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ABSTRACT

Context. Data from cosmic microwave background radiation (CMB), baryon acoustic oscillations (BAO), and supernovae Ia (SNe-Ia)
support a constant dark energy equation of state with w0 ∼ −1. Measuring the evolution of w along the redshift is one of the most
demanding challenges for observational cosmology.
Aims. We discuss the existence of a close relation for gamma-ray bursts (GRBs), named Combo-relation, based on characteristic
parameters of GRB phenomenology such as the prompt intrinsic peak energy Ep,i, the X-ray afterglow initial luminosity L0 and the
rest-frame duration τ of the shallow phase, and the index of the late power-law decay αX. We use it to measure Ωm and the evolution
of the dark energy equation of state. We also propose a new calibration method for the same relation, which reduces the dependence
on SNe Ia systematics.
Methods. We have selected a sample of GRBs with 1) a measured redshift z; 2) a determined intrinsic prompt peak energy Ep,i;
and 3) a good coverage of the observed (0.3–10) keV afterglow light curves. The fitting technique of the rest-frame (0.3–10) keV
luminosity light curves represents the core of the Combo-relation. We separate the early steep decay, considered a part of the prompt
emission, from the X-ray afterglow additional component. Data with the largest positive residual, identified as flares, are automatically
eliminated until the p-value of the fit becomes greater than 0.3.
Results. We strongly minimize the dependency of the Combo-GRB calibration on SNe Ia. We also measure a small extra-Poissonian
scatter of the Combo-relation, which allows us to infer from GRBs alone ΩM = 0.29+0.23

−0.15
(1σ) for the ΛCDM cosmological model,

and ΩM = 0.40+0.22
−0.16

, w0 = −1.43+0.78
−0.66

for the flat-Universe variable equation of state case.
Conclusions. In view of the increasing size of the GRB database, thanks to future missions, the Combo-relation is a promising tool for
measuring Ωm with an accuracy comparable to that exhibited by SNe Ia, and to investigate the dark energy contribution and evolution
up to z ∼ 10.
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1. Introduction

Gamma-ray bursts (GRBs) are observed in a wide range of spec-
troscopic and photometric redshifts, up to z ∼ 9 (Salvaterra et al.
2009; Tanvir et al. 2009; Cucchiara et al. 2011). This suggests
that GRBs can be used to probe the high-z Universe, in terms of
investigating the re-ionization era, population III stars, the metal-
licity of the circumburst medium, the faint-end of galaxies lumi-
nosity evolution (D’Elia et al. 2007; Robertson & Ellis 2012;
Macpherson et al. 2013; Trenti et al. 2013, 2015), and as cosmo-
logical rulers (e.g. Ghirlanda et al. 2004; Dai et al. 2004; Amati
& Della Valle 2013). The latter works show that GRBs, through
the correlation between radiated energy or luminosity and the
photon energy at which their νF(ν) spectrum peaks Ep,i, admit-
tedly with a lower level of accuracy, provide results in agree-
ment with supernovae Ia (SN Ia, Perlmutter et al. 1998, 1999;
Schmidt et al. 1998; Riess et al. 1998), baryonic acoustic oscil-
lations (BAO, Blake et al. 2011), and cosmic microwave back-
ground (CMB) radiation (Planck Collaboration XVI 2014). The
Universe is spatially flat (e.g. de Bernardis et al. 2000), and it

is dominated by a still unknown vacuum energy, usually called
dark energy, which is responsible for the observed acceleration.
Measuring the equation of state (EOS, ω = p/ρ, with p the pres-
sure and ρ the density of the dark energy) is one of the most
difficult tasks in observational cosmology today. Current data
(Suzuki et al. 2012; Planck Collaboration XIII 2015) suggest
that w0 ∼ −1 and wa ∼ 0, the expected values for the cosmologi-
cal constant. Although these results are probably sufficient to ex-
clude a very rapid evolution of dark energy with z, we cannot yet
exclude that it may evolve with time, as originally proposed by
Bronstein (1933). In principle, with SNe Ia we can push our in-
vestigation up to z ≈ 1.7 (Suzuki et al. 2012). However we note
that the possibility of detecting SNe Ia at higher redshifts will
depend on the availability of next-generation telescopes and also
on the time delay distribution of SNe Ia (see Fig. 8 in Mannucci
et al. 2006).

A solution to this problem may be provided by GRBs: their
redshift distribution peaks around z ∼ 2−2.5 (Coward et al.
2013) and extends up to the photometric redshift of z = 9.4,
(Cucchiara et al. 2011). Therefore, given this broad range of z
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Fig. 1. EX,iso–Eγ,iso–Ep,i correlation proposed by Bernardini et al. (2012)
and Margutti et al. (2013) (courtesy R. Margutti).

and their very high luminosities, GRBs are a class of objects suit-
able to explore the trend of dark energy density with time (Lloyd
& Petrosian 1999; Ramirez-Ruiz & Fenimore 2000; Reichart
et al. 2001; Norris et al. 2000; Amati et al. 2002, 2008; Ghirlanda
et al. 2004; Dai et al. 2004; Yonetoku et al. 2004; Firmani et al.
2006; Liang & Zhang 2006; Schaefer 2007; Capozziello & Izzo
2008; Dainotti et al. 2008; Tsutsui et al. 2009; Wei et al. 2014;
Wang et al. 2015). There are two complications connected with
these approaches. First, the correlations are always calibrated by
using the entire range of SNe Ia up to z = 1.7; therefore, this
procedure strongly biases the GRB cosmology and for our pur-
poses we need the highest level of independent calibration pos-
sible. Second, the data scatter of these correlations is not tight
enough to constrain cosmological parameters (in this work we
refer to the different extra-scatters published in Margutti et al.
2013), even when a large GRB dataset is used. In this work we
present a method that can override the latter and minimize the
former.

