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Abstract: Voltage collapse and blackout can occur in 

an electric power system when load powers vary so that the 
system loses stability in a saddle node bifurcation. We pro- 

pose new iterative and direct methods to compute load pow- 
ers a t  which bifurcation occurs and which are locally closest 

to the current operating load powers. The distance in load 

power parameter space to this locally closest bifurcation is 
an index of voltage collapse. The pattern of load power in- 

crease need not be predicted; instead the index is a worst cage 
load power margin. The computations are illustrated in the 
6 dimensional load power parameter space of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 bus power 

system. The normal vector and curvature of a hypersurface' 
of critical load powers a t  which bifurcation occurs are also 

computed. The sensitivity of the index to parameters and 

controls is easily obtained from the normal vector. 
Keywords: voltage collapse, saddle node bifurcation, index, 

sensitivity, load power margin, numerical methods 

1. Introduction 
We model an electric power system by differential equa- 

tions of the form 

i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( z , X ) ,  z E RP, X E R" (1.1) 
where X is a parameter vector of real and reactive load pow- 
ers. It is convenient to write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx for the system state vector a t  

a stable equilibrium (operating point). We assume current 

operating load powers Xo at which the corresposding equilib- 
rium xo is stable. As the load powers X vary from the current 

load powers Xo, the equilibrium x will vary in the state space. 

At critical load powers XI the system can lose stability by x 
disappearing in a saddle node bifurcation and we denote the 
set of such XI in the load power parameter space R" by C. C 
is a boundary of the feasible region for operation at the stable 
equilibrium x. The saddle node bifurcation instability when 

the load powers encounter C can cause catastrophic collapse 

of the system voltages and blackout [7,15,16]. C typically 
consists of hypersurfaces in R m  and their intersections. The 

instability can be avoided by monitoring the position of the 

current load powers XO relative to C and taking corrective ac- 

tion if XO moves too close to C. In particular i t  is useful to cal- 
culate a critical load power A, in C for which IX.-Xol is a local 

minimum of the distance from XO to C [17,21,26,23,8,9,10,12]. 
Then the line segment XoX, represents a worst case load 
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power parameter variation and IX, - ,401 measures the prox- 

imity to saddle node bifurcation. That is, the worst case load 

power margin IX,-Xol is a voltage collapse index. We call the 

bifurcation a t  A, 'a closest saddle node bifurcation' with the 

understanding that the distance to bifurcation is measured in 

parameter space relative to the fixed value XO. Note that we 

do not require the direction of load increase to be predicted. 

We iqtroduce a two bus power system model to illustrate 
these ideas in a simple context: Consider a generator slack 
bus with voltage 1.0, lossless line with admittance 4.0 and a 

PQ load.. The system state is 2 dimensional and the system 
operating equilibrium i s  z = ( a , V )  where VLa is the load 

voltage phasor. The parameter space is 2 dimensional and the 

p a r v e t e r  vector X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P ,Q)  contains the real and reactive 
powers consumed by the load. The load flow equations are 

0 = -4vsinff - P 

0 = -4V2 +4Vcosa  - Q 
The operating equilibrium is given by 20 = (ao,Vo) = 
(-0.138,0.908) and the current load powers are XO = 
(Po, Q o )  = (0.5,0.3) (see figure 1). The set of critical loadings 
giving bifurcation and voltage collapse is the hypersurface C 
which in this case is the one dimensional curve shown in fig- 

ure 1, Figure 1 also shows the closest A, to XO; note that 
XoX, is normal to C. Then the line segment XoX. represents 

the worst c q e  load power variation and the worst case load 
power margin IX. -A01 measures the proximity to saddle node 
bifurcation and voltage collapse. 

(1.2) 

P 

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 .5  

~ -0.2 - 
Figure 1. Load power parameter space 
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If a reliable load forecast specifying the direction of load 

increase in Rm is available, then a load power margin index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 
assuming the direction of load increase can also be computed 

[2,5,30,23,20,1] and the combination of the load power margin 

index with the worst case load power margin index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-A01 

gives a useful description of the relation in parameter space 
of the current load powers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXo to the critical load powers C. 
For example, in the situation of figure 2, although the load 
power margin index e = 1x1 - Xo l  assuming the direction of 
load increase given by n o  may be acceptably large, IX. - XO I is 

dangerously small so that even a minor contingency could pre- 
cipitate a voltage collapse. Of course, if the direction of load 
increase is not available, then only IX, - Xo I can be computed. 

Figure 2. Insecure point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA0 in load power parameter space 

Galiana and Jarjis [17] consider the real power load flow 
equations with constant voltage magnitudes, define a feasi- 

bility region in a real power injection parameter space and 
present the idea of computing a closest instability in this pa- 

rameter space. In our notation, the boundary of the feasi- 

ble region would be labelled C. Using a conjecture that C 
is convex, Galiana and Jarjis parameterize C with the nor- 

mal vector N to C and define a real power margin D which 
is the perpendicular distance from the operating real power 

injections A0 to the tangent hyperplane of C with normal 
N .  Minimizing D with conjugate gradient methods yields a 
worst case real power margin and this computation is illus- 
trated in a 6 bus system. Jarjis and Galiana [21] consider 

the load flow equations and define a feasibility region in a 

real and reactive power injection parameter space augmented 
with the voltage magnitudes of PV buses. A non-Euclidean 

worst case parameter space margin is defined and computed 

using Fletcher- Powell minimization. Const rained minimiz a- 

tion in the load power parameter space is also considered and 

the computations are illustrated in 5 bus systems. Jung et 

al. [23] suggest a gradient projection optimization method to 
compute a worst case load power margin and Sekine et  al. 

