
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006

P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

NEW METHOD FOR MESH MOVING BASED ON RADIAL
BASIS FUNCTION INTERPOLATION

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

Delft University of Technology, Faculty L&R,
Kluyverweg 1, 2629 HS Delft, The Netherlands

e-mail: A.deBoer@tudelft.nl

Key words: Mesh deformation, Unstructured meshes, Radial basis function interpola-
tion, Fluid-structure interaction

Abstract. A new point-by-point mesh movement algorithm is developed for the deforma-
tion of unstructured grids. The method is based on using radial basis functions (RBF’s)
to interpolate the displacements of the boundary nodes to the whole flow mesh. A small
system of equations has to be solved, only involving the nodes on the boundary of the flow
domain. Because no grid-connectivity information is needed, this method is very easy to
implement, even for 3D applications. There are various RBF’s available literature that
can be used for the new method. Therefore, the new algorithm is tested with several RBF’s
for a variety of problems to investigate which RBF produces the best meshes and which
one is the most efficient. The method can handle large mesh deformations caused by
translations, rotations and deformations of the boudary of the domain. However, the per-
formance depends on the used RBF. The best accuracy and robustness are obtained with
the thin plate spline. When efficiency is more important, a C2 continuous polynomial
RBF with compact support is the best choice.

1 INTRODUCTION

Fluid-structure interaction computations typically involve moving boundaries for the
flow due to the deformation of the structure. Examples can be found in: flutter simulation
of wings, blood flow through veins and stability analysis of bridges and tall buildings
subjected to windloads. To be able to perform the unsteady flow computations accurately
and efficiently, a fast and reliable method is needed to adapt the computational grid to
the new domain. Regenerating a grid each time step in an unsteady computation is
a natural choice. However, the generation of a complex grid is a time-consuming and
nontrivial task. Therefore, a fast and accurate algorithm is needed to update the grid
automatically.

For structured meshes there are efficient techniques available to deform the mesh, such
as Transfinite Interpolation1. The displacements of points at the boundaries of the mesh

1

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

are interpolated along grid lines to points in the interior of the mesh. However, these
techniques are unsuitable for unstructured grids. The greater flexibility of unstructured
grids is required for the meshing of complex domains and grid adaptation. Therefore, we
are in this paper interested in efficient mesh movement techniques for unstructured grids.

Two different mesh movement strategies are known for unstructured grids. The first ex-
ploits the connectivity of the internal grid points. The connection between the grid points
is represented for example by springs2,3,4 or as solid body elasticity5. Special instances
of this continuous approach include moving grids based on Laplacian and Biharmonic
operators6. All the methods based on grid connectivity involve solving a system of equa-
tions involving all the flow points and are therefore very expensive. Hanging nodes, often
encountered in unstructured meshes, require special treatment.

The other strategy moves each grid point individually based on its position in space and
this results in the so called point-by-point schemes. Hanging nodes are no problem and
also the implementation for partitioned meshes, occuring in parallel flow computations,
is straightforward. However, until now point-by-point schemes are only applied to the
boundary nodes of multi-grid blocks7. The interior mesh of the blocks is adapted with
fast techniques available for structured grids.

Radial basis functions (RBF’s) have become a well-established tool to interpolate scat-
tered data. They are for example used in fluid-structure interaction computations to trans-
fer information over the discrete fluid-structure interface, which is often non-matching8,9.
An interpolation function is used to transfer the displacements known at the boundary of
the structural mesh to the boundary of the aerodynamic mesh. But why not interpolate
the displacement to all the nodes of the flow mesh, instead of only to the boundary? This
idea has already been applied to the block boundaries in multi-block grids7,10. There
it was mentioned that applying it to the whole internal grid would be computationally
very expensive. This is because for the structured part of multi-block meshes much more
efficient techniques are known. We want to investigate if interpolation of the displace-
ment with radial basis functions does result in an efficient point-by-point mesh movement
scheme for completely unstructured grids.

The objective of this paper is to develop a new mesh movement scheme for unstructured
meshes based on interpolation with radial basis functions. We outline the principle of
interpolation with RBF’s applied to mesh movement. There are various RBF’s available
literature that can be used for the new method and we want to determine which one
generates the best meshes and which one is the most efficient. To be able to compare the
deformed meshes generated with the different RBF’s, a mesh quality metric is introduced.
This metric is used to determine the best RBF’s for our mesh movement scheme, by
aplying the method to several severe test cases.

