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We present a new method to analyze molecular and Brownian dynamics simulations of activated
processes based on the concept of mean first-passage times. The new method provides a simple and
efficient strategy to evaluate reaction rates and it facilitates the localization of the transition state
directly from the kinetics of the system without the need of thermodynamical considerations. It also
provides a more rigorous value of the steady-state transition rate and gives valuable information
about many important characteristics of the process. We illustrate the power of this new technique
by its application to the study of nucleation in rare gases. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2713401�

I. INTRODUCTION

Many important processes in nature are activated. Ex-
amples embrace chemical reactions, polymer and protein
conformational changes, nucleation, earthquake formation,
crystallization, cavitation, or the formation of cracks or
bubbles, thus spanning a wide variety of different phenom-
ena and fields. These kinds of processes are characterized by
the presence of a free energy barrier that has to be overcome
by the occurrence of a rare fluctuation in order to change the
system from one state to another. A proper understanding of
the kinetics of these processes is thus the cornerstone of
many disciplines and a very challenging task.

A promising route of investigating activated processes is
via computer simulations. Molecular dynamics �MD� simu-
lations are particularly suited for this task since they allow us
to track the real dynamics of the process at the molecular
scale. Brownian dynamics simulations also provide a useful
technique to investigate the dynamics of these systems at
larger time scales. However, the difficulty often lies in the
analysis of the simulation results. The crossing of a free en-
ergy barrier that is characteristic of an activated process is a
rare event and consequently difficult to observe and quantify
in a simulation. In addition, it is a stochastic process: it may
occur after a short or a long time, or not occur at all in the
limited time of a simulation. All this is further complicated
by the fact that in most cases the location of the transition
state, i.e., the maximum of the barrier, is not known a priori.

Here, we propose a new method to analyze the kinetics
of activated processes in simulations based on the concept of
mean first-passage times �MFPT�. This new method has
many advantages: it is very easy and straightforward to
implement in a simulation and not only allows a precise
determination of the rate but in addition facilitates the loca-
tion of the transition state purely from the kinetics. More-
over, it allows us to differentiate the activation from the sub-
sequent evolution or growth of the system and the possibility

to infer more valuable information such as the activation
barrier, growth curves, and lag times. Since these important
quantities are evaluated from the kinetics alone, these kinetic
estimates can then be compared with thermodynamical �or
equilibrium� predictions.

The article is set up as follows. In Sec. II, we introduce
the concept of mean first-passage time and describe the the-
oretical basis of the new method. In Sec. III, we illustrate the
usefulness of the method with one of the prototypical ex-
amples of an activated process: vapor-liquid nucleation. We
first verify the accuracy of the new method against a simple
analytical model, the classical nucleation theory, and then,
we describe the practical implementation in a MD simulation
using the condensation of Lennard-Jones argon as an ex-
ample. The main conclusions are finally summarized in
Sec. IV.

II. THEORETICAL DERIVATION

The dynamics of most activated processes can be recast
into a Kramers-type description in terms of a reaction coor-
dinate x and described by a Fokker-Planck equation1

�P�x,t�
�t

=
�

�x
�D0e−�U�x� �

�x
�P�x,t�e�U�x��� , �1�

where P�x , t� is the probability distribution function, D0 the
generalized diffusion coefficient, U�x� the free energy barrier
that has to be overcome, and �=1/kT, with k the Boltzmann
constant and T the temperature. The reaction coordinate x
can be the size of a cluster or an aggregate, the angle of a
bond, or in general any variable that properly describes the
state of the system.

In an activated process, the quantity of major interest is
the rate at which the barrier is crossed. For this type of dy-
namics, the steady-state rate of barrier crossing can be re-
lated to the MFPT.2 The MFPT ��x0 ;a ,b� is defined in the
one dimensional case as the average elapsed time until the
system starting out at point x0 leaves a prescribed domain
�a ,b� for the first time �see illustration in Fig. 1�a��. In gen-a�Electronic mail: jan.wedekind@uni-koeln.de
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eral, the MFPT depends on the nature of the boundary con-
ditions and on the initial position x0. For most cases of inter-
est, the boundary conditions are typically reflecting at point a
and absorbing at point b. Under these circumstances, the
MFPT for a process described by Eq. �1� is given by the
expression2,3

��x0;a,b� = �
x0

b 1

D0
dy exp��U�y���

a

y

dz exp�− �U�z�� .