[26] attempt to compute a worst case load power margin by 

gradient descent on the determinant of the Jacobian. The 
use of IX, - Xo l  and other indices in determining the costs 
of secure power system operation is explained in Alvarado et 

al. [3]. This paper explains and applies new iterative and 
direct methods to compute a closest saddle node bifurcation 

and the index IX, - X o l  and is based on work in [8,9,10,12]. 

2. Sta t ic  and Dynamic  Power Sys tem Models 
Although we regard the power system as being modelled 

by differential equations of the form ( l . l ) ,  Dobson [ll] shows 

that useful computations can be done with static equations 
such as the load flow equations whose solutions are equilibria 

of the differential equations. This follows since saddle node 
bifurcations of the static equation solutions coincide with sad- 

dle node bifurcations of the differential equation equilibria. 

For example [Il l ,  let y be a vector of load bus voltage 
angles and magnitudes and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA66 be a vector of generator 

voltage angles. Then load flow equations may be written as 

(2.1) 
0 = f l (6G,  Y) 

0 = f 2 ( 6 G ,  Y, A) 
where fi describes real power balance at the generators and 

f2 describes real and reactive power balance at the loads. 
A differential equation model which extends (2.1) by in- 

cluding generator swing dynamics and load dynamics is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ G = W  

= fi(&, Y) - A w (2.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c = h ( f 2 ( 6 G ,  Y, A),"') 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh defines any dynamic load model which depends on the 

real and reactive power balance at  each load and frequency w 
and which satisfies h ( 0 )  = 0 (see [7,22] for examples). Then 

solutions (6~, y) of (2.1) yield equilibria (6~, 0, y) of (2.2) and 
bifurcation of solutions of (2.1) at ( 6 ~ , ,  yI) implies bifurca- 

tion of equilibria of (2.2) at (6~,, 0 ,  y,) [ll]. The point is that 

we can assume a differential equation model of the form (2.2) 
even if the precise form of h is unknown and perform compu- 

tations of saddle bifurcations of (2.2) using the simpler static 

equations (2.1). This is useful since convincing models for 

load dynamics have not yet been obtained. We remark that 
a similar reduction has not been obtained for the Hopf bifur- 

cation; the Hopf bifurcation seems to depend more strongly 

on details of underlying dynamic equations. 

Much useful engineering information is contained in 

right and left eigenvectors of the Jacobian of equation (2.2) 
at the bifurcation. The right eigenvector corresponding to 

the zero eigenvalue specifies the pattern of voltage decline in 

the initial dynamic collapse [7,11] and also the asymptotic di- 

rection in which the stable operating point z approaches the 
closest unstable equilibrium point as the saddle node bifur- 

cation occurs [7,11,18]. The left eigenvector corresponding to 
the zero eigenvalue can be used to  compute the normal vector 

to C [ I l l .  This is used below to compute the index (A ,  - Xo l  
and index sensitivities. This eigenvector information is not 

lost when we compute with the static model (2.1) instead of 
the differential equations (2.2) since [11] and [I31 show that 

this information may be easily obtained from eigenvectors of 

the static model. 

The computations below apply to any power system 
model of the form (1.1) or to any static power system model 

which is equivalent to some underlying differential equation 

model of the form (1.1) in the sense explained above. For 
this paper we choose the load flow equations parameterized 

by real and reactive load powers to demonstrate the compu- 
tations. Note that the parameters X are only restricted to 

load powers for ease of exposition; any power system controls 

or parameters may be included in the parameter vector X as 
required and the results of the paper can easily be generalized 

to this case. 

3. Prel iminaries  

The iterative method to compute a closest saddle node 

bifurcation has two main ingredients: the formula for the nor- 
mal vector to C and any of the standard methods for find- 

ing the load power margin f2 assuming a direction of load 
increase. We consider these in turn before describing the it- 

erative method in section 4. 
At a saddle node bifurcation specified by load powers 

XI E C the corresponding equilibrium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt l  is degenerate and 
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the Jacobian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfzl(zl,xl) is singular. Throughout this paper, 
we make the generic assumptions that fzl(sl,al) has a unique 
simple zero eigenvalue with a corresponding left eigenvector 

wl and that certain transversality conditions (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[11,8,12,6]) 
are satisfied (we write w1 as a row vector). It follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
is a smooth hypersurface near X1 and that a normal vector 

to the hypersurface at X1 is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfx is the Jacobian of f with respect to X [11,6]. a is a 

scaling factor whose magnitude is chosen so that  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN(X1)l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
1 and whose sign is chosen so that an increase of load in 
the direction N(Xl) leads to disappearance of the operating 
equilibrium. Note that fa is a constant p x m matrix since 

the load powers X appear linearly in the load flow equations. 
(3.1) also follows from [17, eqn. (13)] in the case when fx is 
the identity matrix. 

Suppose we specify a particular direction of future load 

increase from the operating load powers &. That is, we spec- 

ify a ray in parameter space based at XO with a unit vector 
no so that  the load powers X along the ray are given by 

as the loading factor L’ assumes positive real values. There 
are several methods to compute the closest saddle node bi- 

furcation aesuming this ray of load increase. That is, we can 

compute a critical loading factor L so that X i  = XO +Lno E C. 
Since no is a unit vector, L = 1x1 - Xol; see figure 1. I is 
a voltage collapse index measuring the load power margin 

assuming the direction of load increase. For example, this 

computation is done by [20,5,1,33] using continuation meth- 

ods and [2,23,5,30] using direct or optimization methods. The 

text by Seydel [27] gives an entry to the extensive numerical 
analysis literature on continuation and direct methods. 