2 RADIAL BASIS FUNCTION INTERPOLATION

Radial basis function interpolation can be used to derive the displacement of the in-
ternal fluid nodes given the displacement of the structural nodes on the interface. The

2

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

displacement, d, can be approximated by a sum of basis functions both on the interface
(denoted by subscript in) and in the interior of the mesh (denoted by subscript m)

di(x) =

nin
∑

j=1

αjφ(||x − xinj
||) + p(x) i = {in, m}, (1)

where xinj
= [xinj

, yinj
, zinj

] are the centres in which the values are known, in this case the
nodes on the interface, p a polynomial, nin the number of points on the interface and φ a
given basis function with respect to the Euclidean distance ||x||. The coefficients αj and
the polynomial p are determined by the interpolation conditions

din(xinj
) = dinj

, (2)

with din the vector containing the discrete known values of d at the interface, and the
additional requirements

nin
∑

j=1

αjq(xinj
) = 0, (3)

for all polynomials q with a degree less or equal than that of polynomial p. The minimal
degree of polynomial p depends on the choice of the basis function φ. A unique interpolant
is given if the basis function is a conditionally positive definite function. If the basis func-
tions are conditionally positive definite of order m ≤ 2, a linear polynomial can be used8.
In this paper we only apply basis functions that satisfy this criterion. A consequence of
using a linear polynomial is that rigid body translations are exactly recovered.

Equation (1) can be written in matrix form for the discrete displacement on the inter-
face as follows

[

din

0

]

=

[

Min Pin

P T
in 0

] [

α

β

]

, (4)

with α the vector containing the coefficients αj, β the coefficients of the linear polynomial
p, Min an nin×nin matrix containing the evaluation of the basisfunction φiniinj

= φ(||xini
−

xinj
||) and Pin an nin × 4 matrix with row j given by [1 xinj

yinj
zinj

].
For the unknown values in the interior of the flow mesh we can write in a similar way

dm =
[

Mm Pm

]

[

α

β

]

. (5)

The nm × nin matrix Mm contains the evaluation of the basisfunction φmiinj
= φ(||xmi

−
xinj

||) and Pm is an nm × 4 matrix with row j given by [1 xmj
ymj

zmj
]. The values

of α and β are obtained by solving system (4). This can be done by fast iterative
techniques11. The size of the system that has to be solved in (4) is equal to (nb + 4) ×

3

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

(nb + 4) which is usually very small compared to the systems that have to be solved in
mesh-connectivity schemes. The systems encounterd there are approximately as large as
nin × nin, with nin the total number of mesh points. The total number of mesh points is
a dimension higher than the number of points on the boundary of the mesh. The new
moving mesh technique is very easy to implement, even for 3D applications, because no
mesh-connectivity information is needed. Also the implementation for partitioned meshes,
occuring in parallel flow computations, is straightforward.

There are various radial basis function available in literature which are suitable for
interpolating multivariate data. They can be divided in two groups: functions with
compact and functions with global support. Functions with compact support have the
following property:

φ(x) =

{

f(x) 0 ≤ x ≤ 1,
0 x > 1,

(6)

where f(x) ≥ 0. The function is generally scaled with a support radius r to control the
compact support, so φr = φ(x/r). When a radial basis function with compact support
is used, only the mesh nodes inside a circle (2D) or sphere (3D) with radius r around
a centre xj are influenced by the movement of this centre. Therefore, higher values for
the support radius lead generally to more accurate solutions. However, high values of
the support radius r also result in dense matrix systems, wheras low values of r result in
sparse matrix systems which can be solved more efficiently.

nr. name f(ξ)

1 CP C0 (1 − ξ)2

2 CP C2 (1 − ξ)4(4ξ + 1)

3 CP C4 (1 − ξ)6(35
3
ξ2 + 6ξ + 1)

4 CP C6 (1 − ξ)8(32ξ3 + 25ξ2 + 8ξ + 1)

5 CTPS C0 (1 − ξ)5

6 CTPS C1 1 + 80
3
ξ2 − 40ξ3 + 15ξ4 − 8

3
ξ5 + 20ξ2 log(ξ)

7 CTPS C2
a 1 − 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ3 log(ξ)

8 CTPS C2
b 1 − 20ξ2 + 80ξ3 − 45ξ4 − 16ξ5 + 60ξ4 log(ξ)

Table 1: Radial basis functions with compact support12.