Very recently Bernardini et al. (2012, hereafter B12) and
Margutti et al. (2013, hereafter M13) have published an inter-
esting correlation that connects the prompt and the afterglow
emission of GRBs (see Fig. 1). This relation strongly links the
X-ray and γ-ray isotropic energy with the intrinsic peak en-
ergy, EX,iso ∝ E1.00± 0.06

γ,iso
/E0.60± 0.10

p,i
, unveiling an interesting con-

nection between the early, more energetic component of GRBs
(Eγ,iso and Ep,i) and their late emission (EX,iso), opportunely fil-
tered for flaring activity. In addition, the intrinsic extra scatter
is very small σEX,iso = 0.30 ± 0.06 (1σ). Starting from the re-
sults obtained by B12 and M13, and combining them with the
well-known Ep,i − Eiso relation (Amati et al. 2002), we present
here a new correlation involving four GRB parameters, which
we named the Combo-relation. This new relation is then used to
measure Ωm and to explore the possible evolution of w of EOS
with the redshift by using as a “candle” the initial luminosity L0

of the shallow phase of the afterglow, which we find to be strictly
correlated with quantities directly inferred from observations.

The paper is organized as follows. In Sect. 2 we describe
in detail how we obtain the formulation of the newly proposed
GRB correlation, and present the sample of GRBs used to test
our results, the procedure for the fitting of the X-ray afterglow
light curves, and finally, the existence of the correlation assum-
ing a standard cosmological scenario. Then, in Sect. 3, we dis-
cuss the use of the relation as cosmological parameter estimator,

which involves a calibration technique that does not require the
use of the entire sample of SNe Ia, as was often done in previous
similar works. In Sect. 4, we test the use of GRBs estimating the
main cosmological parameters, as well as the evolution of the
dark energy EOS. Finally, we discuss the final results in the last
section.

2. The Combo-relation

We present here a new GRB correlation, the Combo-relation,
obtained after combining Eγ,iso–EX,iso–Ep,i (B12 and M13), the
Eγ,iso–Ep,i (Amati et al. 2002) correlations, and the analytical
formulation of the X-ray afterglow component given in Ruffini
et al. (2014, hereafter R14).

The three-parameter scaling law reported in B12 and M13
can be generally written as

EX,iso ∝
E
β

γ,iso

Eδ
p,i

, (1)

where EX,iso is the isotropic energy of a GRB afterglow in the
rest-frame (0.3–30) keV energy range obtained by integrating
the light curve in luminosity over a specified time interval, Eγ,iso

is the isotropic energy of a GRB prompt emission, and Ep,i is the
intrinsic spectral peak energy of a GRB. Since EX,iso and Eγ,iso

are both cosmological-dependent quantities, we reformulate this
correlation in order to involve only one cosmological-dependent
quantity.

The right term of Eq. (1) can be rewritten using the well-
known formulation of the Amati relation, Eγ,iso ∝ E

η

p,i
, which

provides

EX,iso = A E
γ

p,i
, (2)

where γ = η × β − δ and A is the normalization constant. Since
the Amati relation is valid only for long bursts, in the follow-
ing discussion we will exclude short GRBs with a rest-frame
T90 duration smaller than 2 s, and short bursts with “extended
emission” (Norris & Bonnell 2006), or “disguised short” GRBs
(Bernardini et al. 2007; Caito et al. 2010), which have hybrid
characteristic between short and long bursts.

To rewrite Eq. (2) for cosmological purposes, we have
calculated the total isotropic X-ray energy in the rest-frame
(0.3–10) keV energy range by integrating the X-ray luminos-
ity L(t′a), expressed as a function of the cosmological rest-
frame arrival time t′a, over the time interval (t′

a,1
, t′

a,2
). This lu-

minosity L(t′a) is obtained by considering four steps (see e.g.
Appendix A and Pisani et al. 2013).

It is well known that the X-ray afterglow phenomenology
can be described by the presence of an additional component
emerging from the soft X-ray steep decay of the GRB prompt
emission, and characterized by a first shallow emission, usu-
ally named the plateau, and a late power-law decay behaviour
(Nousek et al. 2006; Zhang et al. 2006; Willingale et al. 2007). In
addition, many GRB X-ray light curves are characterized by the
presence of large, late-time flares, whose origin is very likely as-
sociated with late-time activity of the internal engine (Margutti
et al. 2010). Since their luminosities are much lower than the
prompt one, we exclude X-ray flares from our analysis via a
light-curve fitting algorithm, which will be explained later in the
text. We then make the assumption that the EX,iso quantity refers
only to the component whose X-ray luminosity L(t′a) is given by
the phenomenological function defined in R14

L(t′a) = L0

(

1 +
t′a
τ

)αX

, (3)
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where L0, τ, and αX are, respectively, the luminosity at t′a = 0,
the characteristic timescale of the end of the shallow phase, and
the late power-law decay index of a GRB afterglow.

Therefore, if we extend the integration time interval to
t′
a,1
→ 0 and t′

a,2
→ +∞, the integral of the function L(t′a) in

Eq. (3) gives

EX,iso =

∫ +∞

0

L(t′a) dt′a = L0

τ

|1 + αX|
, (4)

with the requirement that αX < −1. This condition is necessary
to exclude divergent values of EX,iso computed from Eq. (4), for
t′
a,2
→ +∞. It is worth noting that light curves providing values

αX > −1 could have a change in slope at very late times (beyond
the XRT time coverage) and/or, in principle, could be polluted
by a late flaring activity, resulting in a less steep late decay.

Considering Eqs. (2) and (4), we can finally formulate the
following relation between GRB observables

L0 = AE
γ

p,i

(

τ

|1 + αX|

)−1

, (5)

which we name the Combo-relation. At first sight, Eq. (5) sug-
gests the existence of a physical connection between specific
physical properties of the afterglow and prompt emission in
long GRBs. A two-dimensional fashion of the correlation in
Eq. (5) in logarithmic units can be written as

log

(

L0

erg/s

)

= log

(

A

erg/s

)

+ γ

[

log

(

Ep,i

keV

)

−
1

γ
log

(

τ/s

|1 + αX|

)]

,

(6)

where the set of parameters in the square brackets has the mean-
ing of a logarithmic independent coordinate, and in the following

will be expressed as log
[

X(γ, Ep,i, τ, αX)
]

.