For this paper we use a variant [13] of the direct method 

in which solution of the following equations by Newton’s 
method yields the bifurcating equilibrium 21, load power 

margin L and the left eigenvector w1: 

N(Xi) = awifa (3.1) 

j 
1 

X = A0 +L‘no ( 3 4  

f ( z 1 , X o + b o ) = O  (3.3) 

wifzl(zl,ao+tno) = 0 (3.4) 

w 1 c - 1 = 0  (3.5) 
Equation (3.3) states that 2 1  is an equilibrium at parameter 

X i  = Xo +!no and equation (3.4) states that  the Jacobian fz 

evaluated at (21, XI) is singular with left eigenvector w l .  c E 
RP is a fixed vector and (3.5) ensures that the left eigenvector 

wi is nonzero. The only difference between equations (3.3- 
3.5) and the standard methods [2,23,5,27] is that  we use aleft 
eigenvector wi in place of the corresponding right eigenvector. 

This is convenient since computing A1 = XO + Lno and 2 1  by 

solving (3.3-3.5) yields as a byproduct the left eigenvector wl 
needed to  compute the normal vector to C with formula (3.1). 
The left eigenvector form of the equations also arises naturally 
if an optimization approach is taken as in [30]. Continuation 

methods are also a good choice for computing L. 

4. I te ra t ive  Method 
Now we describe how computation of the load power 

margin L and the computation of the normal vector of C may 

be iterated to compute the direction n. and parameter value 
A. of a locally closest saddle node bifurcation and hence the 
worst case load power margin IX, - Xol. The procedure is as 
follows: 

Let no be an initial guess for the direction n,. 
Given ni-1, compute the saddle node bifurcation along 

the ray given by ni-1; that is compute L;, Xi ,  2; so that 

X i  = A0 + ni-1Li E c. 
Compute the left eigenvector wi  of fr((si,xi) correspond- 

ing to the zero eigenvalue. 
Set ni = N(Xi)  = wifa. 
Iterate steps 1,2,3 until convergence of ni to a value n.. 
Then X, = XO +tan,. 

The direction n. of a locally closest bifurcation is parallel to 

the normal vector N(X.)  of C at A, and it follows that n. 
is a fixed point of the iteration. The quickest way to grasp 
how the iteration works is to try it with pencil and paper 

in the case of C an ellipse and XO an interior point of the 

ellipse. Note that the iteration converges in one step if C is 
a hyperplane. 

The iteration can be understood as minimizing IX. - Xol 
on a series of tangent hyperplane approximations to C. At 

each iteration, ni = N(Xi)  indicates the direction of the point 
closest to XO on the tangent hyperplane TEA, to C at A, [12]. 
The following claims are proved in [8,12]: 

0 If the iteration converges exponentially to a fixed point 

n. then the parameter A. = XO + n+L. specifies a locally 

closest bifurcation. 

0 If A. is the parameter of a locally closest bifurcation 

and C is ‘not too concave’ at X, then the direction 
n. = N(X,) is an exponentially stable fixed point of 

the iteration. (The precise meaning of ‘not too concave’ 

is that the minimum principal curvature of C at A, must 

exceed -1X. - X0l-l.) 

Note that when the iteration converges, it converges to a 

locally closest bifurcation which is not necessarily a globally 

closest bifurcation. This is a potential problem in practice, 
particularly if the hypersurfaces of C are corrugated or if Xo 
is close to several portions of C. One problem in analyzing 
the performance of the iteration is the lack of knowledge of 

the geometry of C; all that  seems to be known are formulas 

for the normal vector [ll] and curvature of C [8,9,12]. A 

conjecture of Jarjis and Galiana [21] implies that  the interior 
of C is convex. Venkatasubramanian et al. [31] assume a 

differential-algebraic power system model and compute a 2 
dimensional bifurcation diagram of a simple power system. 

An initial ray direction no for the iterative method may 

often be calculated as follows from information available at 

the current operating point (20, XO) [9]: If Xo is close enough 
to one of the hypersurfaces of E, then the algebraicdy largest 

eigenvalue of the Jacobian fz at (z0,Xo) is the eigenvalue 

which will increase to zero as XO moves towards A, E E. 
The corresponding left eigenvector WO of fr((+o,xo) approxi- 

mates the left eigenvector W. at (z.,X+) so that no = wofx 
approximates n. = w.fa [ll]. Note that this argument 
only works when A. is close enough to exactly one of the 

hypersurfaces of C; obtaining justifiably good estimates for 

n o  in general is an open problem. However the iterative 
method seems robust to the choice of no. In the case of the 

two bus power system (1.2), the operating point is given by 

20 = (ao, VO) = (-0.138,0.91) and XO = (PO, Qo) = (0.5,0.3). 
fz((tO,~O) has eigenvalues (-3.994, -2.904) and the left eigen- 

vector corresponding to -2.904 is WO = (0.585,0.811) so that 

n o  = wofa = (0.585,0.811). 
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5. Direct Method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We generalize equations (3.3-3.5), which assume a one 

dimensional ray of load increase, to equations for a closest 
saddle node bifurcation a t  (z,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,) [9]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f (z,, A,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 

k.(A, - A o y  - w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf x  = 0 

w*fx(w*fx)T - 1 = 0 

(5.1) 

w*f=l(s.,x.) = 0 (5.2) 

(5.3) 

(5.4) 
Since the distance IA, - A01 is a local minimum, (A, - A o ) ~  
is parallel to the normal vector n. = w.fx to C at A, and 

equation (5.3) holds for some k, E R. Equation (5.4) scales 
the normal vector n. so that it has unit length. In particu- 
lar (5.4) implies that W, is nonzero so that (5.2) does indeed 

guarantee the singularity of fzl(z.,x,). For practical calcula- 
tion it is convenient to replace (5.4) by 

where c is a fixed vector (c.f. (3.5)). 
Equations (5.1-5.4) can be solved by Newton type meth- 

ods and a solution (z,, w,, A,, k,) satisfies necessary condi- 

tions for a closest saddle-node bifurcation. Moreover, a solu- 

tion (z,, w., A,, k.) is a closest saddle bifurcation if the addi- 
tional condition (6.1) explained in section 6 on the curvature 

of C at A, is satisfied. The Jacobian of equations (5.1-5.4) is 

invertible near the solution if condition (6.1) and transversal- 
ity conditions are satisfied [8,12] so that Newton type meth- 
ods are locally well defined and have second order convergence 

to a solution. 

