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Abstract—The studies on the photovoltaic (PV) generation are
extensively increasing, since it is considered as an essentially in-
exhaustible and broadly available energy resource. However, the
output power induced in the photovoltaic modules depends on solar
radiation and temperature of the solar cells. Therefore, to maxi-
mize the efficiency of the renewable energy system, it is necessary
to track the maximum power point of the PV array. In this paper, a
maximum power point tracker using fuzzy set theory is presented
to improve energy conversion efficiency. A new method is proposed,
by using a fuzzy cognitive network, which is in close cooperation
with the presented fuzzy controller. The new method gives a very
good maximum power operation of any PV array under different
conditions such as changing insolation and temperature. The sim-
ulation studies show the effectiveness of the proposed algorithm.

Index Terms—Fuzzy cognitive maps (FCMs), fuzzy cognitive
networks (FCN), fuzzy controller, maximum power point tracker
(MPPT), photovoltaic systems.

I. INTRODUCTION

W ITHOUT a doubt renewable energy systems present
unique opportunities for greater fuel diversity, security,

and geographical dispersion of supply. The rapid pace of the
technical and commercial development of renewable energies
continues to reduce costs and increase the number of both equip-
ment suppliers and plant operators. As conventional fossil-fuel
energy sources diminish and the world’s environmental concern
about acid deposition and global warming increases, renewable
energy sources (solar, wind, tidal, and geothermal, etc.) are at-
tracting more attention as alternative energy sources. Among
the renewable energy sources solar photovoltaic (PV) energy
has been widely utilized in small-sized applications. It is also
the most promising candidate for research and development for
large-scale uses as the fabrication of less-costly photovoltaic
devices becomes a reality.

Applications of PV systems include water pumping, domes-
tic and street lighting, electric vehicles, hybrid systems, military
and space applications, refrigeration and vaccine storage, power
plants, etc., all in either stand-alone or grid-connected configu-
rations. A PV array is by nature a nonlinear power source, which
under constant uniform irradiance has a current–voltage (I–V )
characteristic like that shown in Fig. 1.
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Fig. 1. PV array (I–V ) and P–V characteristics.

There is a unique point on the curve, called the maximum
power point (MPP), at which the array operates with maximum
efficiency and produces maximum output power. As it is well
known, the MPP of a PV power generation system depends on
array temperature, solar insolation, shading conditions, and PV
cells aging, so it is necessary to constantly track the MPP of
the solar array. A switch-mode power converter, called a maxi-
mum power point tracker (MPPT), can be used to maintain the
PV array’s operating point at the MPP. The MPPT does this by
controlling the PV array’s voltage or current independently of
those of the load. If properly controlled by an MPPT algorithm,
the MPPT can locate and track the MPP of the PV array. How-
ever, the location of the MPP in the I–V plane is not known
a priori. It must be located, either through model calculations
or by a search algorithm. Fig. 2 shows a family of PV I–V
curves under increasing irradiance, but at constant temperature.
Needless to say there is a change in the array voltage at which
the MPP occurs. For years, research has focused on various
MPP control algorithms to draw the maximum power of the
solar array. These techniques include look-up table methods,
using neural networks [1], [2], perturbation and observation
(P&O) methods [3]–[6], and computational methods [7]. For
example, Hiyama et al. [1] presented a neural network applica-
tion to the identification of the optimal operating point of PV
modules and designed a PI-type controller for real-time maxi-
mum power tracking. Optimal operating voltages are identified
through the proposed neural network by using the open-circuit
voltages measured from monitoring cells and optimal operating
currents are calculated from the measured short-circuit currents.
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Fig. 2. PV array (I–V ) characteristics at various insolation levels.

The output of the neural network goes through the PI controller
to the voltage control loop of the inverter to change the terminal
voltage of the PV system to the identified optimal one.

One of the computational methods, which have demonstrated
fine performances under different environmental operating con-
ditions, is the fuzzy-based MPPT technique [8], [9].