We have tested the reliability of Eqs. (5) and (6) by building
a sample of GRBs satisfying the following restrictions:

– a measured redshift z;
– a determined prompt emission spectral peak energy Ep,i;
– a complete monitoring of the GRB X-ray afterglow light

curve from the early decay (t′a ∼ 100 s, when present) un-
til late emission (t′a ∼ 105–106 s).

We start the analysis by computing the rest-frame (0.3–10) keV
energy band light curves (see Appendix A). The fitting of the
continuum part of the X-ray light curves was performed by
using a semi-automated procedure based on the χ2 statistic,
which eliminates the flaring part (see e.g. Appendix B and
Margutti et al. 2011; Zaninoni 2013, and M13, for details). A
total of 60 GRBs are found, whose distribution in the Combo-
relation plane is shown in Fig. 2, where the value of the luminos-
ity L0 for each GRB is calculated from the flat ΛCDM scenario.
The corresponding best-fit parameters, as well as the extra-
scatter term σext, have been derived by following the procedure
by D’Agostini (2005), and are respectively log

[

A/(erg/s)
]

=

49.94 ± 0.27, γ = 0.74 ± 0.10, and σext = 0.33 ± 0.04. The
Spearman’s rank correlation coefficient is ρS = 0.92, while the
p-value computed from the two-sided Student’s t-distribution, is
pval = 9.13 × 10−22.
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Fig. 2. Correlation considering the entire sample of 60 GRBs. The green
empty boxes are the data of each of the sources, derived as described
in Appendix B, the solid black line is the best fit of the data, while the
dotted grey lines and the dashed grey lines correspond, respectively, to
the dispersion on the correlation at 1σex and 3σex.

3. Calibration of the Combo-relation

The lack of very nearby (z ∼ 0.01) GRBs prevents the possibility
of calibrating GRB correlations, as is usually done with SNe Ia.
In recent years different methods have been proposed to avoid
this “circularity problem” in calibrating GRB relations (Kodama
et al. 2008; Demianski et al. 2012, and references therein). The
common approach uses an interpolating function for the distri-
bution of luminosity distances (distance moduli) of SNe Ia with
redshift, and then extending it to GRBs at higher redshifts. In the
following we introduce and describe an alternative method for
calibrating the Combo-relation (see also Ghirlanda et al. 2006)
which consists of two steps: 1) we identify a small but sufficient
subsample of GRBs that lie at the same redshift, and then infer
the slope parameter γ from a best-fit procedure; 2) once we de-
termine γ, the luminosity parameter A can be obtained from a
direct comparison between the nearest, z = 0.145, GRBs in our
sample and SNe Ia located at very similar redshifts. We note that
this approach is different from previous ones in that we do not
use the whole redshift range covered by SNe Ia, but we limit our
calibration analysis to z = 0.145 where the effect of the cosmol-
ogy on the distance modulus of the calibrating SNe Ia is small
(see Fig. 3).

3.1. The determination of the slope γ

The existence of a subsample with a sufficient number of GRBs
lying at almost the same cosmological distance would, in prin-
ciple, allow us to infer γ, overriding any possible cosmological
dependence (assuming a homogeneous and isotropic Universe).
In our sample of 60 GRBs there is a small subsample of 5 GRBs
located at a very similar redshift, see Table 1. The difference be-
tween the maximum redshift of this 5-GRB sample (z = 0.544)
and the minimum one (z = 0.5295) corresponds to a variation
of 0.015 in redshift and of 0.07 in distance modulus µ in the
case of the standard ΛCDM model. This very small difference is
sufficient for our purposes.

To avoid any possible cosmological contamination, we do
not consider the luminosity L0 as the dependent variable, but we
consider instead the energy flux F0, which is related to the lu-
minosity through the expression L0 = 4πd2

l
F0. This assumption

does not influence the final result, since dl is almost the same for
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Table 1. Five GRBs used for the determination of the slope parameter γ of the correlation.

GRB z Ep,i (keV) F0 (erg cm−2 s−1) τ (s) αX

060729 0.54 104 ± 24 (2.32 ± 0.05) × 10−11 61462 ± 2844 −1.71 ± 0.03

081007 0.5295 61 ± 15 (4.48 ± 0.64) × 10−11 2178 ± 457 −1.17 ± 0.04

090424 0.544 273 ± 5 (4.20 ± 0.26) × 10−9 204 ± 16 −1.20 ± 0.01

090618 0.54 257 ± 41 (1.18 ± 0.03) × 10−9 1206 ± 47 −1.46 ± 0.01

100621A 0.542 146 ± 23 (1.75 ± 0.22) × 10−10 3613 ± 746 −1.05 ± 0.03

Notes. In the Col. 1 is shown the GRB name, in Col. 2 the redshift z, in Col. 3 the intrinsic peak energy of the burst, in Col. 4 the initial flux of
the afterglow additional component F0 in the common rest-frame energy range (0.3–10) keV, in Col. 5 the time parameter (τ), in Col. 6 the late
power-law decay index (αX).

Wm = 0.10, WL = 0.90

Wm = 0.15, WL = 0.85

Wm = 0.27, WL = 0.73

Wm = 0.50, WL = 0.50
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Fig. 3. Residual distance modulus µobs − µth for different values of the
density cosmological parameters Ωm and ΩΛ up to z = 2.0. We con-
sider the best fit to be the standard ΛCDM model, where Ωm = 0.27,
ΩΛ = 0.73, and H0 = 71 km s−1/Mpc (black line). Union2 SNe Ia data
residuals are shown in grey. The large spread (more than 1 mag) shown
by µ at z = 1.5 and at z = 0.145 (the two vertical dashed lines) where
the scatter is almost 0.2 mag is clearly evident.

the 5-GRB sample and, therefore, the 4πd2
l

term can be absorbed
in the normalization constant. Consequently, we build the energy
flux light curve for each GRB, and then, following the same pro-
cedure described in Sect. 2, we perform a best-fit analysis of this
subsample of five GRBs using the maximum likelihood tech-
nique. From the best fit we find a value of γ = 0.89 ± 0.15, with
an extra scatter of σext = 0.40 ± 0.04, see Fig. 4.