�2�

Typically, this MFPT is analyzed in terms of the starting
position x0. Let us now assume that we fix a given starting
point and look at the behavior of the MFPT in terms of b,
from now on denoted by ��b� �see Fig. 1�b��. That will give
us information about the average time it takes the system to
reach b for the first time. For instance, ��b=x*� is the average
time needed to reach the transition state x*, i.e., the top of the
barrier, for the first time. It is well known that the barrier-
crossing rate is related to that time by2,4

J =
1

2��x*�
, �3�

where the factor 1 /2 comes from the fact that, at the top of
the barrier, the system has a 50% chance of falling to either
side.

Besides the activation rate, we can also get a precise
estimation of the location of the transition state x* from the
behavior of the MFPT. For the case of a constant diffusion
coefficient D0, the first derivate of the MFPT �Eq. �2�� with
respect to b yields

���b�
�b

=
1

D0
exp��U�b���

a

b

dz exp�− �U�z�� . �4�

Taking the second derivate we get

�2��b�
�b2 =

1

D0
+ �U��b�

���b�
�b

, �5�

which—evaluated at the transition state x*, i.e., at the top of
the barrier where �U��x*�=0—finally yields

� �2��b�
�b2 �

b=x*
=

1

D0
. �6�

This equation provides a simple and unique criterion to de-
termine the location of the transition state x* merely from the
kinetics. Reversely, in situations where the location of the
transition state is already known or can be obtained from
other methods, Eq. �6� will serve to determine the kinetic
prefactor D0 in a very simple way.

It is worth stressing that activation rates are only prop-
erly defined when the barrier is relatively high, i.e., �U�x*�
�1. This assures a proper separation between the time scale
associated with the barrier-crossing event and that of the lo-
cal diffusion or relaxation. Under those circumstances, the
MFPT shows a characteristic sigmoidal shape �see Fig. 1�b��,
and the rate is simply given by the inverse of the value of the
MFPT at the plateau, and relatively insensitive to the initial
condition x0 �for x0�x*� and to the location of b �for b
�x*�. Moreover, the MFPTs are then significantly bigger
than the characteristic diffusion time 1/D0. Therefore, under
these circumstances, Eq. �6� simplifies to

� �2��b�
�b2 �

b=x*
	 0. �7�

Thus, the inflection point of the MFPT curve indicates x*

�the top of the barrier�.
Yet, a more powerful result can be derived, which is the

basis of our new method. Under reasonably high barriers, the
behavior of the MFPT, Eq. �2�, in the vicinity of the critical
size x* can be evaluated by the method of steepest descent
�see the Appendix� and it is given by the following expres-
sion:

��b� =
�J

2
�1 + erf��b − x*�c�� , �8�

where x* is again the location of the transition state, erf�x�
=2/
��0

xe−x2
dx is the error function,

c =
�U��x * ��
2kT

�9�

is the local curvature around the top of the barrier, and

�J =
1

J
�10�

is the inverse of the �steady-state� transition rate. Equation
�8� offers a very powerful method to analyze the results of
simulations of activated processes. By evaluating the MFPT
in the simulation and by merely fitting the results to this
simple expression, we can immediately get all the important
parameters of the process. Namely, we obtain the barrier-
crossing rate J, the location of the transition state x*, and the
curvature at the top of the barrier c=
�U��x* �� /2kT. This

FIG. 1. Schematic representation of an activated process and its correspond-
ing MFPT �for details, see the text�.
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parameter c is also related to the time lag to reach steady-
state conditions for the rate, which is �except for a numerical
factor� given by �lag1/ �D0c2�.5

There is an intimate relation of Eq. �8� with a similar
expression obtained in the context of nucleation from the
growth probability of clusters.6,7 In a pioneering work, ter
Horst and Kashchiev6 derived an expression to determine the
critical cluster size n* and the so-called Zeldovich factor4

Z=c /
� from the growth probability of clusters in one-
component nucleation. Later, they also showed how the
nucleation rate J can be obtained from the growth probabili-
ties of dimers.8 Their method requires the measurement of
the growth probability P�n�, defined as the probability that a
cluster of size n grows up to a sufficiently large supercritical
size M �n*. In practice, this probability can be evaluated as
P�n�=N /N0, where N is the number of experiments in which
the cluster has reached this size, and N0 is the total number
of experiments. Moreover, this growth probability can be
approximated by6

P�n� = 1
2 �1 + erf��n − n*�c�� . �11�

When the barrier is high enough, P�n� can also be ap-
proximated by the ratio of the MFPT ��n� of an n-sized
cluster and the MFPT of a sufficiently large supercritical
cluster �J,