The fuzzy controller introduced in [8] uses dP/dI and its
variations ∆(dP/dI), as the inputs and computes MPPT con-
verter duty cycle. The fuzzy tracker of [9] considers variation
of duty cycle, but replaces dP/dI by the variation of panel
power. An on-line search algorithm that does not require the
measurement of temperature and solar irradiation level is pro-
posed in reference [10]. Other researchers analyzed and com-
pared the various MPPT techniques [7], [11], [12]. Besides that,
in [11] a simple DSP-based MPPT algorithm is proposed, while
in [12] a combination of the modified constant voltage control
and the incremental conductance method is introduced, show-
ing good efficiency (especially in lower insolation intensity).
Finally, in [13], [14] efforts have been made to model the dy-
namic behavior of a PV system in order to study its interaction
with the pertinent MPPT system, while in [15], MPPT assess-
ment and testing methods were presented in order to identify
the accuracy, error and efficiency of the MPPTs.

This paper presents a novel MPPT method, which uses fuzzy
sets theory [8] in close cooperation with fuzzy cognitive net-
works (FCNs). FCNs [16], [17] constitute an extension of the
well-known fuzzy cognitive maps (FCMs) [18], so that they are
able to operate in continuous interaction with the physical sys-
tem they represent, while at the same time they keep track of the
various operational equilibrium points met by the system. FCNs
can model dynamical complex systems that change with time
following nonlinear laws. They use a symbolic representation
for the description and modeling of the system. In order to illus-
trate different aspects in the behavior of the system, an FCN is
consisted of nodes with each node representing a characteristic

Fig. 3. Equivalent circuit of a solar cell.

of the system, including possible control actions. These nodes
interact with each other showing the dynamics of the system
under study. Moreover, the FCN has the ability of continuous
interaction with the physical system it represents, sending con-
trol actions and receiving feedback from the system. The FCN
integrates the accumulated experience and knowledge on the
operation of the system, as a result of the method by which it is
constructed, i.e., using human experts who know the operation
of system and its behavior, but most significantly, it can adapt
this knowledge based on the feedback from the physical system
or by using appropriate training data.

In this paper, an FCN is presented and a novel control system
is designed so that fuzzy controller [8] can cooperate with FCN,
in order to solve the MPPT problem of a PV system. The nodes
of the FCN represent essential operational (Voltage, Current,
Insolation, Temperature) and control (Current) variables of the
PV system. The node interconnection weights are determined
using data, which are constructed so that they cover the oper-
ation of a PV system under a wide range of different climatic
conditions. Once the FCN is trained it can be mounted on any
PV system. Moreover, during the operation of the PV array
the FCN weights are continuously updated based on data from
the encountered operating conditions. The performance of the
method is tested using climatic data for a specific PV system
of the market, which reaches its MPP with great accuracy for
various operational conditions, such as changing insolation and
temperature and seasonal variations.

The paper is organized as follows. In Section II, mathematical
relations between the essential variables of a PV system are pre-
sented. These relations are necessary for simulating its operation
under different insolation and temperature levels. In Section III,
an MPPT method, which is based on a fuzzy controller method-
ology is analyzed. Section IV makes a brief introduction in
FCMs and presents the graph of the proposed FCN, which will
be used in close cooperation with the fuzzy controller, in order
to track the MPP of a PV system. Simulated experimental re-
sults, based on climatic data of one year and on the operation of
a typical PV array of the market are given in Section V. Finally,
Section VI concludes the work.

II. SIMULATION OF THE PV SYSTEM

Using the equivalent circuit of a solar cell (Fig. 3) and the
pertinent equations [11] the nonlinear (I–V ) characteristics of
a solar array are extracted, neglecting the series resistance

Ii = Iph − Irs exp[(qVi/kTA) − 1] − Vi

Rsh
(1)
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TABLE I
FACTOR A DEPENDENCE ON PV TECHNOLOGY

where Ii is the PV array output current (A); Vi is the PV ar-
ray output voltage (V); q is the charge of an electron; k is
Boltzmann’s constant in J/K; A is the p–n junction ideality fac-
tor; T is the cell temperature (K); and Irs is the cell reverse
saturation current. The factor A in (1) determines the cell de-
viation from the ideal p–n junction characteristics. The ideal
value ranges between 1 and 5, according to [11] and to the com-
mercially available software package for PV systems PVSYST
V3.1 (see Table I).

The photocurrent Iph depends on the solar radiation and the
cell temperature as stated in the following:

Iph = (Iscr + ki(T − Tr ))
s

100
, (2)

where Iscr is the PV array short circuit current at reference tem-
perature and radiation (A); ki is the short circuit current temper-
aturecoefficient (A/K) and S is the solar radiation (mW/cm2).