3.2. Calibration of A with SNe Ia

Among the considered 60 GRBs, the nearest one is
GRB 130702A at z = 0.145. We use it to perform the calibration
of the Combo-relation with SNe Ia located at the same distance.
It is clear that at these redshifts (z = 0.145) the offset provided
by SNe Ia is much smaller than the value inferred from SNe Ia at
larger redshifts, see Fig. 3. In this light we have selected Union2
SNe Ia (Amanullah et al. 2010; Suzuki et al. 2012) with red-
shift between z = 0.143 and z = 0.147. We find five SNe Ia that
satisfy this condition; their properties are shown in Table 2. We
then compute the average value of their distance modulus and its
uncertainty, 〈µ〉 = 39.19 ± 0.27, which will be used for the final
calibration. The parameter A can be obtained inverting Eq. (6),
and considering L0 = 4πdl2 F0:

log

(

A

erg/s

)

= 2 log

(

dl

cm

)

+ log 4π + log

(

F0

erg/cm2/s

)

− γ log X(γ, Ep.i, τ, αX). (7)
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Fig. 4. Correlation found for the sample of five GRBs located at the
same redshift. The blue triangles are the data of each of the five sources,
derived from the procedure in Appendix B. The solid line represents the
best fit while the dashed line is the dispersion on the correlation at 1σex.

Table 2. Five SNe Ia selected from the Union2 sample (Amanullah
et al. 2010; Suzuki et al. 2012) and used for the calibration of the
GRB correlation.

S N z µ

1999bm 0.1441 38.836 ± 0.157

10106 0.14629 39.559 ± 0.120

2005ln 0.14567 39.057 ± 0.126

2005gx 0.144621 39.291 ± 0.113

2005ld 0.1437 39.186 ± 0.116

Notes. In the first column it is shown the name of the SN, in the second
column the redshift and in the third the distance modulus obtained from
the light curve fitting with the SALT2 SED method (Guy et al. 2007).

The generic SN distance modulus µ can be directly related to the
luminosity distance dl by

µ = 25 + 5 log

(

dl

Mpc

)

= − 97.45 + 5 log

(

dl

cm

)

, (8)

where the last equality takes into account the fact that dl is ex-
pressed in cm. Substituting this last expression for log (dl) in
Eq. (7) we obtain

log

(

A

erg/s

)

=
2

5
(〈µ〉 + 97.45) + ψ(γ, Ep.i, τ, αX, F0), (9)
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where the term ψ(γ, Ep.i, τ, αX, F0) comprises the last three terms
on the right hand side of Eq. (7). Substituting the quantities
for GRB 130702A in Eq. (9), and the value of 〈µ〉 previously
obtained, we infer a value for the parameter log[A/(erg/s)] =
49.54 ± 0.20, where the uncertainty also takes the σext value
found above into account.

4. Cosmology with the Combo-relation

4.1. Building the GRB Hubble diagram

We now discuss the possible use of the proposed GRB Combo-
relation to measure the cosmological constant and the mass den-
sity, as well as their evolution with redshift z. The possibility of
estimating the luminosity distance dl from the GRB observable
quantities allows to us define a distance modulus for GRBs, and
then its uncertainty, as

µGRB = −97.45 +
5

2

[

A− ψ(γ, Ep,i, τ, αX, F0)
]

, (10)

where A = log[A/(erg/s)]. The quantity µGRB can be directly
compared with the theoretical cosmological expected value µth,
which depends on the density parameters Ωm and ΩΛ, the curva-
ture term Ωk = 1 −Ωm −ΩΛ, and the Hubble constant H0

µth = 25 + 5 log dl(z,Ωm,ΩΛ,H0). (11)

The luminosity distance dl is defined as

dl =
c

H0

(1 + z)



















































1√
|Ωk |

sinh

[

∫ z

0

√
|Ωk |dz′√

E(z′,Ωm,ΩΛ, w(z))

]

, Ωk > 0

∫ z

0

dz′√
E(z′,Ωm,ΩΛ, w(z))

, Ωk = 0

1√
|Ωk |

sin

[

∫ z

0

√
|Ωk |dz′√

E(z′,Ωm,ΩΛ, w(z))

]

, Ωk < 0

(12)

with E(z,Ωm,ΩΛ, w(z)) = Ωm(1 + z)3 + ΩΛ(1 + z)3(1+w(z)) +

Ωk(1 + z)2 (see e.g. Goobar & Perlmutter 1995). In the fol-
lowing we fix the Hubble constant at the recent value inferred
from low-redshift SNe Ia, corrected for star formation bias, and
calibrated with the LMC distance (Rigault et al. 2014): H0 =

70.6 ± 2.6.

The corresponding uncertainties on µGRB were computed
considering an observed term, σµobs, which takes into account
each uncertainty on the observed quantities of the Combo-
relation, e.g. F0, τ, α, and Ep,i, and a “statistical” term, σµrel,
which takes into account the uncertainties on the parameters of
the Combo-relation, A and γ, and the weight of the extra scatter
value σext. The final uncertainty on each single GRB distance
modulus

σµGRB =

√

(σµobs)2 + (σµrel)2 (13)

allows us to build the Combo-GRB Hubble diagram (see also
Izzo et al. 2009), which is shown in Fig. 5. It is possible to quan-
tify the reliability of any cosmological model with our sample
of 60 GRBs, which represents a unique dataset from low red-
shift (z = 0.145) to very large distances (z = 8.23). To reach our
goal, we make the fundamental assumption that our GRB sam-
ple is normally distributed around the best-fit cosmology, which
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Fig. 5. Combo-GRB Hubble diagram. The black line represents the best
fit for the function µ(z) as obtained by using only GRBs and for the case
of the ΛCDM scenario.