P�n� =
��n�
�J

. �12�

We can immediately see that a combination of Eqs. �11�
and �12� yields the same result as Eq. �8�. Therefore, in the
high barrier case Eqs. �11� and �8� provide two alternative
but equivalent ways to analyze the cluster growth history.
The main difference between both approaches lies on the
practical implementation in different simulation techniques.
It is simpler to obtain first-passage times from a molecular or
Brownian dynamics simulation than growth probabilities of
clusters. In addition, and contrary to the growth probability,
the MFPT method provides full information about the dy-
namics of the process and, as we will see, about the possible
coupling between nucleation and growth. Growth probabili-
ties, on the other hand, can be relatively easily calculated
from stochastic simulations �provided the growth and decay
rates are known� or from a Monte Carlo simulation, where
different n clusters can be prepared independently and their
evolution monitored. Therefore, each method is particularly
suited to different simulation techniques and, in conjunction,
both methods provide invaluably powerful tools to analyze
activated processes by practically any available simulation
technique.

Finally, Bartell and Wu recently presented a similar re-
sult as Eq. �8� in the context of freezing.9 We would like to
clarify that we have already presented the MFPT method to
the community in several conference talks prior to the sub-
mission of Ref. 9.10,11 In addition, it was also derived and
extensively used in a Ph.D. thesis,12 part of which has al-
ready been published,13 prior to the publication of Ref. 9. We
find that neither a rigorous derivation nor a sufficient justifi-
cation is given in Ref. 9. Moreover, the applicability of the

result of Ref. 9 is not demonstrated analytically or by using a
suitable set of simulation results. Instead, only four data
points from old simulation results are used, which in turn had
to be obtained from an interpolation in order to gain at least
some kind of estimate of the first appearance times �unfortu-
nately, no error bars are presented in the respective figure�.
Here, we present a full derivation and justification of the
MFPT method and in the following we will showcase the
power and applicability of the MFPT both analytically and
using MD simulations for a prototypical case of an activated
process.

III. A CASE STUDY ON VAPOR-LIQUID NUCLEATION

For the sake of concreteness, let us now focus on one
particular example of an activated process, namely, vapor-
liquid nucleation. We will first validate the method by using
an analytical model, the classical nucleation theory �CNT�,
and then illustrate its application to simulation results.

A. Analytical comparison with CNT

Nucleation is the mechanism that initiates many phase
transformations. For instance, the condensation of a vapor
starts through the formation of small liquid droplets that have
to reach a certain critical size to be able to grow and com-
plete the phase transformation. The activated nature of this
process arises from the energetic cost, related to the surface
tension, that has to be payed to build these small clusters in
the supersaturated vapor.

To describe vapor-liquid nucleation, a proper reaction
coordinate is the size n, or the number of molecules in the
liquid cluster, and U�x� would represent the free energy of
formation of a cluster of n molecules. In CNT, this free en-
ergy is given by

U�x� � �G�n� = − n�� + 	A�n� , �13�

where �� is the difference in chemical potentials of the liq-
uid and the vapor phase, 	 is the surface tension, and A�n� is
the area of a spherical cluster of n molecules. One can show
that this free energy can be rescaled to14

�G�x� = 2�G*�− x + 3
2x2/3� , �14�

where x=n /n* ,n* is the size of the critical cluster, and �G*

is the height of the nucleation barrier. This representation has
the advantage that the location of the barrier is easily iden-
tified at x=1 independent of the barrier height. Figure 2�a�
shows two examples of the rescaled free energy, Eq. �14�, for
�G*=5kT and 20kT. It is well known that the nucleation
kinetics can be described by the Fokker-Planck Eq. �1�.15

In this case, the effective diffusion D0 is the rate of attach-
ment of molecules to a cluster, which is reasonably accu-
rately given by kinetic theory as D0�x�=�0x2/3, with
�0=A�n*�p /
2�mkT, and p the vapor pressure.