In Table 1 various radial basis functions with compact support are given. In this paper
all compact RBF’s are scaled with r, so we use ξ = x/r. The first four are based on
polynomials12. These polynomials are chosen in such a way that they have the lowest

4

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

degree of all polynomials that create a Cn continuous basis function with n ∈ {0, 2, 4, 6}.
The last four are a series of functions based on the thin plate spline which create Cn

continuous basis functions with n ∈ {0, 1, 2}12. There are two possible C2 continuous
functions which are distinguished by subscript a and b.

Functions with global support are not equal to zero outside a certain radius, but cover
the whole interpolation space, which leads to dense matrix systems. In Table 2 six ra-
dial basis functions are given which are frequently used, for example in neural networks,
the computer graphics community13 and for data transfer in fluid-structure interaction
computations9. The MQB and IMQB methods use a parameter a, that controls the shape

nr. name abbrev. f(x)

9 Thin plate spline TPS x2 log(x)

10 Multiquadric Biharmonics MQB
√

a2 + x2

11 Inverse Multiquadric Biharmonics IMQB
√

1
a2+x2

12 Quadric Biharmonics QB 1 + x2

13 Inverse Quadric Biharmonics IQB 1
1+x2

14 Gaussian Gauss e−x2

Table 2: Radial basis functions with global support.

of the basis functions. A large value of a gives a flat sheetlike function, whereas a small
value of a gives a narrow conelike function. The value of a is typically chosen in the
range 10−5 − 10−3 and in this paper we use the value a = 10−3. The new mesh movement
scheme based on interpolation with radial basis functions will be tested with the different
RBF’s introduced in this section, but first a mesh quality metric is introduced to be able
to compare the quality of the meshes after deformation.

3 MESH QUALITY METRICS

To be able to compare the quality of different meshes after mesh movement we intro-
duce mesh quality metrics14. The mesh quality metrics are based on a set of Jacobian
matrices. These matrices contain information on basic element qualities such as size,
orientation, shape and skew. Because we are mainly interested in quadrilateral and hexa-
hedral meshes only the metrics for these elements are introduced. A Jacobian matrix Ak

can be determined for each node of the quadrilateral or hexahedral element, where the
nodes are numbered according to the right-hand-rule to ensure positive volume elements,
see Figures 1 and 2. The columns of the Jacobian matrices are formed from the edge

5

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

Figure 1: Numbering of a quadrilateral ele-
ment. Figure 2: Numbering of a hexahedral element.

vectors emanating from element node k:

Quadrilateral (2D): Hexahedral (3D):

Ak =

[

xk+1 − xk xk+3 − xk

yk+1 − yk yk+3 − yk

]

, Ak =

xk+1 − xk xk+3 − xk xk+4 − xk

yk+1 − yk yk+3 − yk yk+4 − yk

zk+1 − zk zk+3 − zk zk+4 − zk

. (7)

Note that the indices are taken modulo four for quadrilateral elements, and modulo eight
for hexahedral elements. The determinant of Ak, denoted by γk, determines the size of
the element. The entries of the associated symmetric ’metric tensor’ AT

k Ak are denoted
by λij and contain information about side lengths and the angle between two sides.

It is assumed that the initial mesh is generated in an optimal way and therefore the
element shapes should be changed as little as possible after deformation. This means that
both the volume and the angles of the elements should be preserved. These two properties
can be measured with the relative size and skew metric.

The relative size metric measures the change in element size. Let τ =
∑2d

k=1 γk/(2
dw)

be the ratio between the current and initial element volume, where w is the total volume
of the element in the initial mesh and d the dimension (d = 2 for quadrilaterals and d = 3
for hexahedrals). The relative size metric14 is then given by fsize = min(τ, 1/τ). Essential
properties of the relative size metric are: fsize = 1 if and only if the element has the same
total area as the initial element and fsize = 0 if and only if the element has a total area of
zero. The relative size metric can detect elements with a negative total area (degenerate)
and elements which change in size due to the mesh deformation.

