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New Methods for Finite Element Model Updating Problems
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We consider two finite element model updating problems, which incorporate the measured modal data into the
analytical finite element model, producing an adjusted model on the (mass) damping and stiffness, that closely
matches the experimental modal data. We develop two efficient numerical algorithms for solving these problems.
The new algorithms are direct methods that require OO(nk2) and OO(nk2 + k6) flops, respectively, and employ sparse
matrix techniques when the analytic model is sparse. Here n is the dimension of the coefficient matrices defining
the analytical model, and k is the number of measured eigenpairs.

Nomenclature
b = see Eq. (21b); k × 1
C = adjusted damping matrix, n × n
Ca = damping matrix of the original finite element model

(FEM), n × n
D = see Eq. (13); k × k
ei = i th standard vector of Rn

G = see Eq. (21a); k × k
Ik = k × k identity matrix
ı =

√−1
K = adjusted stiffness matrix, n × n
Ka = stiffness matrix of the original FEM model, n × n
k = number of measured eigenvalues or eigenvectors
M = adjusted mass matrix, n × n
Ma = mass matrix of the original FEM model, n × n
Q = orthogonal matrix, n × n
R = upper triangular matrix, k × k
Re(A) = real part of A
ri, j = i th component of r j
r j = j th column of R−1, k × 1
S = R�R−1, k × k
S1(M11) = see Eq. (36a); k × k
S2(M11) = see Eq. (37a); k × 1
Sk × k = set of all k × k symmetric matrices
R1(D) = see Eq. (36b); k × k
R2(D) = see Eq. (37b); k × 1
tr(·) = trace operator
vec(·) = vectorization operator
x = solution of linear system, k × 1
� j = see Eq. (18); k × k
δ = see Eq. (41)
� = diagonal block eigenvalue matrix, k × k
λ = eigenvalues of quadratic eigenvalue problem
μ = weight factor
ν = weight factor
� = eigenvector matrix, n × k
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∇ = gradient of a function
∇A = gradient of a function with respective to the

elements of A
◦ = Hadamard product
⊗ = Kronecker product
(·)� = transpose
‖ · ‖F = Frobenius norm

I. Introduction

V IBRATING systems, such as automotives, bridges, highways,
and buildings are usually described by distributed parameters.

However, because of the lack of viable computational methods to
handle distributed parameter systems, a finite element method is
generally used to discretize such systems to an analytical finite el-
ement model (see Ref. 1, Chapter 2, for details), namely, a second-
order differential equation

Ma q̈(t) + Ca q̇(t) + Kaq(t) = f (t) (1)

Here Ma , Ca , and Ka ∈ Rn × n are all symmetric and represent the
analytical mass, damping, and stiffness matrices, respectively (with
Ma being symmetric positive definite, or Ma > 0), q(t) is the n × 1
vector of positions, and f (t) is the n × 1 vector of external force. It
is known that solving the homogeneous equation (1) [i.e., f (t) ≡ 0]
corresponds to solving the quadratic eigenvalue problem (QEP)

Qa(λ)x = (
λ2 Ma + λCa + Ka

)
x = 0 (2)

by letting q(t) = eλt x. The scalar λ and the associated vector x in
Eq. (2) are called, respectively, eigenvalues and eigenvectors of the
quadratic pencil Qa(λ). Note that the QEP (2) has 2n finite eigen-
values because the leading Ma is nonsingular.

In the finite element model (2) for structural dynamics, the an-
alytical mass and stiffness matrices are, in general, clearly defined
by physical parameters and evaluated by static tests. However, the
analytical damping matrix for precise dissipative effects is not well
understood because it is a purely dynamics property that cannot be
measured statically and must be determined by dynamic testing.
This makes the process of modeling and experimental verification
difficult. A common simplification is to assume proportional damp-
ing, which seems to be sufficient where damping levels are lower
than 10% of critical.2 Two new methods for damping matrix identi-
fication, which produce accurate representative damping matrices,3

are developed. They serve to integrate the theory and practical appli-
cation of damping matrix identification. Therefore, it is assumed in
this paper that acceptable models of the analytical mass, damping,
and stiffness matrices are available. It is our objective to incorporate
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the measured modal data into the finite element model, aiming to
produce an adjusted finite element model on the mass, damping, and
stiffness with modal properties that closely match the experimental
modal data.