From Eqs. �2� and �14� we can now calculate the corre-
sponding MFPTs analytically �using a reflecting boundary
condition at x=0 and x0=0�. Figure 2�b� illustrates the re-
sulting MFPT, in units of n*2 /D0, as a function of the cluster
size for the two cases in Fig. 2�a�, corresponding to a high
and a low barrier, respectively. For the high barrier, the
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MFPT curve has a sigmoidal shape that reaches a well-
defined plateau at larger values of x. The presence of this
plateau indicates that the rate limiting step in the formation
of a large cluster is the activation time to overcome the criti-
cal size and that the time required for the subsequent growth
of the cluster is negligible compared to that. For the low
barrier case, the MFPT still increases noticeably for higher n
without reaching a clear plateau, indicating that the growth
of the cluster occurs at similar time scale as its nucleation. It
is also very important to notice the huge difference of five
orders of magnitude in time scales in Fig. 2�b�, which re-
flects the extreme sensitivity of the passage times and the
rates to the height of the nucleation barrier.

Let us now see how accurately the fitting function Eq.
�8� can represent the results of the analytically calculated
MFPT. Figure 2�b� shows the results of a simple least
squares fitting to Eq. �8�.17 The parameters of the fit, listed in
Table I, reproduce the exact values of the nucleation rate
J=1/�J, the critical size x*, and the so-called Zeldovich
factor,4 defined as Z�
�U��x* �� /2�kT=c /
�, with excel-
lent accuracy in both cases. This demonstrates that the fitting
procedure to Eq. �8� works remarkably well even for the case
of a very low barrier, where the steepest descent approxima-
tion is expected to fail and the rates are not well defined.

Once having verified the accuracy and validity of the
method, we will now discuss its application to simulation in
the next subsection.

B. Application in MD simulations

The importance and high appeal of the new method lie in
its practical implementation in a simulation. The evaluation
of the nucleation rate directly from MD simulations is a dif-
ficult task. Direct or “brute-force” MD simulations16—where
one simply starts from a supersaturated vapor and just waits
for the appearance of critically sized clusters—are limited to
situations in which the activation barrier is not very high. If
the activation barrier is too high, the spontaneous crossing of
the barrier becomes very unlikely and cannot be observed in
the limited time accessible in simulation.17 In such cases, one
has to resort to indirect and more complicated techniques
such as umbrella sampling18 or transition path sampling.19

Still, brute-force MD simulations offer a direct, unbiased,
and detailed description of the kinetics of activated systems
for moderate activation barriers and they are extensively
used to investigate nucleation, crystallization, and many
other activated processes. Typically, in brute-force simula-
tions, two different methods to estimate the rate have been
used to date. Since the size of the critical cluster is not
known a priori, the most common method involves choosing
a big enough threshold size and counting the time required to
form a cluster of that size. However, the choice of this
threshold is necessarily arbitrary, which leads to an inaccu-
rate estimate of the nucleation rate. Another method is to
count how many large clusters are present in the system as a
function of time.20 However, it requires a very large system
and is affected by significant depletion effects, which com-
plicate the interpretation of the results. More elaborated ideas
based on the analysis of the transient nucleation or the mo-
ments of the rate have been proposed recently.21 Our new
method offers significant advantages and a very simple and
efficient way of extracting all relevant information through a
simple fit to the MFPT.

To illustrate the power of the method, we have applied it
in a real simulation of condensation of Lennard-Jones �LJ�
argon vapor. We have performed MD simulations of
N=343 Lennard-Jones argon atoms at T=50 K for two box
sizes of V= �16 nm�3 and �18 nm�3, corresponding to a low
and a high activation barrier, respectively. Details of the
simulation will be provided elsewhere.22 It is worth mention-
ing, however, that the small system size was determined to
be sufficiently large without encountering significant finite-
size effects in the simulations.13 The use of a small system

FIG. 2. �a� Two free energy barriers of 5 and 20kT �Eq. �14��. �b� Corre-
sponding MFPTs �symbols� calculated from Eq. �2� and their fit to
Eq. �8�.

TABLE I. Comparison of the exact values of the nucleation rate J=1/�J, the critical size x*=n /n*, and the
Zeldovich factor Z=c /
�, with the parameters obtained from the fit to Eq. �8�.

�G*=20kT �G*=5kT

Exact Fit Err. �%� Exact Fit Err. �%�

J 8.236
10−7 8.299
10−7 0.8 0.1036 0.1044 1.3
x* 1 0.99 1.0 1 1.03 3.0
Z 1.46 1.47 1.2 0.728 0.715 1.6
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facilitates very good statistics by making it possible to repeat
the simulations at the same conditions but with different
starting configurations of the vapor. The same number of
nucleation events can be observed much faster than in one
large scale simulation because the computational effort
strongly depends on the total number of molecules in the
simulation.