The skew metric measures the skewness and therefore the distortion of an element. If
a node of an element possesses a local negative area (γk < 0 for some k), this metric value
is set to zero. The skew metric14 is defined by

fskew =
2d

2d
∑

k=1

[

1

γ2
k

d
∏

i=1

λk
ii

]
1

d

. (8)

Essential properties of the skew metric are: fskew = 1 if and only if the element has only
right angles and fskew = 0 if and only if the element is degenerate.

6

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

To measure both the change in element size and the distortion of an element, the size-
skew metric14 is introduced which is defined as the product of the relative size and skew
metrics: fss = fsizefskew. Essential properties of the quadrilateral size-skew metric are:

• fss = 1 ⇔ element has right angles and same size as the initial element.

• fss = 0 ⇔ element is degenerate.

This is the quality metric we will use to measure the quality of a mesh after deformation.
The average value of the metric over all the elements indicates the average quality of

the mesh. The higher the average quality of the mesh, the more stable, accurate and
efficient the computation will be. The minimum value of the metric over all the elements
indicates the quality of the cell with the lowest quality. This value is required to be larger
than zero, otherwise the mesh will contain degenerate cells. Degenerate elements have a
very negative influence on the stability and accuracy of numerical computations. In the
next section we will use both the average and minimal value of the size-skew metric to
compare meshes after mesh movement.

4 RESULTS

The new mesh movement strategy is tested with the 14 radial basis functions introduced
in section 2. First, four simple 2D test problems are performed to investigate the difference
in quality of the mesh obtained with the RBF’s after movement of the boundary. The
tests include mesh movement due to rigid body rotation and translation, deformation,
and flutter of a retangle block. After that the efficiency of the most promising RBF’s is
investigated.

The quality and robustness of the new method depend on the value of the support ra-
dius when a radial basis function with compact support is used. When the support radius
is chosen large enough, the quality and robustness converge to an optimum. Therefore, a
relatively high value, r = 100, is used in the first four test cases, where we only investigate
the accuracy of the different RBF’s. The effect of varying the compact support radius r
on the computation time is investigated for the most promising RBF’s in section 4.5.

4.1 Test case 1: Rotation and translation

The first test case consists of mesh movement due to severe rotation and translation
of a block in a rather small domain. The mesh nodes on the block follow its movement,
while the nodes on the outer boundary are fixed. The block has dimension 5D×1D, with
D the thickness of the block, and is initially located in the center of a domain which has
dimension 25D × 25D. The initial mesh is a Cartesian mesh with cells of size 1D × 1D,
see Figure 5. The block is translated 10D down and to the left and is rotated 67.5 degrees
around the center of the block. The mesh deformation is performed in a variable number
of steps between the initial and final location, with a minimum of 1 step and a maximum

7

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

of 15 steps. The less intermediate steps are taken, the larger the deformation between
two steps and the harder the total mesh deformation becomes.

Figure 3: Quality of the worst cell of the mesh
for the different RBF’s (test case 1).

Figure 4: Average quality of the mesh for the
different RBF’s (test case 1).

The minimum value of fss after mesh movement with the different RBF’s is shown
in Figure 3 for an increasing number of intermediate steps. It can be seen that for all
RBF’s the minimum value of fss indeed increases when more intermediate steps are taken.
However, only the RBF’s 9, 7, 8, 2, 6 and 3 fulfill the robustness requirement min(fss) > 0
and therefore only the ranking for these functions is given in Table 3. Figure 4 shows
the average value of the mesh quality metric. The Gaussian basis function (nr. 14), has
the best average quality, however, the minimum of fss for this function is equal to zero.
This results in highly distorted meshes as can be seen in Figure 6 where the final mesh
generated with the Gaussian basis function with 15 intermediate steps is shown. Only

Figure 5: Initial mesh. Figure 6: Final mesh using Gaussian basis func-
tion with 15 intermediate steps (test case 1).

cells very close to the moving block are heavily deformed, resulting in a high average mesh

8

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

quality, but the flow solver will probably crash due to the degenerate cells close to the
block. The mesh with the highest quality according to Figure 3 is generated with TPS
(nr. 9) and is shown in Figure 7. The average value of the mesh quality metric is lower