Finite element model updating (FEMU) problems have emerged
in the 1990s as a significant subject to the design, construction, and
maintenance of mechanical systems. Model updating, at its most
ambitious form, attempts to correct errors in a finite element model.
It uses measured data such as natural frequencies, damping ratios,
mode shapes, and frequency response functions, which can usually
be obtained by vibration test. In the past decade, a number of ap-
proaches to the FEMU problem are proposed (see Refs. 1 and 4 and
references therein). For example, Baruch,5 Baruch and Bar-Itzak,6

Bermann,7 Bermann and Nagy,8 and Wei9−11 proposed various up-
dating methods to correct the analytical mass and stiffness matrices
of undamped systems (i.e., Ca = 0). In Datta,12 Datta et al.,13 and
Datta and Sarkissian,14 studies are undertaken toward a nonsymmet-
ric feedback design problem for second-order control system. That
consideration eventually leads to a partial eigenstructure assignment
problem for the QEP. A new symmetric feedback design for the QEP
using symmetric eigenstructure assignment was recently developed
in Ref. 15.

The FEMU problem for damped systems was first proposed by
Friswell et al.2 They considered the mass matrix to be exact and
updated the damping and stiffness matrices by using the measured
modal data as a reference. Following the basic idea of Refs. 5 and 6,
they minimized the difference between the analytical and updated
damping/stiffness matrices, subject to the constraints that the eigen-
matrix equation is satisfied and the damping/stiffness matrices are
symmetric. That is, the FEMU problem proposed by Ref. 2 can be
formulated by the following constrained optimization problem.

Problem FEMU-I. Find n × n real matrices C and K to minimize
the objective function

J = 1
2
ν
∥∥M

− 1
2

a (C −Ca)M
− 1

2
a

∥∥2

F
+ 1

2

∥∥M
− 1

2
a (K − Ka)M

− 1
2

a

∥∥2

F
(3a)

subject to

Ma��2 + C�� + K� = 0 (3b)

C� = C, K � = K (3c)

Here Ma , Ca , and Ka are, respectively, the analytical mass, damping,
and stiffness matrices; ν > 0 is a weighting parameter; and C and
K are, respectively, the updated damping and stiffness matrices.
The measured eigenvalue matrix � and the associated eigenvector
matrix � satisfy

� = diag
(
λ

[2]
1 , . . . , λ

[2]
� , λ2� + 1, . . . , λk

) ∈ Rk×k (4a)

with k � n and

λ
[2]
j =

[
α j β j

−β j α j

]
, β j = 0

for j = 1, . . . , �, and

� = [ϕ1R, ϕ1I , . . . , ϕ�R, ϕ�I ; ϕ2� + 1, . . . , ϕk] ∈ Rn × k (4b)

Throughout this paper, we assume that � in Eq. (4a) has only
simple eigenvalues and � in Eq. (4b) is of full column rank.

In a finite element model, the mass is usually well defined by
physical parameters. However, we shall consider a more general and
interesting problem that the analytical mass, damping, and stiffness
matrices are all allowed to be updated. The second FEMU problem
can be formulated by the constrained optimization problem:

Problem FEMU-II. Determine the n × n real matrices M , C , and
K to minimize the objective function

J = 1
2
μ
∥∥M

− 1
2

a (M − Ma)M
− 1

2
a

∥∥2

F
+ 1

2
ν
∥∥M

− 1
2

a (C − Ca)M
− 1

2
a

∥∥2

F

+ 1
2

∥∥M
− 1

2
a (K − Ka)M

− 1
2

a

∥∥2

F
(5a)

subject to

M��2 + C�� + K� = 0 (5b)

M� = M, C� = C, K � = K (5c)

Here Ma , Ca , and Ka are, respectively, the analytical mass, damping,
and stiffness matrices; μ, ν > 0 are weighting parameters; and M , C ,
and K are, respectively, the updated mass, damping, and stiffness
matrices. The measured eigenvalue matrix � and the associated
eigenvector matrix � are defined in Eqs. (4a) and (4b), respectively.

For problem FEMU-I, Friswell et al.2 and Pilkey3 proposed an
updating method by using the Lagrange multiplier method to solve
Eq. (3). The solutions C and K are given by

C = Ca − (2/ν)Ma Re
(
����� + ����

�

)
Ma (6)

K = Ka − 2Ma Re
(
���� + ���

�

)
Ma (7)

where �� ∈ Cn × k solves the linear equation

2Ma Re
(
���� + ���

�

)
Ma� + (2/ν)Ma Re

(
�����

+ ����
�

)
Ma�� = Ma��2 + Ca�� + Ka� (8)

There are two weaknesses for the method. First, the solution ��

in Eq. (8) is, in general, complex, whereas the updated matrices C
and K are expected to be real symmetric. Second, the dimension n
of coefficient matrices in the finite element model (2) is usually quite
large. It is impractical to solve the large and dense linear system (8),
which requires O(n3k3) flops.