The reverse saturation current Irs varies with temperature,
according to the following:

Irs = Irr

(
T

Tr

)3

exp
[
1.115
k′A

(
1
Tr

− 1
T

)]
(3)

where Tr is the cell reference temperature, Irr is the reverse
saturation current at Tr, k′ is the Boltzmann’s constant in eV/K
and the bandgap energy of the semiconductor used in the cell is
equal to 1.115.

Finally, the next equation was used in the computer simula-
tions to obtain the open circuit voltage of the PV array

Voc =
AkT

q
ln

(
Iph + Irs

Irs

)
. (4)

From (2) to (4), we get

Irr =
(Iscr + ki(T − Tr)) s

100

exp[(Vocq/AkT ) − 1]

×
((

Tr

T

)3

exp
[
−1.115

k′A

(
1
Tr

− 1
T

)])
(5)

and from (1)

Rsh =
Voc

−Irs(exp[(qVoc/kTA) − 1]
. (6)

The required data for identifying the maximum operating
point at any insolation level and temperature are the following:

1) ki ;
2) open circuit voltage Voc (for initial conditions Tr = 25 ◦C,

S = 100 mW/cm2);
3) short circuit current Iscr (for initial conditions Tr = 25 ◦C,

S = 100 mW/cm2);
4) maximum power voltage Vmp (for initial conditions Tr =

25 ◦C, S = 100 mW/cm2);
5) maximum power current Imp (for initial conditions Tr =

25 ◦C, S = 100 mW/cm2) all given by the PV array man-
ufacturer.

III. MPPT BY FUZZY LOGIC CONTROLLER [8]

The control objective is to track and extract maximum power
from the PV arrays for a given solar insolation level. The max-
imum power corresponding to the optimum operating point is
determined for a different solar insolation level. Normally a dc–
dc converter is utilized between the input source and the load
for the purpose of MPPT.

A. Fuzzification

In [8], the authors focused on single input–single output plant,
in which control is determined on the basis of satisfaction of two
criteria relating to two input variables of the presented controller,
namely error (E) and change of error (CE), at a sampling instant
k.

The variable E and CE are expressed as follows:

E(k) =
Ppv(k) − Ppv(k − 1)
Ipv(k) − Ipv(k − 1)

(7)

CE(k) = E(k) − E(k − 1) (8)

where Ppv(k) and Ipv(k) are the power and current of the PV
array, respectively. Therefore, E(k) is zero at the maximum
power point of a PV array. In Fig. 4(a), the fuzzy set of input
E(k) is presented, while in Fig. 4(b), the fuzzy set of input
CE(k) is shown. Finally, Fig. 4(c) shows the respective fuzzy
set of the output dD, which represents the change of the on/off
duty ratio of the switch S of a stepup boost converter similar to
the one shown in Fig. 5.

B. Inference Method

Table II shows the rule table of the fuzzy controller where all
the entries of the matrix are fuzzy sets of error E(k) change of
error CE(k), and change of duty ratio dD to the boost converter.
In the case of fuzzy control, the control rule must be designed
in order that input variable E(k) has to always be zero.

As an example control rule in Table II:

IF E is PB AND CE is ZO THEN dD is PB

As a fuzzy inference method, Mamdani’s method is used with
max–min operation fuzzy combination law. For the defuzzifi-
cation the center of area (COA) and the max criterion method
(MCM) is used [19].
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Fig. 4. Membership function for (a) input E(k); (b) input CE(k); (c) output
dD.

TABLE II
FUZZY RULE TABLE

The characteristics of the simulated dc–dc boost converter are
given in the Appendix A.

We choose to use the fuzzy controller method as MPPT in-
stead of the simple P&O method [20], because by doing so there
is a reduction not only in the time required to track the MPP
but also in the fluctuation of power, as it is clearly presented in
Figs. 6 and 7.

So far the fuzzy controller is performing better compared to
the classic P&O one by adjusting appropriately the voltage of

Fig. 5. Stepup boost converter for MPPT.

Fig. 6. Sample versus power of PV array using P&O method. At point A, the
P&O method reaches the MPP for first time after iteration (27).