Figure 7: Final mesh using TPS with 15 inter-
mediate steps (test case 1).

min(fss) mean(fss)

9. TPS 6. CTPS C1

7. CTPS C2
a 9. TPS

8. CTPS C2
b 7. CTPS C2

a

2. CP C2 2. CP C2

6. CTPS C1 8. CTPS C2
b

3. CP C4 3. CP C4

Table 3: Ranking for test case 1.

than for the Gaussian function, because all cells are deformed, but this results in a much
smoother mesh. This will have a positive effect on the accuracy, stability and efficiency
of the unsteady flow computation. In the next two test cases we will only consider the
RBF’s 9, 7, 8, 2 and 6, because they are the most promising, according to Table 3.

4.2 Test case 2: Rigid body Rotation

It is not guaranteed that the initial mesh is recovered when the domain returns to its
initial form. Therefore we investigate the mesh quality when the block is severly rotated
and brought back to its initial position. The nodes on the outer boundary can freely
move along this boundary. The initial mesh is the same as for test case 1 (Figure 5).
First the block is rotated 180o counterclockwise, then 360o clockwise and back to the
starting position by rotating it again 180o counterclockwise. The rotation is performed
with a variable number of intermediate steps. In Figure 8 again the minimal value and
in Figure 9 the average value of the mesh quality metric is shown against the number
of intermediate steps. The resulting ranking for the RBF’s is shown in Table 4. As can
be seen from Figure 8, more than 40 intermediate steps are needed with CTPS C1 to
obtain a positive value of fss for all cells. The robustness of the mesh using CTPS C1

function is not sufficient enough and this function is therefore excluded for the rest of
the test cases. Figures 10 and 11 show the final meshes with 40 intermediate steps using
the best, CTPS C2

b (nr. 8) and the worst RBF, CTPS C1 (nr. 6), respectively, to clarify
the insufficient properties of CTPS C1 compared to the other functions. Figure 11 clearly
shows the heavily deformed cells close to the block. With the CTPS C2

b function the mesh
is also distorted compared to the initial mesh. However, this distortion is rather small

9

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

Figure 8: Quality of the worst cell of the mesh
for the different RBF’s (test case 2).

Figure 9: Average quality of the mesh for the
different RBF’s (test case 2).

min(fss) mean(fss)

8. CTPS C2
b 8. CTPS C2

b

2. CP C2 2. CP C2

9. TPS 9. TPS
7. CTPS C2

a 7. CTPS C2
a

6. CTPS C1 6. CTPS C1

Table 4: Ranking for test case 2.

Figure 10: Final mesh using CTPS C2

b
after 40

intermediate steps (test case 2).
Figure 11: Final mesh using CTPS C1 after 40
intermediate steps (test case 2).

considering the very large rotation of the block. The final meshes obtained with TPS, CP
C2 and CTPS C2

a are very similar to that of CTPS C2
b .

10

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

4.3 Test case 3: Deformation

Untill now we only studied rigid body rotation and translation of the block. In the
third test case we investigate the effect on the mesh quality when the block deforms by
bending it in the middle. The test case starts again with the same initial mesh as in test
case 1 (Figure 5). We only consider the functions 2, 7, 8 and 9, because they performed
best in the previous test cases. In Figure 12 the minimal value and in Figure 13 the

Figure 12: Quality of the worst cell of the mesh
for the different RBF’s (test case 3).

Figure 13: Average quality of the mesh for the
different RBF’s (test case 3).

average value of fss is shown for the remaining RBF’s. It can be seen that all the RBF’s
are able to deform the mesh well, however there are some differences in the results. The
TPS gives the best quality and robustness, closely followed by CTPS C2

a . The CTPS C2
b

and CP C2 functions give approximately the same results, which are little worse than
those of the other two functions. The ranking is given in Table 5. Figure 14 displays the

Figure 14: Final mesh using TPS with 5 inter-
mediate steps (test case 3).

min(fss) mean(fss)

9. TPS 9. TPS
7. CTPS C2

a 7. CTPS C2
a

8. CTPS C2
b 8. CTPS C2

b

2. CP C2 2. CP C2

Table 5: Ranking for test case 3.

final mesh with 5 intermediate steps for the TPS and shows that the mesh quality is very

11

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

good. The final meshes of the other functions look very similar.