we are going to estimate. With this hypothesis, we consider as
test-statistic the chi-square test, which is defined as

χ2 =

60
∑

i= 1

[

µGRB,i(z,A, ψ) − µth(z,Ωm,ΩΛ, w(z))
]2

σµ2
GRB,i

, (14)

where µGRB(z,A, ψ), µth(z,Ωm,ΩΛ, w(z)), and σµGRB are respec-
tively defined in Eqs. (10), (11), and (13). The cosmology is
included in the quantity µth(z,Ωm,ΩΛ,H0), which we allow to
vary. To determine the best configuration of parameters that most
closely fits the distribution of GRBs in the Hubble diagram we

maximize the log-likelihood function, −2 ln(eχ
2

), which is equiv-
alent to the minimization of the function defined in Eq. (14).

4.2. Fit results

4.2.1. ΛCDM case

In the ΛCDMmodel, the energy function E(z,Ωm,ΩΛ, w(z)) is
characterized by an EOS for the dark energy term fixed to
w = −1. Since we have that Ωm + ΩΛ + Ωk = 1, we vary the
matter and cosmological constant density parameters, also ob-
taining in this way an estimate of the curvature term. We obtain
that GRBs alone provide Ωm = 0.29+0.23

−0.15
, see also Fig. 6.

4.2.2. Variable w0 case

In a flat Universe (Ω = Ωm + ΩΛ = 1) with a constant value
of w0 different from the standard value w = −1, we can pro-
vide useful constraints for alternative dark energy theories. In
this case, we only vary the matter density and the dark energy
equations of state, obtaining an estimate of the density mat-
ter of Ωm = 0.40+0.22

−0.16
and of a dark energy EOS parameter

w0 = −1.52+0.94
−0.93

.

4.2.3. Evolution of w(z)

An interesting case-study consists of a time-evolving dark en-
ergy EOS in a flat cosmology, since the evolution of w(z) can
be directly studied with GRBs at larger redshifts. We con-
sider an analytical formulation for the evolution of w with
the redshift, which was proposed by Chevallier & Polarski
(2001) and Linder (2003) (CPL), and where the w(z) can be
parameterized by

w(z) = w0 + wa

z

1 + z
· (15)
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Fig. 6. 1σ (∆χ2 = 2.3) confidence region in the (Ωm, ΩΛ) plane for
the Combo-GRB sample (dark blue), and for the total (60 observed +
300 MC simulated GRBs, (light blue).

The CPL parameterization implies that for large z the w(z) term
tends to the asymptotic value w0 + wa. Using a sample extend-
ing at large redshifts, e.g. GRBs, will allow a better estimate of
these parameters since the effects of a varying w(z) on the dis-
tance modulus are more evident at redshift z ≥ 1. The GRB data
provide a best-fit result (w0 = −1.43+0.78

−0.66
, wa = 1.87+1.38

−2.57
).

4.2.4. Perspective: a Monte Carlo simulated sample
of GRBs

The current sample of GRBs that satisfies the Combo-relation
is quite limited (60 bursts), when compared to the sample in
Amati & Della Valle (2013) (∼200 bursts) or the SNe sample
in the Union 2.1 release (Suzuki et al. 2012). A more numer-
ous sample can help to understand whether the Combo-relation
can provide better constraints on the cosmological parameters.
To this aim, following the prescription of Li (2007), we used
Monte Carlo (MC) simulations to generate a sample of 300 syn-
thetic GRBs satisfying the Combo-relation. This value comes
from the expected number of GRBs detected in five years of
operations of current (Swift) and future (SVOM, Gotz et al.
2009, and LOFT, Feroci et al. 2012) missions dedicated to
observing GRBs.

First, we fitted the log-normal distributions of the 60 ob-
served z, Ep,i, τ, and |α + 1|,

f (log ξ) =
1

√
2πσξ

exp





















−

(

log ξ − µξ
)2

2σ2
ξ





















, (16)

where ξ = z, Ep,i, τ, and |α+1|, and we found the following mean
values and dispersions: µz±σz = 0.26±0.27, µEp,i

±σEp,i
= 2.54±

0.40, µτ ± στ = 2.85 ± 0.65, and µ|α+1| ± σ|α+1| = −0.36 ± 0.31.
Then, from these distributions we computed log X(γ, Ep.i, τ, α)
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Fig. 7. 1σ (∆χ2 = 2.3) confidence region in the (Ωm, w0) plane for the
Combo-GRB sample (dark blue), and for the total of 60 observed +
300 MC simulated GRBs (light blue). The black dashed line represents
the 1σ confidence region obtained using the recent Union 2.1 SNe Ia
sample (Suzuki et al. 2012).

and we generated the initial luminosity log L0 = γ log X + A
from the frequency distribution

f (log L0) =
1

√
2πσext

exp













−
(

log L0 − γ log X − A
)2

2σ2
ext













, (17)

assuming that the Combo-relation is independent of the redshift
and considering its extra-scatterσext. The values of γ, A, andσext

are reported in Sect. 3. Finally, to complete the set of parame-
ters necessary to compute the distance modulus of the simulated
sample of GRBs from each pair (log L0, z), we generated the cor-
responding log F0 (µF0

± σF0
= −9.87 ± 0.85). In the following,

the attached errors on the MC simulated Combo-relation param-
eters will be taken as 30% of their corresponding values, which
reflects the uncertainty of the “real” GRB sample.

We have verified whether the constraints on (Ωm, ΩΛ) will
improve by using a larger sample of 360 GRBs (the real sample
of 60 GRBs observed and a MC-simulated sample of 300 GRBs,
described above). The improvement on the constraints on Ωm

and ΩΛ is clear: the uncertainties on the density parameters
improve considerably (Ωm = 0.27+0.09

−0.05
for the ΛCDM case,

w0 = −1.16+0.32
−0.38

for the variable w0 case), as is also clear in the
contour plots shown in Figs. 6 and 7.

