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Abstract
A new adaptive approach to solving large dimension har-

monic balance (HB) problems is presented. The method is based
on adjusting the order of the equation system according to the
degree of nonlinearity of each node in the circuit. A block-diago-
nal preconditioner is used to construct an algorithm for order
reducing during the iterative HB process.

1. Introduction
The Harmonic Balance (HB) method has proven to be very

effective for many practical problems in RF circuit simulation [1,
2]. In contrast with traditional time domain circuit simulation,
HB solves the steady state of a periodically driven system
directly in the frequency domain. Each node voltage is presented
by a truncated Fourier series, resulting in a system of equations
of orderL=(2K+1)N, whereK is the number of terms in the Fou-
rier series (or number of harmonics) andN is the number of
nodes in the circuit. Highly nonlinear circuits require a large
number of harmonics to accurately represent the waveforms,
which may increase the size of the system to be solved beyond
practical limits.

Historically the efficiency of HB analysis was achieved
while applying the method to hybrid microwave circuits and
MMIC [3], i.e. to such circuit types that contain a large linear
subnetwork and a relatively small number of nonlinear elements.
Since the linear and nonlinear parts can be easily identified
beforehand, the piecewise HB technique (see for instance [4, 5])
was developed to improve the efficiency by eliminating the linear
subnetworks from iterative process.

This situation has changed for the RFIC design problem,
where a large number of transistors may preclude the use of the
piecewise technique since most nodes are associated with an
active device. Moreover the degree of linearity or nonlinearity
depends on operation regime of element, which can change dur-
ing the iterative process.

For this reason we have developed a new computational HB
algorithm which adaptively reduces the problem size by not only
linear but also weakly nonlinear contributions to the HB equa-
tions. This approach is a generalization of latent techniques
[6,7].Section 2 contains a description of the foundation of the
approach. Section 3 describes the computational algorithm, and
Section 4 contains some experimental results.

2. Foundation
The system of equations of harmonic balance [1,2] for no

autonomous circuits can be represented in the following comp
form:

(1)

Here is the vector of unknowns, i.e. the har

monics of electrical variables. Usually to find the solution of th
nonlinear system (1) Newton’s method is applied, and the f
lowing linear problem must be solved at each Newton iteratio

(2)
whereJ is the Jacobi matrix andb is the right hand side (RHS)
vector.

The following features of the standard HB problem a
important for the approach we propose:

1) The cost of solving of the linear problem is the domina
contribution to the total computational effort of the HB iterativ
cycle (approximately 75-95% of total efforts).

2) It has been shown that the relative tolerance to which t
linear system (2) is solved need not be very stringent [8]. In fa
a loose relative tolerance of 0.1 can be used for the linear sys
solve without degradation of the convergence of the Newton it
ation. For most circuits, this tolerance also leads to a near o
mal overall run time. A much tighter tolerance increases the c
of the linear solve and a much looser tolerance prevents conv
gence of the Newton iteration.

3) The Jacobian matrixJ in (2) has a block structure [1], and
in particular,J is a block-diagonal matrix for networks with only
linear elements.

Our goal is to construct an adaptive algorithm that reduc
the order of the linear problem during the iterative HB process
accordance with the degree of nonlinearity at each iteration st
First we demonstrate applying a preconditioning transform
networks with linear elements, and then we present the extens
to the general case of solving (2). This proceeds from t
assumption that the distinction of the numerical properties of H
between linear problems and weakly nonlinear problems gra
ally increases with growth in the degree of nonlinearity.

We begin by introducing a block diagonal preconditioner,
and re-writing the system (2) as:

(3)

H X( ) 0=
X x1 x2 … xL, , ,{ }=

J ∆X⋅ b=

D

J D–( ) D⋅ 1–
y y+ b=
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where , and the vector of unknownsy and right

hand side vectorb have components and , wherei

is the node index (i = 1,...,N), and is the multitone
harmonic index. In the special case of single tone prob-
lems,k = -K,...,0,...,K.

The harmonics corresponding to linear nodes (nodes to
which only linear circuit components are connected) have
the following property: if the amplitude of any rhs har-
monic of a linear node is equal to zero then in the solution
of (3) the amplitude of this harmonic is also zero.

This property can be proved in the following way.
Because a linear variable contributes to only block-diago-
nal entries of matrixJ then:

1) all entries of the row of matrix correspond-
ing to a linear variable are zero;

2) the product of matrix by any vector has zero
components for all linear variables;

3) the equation of system (3) corresponding to the lin-
ear variable has the form: ;

4) therefore, if then .

We can obtain the condition for all linear vari-

ables by introducing a new vector of unknowns:

    or (4)

(5)
Substituting (5) into (3) we obtain:

(6)
where

(7)

Components of vector corresponding to linear
nodes will be zero, so the solution of system (6) contains
zeroes for all harmonics of linear nodes, and these vari-
ables can be eliminated from processing. It is also
expected that for weakly nonlinear nodes, vectorb’ will
contain a smaller number of essential harmonics in com-
parison with vectorb.

We propose an adaptive procedure based on the above
discussion for linear circuit nodes and also on the follow-
ing assumption: the preconditioning transform leads to a
linear relationship between values for “residual” and

the vector of unknowns (“solutions”) such that “small”

deviations from linear problems causes “small” values of
harmonic residuals and respectively “small” values in
solutions.