Fig. 7. Sample versus power of PV array, using fuzzy controller method. At
point B, the fuzzy controller’s method reaches MPP after iteration (24).

the dc–dc converter, in order to reach the MPP of a PV array,
faster and with no fluctuation. Some disadvantages of the fuzzy
controller’s method are eliminated using FCN. As it is well
known, the MPP of a PV array varies according to temperature
and/or insolation variations; thus, the fuzzy controller starts its
search for this new MPP, by using as starting point the previous
MPP (corresponding to the previous temperature and insolation
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Fig. 8. Simple fuzzy cognitive map.

levels). This devolvement demands a considerable number of
iterations, especially if this new MPP is located far away from
the previous one, which means that the wasted energy is signifi-
cant. A faster devolvement from one MPP to another is ensured
with the use of an FCN, just like the proposed one presented in
the next section. It will be shown in the following results that
FCN, in close cooperation with the presented fuzzy controller,
will become a robust MPPT method, in order to minimize the
wasted energy.

IV. FCN APPROACH FOR THE PHOTOVOLTAIC PROJECT

In this section, we will present an FCN designed to repre-
sent the operation of a photovoltaic system. Our aim is to use
the FCNs, which are extensions of FCMs, for estimating the
maximum power point of the photovoltaic system.

A. FCMs

FCMs approach is a hybrid modeling methodology, exploit-
ing characteristics of both fuzzy logic and neural networks the-
ories, and it may play an important role in the development of
intelligent manufacturing systems. The utilization of existing
knowledge and experience on the operation of complex systems
is the core of this modeling approach.

The graphical illustration of an FCM is a signed directed
graph with feedback, consisting of nodes and weighted inter-
connections. Nodes of the graph stand for the nodes that are used
to describe the behavior of the system and they are connected by
signed and weighted arcs representing the causal relationships
that exist among nodes (Fig. 8).

Each node represents a characteristic of the system. In gen-
eral it stands for states, variables, events, actions, goals, values,
trends of the system, which is modeled as an FCM [18]. Each
node is characterized by a number Aj , which represents its value
and it results from the transformation of the real value of the
system’s variable, for which this node stands, in the interval

[0, 1]. It must be mentioned that all the values in the graph
are fuzzy, and so weights of the interconnections belong to the
interval [−1, 1]. With the graphical representation of the behav-
ioral model of the system, it becomes clear which node of the
system influences other nodes and in which degree. The weight
of the interconnection between node Ci and node Cj denoted by
Wij , could be positive (Wij>0) for positive causality or nega-
tive (Wij<0) for negative causality or there is no relationship
between node Ci , and node Cj , thus Wij = 0.

The causal knowledge of the dynamic behavior of the system
is stored in the structure of the map and in the interconnections
that summarize the correlation between cause and effect. The
value of each node is influenced by the values of the connected
nodes with the corresponding causal weights and by its previous
value. So, the value Aj for each node Cj is calculated by the
following rule [21]:

As
j = f


 N∑

i=1,i �=j

As−1
i Wij + As−1

j


 (9)

where As
j , is the value of node Cj at step s,As−1

i is the value
of node Ci , at step s − 1, As−1

j is the value of node Cj at step
s − 1, and Wij is the weight of the interconnection between
nodes Ci and Cj · f is a squashing function: f = 1/[1 + e−cx ].
By using c = 1, we convert the nodes values in the range [0,1].

To account for the existence of steady nodes, (9) has to be
slightly modified so that it does not provide with erroneous
results. Steady value nodes are the nodes that influence the
remaining graph but they are not influenced by any other node of
the graph. In this case, nodes values are now computed through
equations [16]

As,FCM
j = f


 N∑

i=1,i �=j

As−1,FCM
i Wij + As−1,FCM

j


 .

(10)

And for the steady-state nodes the correction equation is

As,FCM
j = Asystem

j (11)

where Asystem
j is the node’s value, derived from the physical

system.

B. Cognitive Graph for the PV Project

The graph shown in Fig. 9 represents a photovoltaic system,
for a MPPT use. The graph have six nodes, where nodes C1,
C2, and C6 are steady value nodes and nodes C3, C4, C5 could
be control nodes. In this approach, node C4 is the control node
whose value is used to regulate the current of the system. The
regulation of the current of the system means that a different
power is now the output power of the photovoltaic. Control
nodes are the nodes the values of which will be used to the
real system as control actions. Node C4 is used to calculate
the optimum current needed to regulate the output power of
the photovoltaic in the maximum point. The nodes of the graph
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Fig. 9. FCN designed for the photovoltaic project.

are related to the following physical quantities of the photo-
voltaic system.

