocols using Hoeffding’s bound (see

Equation (15)) as follows:

H (K ,N , n,
n

3
) ≤ G(x), (32)

where

x =
1

3
− p, (p ≤

1

4
).

By using Equation (16), the binomial distribution has an

analogous tail bound; thus,

B(n, p,
n

3
) ≤ G(x), (33)

where

B(n, p,
n

3
) =

n
∑

k=⌊ n3 ⌋

(

n

k

)

pk (1 − p)n−k .

We conclude that the failure probability bound for one

epoch for class A protocols can be computed as follows:

p0 + ncpc ≤ V (x), (34)

where

V (x) = 2−26.36 + ncG(x), nc =
N

n
.
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TABLE 3. Parameter settings.

In the same way, we bound the failure probability for each

committee/epoch for class B.

Finally, by using Chvátal’s bound, the failure probability

bound for one committee for class B can be computed as

follows:

H (K ,N , n,
n

2
) ≤ F(x), (35)

where

F(x) = exp−2x2n
.

Hence, the failure probability bound for an epoch for class

B can expressed as follows:

p0 + ncpc ≤ U (x), (36)

where

U (x) = 2−26.36 + ncF(x), nc =
N

n
.

Similarly, we can bound the failure probability for each

committee/epoch for class A using Chvátal’s bound.

IV. PERFORMANCE EVALUATION

In this section, we present a simulation-based evaluation of

our proposed model by applying it to well-known sharding

blockchain protocols, i.e., class A ( [3], [4], [10], [11]), and

class B ( [2]). The main aim of the evaluation is to bound the

failure probability and how to keep this probability smaller

than a given threshold.

A. SIMULATION SETUP

To implement our model, we use the hypergeom and

binom functions imported from scipy.stats Python

module [49]. We use binom.cdf() and hypergeom.

cdf() to compute the cumulative binomial and hypergeo-

metric distributions respectively. Table 3 shows the values of

the parameters used in the simulations.

B. RESULTS AND ANALYSIS

Figures 1 and 2 show Hoeffding and Chvátal bounds of the

failure probability when varying the size of the committee

(10 − 260 nodes) in a network of 4, 000 nodes, whereas

Figure 3 shows Chebyshev’s bound when varying the size

of the committee (40 − 300 nodes) in a network of 4, 000

nodes. We observe that the three bounds of class B decrease

rapidly compared to class A; this can be explained by the

fact that class B has high resiliency compared to class A.

FIGURE 1. A comparison of failure probability between class A and
class B protocols using Hoeffding’s bound.

FIGURE 2. A comparison of failure probability between class A and
class B protocols using Chvátal’s bound.

FIGURE 3. A comparison of failure probability between class A and
class B protocols using Chebyshev’s bound.

More specifically, Figure 1 shows Hoeffding’s bound for

both classes A and B; we observe that Hoeffding’s bound for

class B is more precise than Hoeffding’s bound class A thanks

to the high resiliency of RapidChain’s protocol (class B).

But, both bounds look similar when the committee sizes’ get

larger. Precisely, when the committee includes more than 200

nodes. Figure 2 shows the plot of Chvátal’s bound of the

failure probability for one committee in the class A and B

versus the committee sizes’. We observe that Chvátal’s bound

for both classes both decreases when the committee size

increases. We observe also that Chvátal’s bound for class B

gets more precise and allows less failure probability. In addi-

tion, the bounds get closer starting from 200 nodes. Finally,

Figure 3 illustrates the plot of the Chebyshev’s bound for

classes A and B. We observe also that the Chebyshev’s bound

of classB decreases faster than Chebyshev’s bound of class A.
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FIGURE 4. A comparison between bounds: Hoeffding, Chvátal, and Chebyshev; (a) for class A, and (b) for class B.

Figure 4 illustrates a comparison of the three bounds

using classes A and B. Both figures 4(a) and 4(b) show that

Hoeffding’s bound provides better approximation followed

successively by Chvátal’s and Chebyshev’s bounds.

In summary, Figures 1, 2, 3, and 4 show that Hoeffding’s

bound is the best one. Hence, the feasibility of the Hoeffd-

ing’s bound to better analyze the security of sharding-based

blockchain protocols.

Figure 5 shows the Hoeffding’s bound and failure probabil-

ity of classes A and B using the hypergeometric and binomial

distributions to sample a committee without replacement with

various sizes (30 − 500 nodes) from a pool of 4, 000 nodes.