We performed a series of numerical experiments on a
set of test problems to confirm this assumption. Fig. 1 con-
tains the distribution of computed values of solution norms

versus RHS norm for different nodal variables

(i=1,...,N) during the iterative Newton process, where the

norm is defined as . These results were

obtained for a ua-741 opamp, and they are typical for oth
types of circuits. The observed dependencies are in go
agreement with the assumption of a linear function
quite wide region of distributions.The origin correspond
to purely linear nodes and increasing can be inte

preted as growth of the nonlinearity degree for differe
variables. Correlation coefficients can be extracted fro
distributions such as that of Fig. 1. The dependence of c
relation coefficient on input amplitude (increasing ampl
tude increases the degree of nonlinearity of the circuit) f
this example is shown in Fig. 2. The curves illustrate
strong correlation between estimates and , a

also the overall correctness of above assumption.
We conclude that can be used as an estimate

the degree of nonlinearity of individual variables: zer
corresponds to linear networks, while the growth o

leads to increasing with a subsequent increase

the required solution harmonics. Thus estimation of

for the ith node provides a criteria for reduction in the
number of harmonics necessary to accurately represent
waveform at that node.

3. Computational Algorithm
The algorithm is based on Krylov subspace iterativ

techniques, which have proven to be particularly effectiv

y D ∆X⋅=

yik bik

k K∈

)

J D–( )

J D–( )

yik bik=

bik 0= yik 0=
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Fig 2. Correlation coefficient vs. the input signal
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Fig 1. Dependence of solution norm on residual norm.
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for harmonic balance [9,10]. An additional important
advantage of using Krylov-subspace methods for our pur-
pose is the natural application of block-diagonal precondi-
tioners.

The aim of the algorithm is to reduce the order of the
initial linear problem (6) and to establish an error control
to avoid loss of accuracy. In the discussion that follows,

we write (6) as , where and
b is defined by (7). The subscripts are omitted for simplic-
ity.

The RHS vectorb is truncated by neglecting those
components with small contribution into residual norm.
The vectory is also truncated by eliminating the corre-
sponding components:

The computational algorithms of reducing the order
are based on the assumption of a linear dependence of the
error norm of the truncated solution on the truncation error
of the RHS vectorb:

(8)
Herec is an adjustable parameter whose value is predicted
for the next Newton iteration. As a result a reduced linear
problem

(9)
of lower dimension is solved at each Newton step.

Fig. 3 illustrates a numerical experiment which exam-
ines assumption (8). The experimental results are given for
an iterative HB process of simulation of the ua-741 exam-
ple. Each curve corresponds to solving the linear problem
at the Newton iteration step by forming the Jacobian and
RHS vector b. For different specified tolerance values

the truncation of harmonics was per-
formed. Then the reduced system (9) was solved with
respect to the reduced vector and the residual norm of the
truncated error (8) was estimated. It can be seen from Fig.
3 that the relation (8) is correct with respect to the allow-

able error. Moreover the coefficientc changes slightly
between Newton iterations, which allows us to considerc
as an adjustable parameter that can be computed du
the numerical process.

The computational procedure can be described by
following way:

1. Guess initial value of adjustable parameter c.
2. Determine the truncated set of variables (number

harmonics for each node Ki, i=1,...,N) using the following

inequality: for the current value of c
and for the given relative tolerance tol.

3. Solve reduced system (9) by an iterative method
4. Compute a new value of parameter c using the fo

mula:

Here the first term under radical is the error norm of the
truncated solution and the second term corresponds to
final residual norm of the linear iterative process using th
Krylov subspace techniques.

5. Check the residual: if go to step 2
This condition insures convergence of the Newton iterati
because it provides a descent direction for the residu
norm.

To determine the truncated set of variables we sequ
tially determine and prune those harmonics with minim
amplitude keeping the norm of the neglected harmon
less than a predefined value.

The procedure terminates when we have achieved
minimal numbers of harmonics for all nodes under th
condition

where .

4. Experimental Results
Table 1 contains results of numerical experiments wi

some test circuit problems using the new approach a
standard HB technique. The standard HB technique is
algorithm based on the GMRES method [9] for the line
problem and matrix-vector multiplication in time domain
[9,10].

The order of the full linear system and the obtaine
order reduction factor are given in columns 4 and
respectively. The last column contains the speed up fac
which is the ratio of the time spent for standard HB an
the proposed algorithm. The speed up factors are due
accelerating the orthogonalization stage of the GMRE
method.

The specified error tolerance was the same for bo
techniques. The number of Newton iterations was appro
mately equal for both methods, with a difference of no
more that 20%.
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Fig 3. Error vs. truncated RHS norm.
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5. Conclusion
We have presented a new algorithm for harmonic bal-

ance circuit simulation. The algorithm applies a special-
purpose transform at the linear level that is based on a
block-diagonal preconditioner. This transform allows us to
construct an adaptive computational algorithm which
automatically adjusts the order of the system during the
iterative process. This transform allows an estimation of
the degree of nonlinearity of each circuit node using the
individual component of the residual norm. Based on this
estimation, we can eliminate harmonics for nodes which
are weakly non-linear, and thus reduce computational
expense and memory requirements while maintaining
accuracy.

The new approach retains the convergence properties
of standard HB and does not impact the final accuracy of
the solution. In addition the transform (3) together with (7)
can be used to eliminate linear nodes independent of the
nonlinearity adaptation algorithm.
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Table 1: Results of order reduction algorithm and
corresponding speedup

Circuit
#circuit
variables

order of
model

order
reduction

factor

speed
up

CPU

detector 6 494 6.1 2.2

amplifier 8 496 3.8 1.2

diffpair 12 504 5.0 2.0

amplifier
class C

12 624 5.9 2.9

mosamp 24 1488 3.2 1.06

rectifier 10 1720 1.6 1.5

ua741 29 4118 5.6 2.9

filter 43 6966 14.3 2.5

Six-pole
filter

183 7686 4.2 2.4

MOS
opamp

159 38478 6.3 3.3

BJT
mixer

10 2900 6.16 1.9