Node C1 represents the irradiation with range in the inter-
val [0, 1], 0 is the minimum point of the irradiation (usually
0 mW/cm2) and one is the maximum point, corresponding to
100 mW/cm2.

Node C2 represents the temperature that also must be in the
interval [0, 1]. Zero is the minimum point of the temperature
(usually − 30 ◦C) and one is the maximum point, usually 70 ◦C.

Node C3 represents the optimum voltage of the photovoltaic
system for the climatologic data obtained at the specific point of
time, which also must be in the interval [0, 1], 0 is the minimum
point of the voltage (usually 0 V) and one is the maximum point
Vmax, where Vmax is calculated, according to (4) by setting
T = Tmin and S = Smax.

Node C4 represents the optimum current of the photovoltaic
system for the climatologic data obtained at the specific point
of time, which also must be in the interval [0, 1]. Here 0 is
the minimum point of the current (usually 0 A) and 1 is the
maximum point Imax, where Imax is calculated, according to
(2) by setting T = Tmax and S = Smax.

Node C5 expresses the optimum output power of the photo-
voltaic system for the climatologic data obtained at the specific
point of time, which also must be in the interval [0, 1]. Here 0
is the minimum point of the power (usually 0 W) and 1 is the
maximum point Wmax, where Wmax is a characteristic given
from PV operational data under Tmin and Smax.

Node C6 is an artificial design node, the value of which is
used to regulate the equilibrium point in the nodes C3, C4,
and C5. The value of C6 is steady and equals 1. The weights
W63,W64, and W65, respectively, are originally set to 0 and are
allowed to change only, when one or more weights affecting
nodes 3, 4, and 5 exceed the value of absolute 1. For example
the value of weight W63 is allowed to be updated when the
weights that affect node C3 (W13,W43, and W53) are going to
take values larger from the absolute value 1. In this situation,
weight is activated and its value is no longer set to zero. By
using equilibrium node C6 and the weights connecting this
node with nodes C3, C4, and C5, we manage to regulate the

Fig. 10. Simplified flowchart of the proposed method.

values of nodes C3, C4, and C5, by always keeping values of
the graph weights below absolute value 1.

C. FCN Approach for the Photovoltaic Project

FCN [16], [17], constitute an extension of FCMs. Unlike
FCMs, which rely only on the use of the initially acquired ex-
perts’ knowledge about the operation of the system and which
is represented by the weights values of the map, FCNs may use
these values only as a starting point or may not use them at all.
The operation of FCNs is tightly connected with the operation
of the physical system providing control values and taking feed-
back from the system. Moreover, during its initial training or its
subsequent interaction with the physical system, the FCN keeps
track of its previous equilibrium points by means of a collec-
tion of fuzzy if–then rules. Using these characteristics, the FCN
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becomes a dynamic control system. In this paper we use the FCN
in close cooperation with a fuzzy MPPT controller and with a
PV system as shown in Fig. 10. The FCN is first off-line trained
by appropriately constructed data and then it is connected to any
PV system to get feedback and send control values to regulate its
output. Once the FCN is trained its knowledge can be updated
and the FCN acts as an adaptive controller of the PV system.
The off-line training and the subsequent operation are described
bellow.

1) Initial Off-Line Training of the FCN: The off-line train-
ing is being performed in an incremental manner. This means
that for each training data vector that contains PV value vari-
ables corresponding to different operation conditions, the FCN
weights are updated to comply with the data vector. Moreover,
this new acquired knowledge is been stored in a fuzzy-rule data
base. We can divide the training into two cooperating stages.

2) Stage 1—Weight Updating Using New Data: This stage
is concerned with the method of updating the interconnections
weights of FCN taking into account training data. Since the
training is being performed incrementally, during stage 1, only
one data vector is used. The FCN converges to its new weights
values after a number of iterations. In each training iteration the
FCN uses the updated weights to reach new equilibrium node
values by means of (10) and (11). These values are compared
to the given training values and the error is given for the new
updating iteration. The weight updating is used by the following
extended delta rule [16]

p = Asystem
j − 1

1 + e
−
(∑N

i=1, i �=j
A

system
i

W i j +A
system
j

)
= Asystem

j − AFCN
j (12)

Wk
ij = Wk−1

ij + Rij ∗ (ap(1 − p))AFCN
i (13)

where p is the error, k is the number of iteration, a is the learn-
ing rate (usually a = 0.1) and Rij is a calibration variable,
which prevents the FCN node and weight values from being
driven in their saturation point. Rij can be computed by the
following [16]:

Rij = η

∑i=n
i=1 |Wij |
|Wij |

if Wij �= 0 and

Rij = 0 if Wij = 0 (14)

where constant value η is used to drive values Rij in the range
[0, 1]. In most practical situations, η = 0.1.