In Sec. III, we develop an efficient algorithm for solving problem
FEMU-I in Eq. (3). The new algorithm is a direct method, which
avoids the Lagrange multiplier method in Refs. 2 and 3 requiring
only O(n2k) flops. In practice, Ma , Ca , and Ka are usually sparse
with O(n) nonzero entries, and the computational cost is then re-
duced to O(nk2) flops.

For problem FEMU-II, a dual optimization approach with a
Newton-type method has been developed in Ref. 16 to solve Eq. (5),
for M > 0 and K ≥ 0 (positive semidefinite). It is an iterative algo-
rithm that solves an nk × nk linear system by the conjugate gradient
method in each iteration.

In Sec. IV, we develop an efficient algorithm to solve prob-
lem FEMU-II in Eq. (5), dropping the positive semidefiniteness
requirement on K . The new algorithm is a direct method that com-
putes a symmetric positive-definite M when the weighting parame-
ter μ in Eq. (5a) is larger than δ [given by Eq. (41)]. The computation
cost is O(n2k) flops and reduces to O(nk2) flops when Ma , Ca , and
Ka are sparse with O(n) nonzero entries.

II. Solving a Partially Described Inverse QEP
For a given matrix pair (�, �) ∈ Rk × k × Rn × k(k ≤ n), where �

and � are defined by Eqs. (4a) and (4b), respectively, we now con-
sider the partially described inverse quadratic eigenvalue problem
(PD-IQEP):

Find a general form of symmetric matrices M , C , and K , with M
being positive definite that satisfies the equation

M��2 + C�� + K� = 0 (9a)

M� = M > 0, C� = C, K � = K (9b)

A general solution to the PD-IQEP is given in Ref. 15 as follows:
Theorem II.1. Let � have the QR factorization

� = Q

[
R
0

]
≡ [Q1, Q2]

[
R
0

]
(10)

where Q ∈ Rn × n is orthogonal with Q1 ∈ Rn × k and R ∈ Rk × k is
nonsingular, and let S = R�R−1. Then the general solution to the
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PD-IQEP defined by Eqs. (9a) and (9b) is given by

M = Q

[
M11 M12

M21 M22

]
Q�, C = Q

[
C11 C12

C21 C22

]
Q�

K = Q

[
K11 K12

K21 K22

]
Q� (11)

Here the n × n symmetric positive-definite matrix[
M11 M12

M21 M22

]
the (n − k) × (n − k) symmetric submatrices C22 and K22, and the
(n − k) × k submatrix C21 = C�

12 can be arbitrarily chosen. The sym-
metric submatrices C11 and K11 and the submatrices K21 and K12

satisfy

C11 = −(
M11 S + S� M11 + R−� DR−1

)
(12a)

K11 = S� M11 S + R−� D�R−1 (12b)

K21 = K �
12 = −(

M21 S2 + C21 S
)

(12c)

with

D = diag

([
ξ1 η1

η1 −ξ1

]
, . . . ,

[
ξ� η�

η� −ξ�

]
, ξ2� + 1, . . . , ξk

)
(13)

and ξi and ηi being arbitrary real numbers.
In the rest of this paper, we will utilize this result to develop two

efficient algorithms for solving problems FEMU-I and FEMU-II
described in Sec. I.

III. Solving Problem FEMU-I
To solve problem FEMU-I, we first solve two optimization prob-

lems. Let D and R be given in Eqs. (13) and (10), respectively. We
denote

R−1 = [r1, . . . , rk] =

⎡⎢⎣r11 . . . r1k

. . .
...

0 rkk

⎤⎥⎦ (14)

Problem I. Given A = [a1, . . . , ak], B = [b1, . . . , bk] ∈ Rk × k , and
ν > 0, let

x = (ξ1, η1, . . . , ξ�, η�, ξ2� + 1, . . . , ξk)
� (15)

be constructed from the matrix D in Eq. (13). Find x∗ to minimize

f (x) = ν‖A+ R−� DR−1‖2
F +‖B − R−��� DR−1‖2

F =
k∑

j = 1

f j (x)

(16a)
where

f j (x) = ν
∥∥a j + R−� Dr j

∥∥2

2
+

∥∥b j − R−��� Dr j

∥∥2

2
(16b)

Solution. Note that[
ξ η

η −ξ

][
u
v

]
=

[
u v

−v u

][
ξ

η

]
The vector Dr j in Eq. (16b) can be rewritten as

Dr j = � j x j = 1, . . . , k (17)

where

� j = diag

([
r1 j r2 j

−r2 j r1 j

]
, . . . ,

[
r2� − 1, j r2�, j

−r2�, j r2� − 1, j

]
,

r2� + 1, j , . . . , rk, j

)
∈ Rk × k (18)