Equations (5.1-5.4) are (3.3-3.5) generalized to A E R" 
by the addition of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm linear equations (5.3). In the case 

of a single parameter (m=1), (5.3) is a trivial equation for k 
which may be omitted and the equations reduce to (3.3-3.5). 

Equations (5.1-5.4) may also be related to an opti- 

mization similar to that proposed by Jung [23]: Minimize 
~ 1 A . - A 0 l 2  subject to the constraints (5.1), (5.2), (5.4). (Jung 

uses a right eigenvector instead of the left eigenvector w..) 

The Lagrangian is L = 

w * f x c = l  (5.5) 

ni Ai 

(0.585, 0.811) (0.869, 0.811) 
(0.398, 0.917) (0.744, 0.862) 
(0.349, 0.937) (0.713, 0.873) 
(0.336, 0.942) (0.705, 0.876) 
(0.333, 0.943) (0.703, 0.876) 
(0.332, 0.943) (0.703, 0.877) 
(0.331, 0.943) (0.703, 0.877) 

1 
-lA*-~ol2+m1f 2 +m2(W*f i l~t , ,X.))T+m3(.Wr fx(w* fx)T-l) 

and L A ,  = (A, - A o ) ~  + mlfx 

since f,l(,.,X.) and w, are not explicit functions of A, in 

equations (1.1). Now L A  = 0 reduces to (5.3) with Lagrange 

multiplier m l  = -w*/k,. 
To reliably solve (5.1-5.4) by Newton type methods i t  

is essential to have good initial estimates (21, W I ,  A I ,  k1) of 

the solution. Initial estimates 21, W I ,  AI may be computed in 
the same way as for the iterative method [9] (and improved 
if required by a few iterations of the iterative method). Then 

kl may be estimated by 1x1 - Aol- ' .  

6. Curvature of C 
We discuss a condition on the curvature of C which guar- 

antees that solutions of the direct method equations (5.1-5.4) 
are locally closest bifurcations. First consider the 2 dimen- 

sional load power parameter space of figure 1 which shows 

a critical loading A, E C which satisfies equations (5.1-5.4) 
since A, - A0 is parallel to the normal vector of C at A,. 
Solutions of (5.1-5.4) are stationary in the distance from A0 

to C and not necessarily local minima. The condition guar- 

anteeing that A, is a local minimum of the distance from 

A0 to C is that the curvature of the dashed circle of radius 

IA, - A01 exceeds the curvature of C at A,. This condition is 
satisfied in figure 1. For a general parameter space R", the 

condition guaranteeing that solutions of the equations (5.1- 
5.4) are locally closest bifurcations is that the curvature k, of 

the sphere of radius IA, - ,401 strictly exceeds the maximum 

principal curvature k,,, of C at A, [28]: 

Note that condition (6.1) will hold for A0 sufficiently close to 

C or k,,, negative (C concave at A.). 
Thus after computing a solution of (5.1-5.4), it is neces- 

sary to compute the curvature of C at  A, and check condition 
(6.1) to ensure that the solution corresponds to a locally clos- 

est bifurcation. We quote formulas from [8,9] for the curva- 
ture of C. The formulas are simplified since f x  is a constant 
matrix for equations (1.1). The curvature of C at A. is given 

by the ( m  - 1) x ( m  - 1) matrix 

and k,,, is the largest eigenvalue of 11. Note that the Hes- 

sian fz2 is a p x p x p tensor and that w.fiz is a p x p 
matrix. It remains to  calculate the p x (m - 1) matrix 

yx, appearing in (6.2). yx. satisfies f,l(=.,x.)yx. = f i r T  
but this is not sufficient to obtain yx. since fzJ(zl,x,) has 
rank n - 1. ( r  is the projection of R" onto TCx, along 

n .  = w,fx.) The additional equation required to calculate 

yx. is wT(wIf,31(5.,x1)) yx. = 0 where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, is the right eigen- 
vector of f,1(,.,~.) corresponding to the zero eigenvalue. I1 is 

also of independent interest as I1 and the normal vector w. f x  
describe the geometry of C in R" near A, to  second order. 
The formulas for I1 are somewhat complicated and check- 
ing the convergence of the iterative method at a solution of 

(5.1-5.4) might well be more practical for large systems than 
computing 11, k,,, and directly checking (6.1). 

k, = IA, - ~0l- l  > kmaz (6.1) 

11 = ~T. (w* f== I (~ . , x . ) )  yx. (6.2) 

7. Examples with 2 and 5 Buses 
Consider the two bus power system model (1.2) with 

operating point given by zo = (ao, Vo) = (-0.138,0.908) and 

A0 = (PO, Qo) = (0.5,0.3) (see figure 1). Note that P and Q 
enter linearly in equations (1.2) and that fx  is the negative 

of the 2 x 2 identity matrix. 
The closest bifurcation at  z, = (a., V,) = (-.338,0.530) 

and A, = (P., Q,) = (0.703,0.877) was computed using the 

iterative method (see table 1). At each step of the iteration, 

the direct method equations (3.3-3.5) were used to  compute 

the closest bifurcation along a ray based at XO. As claimed 
in section 4, the convergence of the iterative method to the 
solution demonstrates that A, is a locally closest bifurcation. 



the curvature of the dashed circle in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is k.4.636. 
Equation (6.2) gives the curvature of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC at A, as 0.420. Since 

kr exceeds 0.420, condition (6.1) is satisfied, confirming that 
the solution is a locally closest bifurcation. 