3) Stage 2–Storage of the New Knowledge in a Fuzzy Rule
Database: The procedure described in the previous stage modi-
fies our knowledge about the system by continuously modifying
the weight interconnections and consequently, the node values.
After the weight updating is taking place, the FCN reaches a
new equilibrium point using (10) and (11). Since a new training
vector might produce different weights and different equilib-
rium point we have to keep track of the current knowledge
(weights and equilibrium points) to be used after the training

Fig. 11. Left-hand side (“if” part).

phase. We do that by producing fuzzy if–then rules, according
to the following procedure [17].

Suppose, for example, that the FCN after being trained by a
data vector converges to the following weight matrix:

W =




0 0 W13 W14 W15 0
0 0 W23 W24 W25 0
0 0 0 W34 W35 0
0 0 W43 0 W45 0
0 0 W53 W54 0 0
0 0 W63 W64 W65 0




and concludes to an equilibrium point, which is

A = [A1 A2 A3 A4 A5 A6].

Suppose also that for a new training data vector, it concludes
to a new equilibrium point

B = [B1 B2 B3 B4 B5 B6]

with weight matrix

K =




0 0 K13 K14 K15 0
0 0 K23 K24 K25 0
0 0 0 K34 K35 0
0 0 K43 0 K45 0
0 0 K53 K54 0 0
0 0 K63 K64 K65 0


 .

The fuzzy rule database, which is obtained using the infor-
mation from the two previous equilibrium points, is depicted in
Figs. 11 and 12 and is resolved as follows:

There are two rules related to the above two different
equilibrium situations
Rule 1
if node 1 is mf1 and node 2 is mf1 and node 3 is mf1 and
node 4 is mf1 and node 5 is mf1 and node 6 is mf1
then w13 is mf1 and w14 is mf1 and w15 is mf1 and
w23 is mf1 and w24 is mf1 and w25 is mf1 and
w34 is mf1 and w35 is mf1 and w43 is mf1 and
w45 is mf1 and w53 is mf1 and w54 is mf1 and
w63 is mf1 and w64 is mf1 and w65 is mf1
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Fig. 12. Right-hand side (“then” part).

Rule 2
if node 1 is mf1 and node 2 is mf2 and node 3 is mf2 and
node 4 is mf2 and node 5 is mf2 and node 6 is mf2
then w13 is mf2 and w14 is mf2 and w15 is mf2 and
w23 is mf2 and w24 is mf2 and w25 is mf2 and
w34 is mf2 and w35 is mf2 and w43 is mf2 and
w45 is mf2 and w53 is mf2 and w54 is mf2 and
w63 is mf2 and w64 is mf2 and w65 is mf2.

The number and shape of the fuzzy membership functions of
the variables of both sides of the rules are gradually modified
as new desired equilibrium points appear to the system during
its training. To add a new triangular membership function in the
fuzzy description of a variable, the new value of the variable
must differ from one already encountered value more than a

specified threshold. The threshold comes usually as a compro-
mise between the maximum number of allowable rules and the
detail in fuzzy representation of each variable.

Once the new knowledge has been stored using the above
procedure we run again stage 1 using a new training vector. The
procedure stops after all data vectors have been presented.

4) Control of a PV System Using the Trained FCN and the
Fuzzy Controller: Once the FCN is off-line trained, it can be
connected to the PV system according to Fig. 10. The FCN
receives feedback from the fuzzy controller and from the PV
array also. Once the error E(k) of the fuzzy controller is set
to zero, it means that the duty ratio of the switch S of the boost
converter is set to the proper value, so that the PV array is in its
maximum power point. This new maximum power point gives
a new equilibrium point to the FCN. The new equilibrium point
is used to train further the FCN. If there is a change in the values
of temperature and insolation before the fuzzy controller drives
the duty ratio of the switch S to the proper value corresponding
to the MPP then the FCN interferes to the procedure and sends
a new proper value for MPP voltage for the new insolation and
temperature.