Substituting Eq. (17) into Eq. (16b), and then differentiating f j (x),
we have

∇ f j (x) =
(

∂ f j

∂x1

, . . . ,
∂ f j

∂xk

)�

= 2ν
(

R−�� j

)�(
a j + R−�� j x

) − 2
(

R−���� j

)�

× (
b j − R−���� j x

)
Consequently, we obtain

∇ f (x) =
k∑

j = 1

∇ f j (x)

= 2

k∑
j = 1

[
ν
(

R−�� j

)�
a j + ν��

j (R� R)−1� j x − ��
j �R−1b j

+ ��
j �(R� R)−1��� j x

]
(19)

Setting ∇ f (x) = 0, we derive the linear equation for x:

Gx = b (20)

where

G =
k∑

j = 1

[
ν��

j (R� R)−1� j + ��
j �(R� R)−1��� j

]
(21a)

b =
k∑

j = 1

(
��

j �R−1b j − ν��
j R−1a j

)
(21b)

Because the function f (x) in Eq. (16a) must have an optimum,
the linear system of Eq. (20) is consistent, and therefore x = x∗ is
solvable.

Problem II. Given E , F ∈ R(n − k) × k , ν > 0, and S = R�R−1 as in
Theorem II.1; minimize

g(X) = ν‖E − X‖2
F + ‖F + X S‖2

F (22)

for X = [xi j ] ∈ R(n − k) × k .
Solution. Differentiating Eq. (22) yields

∂g
∂xi j

= −2ν tr
[
(E − X)�ei e�

j

] + 2 tr
[
(F + X S)�ei e�

j S
]

= −2νe�
i (E − X)e j + e�

i (F + X S)S�e j

and so we have

∇g(X) = 2[−νE + νX + F S� + X SS�] (23)

By solving ∇g(X) = 0, we get

X = (νE − F S�)(ν I + SS�)−1 (24)

We now return to problem FEMU-I. Let

Ca := M
− 1

2
a Ca M

− 1
2

a , Ka := M
− 1

2
a Ka M

− 1
2

a (25a)

C := M
− 1

2
a C M

− 1
2

a , K := M
− 1

2
a K M

− 1
2

a (25b)

� := M
1
2

a �, M := M
− 1

2
a Ma M

− 1
2

a = I (25c)
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Then it follows from Eqs. (11–13) and Q = [Q1, Q2] that problem
FEMU-I becomes

min

{
1

2
ν

∥∥∥∥Q�Ca Q −
[

C11 C12

C21 C22

]∥∥∥∥2

F

+ 1

2

∥∥∥∥Q�Ka Q

−
[

K11 K12

K21 K22

]∥∥∥∥2

F

}
= 1

2
[ f (D) + 2g(C21) + h(C22, K22)]

(26)

where

f (D) = ν‖A + R−� DR−1‖2
F + ‖B − R−��� DR−1‖2

F

g(C21) = ν‖E − C21‖2
F + ‖F + C21 S‖2

F

h(C22, K22) = ν
∥∥C22 − Q�

2 Ca Q2

∥∥2

F
+

∥∥K22 − Q�
2 Ka Q2

∥∥2

F

with

A = Q�
1 Ca Q1 + S + S�, B = Q�

1 Ka Q1 − S�S (27a)

E = Q�
2 Ca Q1, F = Q�

2 Ka Q1 (27b)

Clearly, Eq. (26) achieves its minimal value if and only if

min f (D), min g(C21), min h(C22, K22)

are achieved. Obviously, h(C22, K22) is minimized if and only if

C22 = Q�
2 Ca Q2, K22 = Q�

2 Ka Q2 (28)

The optimization problems min f (D) and min g(C21) can be solved
via problems I and II, with the matrices A, B, E , and F defined by
Eq. (27).