Xo 
X i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
no 

n2 

n3 
n4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1t5 

ne 
n. 
A, 

X. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Xo 

tr4 

P2 
1.1500 
1.7919 
0.3513 

0.0130 
0.0103 
0.0097 
0.0095 
0.0095 
0.0094 
1.1584 

0.0379 

0.0084 

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1  

2.0080 

0.7595 
~ 0.5957 
10.5425 
0.5272 
0.5229 
0.5217 
0.5213 
1.1659 
0.4659 

0.7160 

1 1  

0.2404 1.3522 

0.6143 0.0983 
0.7857 0.0607 
0.8246 0.0563 
0.8347 0.0553 
0.8375 0.0551 
0.8382 0.0550 
0.8385 0.0550 
1.0495 0.7491 
0.7495 0.0491 

-0.0326 0.3570 

2' 1 3  
Figure 3. 5 bus system 

Consider the five bus system from [23,2] shown in fig- 
ure 3. This system has generators at buses 1 and 3 (bus 1 
is slack), and loads at buses 2, 4 and 5. The line parame- 
ters are given in table 4 and the generator parameters are 
& = 1.04, a1 = 0, V, = 1.02 and P3 = -1.1. We choose 

the real and reactive powers consumed by the loads as the 
parameter vector X = (P2, Q2,P+, Q4, P5,Q5). The state vec- 

tor x = (a2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas, a4, a5, V2, V4, V5). The operating point 20, 

bifurcating equilibrium x1 along the ray of direction no, a 

closest bifurcating equilibrium x . and the corresponding left 
eigenvectors W O ,  tu1 and w. are shown in table 2. The corre- 

sponding load powers XO, X i  and A, and the progress of the 
iteration of ni are shown in table 3. These iterative method 
results check with the direct method results in [9]. 

I a 2 [ a 3 1 a r I a 5 I V z I V 4 I V s  

xo I -.lo43 I -.0545 I -.1759 I -.0916 I .9603 I .9151 I .9681 

a te spac 

&z 
0.6000 
0.6101 
0.0055 
0.0083 
0.0015 
0.0011 
0.0010 
0.0009 
0.0009 
0.0009 
0.6008 
0.0008 

z : vectors for 5 bus itera t: ion 

10.7000 * 0.3000 0.7000 
Q5 

0.4000 
0.4136 
0.0074 
0.1770 
0.1535 
0.1490 
0.1480 
0.1478 
0.1477 
0.1477 
0.5320 
0.1320 

Table 3. Parameter space vectors for 5 bus iteration 

The curvature of C can be computed using the formu- 

las of Section 6. The principal curvatures of C at A, are 

0.313,0.026,0.008,0.017,0.000, IX.-Xol = 0.8938, and the cur- 

vature k. of the sphere of radius IX, - Xol is 1.1189. Since k, 
exceeds the maximum principal curvature k,,, = 0.313, con- 

dition (6.2) is satisfied. All calculations were done using [32]. 
Our preliminary experience suggests that the iterative 

method of computing IX. - Xol  is more robust to choice of 

initial conditions than the direct method of [9] which suffers 

from the sensitivity to initial conditions typical of Newton 
type methods. Moreover, the iterative method only converges 

to locally closest instabilities and does not require the cur- 
vature of C at the solution to be checked as in the direct 
method. However, the asymptotic convergence of the iter- 

ative method is only exponential and the direct method is 

faster to compute for the examples above. 

8. Computational requirements 
We briefly discuss the potential computational require- 

ments for the iterative and direct methods. 

Each iteration of the iterative method requires the load 

power margin t i  and the normal vector n, to C to be com- 

puted. See [4,20,5,30] for the computational requirements for 

t i .  The main computational burden in computing ni with 
equation (3.1) lies in computing w,, the left eigenvector of 
the Jacobian f,1(,,,~,) corresponding to the zero eigenvalue. 
Direct and optimization methods of computing l; can yield 

w, as a by-product (see section 3 and [13]). If continuation 

methods are used to compute l;, then wi can be calculated 

using the inverse power method [19]. Another possibility is 
observing [14] that  w, is the left singular vector of f,l(,,,~,) 
corresponding to the zero singular value and using the inverse 

power method of Lof et al. [24]. 
The number of iterations of the iterative method de- 

pends on IX, - XO( and the curvature of C. More precisely, 
the asymptotic convergence of the iterative method to A, is 

geometric with factor KIA.  - Xol where IC is the maximum ab- 
solute principal curvature of C at A, [8,12]. Thus the asymp- 
totic convergence to A, is quick if (A. - Xol is small or if C is 

approximately flat near A.. 
The computational requirements of the direct method 

are those of the direct method for the computation of l ,  [4] 
with an additional rn linear equations (recall that  m is the 

number of parameters). 