V. RESULTS

Needless to say that irradiation and temperature play the most
significant role on the maximum power that is drawn from a PV
module. In order to measure these two quantities a pyranome-
ter and a thermocouple is often used, although the output from
these two measuring devices is not always the most adequate in-
formation to identify the operating point yielding the maximum
power, which is of course a drawback of this methodology. The
short circuit current from the PV array gives the most adequate
information of the effective insolation and temperature using
(1)–(6).

We construct training data for the FCN using the following
procedure: We use some typical climatic data. These data are
chosen to be Irradiation (S-node 1). We select values in the
range 0–100 mW/cm2 using a step of 5 mW/cm2. Temperature
(T-node 2). We select values in the range −30 ◦C–70 ◦C, using
a step of 5 ◦C.

By using all the possible combinations of these data and by
using the simulation of the photovoltaic array, we calculate the
values of the optimum voltage (node 3), current (node 4), and
output power (node 5) from (1) to (4). Using these node values
for nodes 1–5, we update the weights of the FCN according to
stage 1 of the training procedure and for the equilibrium point
derived for any possible combination, we store the knowledge
according to stage 2.

The possible combinations of the climatic data are 441 and
the FCN creates 21 triangular fuzzy numbers for nodes 1
and 2, 24 for node 3, 48 for node 4, 43 for node 5, 5 for
node 6. Also, 287 fuzzy if–then rules are created to store the
knowledge. The number of rules appears to be large because
they account for all possible combinations of climatic data,
even for those which are unlikely ever to occur. This num-
ber could be significantly reduced if we exclude this kind of
combinations.
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Fig. 13. Sample versus power of PV-array. (A) Theoretical, (B) proposed
method, and (C) fuzzy controller.

When we connect the FCN system to the PV array, if the error
E(k) is zero, fuzzy MPPT controller sends the values of nodes 1
and 2 to the training part of the algorithm and through the fuzzy
rule database, the system decides, which weights values are ap-
propriate to express the values of nodes 3, 4, and 5. Executing
(10) and (11) and by using the weights derived above, we calcu-
late the new equilibrium point which expresses the values of the
optimum current, voltage and output power of the PV array for
the climatic data obtained at the specific time instant. In the next
step the FCN sends the values of the control nodes to the dc–dc
boost converter, thus determining the optimum current, which
corresponds to the maximum output power for the climatic data
obtained at the specific time instant.

In order to evaluate the effectiveness of the proposed algo-
rithm, we used the trained FCN for controlling the operation
of the BP270L PV array. The parameters of the PV array are
given in Appendix B, where a sample of the weight matrix
and the corresponding equilibrium points is also given. Fig. 13
presents a comparison between (A) the theoretical (computed
by (1)–(4)) MPP, (B) the calculated by the proposed FCN
and fuzzy controller method and (C) the calculated by only
the fuzzy controller method [8]. It is clearly depicted that by
using the FCN + fuzzy controller MPPT system, we have a
significant energy gain. Actually, the combined method needs
only five iterations, in order to reach the new MPP, while the
fuzzy controller method alone needs 12 iterations, in order to
reach the same MPP. Each iteration corresponds to one second,
following the same sampling procedure with [8].

In Fig. 14, a similar comparison among the performance of
the three methods but in different temperature and insolation
conditions than those of Fig. 13 is given. We can see that the
new MPP was exactly the point that the FCN instantly returned
to the dc–dc converter for the new insolation and temperature
levels. That is why the proposed method (B) does not need to
use the fuzzy controller, in order to reach the MPP. In this case
by using the proposed method we reach the MPP after only one
iteration, while by using only the fuzzy controller the system
reached the MPP after 18 iterations.

Fig. 15 amply demonstrates the reason why it is better to use
off-line training. As we can see the system is in an MPP, cor-

Fig. 14. Sample versus power of PV-array. (A) Theoretical, (B) proposed
method, and (C) fuzzy controller.