The procedure to obtain the MFPT directly from the MD
simulation is, in fact, very simple and illustrated in Fig. 3.
For each simulation, the size of the largest cluster in the
system is noted at regular intervals �1000 time steps in our
case� and the time at which each size n appears for the first
time, ti�n�, is stored. The mean first-passage time ��n� for
each size n is simply obtained by averaging ti�n� over several
repetitions of the simulations with different initial configura-
tions. It should be noted that this method does not depend on
whether we have just one or many clusters in the system or
whether consecutive sizes are first reached by the same clus-
ter or not. In our case, we performed 200 simulations at
V= �18 nm�3 and 1000 simulations at V= �16 nm�3.

Figure 4 plots the resulting MFPTs obtained from the
simulation and the corresponding fits to Eq. �8�. The fit
works very well for the case of V= �18 nm�3 and immedi-

ately provides all the relevant information from the simula-
tion in a simple and accurate way. For the case of V
= �16 nm�3 the MFPT does not reach a plateau but the fit is
nevertheless reasonably good around the inflection point of
the curve and provides a very good estimate of the critical
size, which is well defined by Eq. �7�. Again, it is an impor-
tant advantage of the MFPT method is that we can clearly
observe whether nucleation and growth are coupled, i.e.,
whether or not the barrier is significantly higher than kT.
This condition obviously holds for the case of V= �18 nm�3,
where the MFPT reaches a clear plateau at �J, and the nucle-
ation rate simply is J=1/ �V�J�. However, this regime is typi-
cally not easily accessible in a brute-force MD simulation.
For instance, in the V= �16 nm�3 case no plateau is reached,
indicating that the barrier is low and nucleation and growth
occur at the same time scale. Here, the standard threshold
method to evaluate the rate would be inaccurate. It is impor-
tant to realize that in such a case J=1/ �V�J� only represents
the rate of formation of a critical cluster. For low nucleation
barriers, however, the overcoming of the barrier is no longer
the rate limiting step and the rate of formation of an n-sized
postcritical cluster depends both on J and on the growth time
from size n* to size n.

On the other hand, the location of the barrier n* is still
accurately defined by Eq. �8�, i.e., the turning point of the
MFPT curve. Furthermore, despite the absence of a plateau,
the MFPTs in the vicinities of the critical size are reasonably
well described by the fit and, as verified in Sec. III A, the
rate, critical size, and Zeldovich factor may still be accu-
rately determined from Eq. �8�. Another possible approach to
determine n* would be to sample the growth probability P�n�
and accurately fit them to Eq. �11�, since P�n� will always
reach a plateau.6 Yet, it is straightforward to show that such a
procedure is fully equivalent to using Eq. �7�, i.e., finding the
turning point of the MFPT. However, the growth probability
P�n� method will not provide any accurate estimate of rates
nor a simple way to distinguish between steady-state nucle-
ation from nucleation/growth coupling, which can be easily
identified in Fig. 4.

In addition, the MFPT method provides a nice and clear
way to contrast thermodynamic and kinetically determined
parameters. For instance, we can test the accuracy of the
different cluster criteria �or reaction coordinates in general�
by comparing the size of the critical cluster obtained kineti-
cally with independent thermodynamic estimates. In our
case, a simple Stillinger criterion was used to characterize
the number of molecules of the clusters in the simulation. In
this criterion, two atoms that are closer than a certain thresh-
old distance rS, the Stillinger radius, are considered to form
part of a cluster. Obviously, the cluster size determined in the
simulation, and, in particular, the critical cluster size, will
depend on this definition, and ideally, the optimal cluster
definition should be the one providing a good measure of the
actual size of the cluster.

In order to investigate how the cluster definition �or in
general, the choice of the reaction coordinate� influences the
results obtained from the MFPT, the same systems of Fig. 4
were simulated using two different Stillinger radii, one at
rS=1.8	LJ and one at rS=1.2	LJ. The results of the simula-

FIG. 3. Four example growth curves of the largest cluster from the MD
simulations. For each run, we note the time it takes to reach a given size n
for the first time. Averaging over all runs yields the MFPT ��n� for each size
n.

FIG. 4. Simulation results �circles� of LJ argon at 50 K and two different
volumes corresponding to a low �a� and a high �b� barrier, respectively. 1000
simulations were performed for �b� and 200 for �a�. Dashed lines are fits to
Eq. �8�.
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tions are shown in Fig. 5. By fitting the MFPT to Eq. �8� we
can accurately determine the critical cluster size n* �and also
the nucleation rate� as measured by the two different cluster
definitions. For the smaller Stillinger radius, the measured
critical cluster size is slightly smaller than for the larger ra-
dius, while the nucleation time is practically unaffected.
Thus, the nucleation rate determined by the MFPT method is
independent of the particular cluster definition used in the
simulation, confirming a similar conclusion of ter Horst and
Kashchiev.6 Table II shows the exact results obtained from
the different fits in Fig. 5.