In particular, Fig. 5(a) shows the plot of the failure probability

for one committee as well as Hoeffding’s bound of failure

probability for class A. We observe that Hoeffding’s bound

looks similar to the plot of failure probability when the com-

mittee size increases (when it approaches 225 nodes). Hence,

we get a good approximation boundwhen the size of the com-

mittee gets larger. Fig. 5(b) illustrates the plot of Hoeffding’s

bound of the failure probability; we observe that the failure

probability and the failure probability bound decrease when

the size of the committee increases. We also observe that

when the size of the committee is bigger than 100, the prob-

ability bound and the probability assume similar values.

Figure 6 shows Hoeffding’s bound of the failure proba-

bility for one epoch (i.e., union bound over the number of

committees) as well as the failure probability simulations for

for classes A and B whereas varying the size of the commit-

tee (100 − 560 nodes) from a pool of 4, 000 nodes. More

specifically, Figure 6(a) shows the Hoeffding’s bound of the

failure probability for one epoch for class A and the failure

probability for one epoch when the size of the committee

gets larger.We observe that Hoeffding’s bound and the failure

probability get closer when the number of nodes is bigger

than 200. Figure 6(b) illustrates the Hoeffding’s bound of the

failure probability for one epoch for class B as well as the

failure probability for one epoch when the committee size

gets larger.

As shown in the Figures 5 and 6, Hoeffding’s bound

achieves better failure probability estimation especially when

the size of the committee gets larger.

The key questions we want to answer with the evaluation

is how to keep the failure probability smaller than a given

threshold for the purpose of achieving a very reasonable

risk of security. To do this, we can use failure probability

simulations or probability bounds. For example, based on

Figure 5(b), If k <
n
2
(as in case of class B) each com-

mittee must contain more than 80 nodes to keep the failure

probability negligible, i.e., P(X ≥ n
2
) < 1.4E-03. Using

Hoeffding’s bound, if we want to keep the failure probability

smaller than 1.4E-04 the committee size must contain more

than 150 nodes. For class A, the committee size can tolerate

up to n
3
; thus, the committee size will be significantly bigger

compared to class B; based on Figure 5(a), if we want to keep

the failure probability smaller than 1.34E-02, the committee

size must contain more than 250 nodes for P(X ≥ n
3
) <

1.34E-02.

Now, based on Figure 6, if we want to keep the failure

probability for one epoch for class A smaller than 1.44E-02,

the committee size must contain more than 260 nodes.

By using Hoeffding’s bound, the committee must contain

more than 260 nodes for P(X ≥ n
3
) < 0.17.
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FIGURE 5. Plot of Hoeffdings’ bounds, as well as the failure probability vs. committee sizes; (a) for one committee for class A and (b) for
one committee for class B.

FIGURE 6. Plot of Hoeffdings’ bounds, as well as the failure probability vs. committee size’s; (a) for one epoch of class B, and (b) for one
epoch of class A.

We can keep the failure probability smaller than a given

threshold by carefully configuring the size of the commit-

tee. Also, it turns out that we have a trade-off between

security and throughput; the bigger the committee size the

higher the security and the smaller the throughput, and

the smaller the committee size the lower the security and

the bigger the throughput (the smaller the committees’ size

the bigger the number of committees in the network and

hence the bigger the throughout). In other words, the smaller

committee size leads to better throughput but can compromise

security.

To quantify/measure the security of the network, we pro-

pose to compute the average number of years to failure.

To perform this computation, we need to determine the failure

probability of committee/epoch (see Equation (20)). There

will be always a non-zero probability that a shard will be

compromised, but we can make this risk level reasonable. For

example, a network that fails every 1000 years on average has

VOLUME 7, 2019 185455



A. Hafid et al.: New Mathematical Model to Analyze Security of Sharding-Based Blockchain Protocols

TABLE 4. Years to fail.

an acceptable level of security, whereas a network that fails

once a year is not secure enough. For class B, if we assume

a network that contains 4000 nodes and we have to achieve

a very reasonable risk of security, e.g., network will fail on

average every 1672 years or more, using Hoeffding’s bound,

the failure probability for one committee must be smaller than

1.16E-07; this means that the committee must contain more

than 270 nodes. Table 4 shows more details about time to fail

in years when varying the size of the committee from a pool

of 4000 nodes using Hoeffding’s bound [19].

V. CONCLUSION

In brief, this paper provides a new model to analyze secu-

rity of sharding-based blockchain protocols. More specif-

ically, we proposed three probability bounds in order to

estimate/bound the failure probability for one committee,

thereafter for each epoch when we use the hypergeometric

and the binomial distributions. Furthermore, we proposed

an approach that determines the conditions that need to be

satisfied, by a sharding-based blockchain protocol, in order

to keep the failure probability smaller than a given threshold.

Finally, given a failure probability threshold we propose to

compute the average number of years for the network to fail.

Thus, to achieve a given level of security (in terms of num-

ber of years to failure), our proposal allows to compute the

minimum size of committee to consider by sharding-based

blockchain protocols.
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