9. Example of C with multiple hypersurfaces 
We give an example of C being composed of two hyper- 

surfaces E' and C2 in a simple power system model. Consider 

a 3 bus power system consisting of an infinite bus connected 

by two identical, lossless transmission lines to two PQ load 

buses. The load buses are not directly connected to each 

other so that the system is essentially two decoupled infinite 
bus and PQ load systems. Then the load power parameter 

vector X = ( P ~ , Q I ,  P2,Q2) and the parameter space R' is 
the Cartesian product of Figure 1 with itself. There are two 
3 dimensional bifurcation hypersurfaces C' = CO x A and 

C2 = A x CO where CO is the curve in Figure 1 and A is the 

area enclosed by the curve. C' and C2 intersect in the 2 di- 

mensional set CO x Co. It is unclear whether this example of 

multiple hypersurfaces is typical and determining the typical 
structure of C for power system models remains a challenging 

problem. 

10. Index Sensitivities 
If a voltage collapse index shows an unacceptable close- 

ness to voltage collapse, it is useful to compute the sensitivity 

of the index to power system controls so that  control action 

may be taken to optimally improve the index and the voltage 

stability of the system. For example, Tiranuchit and Thomas 

[29] compute the sensitivity of a minimum singular value in- 
dex, Overbye and DeMarco [25] compute the sensitivity of an 
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energy function index and Galiana and Jarjis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[17] compute 
the sensitivity of the real power margin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. 

The sensitivity to the operating parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXo of the 

load power margin index e and the worst case load power 

margin index IX. - Xol are rigorously derived in [13] and [12] 
respectively, Here we give an informal derivation of these 

index sensitivities. 

First we assume a ray of load increase based at Xo in the 

direction n o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in (3.2) and derive the sensitivity to Xo of the 
index e. (Recall that e is the critical loading factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that 
A1 = XO + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAen0 E E.) The key assertion in informally deriving 

the first order sensitivity of .! is that it is valid to approximate 

C to first order near X I ;  that is, C may be approximated 
near A1 by its tangent hyperplane TClx, at XI. Now the 

problem reduces to finding the sensitivity to XO of the distance 

e = 1x1 - Xo l  of the point XO to the hyperplane TClx, in the 
direction R. as shown in figure 4. But 1x1 -A01 is proportional 
to the perpendicular distance D from XO to TClx,: 

e =  1x1 - Xol  = D(cost’)-’ = D (N(Xi).no)-’ 

and the sensitivity Dx, = - N ( X l )  since the optimum di- 
rection to move away from a hyperplane is normal to the 

hyperplane [17]. Hence the required sensitivity is 

(10.1) 

Informally deriving the sensitivity of the index IX, - XO( 
is similar but easier. Let A. be the parameter of the closest 
bifurcation to XO and approximate C near A, by TCIA,. Then 

IX, - Xo l  is the perpendicular distance D from XO to TCla, 
and the required sensitivity (also see [17]) is 

For both indices, the geometric content is clear: the optimum 
direction to increase the distance of a point XO to a hypersur- 
face C is antiparallel to the normal vector to C. 

ea, = - N ( x ~ )  ( ~ ( ~ l ) . n o ) - l  = -zoifa ( ~ i f x . n o ) - l  

IX, - X O ~ X ,  = Dx, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-N(X,) = - - Q W * ~ A  (10.2) 

Figure 4. Geometry of sensitivity of e 
If the parameters X are load powers, then the sensitivity 

formulas (10.1) and (10.2) are useful in determining the op- 

timum combination of loads to shed in order to avoid voltage 
collapse. That is, the loads which it is most effective to  shed 
correspond to the larger entries in the vector N(X.) .  Shed- 

ding loads corresponding to the smaller entries tends to move 
X in a direction more parallel to  C rather than away from C. It 

is straightforward to obtain the sensitivities to any power sys- 

tem parameter or control by augmenting the parameter space 

with these parameters or controls and hence compute the op- 

timum combination of controls to avoid voltage collapse [13]. 
In the 5 bus example of section 7, inspection of the com- 

ponents of n+ in table 3 shows that Q 4  is the load bus power 

most influential on the load power margin so that shedding 
load at bus 4 is most effective in increasing the index IX. 

11. Conclusions 

We propose new iterative and direct methods for com- 

puting a voltage collapse index which is a worst case load 
power margin and the distance to a locally closest saddle 

node bifurcation in load power parameter space. Both meth- 
ods exploit a recent observation [ll] that the normal vector 
to hypersurfaces of the critical load powers C is easy to cal- 

culate. The worst case load power margin is useful when the 
direction of load increase in load power parameter space is un- 

known or uncertain and, when the direction of load increase 

is known, it supplements load power margins which assume 

the direction of load increase. The computations can be done 

on static power system models such as the load flow equa- 

tions and the results apply to  a class of underlying dynamic 

power system models whose dynamics need not be completely 

specified [ I l l .  
The iterative method is easy to implement if any of the 

standard methods for finding load power margins assuming 
a direction of load increase is given. The iterative method 

seems simpler and more robust than the direct method but 

may be slower to compute. The direct method is a general- 
ization of the extended system equations [27,2,5,23] and can 

be related to an optimization similar to that of [23]. The 

direct method has the disadvantages of requiring good initial 
solution estimates and a check on a condition involving the 

curvature of C. 
If the operating load powers XO are close to  several por- 

tions of C i t  would be desirable to compute a locally closest 

saddle node bifurcation on each of the portions of C but it 

is not known whether this situation will arise often in prac- 
tice. More needs to be known about the general structure 
of C in order that these methods can be shown effective or 

improved to take advantage of this structure. The formulas 
for the normal vector [ll] and curvature of C [8,9] are ba- 

sic steps towards describing C. We neglect in this paper the 
significant possibility of oscillatory instability via a Hopf bi- 

furcation, but see [8,12] for an iterative method for finding 

a locally closest Hopf bifurcation. The methods could a p  
ply generally to finding closest saddle node instabilities of a 
general dynamical system with parameters. 