We can now use an independent thermodynamic esti-
mate of the critical cluster size, for instance, the nucleation
theorem, to decide which cluster criteria provide the best
estimate of its actual size. Using this procedure, we have
indeed found that the standard Stillinger cluster definition in
general significantly overestimates the size of the critical
cluster.22

IV. CONCLUSION

We have presented a powerful new method to analyze
the kinetics of activated processes in simulation using the

concept of MFPT. It provides us with a strikingly simple way
to obtain and analyze all the quantities of major interest
purely from the kinetics of the process. We could demon-
strate the power of our method both analytically for a simple
CNT barrier and for real MD simulation of LJ argon. One of
the advantages of the method is that it can provide accurate
kinetic measurements of the relevant quantities that can then
be contrasted to pure equilibrium estimates. It can also be
used to test the validity of different reaction coordinates. In
addition, it provides a first-sight information about whether
activation and relaxation/growth occur at similar time scales.

This MFPT method can be used with any reaction coor-
dinate and it can also be generalized to more than one reac-
tion coordinate. In addition, it can be applied to a myriad of
different situations such as evaluating the rate and locating
the transition state in a chemical reaction, the crystallization
of liquids,23 proteins,24 or nanoclusters,25 and in general any
process where a barrier has to be overcome.
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APPENDIX: EVALUATION OF THE MFPT
BY STEEPEST DESCENT

In this appendix we provide more details on the deriva-
tion of Eq. �8� from the MFPT Eq. �2� by the standard ap-
proximation of steepest descent.

In the case of a relatively high activation barrier, i.e.,
�U�x*��1, the first exponential in the integrand of the
MFPT

��b� = �
x0

b 1

D0
dy exp��U�y���

a

y

dz exp�− �U�z�� �A1�

will be sharply peaked around the maximum of the free en-
ergy U�y�. Therefore, the overwhelming contribution to the
integral of the MFPT would arise from a narrow size range
in the vicinity of the transition state x*. We can then expand
the free energy U�y� around the maximum x*,

U�y� � U�x*� −
1

2
�U��x*���y − x*�2, �A2�

and replace D0, which could in general depend on the reac-
tion coordinate, by its value at the transition state D0�x*�, and
the upper integration limit in the second integral also by x*.
The resulting expression is

��b� =
1

D0�x*��a

x*

dz exp�− �U�z��


�
x0

b

dy exp��U�x*��exp�−
1

2
��U��x*���y − x*�2� .

By changing the integration variable from y to �y−x*�
and using the sharpness of the exponential to replace the

FIG. 5. Comparison of simulation results for different Stillinger radii rS for
the same systems as in Fig. 4, i.e., �a� V= �18 nm�3 and �b� V= �16 nm�3. The
different cluster definition changes the obtained value for n* but has only a
minimal influence on the determined nucleation rate �8�.

TABLE II. Comparison of the values of the nucleation �J and the critical
size n* for the same systems as in Fig. 4, but using two different Stillinger
radii rS.

Volume V �16 nm�3 �16 nm�3 �18 nm�3 �18 nm�3

Stillinger radius rS �	LJ� 1.8 1.2 1.8 1.2
�J 11.1 10.4 157 154
n* 13.2 10.3 14.1 11.7
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lower integration limit �x0−x*� by −�, the Gaussian integral
in the previous equation can be reexpressed in terms of the
error function erf�x�=2/
��0

xe−x2
dx as

��b� =
1

D0�x*�
exp��U�x*��


�
a

x*

dz exp�− �U�z��
1


�U��x*��/2�kT

1

2


�1 + erf�
�U��x*��
2kT

�b − x*��� . �A3�

The MFPT at the transition state is just

��b = x*� =
1

D0�x*�
exp��U�x*��


�
a

x*

dz exp�− �U�z��
1


�U��x*��/2�kT

1

2
�

1

2J
,

�A4�

where in the last step we have used Eq. �3�. Using this result,
we can finally simplify Eq. �A3� into

��b� =
�J

2
�1 + erf��b − x*�c�� ,

where �J=1/J, and c=
�U��x* �� /2kT.
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