4.4 Test case 4: Flutter

In this test case the quality of the mesh after repeated movements is investigated. The
movement consists of a translational and rotational part. The initial mesh is the same
as in test case 1 (Figure 5). The center of the block is moved upwards, with a maximum
deflection of 2.5D. This is a tenth of the distance between the center and the upper
boundary. The block also rotates during the movement. A rotation of 67.5 degrees is
applied around the center of the block. The location of the block at maximum deflection
is shown in Figure 17. After reaching its maximum deflection the block moves back to its
initial position. In this test case, 50 oscillations are performed with a varying number of
intermediate steps within an oscillation.

Figure 15 shows that all the remaining functions are equally robust. There are some

Figure 15: Quality of the worst cell of the mesh
for the different RBF’s (test case 4).

Figure 16: Average quality of the mesh for the
different RBF’s (test case 4).

min(fss) mean(fss)

All same value 9. TPS
7. CTPS C2

a

2. CP C2

8. CTPS C2
b

Table 6: Ranking for test case 4.

slight differences in the average value of fss, shown in Figure 16. Between the best and
worst results there is a difference of 10%-25% and the ranking is given in Table 4.4.

Figure 18 displays the final mesh using only 1 step within an oscillation to reach the
maximum deflection obtained with TPS. The meshes obtained with the other functions
are almost the same. All the functions have difficulties with this test case when only 1

12

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

Figure 17: Block at maximum deflection (test
case 4).

Figure 18: Final mesh using TPS with 1 step
to reach maximum deflection (test case 4).

step is used. When the number of steps is increased to 10, the obtained quality of the
meshes is much better.

The overall conclusion is that TPS gives the best accuracy and robustness closely
followed by CP C2, CTPS C2

a and CTPS C2
b which all produce meshes of similar accuracy

and robustness.

4.5 Efficiency

The first test case with a rotating and translating block is also used to investigate the
efficiency of the remaining RBF’s. The number of boundary nodes, the total number of
nodes and the support radius is varied to investigate their effect on the computation time
needed for the mesh movement with the different RBF’s. At this time we are not interested
in the most efficient way to implement the new method, but only in the effect of the
different RBF’s on the computation time. For the comparison the same implementation
of the new method is used, only the RBF is changed. The system is solved directly by
LU-decomposition. In a later stage this can be improved by implementing a fast iterative
method11.

In Figure 19 the computation time needed for the mesh movement with an increasing
number of structure nodes is shown for the remaining RBF’s. The number of nodes in the
inner domain of the mesh is kept at a constant value of 100. It can be seen that CP C2

requires the least computation time, followed by TPS. The functions CTPS C2
a and CTPS

C2
b require exactly the same computation time, but more than the other two functions.

The difference in computation time can be explained by the difficulty of the evaluation of
the RBF. CP C2 only involves the evaluation of a fifth order polynomial, wheras in TPS,
CTPS C2

a and CTPS C2
b an evaluation of a log-function has to be carried out. On top of

that, CTPS C2
a and CTPS C2

b , require the evaluation of a fifth order polynomial and are
therefore more computational expensive than TPS.

Figure 20 shows again the computation time needed for the mesh movement but this

13

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

Figure 19: Influence of the number of boundary
nodes on CPU time.

Figure 20: Influence of the total number of
nodes on CPU time.

time the total number of nodes is varied. Here both the number of nodes on the outer
boundary and the number of nodes in the inner domain is increased. The relative results
between the RBF’s are the same as when only the number of boundary nodes is varied.
Again CTPS C2

a and CTPS C2
b require exactly the same computation time. The difference

between the two figures is caused by the fact that the number of boundary nodes deter-
mines the size of the system to be solved, wheras increasing the number of internal nodes
only results in more function evaluations. Therefore the computation time increases much
faster with an increasing number of boundary nodes than with an increasing number of
internal nodes.

Finally the effect of the support radius r on the computation time is investigated. For
radial basis functions with compact support the matrix system to be solved becomes less
dense, when the support radius is decreased. This means that the system can be solved
more efficiently. In Figure 21 the computation time is plotted against the support radius.
The CPU-time needed by TPS does not change with r, because this is a global radial

Figure 21: Influence of support radius on CPU time.