We give examples of computing a worst case load power 

margin and the normal vector and curvature of C. The larger 
example has 5 buses and a 6 dimensional load power parame- 

ter space. This example is too small to illustrate the practical- 

ity of the methods on large power system models and further 
work is needed to turn the calculation for this example into a 

robust and efficient algorithm for large power system models. 

The sensitivity of the worst case load power margin to 
parameters is easy to obtain from the normal vector to C and 

we give an informal derivation of this useful sensitivity. We 
also informally derive the sensitivity of the load power margin 

index which assumes a direction of load increase. 
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Discussion 

M. A. Pai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(University of Illinois, Urbana, IL): This is a 
very interesting paper which yields the closest saddle node 
bifurcation point (CSNB) for a given stable operating 
point. This in some sense is analogous to the closest u.e.p. 
computation in angle stability studies. As one would ex- 
pect the CSNB point will give conservative results regard- 
ing voltage security. This is illustrated clearly in Fig. 1. 
However, it may give some clue to the operator as to how 
to steer the same system away from A, by using the 
sensitivities. Most of the literature to date in voltage 
collapse has been in terms of increasing P or Q only at a 
given bus. This paper gives a global view of P or Q 
increases at all the buses. The load margin seems to be 
related in some sense to maximum loadability of the 
system. Can the authors comment on this? Also can these 
computations be done for an area only instead of the 
system as a whole. In the 6 bus example, A ,  identifies the 
weakest bus which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#4 in this case. It is possible that the 
method identifies only weakest buses in the system and it 
could be used to alert the operator. Application to a large 
scale system using this method would be helpful. 

As for Hopf bifurcation, it is the opinion of the dis- 
cusser that the simple swing model may mask the Hopf 
bifurcation due to the exciter model. The model of the 
machine and exciter dictate which complex pair of mode 
goes unstable first depending on the controllable parame- 
ters such as exciter gain, etc. This represents a fruitful 
area of research in parametric stability. 

Adam Semlyen (University of Toronto): I would like to congratulate 
the authors for their interesting and instructive paper. It provides useful 
insight into the problem of static voltage stability analysis by giving a 
geometrical description and illustration by hand of a small system. It 
also presents a practical method for computing the margin to voltage 
collapse. 

It is interesting to note that the initial problem formulation in this 
paper consists of differential equations only, rather than a system of 
differential and algebraic equations, as suggested in several references. 
I also preferred, until recently, to view some of the equations, notably 
those expressing fie reactive power balance constraint, as being strictly 
algebraic. This is not because the related dynamics may not be known, 
but because I felt there should be no dynamics at all, since the reactive 
power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ (in contrast to the real power P) is an artificial concept, 
difficult to be viewed as representing a driving force for any dynamic 
phenomenon. Still, even this difficulty can be overcome if one includes 
network dynamics in the study, at least in principle, so that all 
equations can be considered to be ODE. It is, however, normally 
closer to reality to attribute the existence of an approximately constant 
P and/or Q load to the intermittent tap changing dynamics of the 
transformer. 

The nice thing about the uniformity in the approach (of using only 
ODE for describing the system, as in equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.2)) is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa static 
voltage stability analysis becomes meaningful in all practical cases. 
The resulting bifurcation can be described as saddle-node or Hopf, 
which are concepts related to dynamic phenomena, even though the 
practical analysis is performed on algebraic equations (as (2.1)). The 
question arises, however, whether the likelihood for Hopf bifurcations 
is not overly significant in the authors' problem formulation? Indeed, 
in the paper both P and Q are used as variables, so that Hopf 

bifurcations may easily occur. In the approach of Gao et al*, where P 
is eliminated from the set of variables so that the resulting Jacobia 
matrix is almost symmetrical, the critical eigenvalues are always real. 

The geometrical concept of a distance to the bifurcation point 
raises some interesting questions. If the distance is Euclidean, it 
implies that, when forming a sum of squares, real powers P and 
reactive powers Q are equally weighted. Is a heavier weighting .of 
reactive powers not preferable when it comes to voltage stability 
studies? Certainly, weighting may affect the solution and may have 
some relation to my previous question regarding the nature of the 
resulting bifurcation point. 

For an operating point still away from the point of collapse, 
distance is an integral concepts (the sum of infinitesimal distances). As 
alternatives, one may consider local indicators, mainly regarding the 
direction to the bifurcation point. These could be either the smallest 
eigenvalue with the corresponding eigenvectors or the smallest singular 
value with the corresponding singular vectors of the Jacobian matrix J 
in question (in short EIG and SVD). All three methods have in 
common the fact that their features are derived by considering a point 
approaching the one at bifurcation, as a limit. It is interesting to note 
that all three give the same result and are, perhaps, conceptually 
equivalent at the limit point of saddle bifurcation. For EIG and SVD 
this results from the simple fact that, for a matrix A equal to the 
inverse of J that approaches singularity, the eigenvalue decomposition 
and the singular value decomposition are identical. Indeed, as one 
eigenvalue of J approaches zero, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA becomes a rank-one matrix, with 
the unique decomposition A=puvT (if U and v are normalized to unit 
length). In this decomposition the scalar p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+-) is a measure of 
closeness to the bifurcation point; U and v are the critical eigenkingular 
vectors (there is now no distinction between the two!) of J or A. 

Also noteworthy is the fact that, even away zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom the bifurcation 
point, SVD gives exact local information for both the direction U of 
largest voltage variation Ax and for the most sensitive direction v of the 
control vector AA, since the SVD for the relevant matrix A yields 
orthogonal modes. (The left and right eigenvectors of an eigenvalue 
decomposition are only mutually, rather than individually, orthogonal.) 
Therefore, U and v are simply the singular vectors corresponding to the 
largest singular value. 