4.3. GRBs compared with SNe, CMBs, BAOs

In order to compare the Combo-GRB sample results, we also
consider the following datasets:

– The measurements of the baryon acoustic peaks Aobs =

(0.474 ± 0.034, 0.442 ± 0.020, 0.424 ± 0.021) at the corre-
sponding redshifts zBAO = (0.44, 0.6, 0.73) in the galaxy
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correlation function as obtained by the WiggleZ dark en-
ergy Survey (Blake et al. 2011). The BAO peak is defined
as (Eisenstein et al. 2005)

ABAO =

[

czBAO

H0

r(zBAO,Ωm,ΩΛ, w(z))2

E(z,Ωm,ΩΛ, w(z))

]1/3

√

ΩmH2
0

czBAO

, (18)

where r(z,Ωm,ΩΛ, w(z)) is the comoving distance. The best-
fit cosmological model is determined by the minimization of
the corresponding chi-squared quantity

χ2
BAO =

3
∑

i=1

(ABAO − A(obs,i))
T C−1(ABAO − A(obs,i)), (19)

where C−1 is the inverse covariance matrix of the measure-
ments of the WiggleZ survey (Blake et al. 2011).

– The measurement of the shift parameter Robs = 1.7407 ±
0.0094 as obtained from the Planck first data release (Planck
Collaboration XVI 2014). The R quantity is the least cosmo-
logical model-dependent parameter (particularly from H0)
that can be extracted from the analysis of the CMB (Wang
& Mukherjee 2006) and is defined as

R =
√

Ωm

∫ zrec

0

dz′

E(z′,Ωm,ΩΛ, w(z))
, (20)

where zrec is the redshift of the recombination. The best-fit
cosmological model is determined by the minimization of
the corresponding chi-squared term

χ2
CMB =

(Robs − R)2

σR2
obs

· (21)

We use a grid-search technique to vary the values of the cos-
mological which are used to solve numerically the chi-squared
equations defined above. Every dataset provides the respective
distribution of the cosmological parameters, so when combining
datasets we simply determine the best-fit model as the sum of the
single χ2

i
values for any pair of parameters and for the combined

values,

χ2
tot = χ

2
GRB + χ

2
SNe + χ

2
BAO + χ

2
CMB, (22)

and make the final plots using the Mathematica1 software suite.
Cosmological parameter uncertainties were estimated from sin-
gle and combined χ2 statistics for each dataset. In Fig. 8 we show
the parameter spaces with the contour at the 1σ (∆χ2 = 2.3)
confidence limit for each considered dataset, and for the ΛCDM
case. We note that in all the datasets and fits, the Hubble constant
is fixed to the value of H0 = 70.6 ± 2.6 (Rigault et al. 2014).
From the combination of all the considered datasets, for the
ΛCDM case, we obtain a matter density value ofΩm = 0.28+0.01

−0.01
,

which shows no strain with the Combo-GRB results and the sim-
ulated one, see Fig. 8.

5. Discussions and conclusions

In this paper we have presented the “Combo” relation, a new
tool for GRB cosmology. This relationship provides a very close
link between prompt and afterglow parameters and it is charac-
terized by a small intrinsic scatter, which makes this correlation

1 http://www.wolfram.com/mathematica/
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Fig. 8. 1σ (∆χ2 = 2.3) confidence region in the (Ωm, ΩΛ) plane
for the observed GRB sample (blue), with the inclusion of the MC-
simulated 300 GRBs sample (cyan), and with the samples of SNe
(grey), BAOs (red), and CMBs (green). The dashed line represents the
condition of the Flat Universe Ωm + ΩΛ = 1.

very suitable for cosmological purposes. We recognize the fun-
damental role of the Swift-XRT (Gehrels et al. 2004; Burrows
et al. 2005) which, thanks to its ability to slew very rapidly to-
ward the location of a GRB event, provides real-time and de-
tailed data of GRB afterglow light curves, whose evolution is at
the base of the proposed Combo-relation. From our analysis the
following results emerge:

– The proposed two-step calibration of the Combo-GRB rela-
tion greatly minimizes the dependence on SNe Ia.

– GRBs data alone provide for the ΛCDM case Ωm =

0.29+0.23
−0.15

, see Fig. 8.
– A recent paper (Milne et al. 2015) highlights the exis-

tence of an observational bias (a systematic difference in
the velocity of SNe Ia ejecta, which is reflected in their
curves), potentially affecting the measurements of cosmo-
logical parameters obtained with SNe Ia. On the basis of
our results we conclude that given the current accuracy
of GRB measurements we cannot exclude, within the er-
rors, that an effect like this is at play; however, this ef-
fect should not change the conclusions derived from SNe-Ia
observations.

– The launch of advanced and more sensitive detectors, such
as the incoming SVOM (Gotz et al. 2009) and the proposed
LOFT (Feroci et al. 2012) missions (and the expected Swift
operations in the near future), will dramatically increase the
number of GRBs in the dataset. In five years of operation
of the SVOM mission alone, we expect to reach a “good
enough” sample of 300 GRBs. With a Monte Carlo simu-
lated sample of 300 GRBs, we will significantly improve the
accuracy of Ωm measurement, up to Ωm = 0.27+0.09

−0.05
, which

is comparable with type Ia SNe (Suzuki et al. 2012).
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– By using the CPL analytical parameterization, adopted to
study the evolution of the dark energy EOS (see Eq. (15)),
we find Ωm = 0.40+0.22

−0.16
, w0 = −1.43+0.78

−0.66
, and wa = 1.87+1.38

−2.57
.

– The analysis of a combined (SNe+BAO+CMB) dataset con-
firms that the increasing size of the GRB sample will im-
prove the accuracy of the measurement of the Ωm pa-
rameter and in particular of the evolution of w up to
z ∼ 10.