In summary, we have the following algorithm:
Algorithm I. For a given ν > 0, an analytical quadratic pen-

cil Qa(λ) = λ2 Ma + λCa + Ka and a matrix pair (�, �) ∈ Rk × k ×
Rn × k as defined in Eq. (4), we seek the symmetric solutions C and
K to problem FEMU-I:

1) Set

Ca := M
− 1

2
a Ca M

− 1
2

a , Ka := M
− 1

2
a Ka M

− 1
2

a , � := M
1
2

a �

2) Compute the QR-factorization of �:

� = [Q1, Q2]

[
R
0

]
, S = R�R−1

3) Compute C22 = Q�
2 Ca Q2 and K22 = Q�

2 Ka Q2.
4) Solve Gx = b for x = (ξ1, η1, . . . , ξ�, η�, ξ2� + 1, . . . , ξk)

�,
where

G =
k∑

j = 1

��
j [ν(R� R)−1 + �(R� R)−1��]� j

b =
k∑

j = 1

��
j

(
�R−1v j − νR−1u j

)
� j = diag

([
r1, j r2, j

−r2, j r1, j

]
, . . . ,

[
r2� − 1, j r2�, j

−r2�, j r2� − 1, j

]
,

r2� + 1, j , . . . , rk, j

)
[u1, . . . , uk] = Q�

1 Ca Q1 + S + S�

[v1, . . . , vk] = Q�
1 Ka Q1 − S�S

(r1, j , . . . , rk, j )
� = R−1e j

5) Form D as in Eq. (13), and compute

C11 = −(S + S� + R−� DR−1), K11 = S�S + R−� D�R−1

C21 = Q�
2

(
νCa Q1 − Ka Q1 S�)

(ν I + SS�)−1, K21 = −C21 S

6) Compute

C = M
1
2

a Q

[
C11 C12

C21 C22

]
Q� M

1
2

a

K = M
1
2

a Q

[
K11 K12

K21 K22

]
Q� M

1
2

a

where Q = [Q1, Q2].
Note that the linear system in step 4 is solvable because the cost

function has a global minimizer.
Remark III.1. a) In a finite element model, the analytical matrices

Ma, Ca , and Ka are usually very large and sparse. Matrix Ma is,
in general, diagonal or banded and therefore easily invertible. In
practice, the number of measured eigenpairs is much less than the
dimension of the finite element model, that is, k � n. The orthogonal
matrix Q = [Q1, Q2] in step 2 of Algorithm I can be computed and
stored in the form of a diagonal matrix plus a low rank updating
by Householder transformations. Suppose the multiplication of the
sparse matrix Ca or Ka to a vector needs O(n) flops. Then, the
computational cost of Algorithm I is O(nk2) flops. Obviously, if
the analytical matrices are all dense, then the computational cost of
Algorithm I will increase to O(n2k) flops.

b) Using Algorithm I to solve problem FEMU-I in Eq. (3) is
different from using Eqs. (6–8). The latter needs to solve a large
(and possibly dense) nk × nk linear system in Eq. (8), which is
impractical when n is very large.

IV. Solving Problem FEMU-II
According to Eq. (25), for simplicity and without loss of general-

ity, we can assume that Ma = I in the rest of this section. Applying
Eqs. (11–13), we can easily derive that problem FEMU-II in Eq. (5)
is equivalent to the following unconstrained optimization problem:

min

{
1

2
μ

∥∥∥∥Q� Ma Q −
[

M11 M12

M21 M22

]∥∥∥∥2

F

+ 1

2
ν

∥∥∥∥Q�Ca Q

−
[

C11 C12

C21 C22

]∥∥∥∥2

F

+ 1

2

∥∥∥∥Q�Ka Q −
[

K11 K12

K21 K22

]∥∥∥∥2

F

}
= f (M11, D) + 2g(M21, C21) + h(M22, C22, K22) (29)

where

f (M11, D) = 1
2
μ‖M11 − Ik‖2

F + 1
2
ν
∥∥Q�

1 Ca Q1 + M11 S + S� M11

+ R−� DR−1
∥∥2

F
+ 1

2

∥∥Q�
1 Ka Q1 − S� M11 S − R−� D�R−1

∥∥2

F

g(M21, C21) = 1
2
μ‖M21‖2

F + 1
2
ν
∥∥Q�

2 Ca Q1 − C21

∥∥2

F

+ 1
2

∥∥Q�
2 Ka Q1 + M21 S2 + C21 S

∥∥2

F

h(M22, C22, K22) = 1
2
μ‖In − k − M22‖2

F + 1
2
ν
∥∥Q�

2 Ca Q2 − C22

∥∥2

F

+ 1
2

∥∥Q�
2 Ka Q2 − K22

∥∥2

F

Here, M11 ∈ Sk × k , M22, C22, K22 ∈ S(n − k) × (n − k), M21, C21 ∈
R(n − k) × k , and D is defined by Eq. (13).