If several eigenkingular values of J become small simultaneously 
then, instead of single critical directions, the respective eigenkingular 
vectors define subspaces for maximal voltage variations and optimal 
control directions. 

Comments and clarifications from the authors would be most 
appreciated. 

[A] B. Gao, G.K. Morison, and P. Kundur, "Voltage Stability 
,Evaluation Using Modal Analysis", IEEE paper no. 91 SM 420-0 
PWRS, presented at the 1991 IEEElPES Sqmmer Meeting in San 
Diego, California. 

Ian Dobson: We thank Professors Pai and Semlyen for 
their discussions. 

Professor Pai asks about the relation of the closest 
saddle node bifurcation to maximum loadability. The 
distance to a closest bifurcation is a minimum of the 
loadability given a slack bus or participation factors for 
increasing the generation as the load increases. It is 
possible to maximize the distance to a closest bifurca- 
tion by rescheduling the generation; that is, maximize 
over generation the minimum loading distance to bifur- 
cation. This computation is suggested in [Cl] and gives 
a maximum loadability of the system. 

Concerning the closest bifurcation computations for 
an area: Since there is freedom in choosing how the sys- 
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tem loading zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis parameterized, only the loads in a given 
area could be allowed to vary. The parameter space 
would then be a subspace of the full parameter space 
in which all loads vary. It is straightforward to compute 
the closest bifurcation in the subspace. This is one sense 
in which the computations can be done for an area. 

Professor Pai correctly points out that some power 

system models will have Hopf bifurcations in addition 
to saddle node bifurcations. The method presented in 
the paper should apply to computing closest saddle node 
bifurcations in those power system models but the Hopf 
bifurcations would not necessarily be detected. The de- 
tection of the Hopf points depends on the algorithm used 
to detect the first bifurcation along a given ray of load 
increase. A continuation method could detect the first 
Hopf orsaddle node bifurcation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas can some direct meth- 
ods [C2]. If a Hopf occurred first then the normal vector 

formula appropriate to the Hopf hypersurface would be 

used [12]. The method suggested in the paper to detect 
the first bifurcation along a given ray of load increase 
detects the first saddle node bifurcation but neglects the 
Hopf bifurcations. 

In general, the power system operation and design 
to avoid instabilities must avoid both the saddle node 
and Hopf bifurcations and we agree that this is an in- 
teresting engineering problem. It is useful to compute 
the Hopf bifurcation assuming a given load increase and 
then use the Hopf normal vector formula to derive the 
sensitivities of the load power margin to Hopf bifurca- 
tion with respect to  power system parameters and con- 
trols [C3]. Then the sensitivities may be used to change 
power system parameters to optimally increase the load 
power margin to Hopf bifurcation. Similar techniques 
could be used to “steer” the system away from a closest 
Hopf bifurcation once the closest Hopf bifurcation was 
computed using the iterative method. 

Professor Semlyen questions the appropriateness of 
power system models in which Hopf bifurcations occur. 
First we note that the Hopf analysis is different from the 
saddle node analysis since it cannot be properly done 
without some knowledge of the details of the underlying 
dynamics [C3]. The present models (particularly of the 
load dynamics) have not been demonstrated to be suit- 
able to  make predictions about the real power system. 
Thus the current dynamic models may predict more or 
fewer Hopf bifurcations than actually occur. It is true 
that Hopf bifurcations can be eliminated by simplifying 
the power system model in such a way that the Jaco- 
bian is symmetric. However, even if the real system 
had no Hopf bifurcations, this does not necessarily jus- 
tify the simplification of the model. On the contrary, 
one could argue that the power system model should be 
elaborated to model a well designed power system sta- 
bilizer to eliminate the Hopf bifurcations. It seem to us 
that the degree to  which Hopf bifurcations are present 
at extreme power system loadings is unknown. Gao et 
al. [A] choose to keep P constant so that QV character- 

istics can be studied. They do not address the relation 
of their simplified model to more detailed models. 

Professor Semlyen makes the pertinent observation 
that different weightings or scalings of the parameters 
will yield different answers for the closest bifurcation. In 
other words, different metrics yield different closest bi- 
furcations. Thus there may be some arbitrariness in the 
closest bifurcation depending on the scaling chosen. We 
chose for P and Q what seemed to us the most straight- 
forward choice of equal weighting. We would prefer the 
method to compute for us the relative importance of P 
and Q rather than assume the relative importance a pri- 
ori. Other weightings are possible, but we do not know 
how to  justify them. One sensible approach avoids this 
question by assuming constant power factor at each load 
and using either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP to parameterize all the loads or Q to 
parameterize all the loads. 

Professor Semlyen discusses the relation of eigenval- 
ues, singular values and load power margins as voltage 
collapse indexes. Our opinion is that eigenvalues and 
singular values are relatively unsuitable voltage collapse 
indexes because they vary nonlinearly as the bifurcation 
is approached and it is hard to predict far from the bi- 
furcation which eigenvalue or singular value will become 
zero at the bifurcation. Load power margin takes full ac- 
count of the system nonlinearity (it is not based on a lin- 
earization valid only locally) and is readily understood. 
However, the singular value computations are well suited 
for computing the sensitivities of voltage magnitude at 
the stable equilibrium. 

At a saddle node bifurcation the load power margin, 
an eigenvalue and a singular value are all zero. The co- 
incidence of the eigenvectors and singular vectors corre- 
sponding to  the zero eigenvalue and zero singular value 

is observed and proven in [14]. The inverse matrix A 
in Professor Semlyen’s discussion is only asymptotically 
rank one if some suitable normalization of the matrix 
entries is used. 
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