– The analytical expression of the Combo-relation provides an
explicit close link, characterized by a small intrinsic scatter,
between the prompt and the afterglow GRB emissions. This
points out the existence of a physical connection between the
prompt and the afterglow emissions, which represents a new
challenge for GRB models.
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Appendix A: Computation of the rest-frame

0.3–10 keV luminosity L(t ′
a
)

The rest-frame 0.3–10 keV luminosity L(t′a) was obtained by
considering four steps.

(1) We obtained the Swift-XRT flux light curves in the observed
0.3–10 keV energy band2.

(2) We transformed the observed flux fobs from the ob-
served energy band 0.3–10 keV to the rest-frame energy
band 0.3–10 keV by assuming an absorbed power-law func-
tion as the best fit for the spectral energy distribution of the
XRT data, N(E) ∼ E−γ, with Galactic and intrinsic col-
umn densities obtained from the H  radio map (Kalberla
et al. 2005) and from the best fit of the total afterglow
spectrum, respectively. By using the photon indexes inferred
for each time interval, the rest-frame flux light curve frf is
given by

frf = fobs

∫ 10/(1+z)

0.3/(1+z)
N(E)EdE

∫ 10

0.3
N(E)EdE

= fobs(1 + z)γ−2. (A.1)

(3) We transformed the observed time ta into the rest-frame time
by correcting for z

t′a = ta/(1 + z). (A.2)

(4) We defined the isotropic luminosity as

L = 4πd2
l fr f . (A.3)

Appendix B: Determination of the sample

and verification of the correlation

To obtain the parameters involved in the Eq. (5), we needed to se-
lect an adequate sample of GRBs, to fit their X-ray light curves,

2 http://www.swift.ac.uk/burst_analyser/

Fig. B.1. Example of the combined fitting procedure (solid red line) as
described in Eqs. (3) and (B.1), filtered by the flares. The early steep
decay fitted by using the power-law function in Eq. (B.1) is indicated
by the purple dashed line, while the afterglow additional component
is fitted by the phenomenological function in Eq. (3) (see also R14),
and described by the dot-dashed cyan curve. In this specific case, the
luminosity light curve of GRB 060418 is shown in which the black
dots with the error bars are the flare-free data, the grey dots are the
excluded data recognized as due to the flares. The vertical green dotted
line indicates the characteristic timescale of the parameter τ.

and to collect or to calculate their Ep,i values. The selection cri-
teria have already been delineated in Sect. 2.

The entire procedure works in the rest-frame 0.3–10 keV en-
ergy range for all GRBs. For the X-ray light curve fitting tech-
nique we developed a semi-automated code performing all the
needed operations. The code is based on the IDL3 language, and
the fitting routine used is MPFIT4 (Markwardt 2009), which is
based on the non-linear least squares fitting. First, the proce-
dure fits the complete light curve, then it eliminates at every
iteration the data point with the largest positive residual, until
it obtains a fit with a p-value greater than 0.3. To fit the light
curves considered in luminosity units (erg/s), we use the com-
posite function (R14):

1. a power law for the early steep decay

L(t) = Lp

(

t′a
100

)−αp

, (B.1)

with Lp the normalization factor and αp the slope;
2. Eq. (3) for the afterglow additional component.

An application of this joint fitting procedure is shown in
Fig. B.1 for the case of GRB 060418. After the fitting pro-
cedure, we select only the GRBs with αX < −1, a condi-
tion necessary for the convergence of the integral in Eq. (4).
The final total sample, summarized in Table B.1, consists
of 60 GRBs.

3 Interactive Data Language, http://www.exelisvis.com/

language/en-US/ProductsServices/IDL.aspx
4 http://purl.com/net/mpfit
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Table B.1. Long bursts with αX < −1 analysed in this work (first column) and their main parameters.