Clearly, Eq. (29) holds if and only if

min f (M11, D), min g(M21, C21), min h(M22, C22, K22)

(30)



1314 KUO, LIN, AND XU

are achieved. It is easy to see that h(M22, C22, K22) achieves its
minimal value if and only if

M22 = In − k, C22 = Q�
2 Ca Q2, K22 = Q�

2 Ka Q2 (31)

Differentiating g(M21, C21) with respect to M21 and C21, we
obtain

∇M21
g = M21[μI + S2(S2)�] + C21 S(S2)� + K a

21(S2)�

∇C21
g = M21 S2 S� + C21(ν I + SS�) + K a

21 S� − νCa
21

where Ca
21 = Q�

2 Ca Q1, K a
21 = Q�

2 Ka Q1. Thus, it follows that
g(M21, C21) achieves its minimal value if and only if

M21[μI + S2(S2)�] + C21 S(S2)� + K a
21(S2)� = 0

M21 S2 S� + C21(ν I + SS�) + K a
21 S� − νCa

21 = 0 (32)

Let

Sν = S�(ν I + SS�)−1 S (33)

and assume that μI + S2(I − Sν)(S2)� is nonsingular, then Eq. (32)
gives rise to

M21 = [
K a

21(Sν − I ) − νCa
21(ν I + SS�)−1 S

]
× (S2)�[

μI + S2(I − Sν)(S2)�]−1
(34)

C21 = [
νCa

21 − M21 S2 S� − K a
21 S�]

(ν I + SS�)−1 (35)

Next, we consider min f (M11, D). Differentiating f (M11, D)
with respect to the elements of M11 (which is symmetric), we have

∇M11
f = (2E − I ) ◦ [S1(M11) + R1(D) − B1]

where ◦ stands for the Hadamard product (i.e., the componentwise
product), E is the matrix of all 1s, and

S1(M11) = μM11 + ν
(
SS� M11 + M11 SS�)

+ ν
(
SM11 S + S� M11 S�) + SS� M11 SS� (36a)

R1(D) = ν(S R−� DR−1 + R−� DR−1 S�)

+ S R−��� DR−1 S� (36b)

B1 = μI − ν
(
SCa

11 + Ca
11 S�) + SK a

11 S� (36c)

with Ca
11 = Q�

1 Ca Q1, K a
11 = Q�

1 Ka Q1.
On the other hand, similar to Eq. (19), we have

∇D f = S2(M11) + R2(D) − b2

where

S2(M11) =
k∑

j = 1

��
j

[
νR−1

(
M11 S + S� M11

) + �R−1 S� M11 S
]
e j

(37a)

R2(D) =
k∑

j = 1

��
j (νR−1 R−� + �R−1 R−���)� j x (37b)

b2 =
k∑

j = 1

��
j

(
�R−1 K a

11 − νR−1Ca
11

)
e j (37c)

in which x and � j are defined by Eqs. (15) and (18), respectively.
Consequently, it follows that f (M11, D) achieves its minimal

value if and only if

S1(M11) + R1(D) = B1, S2(M11) + R2(D) = b2 (38)

One of the simplest methods to solve Eq. (38) is to apply the
Kronecker product and vec operator to rewrite Eq. (38) as[

E1 F
F� E2

][
vec(M11)

x

]
=

[
vec(B1)

b2

]
(39)

with

E1 = μIk2 + ν
[

Ik ⊗ (SS�) + (SS�) ⊗ Ik

]
+ ν(S� ⊗ S + S ⊗ S�) + (SS�) ⊗ (SS�)

E2 =
k∑

j = 1

��
j (νR−1 R−� + �R−1 R−���)� j (40)

F = {
ν
[

Ik ⊗ (S R−�) + S ⊗ R−�] + S ⊗ (S R−���)
}⎡⎢⎣�1

...

�k

⎤⎥⎦
Gaussian elimination with partial pivoting can then be applied.

Overall we have the following:
Algorithm II. For given μ, ν > 0, an analytical quadratic pen-

cil Qa(λ) = λ2 Ma + λCa + Ka , and a matrix pair (�, �) ∈ Rk × k ×
Rn × k as defined in Eq. (4), we seek the symmetric solutions M , C ,
and K to problem FEMU-II:

1) Set

Ca := M
− 1

2
a Ca M

− 1
2

a , Ka := M
− 1

2
a Ka M

− 1
2

a , � := M
1
2

a �

2) Compute the QR factorization of �:

� = [Q1, Q2]