14

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

basis function. The CPU time needed by CP C2 only mildly increases with r, whereas the
computation time needed for mesh movement with the remaining two functions CTPS C2

a

and CTPS C2
b , is very sensitive to the support radius. Only for very small values of the

support radius they are approximately as fast as CP C2. However, for these small values
of r the quality of the resulting meshes is very poor. Overall it can be concluded that CP
C2 requires the least computation time.

5 CONCLUSIONS

In this paper a new point-by-point mesh movement algorithm is developed for the
deformation of unstructured grids. Radial basis functions (RBF’s) are used to interpolate
the displacements of the boundary nodes of the mesh to the inner domain. The method
requires solving a small system of equations, only involving the nodes on the boundary
of the flow domain. The implementation of the method is relatively simple, even for 3D
applications, because no grid-connectivity information is needed. Also the implementation
for partitioned meshes, occuring in parallel flow computations, is straightforward.

The new algorithm is tested with fourteen RBF’s for a variety of problems. The method
can handle large deformations of a mesh caused by translating, rotating and deforming a
solid block. The performance of the method is not the same for all RBF’s. The thin plate
spline generates the most accurate and robust meshes after deformation. However, when
efficiency is more important, the CP C2 RBF with compact support is the best choice.

Further research includes a comparison between the new method and existing methods
on accuracy and efficiency and applying it to a real fluid-structure interaction problem.

REFERENCES

[1] Z. J. Wang and A. J. Przekwas, Unsteady flow computation using moving grid with
mesh enrichment, AIAA Paper 94-0285, 1994.

[2] J. T. Batina, Unsteady Euler algorithm with unstructured dynamic mesh for
complex-aircraft aeroelastic analysis, Tech. Rep. AIAA-89-1189, 1989.

[3] C. Farhat, C. Degrand, B. Koobus and M. Lesoinne, Torsional springs for two-
dimensional dynamic unstructured fluid meshes, Computer Methods in Applied Me-
chanics and Engineering, 163, 231–245, 1998.

[4] C. Degand and C. Farhat, A Three-Dimensional Torsional Spring Analogy Method
for Unstructured Dynamic Meshes, Computers and Structures, 80, 305–316, 2002.

[5] D. Lynch, K. ONeill, Elastic grid deformation for moving boundary problems in two
space dimensions, in S. Wang (ed.), Finite elements in water resources, 1980.

[6] B. T. Helenbrook, Mesh deformation using the biharmonic operator, International
journal for numerical methods in engineering, 56, 1007–1021, 2003.

15

Aukje de Boer, Martijn S. van der Schoot and Hester Bijl

[7] M. A. Potsdam, G. P. Guruswamy, A parallel multiblock mesh movement scheme for
complex aeroelastic applications, Tech. Rep. AIAA-2001-0716, 2001.

[8] A. Beckert and H. Wendland, Multivariate interpolation for fluid-structure-
interaction problems using radial basis functions, Aerospace Science and Technology,
0, 1–11, 2001.

[9] M. J. Smith, C. E. S. Cesnik, D. H. Hodges, Evaluation of some data transfer algo-
rithms for noncontiguous meshes, Journal of Aerospace Engineering, 13 (2), 52–58,
2000.

[10] S. P. Spekreijse and B. B. Prananta and J. C. Kok, A simple, robust and fast al-
gorithm to compute deformations of multi-block structured grids, 8th International
Conference on Numerical Grid Generation in Computational Field Simulations, Hon-
olulu, Hawaii, USA, June 3-6, 2002.

[11] A. C. Faul and M. J. D. Powell, Proof of convergence of an iterative technique
for thin plate spline interpolation in two dimensions, Advances in Computational
Mathematics, 11, 183–192, 1999.

[12] H. Wendland, Konstruktion und Untersuchung radialer Basisfunktionen mit kom-
paktem Träger, tech. report, Georg-August-Universität, Göttingen, 1996.

[13] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan and T.
J. Mitchell, Smooth surface reconstruction from noisy range data, First international
conference on Computer graphics and interactive techniques, Melbourne, Australia,
2003.

[14] D. A. Field, Quality measures for initial meshes, International journal for numerical
methods in engineering, 47, 887–906, 2000.

16