Fig. 15. Sample versus power of PV-array. (A) Theoretical, (B) proposed
method (off-line trained FCN), (C) fuzzy controller, and (D) proposed method
(only on-line trained FCN).

responding to a specific insolation and temperature level. The
next MPP, corresponding to another insolation and temperature
level, is a point with which the FCN has already been trained
off-line. Using, as feedback from the PV array, the values of
current, voltage and sort circuit current and by using (1)–(4) the
control system calculates the insolation and the temperature cor-
responding to the feedback values. The so computed insolation
and temperature values are in this case values with which FCN
has already been trained off-line. Thus, the proposed method re-
turns the optimum control law instantly to the dc–dc converter,
as it is shown in Fig. 15 (plot B). If there was no off-line train-
ing, then the values of insolation and temperature, corresponding
to the new MPP, would not be values for insolation and tem-
perature, with which the FCN has already been trained. In this
case the FCN returns initially an MPP value, which is far away
from the actual one. Therefore, the proposed method will need a
number of steps before reaching the actual MPP (plot D). It has
to be mentioned that this phenomenon appears mainly in the be-
ginning of the operation of the method, when the FCN is totally
untrained. After a sufficient time of operation the FCN gains ex-
perience and therefore it acts as if it was initially off-line trained.
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TABLE III
COMPARISON OF VARIOUS MPPT METHODS

Finally, in order to estimate the energy gain of the new method
(FCN + fuzzy controller MPPT) in comparison to the method
which uses fuzzy controller only we performed the following
experiment. Using data from the year 2002 we ran both methods
to give us the maximum power points and calculated the energy
acquired from the PV array. Both methods are compared to the
optimal one [theoretical MPP values, computed by using (1)–
(4)] and the results are shown in Table III. It can be observed that
the proposed method (both cases B and D) outperforms method
C (fuzzy controller only). Actually, when the off-line trained
FCN is used the proposed method provides with only a 0.78%
less energy production than the optimal (theoretical) case.

A typical real life application of the proposed methodology
would require the following steps.

1) Once a specific PV array is selected its parameters, as those
indicated in Appendix B, are entered to the controller.

2) Based on these parameters the training data are produced
using the various combinations of the climatic data and
(1)–(4).

3) The FCN is being off-line trained using the above data and
according to the procedure described in Section IV.

4) Once the FCN is off-line trained, it is left to operate with
the specific PV array in close cooperation with the fuzzy
controller.

It is evident that this procedure can be applied to any PV array
of the market.

VI. CONCLUSION

A novel method for maximum power point tracking was pre-
sented in this paper. The method combines a fuzzy MPPT with
an appropriately designed FCN to speed-up the procedure of
reaching the accurate maximum power point of a photovoltaic
array under changing environmental conditions. The method
presents very good results, i.e., only 0.78% error in energy pro-
duction when compared with the theoretical expected produc-
tion of a commercially available photovoltaic array, simulated on
climatic data of a whole year. The methodology can be applied
on any photovoltaic array of the market. Due to the existence
of the FCN the method could track and adapt to any physical
variations of the photovoltaic array through time. Therefore,
the method is guaranteed to present its very good performance
independently of these variations.

APPENDIX A

The dc–dc boost converter has been simulated, according to
characteristics described below:

1) Array: BP270L PV array;
2) dc–dc converter input voltage (Vi): 13.7–24.7 V;
3) dc–dc converter output voltage (Vo): 48 V;
4) Switching frequency (fs): 33 kHz.
Below are shown the basic equations necessary for the dc–dc

boost converter design [22]

Vo
V i

= 1
1−D , Ii

Io
= 1

1−D , where D = ton
T and T = 1

f s .

APPENDIX B

PV system data:
i) ki = 2.8 mA/ ◦C;

ii) Open circuit voltage Voc = 21.4 V;
iii) Short circuit current Iscr = 4.48 A;
iv) Maximum power voltage Vmp = 17.1 V;
v) Maximum power current Imp = 4.15 A.
Based on the node description presented in Section IV and

by using the PV system data given by the manufacturer we can
see, as an example, an equilibrium point with weight matrix

W =




0 0 −0.0013 −0.5962 −0.387 0
0 0 −0.0462 −0.7528 −0.4822 0
0 0 0 −0.4097 −0.4695 0
0 0 −0.3731 0 −0.632 0
0 0 0.0347 0.4454 0 0
0 0 0 −0.7392 −0.869 0




and A vector is

A = [0.247 0.5762 0.6288 0.2179 0.1837 1].

The A vector means that

S = 24.7 mW/cm2, T = 27.62 ◦C, V = 16 V,

I = 1.003 A, W = 16.048 W.
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