[
R
0

]
, S = R�R−1

3) Compute M22 = In − k , C22 = Q�
2 Ca Q2, and K22 = Q�

2 Ka Q2.
4) Solve Eq. (39) for vec(M11) and x, and compute M21 and C21

by Eqs. (34) and (35), respectively.
5) Compute

C11 = −(
M11 S + S� M11 + R−� DR−1

)
K11 = S� M11 S + R−� D�R−1, K21 = −(

M21 S2 + C21 S)

where D is formed from x by Eq. (13).
6) Compute

M = M
1
2

a Q

[
M11 M�

21

M21 M22

]
Q� M

1
2

a

C = M
1
2

a Q

[
C11 C�

21

C21 C22

]
Q� M

1
2

a

K = M
1
2

a Q

[
K11 K �

21

K21 K22

]
Q� M

1
2

a

where Q = [Q1, Q2].
Note that linear system Eq. (39) in step 4 is solvable because the

cost function has global minimizer.
Remark IV.1. a) Similar to Remark III.1a and from Eq. (39), the

computational cost of Algorithm II is O(nk2 + k6) flops, provided
Ma , Ca , and Ka are sparse with O(n) nonzero entries. The compu-
tational cost is increased to O(n2k + k6) flops when the analytical
matrices are all dense. 2) Note that the updated mass matrix M gen-
erated by Algorithm II might not be positive definite. However, if
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μ > δ, then M is positive definite, where

δ = min
{
ν
∥∥M

− 1
2

a (C − Ca)M
− 1

2
a

∥∥2

F
+

∥∥M
− 1

2
a (K − Ka)M

− 1
2

a

∥∥2

F
:

Ma��2 + C�� + K� = 0 with C, K symmetric
}
(41)

In fact, if (M, C, K ) is a solution to problem FEMU-II in Eq. (5),
then it is easily seen that

J = 1
2
μ
∥∥M

− 1
2

a (M − Ma)M
− 1

2
a

∥∥2

F
+ 1

2
ν
∥∥M

− 1
2

a (C − Ca)M
− 1

2
a

∥∥2

F

+ 1
2

∥∥M
− 1

2
a (K − Ka)M

− 1
2

a

∥∥2

F

≤ 1
2
δ

Hence, we have

‖E‖2 ≤ ‖E‖F =
∥∥M

− 1
2

a (M − Ma)M
− 1

2
a

∥∥
F

≤ δ/μ < 1

where E = M−1/2
a M M−1/2

a − I . By the perturbation theorem of sym-
metric matrices, we have

λmin

(
M

− 1
2

a M M
− 1

2
a

) ≥ 1 − ‖E‖2 > 0

where λmin(M−1/2
a M M−1/2

a ) denotes the minimal eigenvalue of
M−1/2

a M M−1/2
a . Thus, we show that M is symmetric positive definite

provided that μ > δ.
In practice, the analytical mass matrix Ma is quite accurate. So,

the weighting μ in Eq. (5a) should be chosen sufficiently large.
Thus, the condition μ > δ can be easily satisfied so that the updated
mass matrix M is symmetric positive definite.

V. Numerical Results
A set of pseudosimulation data was provided by the Boeing Com-

pany for testing. After a model reduction technique, we get three
symmetric analytical matrices Ma , Ca , and Ka with dimension 42
and Ma being positive definite. The 2-norms of Ma , Ca , and Ka are
3.9057 × 108, 1.2250 × 108, and 2.0326 × 108, respectively.

Test 1. Because Ma > 0, the quadratic pencil Qa(λ) = λ2 Ma +
λCa + Ka has 84 finite eigenvalues. We first compute all 84
eigenpairs of Qa(λ) by solving a generalized eigenvalue prob-
lem of a linearization of Qa(λ). Then the measured eigenpairs
(�a, �a) ∈ R14 × 14 × R42 × 14 are chosen from those 84 computed
eigenpairs of Qa(λ) so that eigenvalues of �a are nearest to the
original. Actually, the relative residual is estimated by∥∥Ma�a�

2
a + Ca�a�a + Ka�a

∥∥
F∥∥Ma�a�2

a

∥∥
F

+ ‖Ca�a�a‖F + ‖Ka�a‖F

= 4.0671 × 10−10

Intuitively, the optimal solutions C and K for problem FEMU-I
should be very close to Ca and Ka , respectively. We use Algorithm
I to solve problem FEMU-I with ν = 1; the relative errors of the
updated matrices are estimated by

‖C − Ca‖Fa

/
κ1 � 10−10, ‖K − Ka‖Fa

/
κ1 � 10−10

where ‖ · ‖Fa = ‖M−1/2
a ( · )M−1/2

a ‖F and κ1 = max{‖Ca‖Fa ,‖Ka‖Fa }. The relative residual of (�a, �a) is estimated by∥∥Ma�a�
2
a + C�a�a + K�a

∥∥
F∥∥Ma�a�2

a

∥∥
F

+ ‖C�a�a‖F + ‖K�a‖F

= 5.4135 × 10−14

We use Algorithm II to solve problem FEMU-II with μ = ν = 1;
the relative errors of updated matrices are estimated by