GRB z Ep,i (keV) F0 (erg cm−2 s−1) τ (s) αX

050401 2.9 467 ± 110 (2.35 ± 0.13) × 10−10 733 ± 102 −1.64 ± 0.07

050922C 2.198 415 ± 111 (3.65 ± 0.39) × 10−10 234 ± 35 −1.51 ± 0.04

051109A 2.346 539 ± 200 (2.24 ± 0.29) × 10−10 429 ± 62 −1.26 ± 0.02

060115 3.53 285 ± 34 (5.07 ± 0.84) × 10−12 12 553 ± 6079 −2.87 ± 0.72

060418 1.489 572 ± 143 (6.00 ± 1.10) × 10−10 294 ± 62 −1.65 ± 0.06

060526 3.21 105 ± 21 (5.05 ± 0.49) × 10−12 25 847 ± 9019 −4.44 ± 0.97

060707 3.43 279 ± 28 (1.94 ± 0.53) × 10−11 1067 ± 485 −1.11 ± 0.06

060729 0.54 104 ± 24 (2.28 ± 0.05) × 10−11 61 462 ± 2844 −1.71 ± 0.03

060814 0.84 473 ± 155 (5.04 ± 0.75) × 10−11 3183 ± 682 −1.30 ± 0.05

060908 1.8836 514 ± 102 (1.02 ± 0.25) × 10−9 207 ± 72 −1.67 ± 0.12

060927 5.467 475 ± 47 (1.74 ± 0.23) × 10−11 230 ± 73 −1.44 ± 0.16

061121 1.314 1289 ± 153 (3.08 ± 0.10) × 10−10 1544 ± 83 −1.54 ± 0.02

071020 2.145 1013 ± 160 (3.50 ± 1.30) × 10−9 9.9 ± 4.0 −1.16 ± 0.02

080319B 0.937 1261 ± 65 (6.52 ± 0.37) × 10−7 22.11 ± 0.97 −1.70 ± 0.01

080413B 1.1 150 ± 30 (4.01 ± 0.35) × 10−10 184 ± 24 −1.11 ± 0.02

080605 1.6398 650 ± 55 (3.48 ± 0.16) × 10−9 83.7 ± 6.0 −1.42 ± 0.02

080607 3.036 1691 ± 226 (2.31 ± 0.54) × 10−10 387 ± 91 −1.65 ± 0.06

080721 2.591 1741 ± 227 (2.61 ± 0.13) × 10−9 431 ± 100 −1.61 ± 0.02

080810 3.35 1470 ± 180 (1.27 ± 0.50) × 10−10 647 ± 239 −1.83 ± 0.10

080916A 0.689 184 ± 18 (5.05 ± 0.84) × 10−11 967 ± 251 −1.06 ± 0.03

080928 1.692 95 ± 23 (3.83 ± 0.56) × 10−11 5976 ± 1499 −3.11 ± 0.33

081007 0.5295 61 ± 15 (4.61 ± 0.66) × 10−11 2178 ± 457 −1.17 ± 0.04

081008 1.9685 261 ± 52 (6.46 ± 0.79) × 10−11 1666 ± 368 −1.86 ± 0.13

081222 2.77 505 ± 34 (1.58 ± 0.18) × 10−10 699 ± 93 −1.61 ± 0.04

090102 1.547 1149 ± 166 (5.00 ± 1.40) × 10−9 66 ± 18 −1.43 ± 0.02

090418A 1.608 1567 ± 384 (4.23 ± 0.26) × 10−10 553 ± 64 −1.63 ± 0.06

090423 8.2 437 ± 55 (6.01 ± 0.75) × 10−12 376 ± 115 −1.19 ± 0.11

090424 0.544 273 ± 5 (4.32 ± 0.27) × 10−9 204 ± 16 −1.20 ± 0.01

090516 4.109 971 ± 390 (4.10 ± 1.40) × 10−11 761 ± 382 −1.38 ± 0.12

090618 0.54 257 ± 41 (1.22 ± 0.03) × 10−9 1206 ± 47 −1.46 ± 0.01

091018 0.971 55 ± 20 (8.25 ± 0.56) × 10−10 169 ± 20 −1.28 ± 0.02

091020 1.71 280 ± 190 (3.94 ± 0.33) × 10−10 311 ± 36 −1.36 ± 0.03

091029 2.752 230 ± 66 (1.39 ± 0.08) × 10−11 2806 ± 343 −1.31 ± 0.04

091127 0.49 53.6 ± 3.0 (1.03 ± 0.07) × 10−9 1966 ± 165 −1.51 ± 0.02

100621A 0.542 146 ± 23 (1.81 ± 0.22) × 10−10 3613 ± 746 −1.05 ± 0.03

100814A 1.44 259 ± 34 (1.72 ± 0.08) × 10−11 36217 ± 4018 −2.00 ± 0.08

100906A 1.727 289 ± 46 (1.25 ± 0.17) × 10−10 2341 ± 402 −2.19 ± 0.11

110213A 1.46 231 ± 21 (4.09 ± 0.31) × 10−10 2037 ± 209 −2.13 ± 0.07

110422A 1.77 421 ± 14 (8.40 ± 0.98) × 10−10 358 ± 56 −1.41 ± 0.03

111228A 0.714 58.3 ± 5.1 (7.66 ± 0.53) × 10−11 4094 ± 464 −1.36 ± 0.03

120119A 1.728 515 ± 22 (2.00 ± 0.28) × 10−11 8597 ± 2226 −2.57 ± 0.26

120811C 2.671 198 ± 11 (7.20 ± 0.63) × 10−11 1204 ± 340 −1.57 ± 0.16

120907A 0.97 303 ± 65 (7.26 ± 0.88) × 10−11 481 ± 98 −1.13 ± 0.04

120922A 3.1 303 ± 14 (1.82 ± 0.67) × 10−10 119 ± 56 −1.10 ± 0.04

121128A 2.2 198 ± 15 (2.61 ± 0.59) × 10−10 1244 ± 363 −2.25 ± 0.18

121211A 1.023 194 ± 26 (2.61 ± 0.56) × 10−11 2296 ± 893 −1.23 ± 0.10

130408A 3.757 1294 ± 190 (1.18 ± 0.24) × 10−10 216 ± 118 −1.32 ± 0.16

130420A 1.297 129 ± 7 (4.90 ± 0.86) × 10−11 571 ± 158 −1.05 ± 0.03

130427A 0.3399 1161 ± 7 (1.42 ± 0.07) × 10−8 996 ± 61 −1.40 ± 0.01

130505A 2.27 2063 ± 101 (4.54 ± 0.44) × 10−10 1667 ± 182 −1.63 ± 0.03

130610A 2.092 912 ± 133 (2.20 ± 1.60) × 10−10 41 ± 35 −1.12 ± 0.06

130612A 2.006 186 ± 31 (1.00 ± 0.46) × 10−11 602 ± 468 −1.31 ± 0.24

130701A 1.155 192 ± 9 (2.14 ± 0.53) × 10−9 50 ± 15 −1.28 ± 0.03

130702A 0.145 14.9 ± 2.3 (3.53 ± 0.46) × 10−11 61 448 ± 10 744 −1.35 ± 0.03

130831A 0.4791 81 ± 6 (1.87 ± 0.29) × 10−10 1925 ± 332 −1.73 ± 0.07

131030A 1.295 406 ± 22 (8.08 ± 0.49) × 10−10 370 ± 41 −1.31 ± 0.02

131105A 1.686 548 ± 83 (3.96 ± 0.36) × 10−11 986 ± 235 −1.19 ± 0.07

131117A 4.042 222 ± 37 (2.04 ± 0.51) × 10−11 291 ± 115 −1.32 ± 0.10

140206A 2.73 448 ± 22 (1.86 ± 0.16) × 10−10 1477 ± 154 −1.52 ± 0.03

140213A 1.2076 177 ± 4 (1.84 ± 0.24) × 10−10 1870 ± 337 −1.31 ± 0.04

Notes. GRB name (first column), redshift z (second column), intrinsic peak energy Ep,i (third column), flux in the 0.3–10 keV rest-frame energy
band F0 (fourth column), the time parameter τ (fifth column), and the late power-law decay index αX (sixth column). All errors are at the 1σ con-
fidence level.
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