‖M − Ma‖Fa

/
κ2 � 10−10, ‖C − Ca‖Fa

/
κ2 � 10−10

‖K − Ka‖Fa

/
κ2 � 10−10

where κ2 = max{‖Ma‖Fa , ‖Ca‖Fa , ‖Ka‖Fa }. The relative residual
of (�a, �a) is estimated by∥∥M�a�

2
a + C�a�a + K�a

∥∥
F∥∥M�a�2

a

∥∥
F

+ ‖C�a�a‖F + ‖K�a‖F

= 1.0821 × 10−13

Test 2. Consider the given measured eigenvalues

{λmj }14
j = 1 = {−0.60939 ± 37.365ι, −0.73496 ± 36.707ι,

−2.8832 ± 31.992ι, −1.8907 ± 61.437ι, −1.9112 ± 54.181ι,

−2.2785 ± 39.639ι, −5.0387, −4.3416} (42)

The eigenpairs of the experimental model are used to create the
experimental modal data. It is assumed that only the fundamen-
tal mode characteristics are experimentally determined, and only
s(s ≤ 42) components of eigenvector are measured. Suppose now
we are given the measured mode shapes v j ∈ Rs , j = 1, . . . , 14. The
measured eigenvectors ϕ j is estimated by

ϕ j = D j D̃†
j v j , j = 1, . . . 14 (43)

where D j is defined by D j = [λ2
mj Ma + λmj Ca + Ka]−1 Ba with the

control influence matrix Ba ∈ Rn × t (t ≤ s). The matrix D̃ j consists
of the first s rows of D j , and the superscript † denotes the pseudo
inverse. We first construct the eigenmatrix pair (�, �) associated
with Eqs. (42) and (43) as in Eq. (4). Then we use Algorithm I to
compute the updated matrices C and K with ν = 0.1, 1.0, and 10,
respectively. The numerical results are shown in Table 1.

Here, δ is given in Eq. (41), and the relative residual is defined by

r1 =
∥∥Ma��2 + C�� + K�

∥∥
F∥∥Ma��2

∥∥
F

+ ‖C��‖F + ‖K�‖F

We use Algorithm II to compute the new updated matrices M , C ,
and K with ν = 1 and μ ∈ (107, 1011). In Fig. 1, we plot the minimal
eigenvalue of the symmetric matrix M vs μ. We see that the minimal
eigenvalue of the mass matrix M becomes negative when μ less then
2 × 108.

We now fix ν = 1 and use Algorithm II to compute the updated
matrices M , C , and K withμ = 5.0 × 108, 5.0 × 109, and 5.0 × 1010,
respectively. The numerical results are shown in Table 2.

Here, κ2 = max{‖Ma‖Fa , ‖Ca‖Fa , ‖Ka‖Fa }, and the relative
residual is defined by

r2 = ‖M��2 + C�� + K�‖F

‖M��2‖F + ‖C��‖F + ‖K�‖F

From the accurate relative residuals in Tables 1 and 2, we see that
the new proposed methods have high efficiency and reliability.

Table 1 Relative residuals and optimal values

ν

Values 0.1 1.0 10

r1 1.4725 × 10−14 1.4826 × 10−14 1.4859 × 10−14

δ 6.5057 × 109 6.5960 × 109 7.9249 × 109

Table 2 Relative residuals and relative errors of updated matrices

μ

Values 5.0 × 108 5.0 × 109 5.0 × 1010

r2 1.8392 × 10−14 1.2380 × 10−14 1.3865 × 10−14

‖M − Ma‖Fa /κ2 3.6414 × 10−6 7.8126 × 10−7 1.2492 × 10−7

‖C − Ca‖Fa /κ2 4.2456 × 10−2 4.2461 × 10−2 4.2485 × 10−2

‖K − Ka‖Fa /κ2 3.3737 × 10−1 3.5835 × 10−1 3.6718 × 10−1
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Fig. 1 Minimal eigenvalue of symmetric matrix M vs μ.

VI. Conclusions
In this paper, we have developed two efficient numerical algo-

rithms for finite element model updating problems. The new algo-
rithms compute symmetric updated (mass) damping and stiffness
that closely match the experimental modal data. The updated mass
is symmetric positive definite when the weighting parameter μ is
chosen sufficiently large. The new algorithms are direct methods
that are highly efficient and reliable, according to our numerical
experiments. The algorithms produce encouraging results and in-
teresting insight in a simple pseudo test suit provided by the Boeing
Company.
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