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New Methods for Splice Site Recognition�
S. Sonnenburg1, G. Rätsch2, A. Jagota3, and K.-R. Müller1;41 Fraunhofer FIRST, Kekuléstr. 7, 12489 Berlin, Germany2 Australian National University, Canberra, ACT 0200, Australia3 University of California at Santa Cruz, CA 95064, USA4 University of Potsdam, August-Bebel-Str. 89, 14482 Potsdam, Germany

Abstract. Splice sites are locations in DNA which separate protein-coding regions (ex-
ons) from noncoding regions (introns). Accurate splice site detectors thus form important
components of computational gene finders. We pose splice site recognition as a classifi-
cation problem with the classifier learnt from a labeled dataset consisting of only local
information around the potential splice site. Note that finding the correct position of splice
sites without using global information is a rather hard task. We analyze the genomes of the
nematode Caenorhabditis elegans and of humans using specially designed support vector
kernels. One of the kernels is adapted from our previous workon detecting translation ini-
tiation sites in vertebrates and another uses an extension to the well-known Fisher-kernel.
We find excellent performance on both data sets.

1 Introduction

Splice sites are locations in DNA at the boundaries of exons (which code for proteins) and
introns (which do not). The more accurately a splice site canbe located, the easier and more
reliable it becomes to locate the genes – hence the coding regions – in a DNA sequence. For
this reason, splice site “detectors” are valuable components of state-of-the-art gene finders [4,
13, 21, 14, 5]. Furthermore, since ever-larger chunks of DNAare to be analyzed by gene finders
the problem of accurate splice site recognition has never been more important.

Although present-day splice site detectors are reported toperform at a fairly good level [13,
12, 7], several of the reported performance numbers should be interpreted with caution, for a
number of reasons. First of all, these results were based on small data sets of a limited number
(one or two) organisms. Now that large, complex genomes havebeen fully sequenced, these
results will need to be re-evaluated. Second, issues in generating negative examples (decoys)
were, if recognized, not adequately documented.1 Third, the results are expected to be highly
dependent on the chosen window size. (The window defines the extent of the context around
a site’s boundary used during training and classification.)Since the different studies [13, 12,
7] chose different window sizes, and we choose a fourth different one; unfortunately no pair
of these studies is directly comparable. Finally, some works [12] highlighted their accuracy
(�error-rate) results. These can paint an overly optimistic picture on this problem (also [2]).

Support vector machines (SVMs) (e.g. [20, 11, 15]) with their strong theoretical roots are
known to be excellent algorithms for solving classificationproblems. To date, they have been
applied only to a handful of Bioinformatics problems (see e.g. [10, 22, 8, 19]). In this paper we
apply SVMs to two binary classification problems, the discrimination of donor sites (those at
the exon-intron boundary) from decoys for these sites, and the discrimination of acceptor sites
(those at the intron-exon boundary) from decoys for these sites. We evaluate our SVMs on two? We thank for valuable discussions with A. Zien, K. Karplus and T. Furey. G.R. would like to thank UC

Santa Cruz for warm hospitality. This work was partially funded by DFG under contract JA 379/9-2,
JA 379/7-2, MU 987/1-1, and NSF grant CCR-9821087. This workwas supported by an award under
the Merit Allocation Scheme on the National Facility of the Australian Partnerschip for Advanced
Computing.

1 To our knowledge, on the splice site recognition problem, only the work of [13] explicitly documented
the care it exercised in the design of the experiments.



data sets: (a) on the IP-data data set (a relatively old data set of human splice sites with weak
decoys) where the SVM method outperforms nine other methods, including a recent one [12]
and (b) on splice sites extracted from thecomplete C. Elegans genome [1]. Also here SVM
methods with a good kernel are able to achieve remarkably high accuracies. Apart from pure
bioinformatics and experimental insights we obtain a better understanding about the important
issue of whether and when SV-kernels from probabilistic models are preferable over specially
engineered kernels. Note that both kernel choices are intended to incorporate prior knowledge
into SVM learning.

2 Basic Ideas of the Methods

The essence of SVMs is that a very rich feature space is used for discrimination purposes while
at the same time the complexity of the overall classifier is controlled carefully. This allows to
give guarantees for high performance on unseen data. The keyis a good choice of the so-called
support vector kernelk which implicitely defines the feature space in which one classifies.
Three particularly successful options for the kernel choice in DNA analysis exist: (a) available
biological prior knowledge is directly engineered into a polynomial-type kernel, for example
the so-called “locality improved (LI) kernel” as proposed in [22] or a probabilistic model that
encodes the prior knowledge, e.g. an HMM is extracted from the data and is used for construct-
ing a kernel: (b) the so called fisher-kernel [9] or its recentextension (c) the TOP kernel [19].
In some cases, one can reinterpret (a) in the probabilistic context. For instance the locality im-
proved kernel corresponds to a higher order Markov model of the DNA sequence [19, 18].
Support Vector Machines For a given data setxi 2 Rn (i = 1; : : : ; N ) with respec-

tive labelsyi, a SVM classifier yieldsf(x) = sign �PNi=1 yi�i k(x;xi) + b� given an in-

put vectorx. For learning the parameters�i a quadratic program is to be solved by (cf. [20]):max� NPi=1�i�12 NPi;j=1�i�jyiyj k(xi;xj) such that�i 2 [0; C℄, i = 1; : : : ; N and
NPi=1�iyi = 0.

The Locality Improved Kernel [22] is obtained by comparing the two sequences locally,
within a small window of length2l + 1 around a sequence position, where we count matching
nucleotides. This number is then multiplied with weightsp�l; : : : ; p+l increasing linearly from
the boundaries to the center of the window. The resulting weighted counts are taken to thedth1
power, whered1 reflects the order of local correlations (within the window)that we expect
to be of importance:winp(x;y) = (P+lj=�l pj matchp+j(x;y))d1 . Here, matchp+j(x;y) is 1 for
matching nucleotides at positionp+j and0 otherwise. The window scores computed with winp
are summed over the whole length of the sequence. Correlations between up tod2 windows are

taken into account by finally using the SV-kernelkLI(x;y) = �Plp=1 winp(x;y)�d2 .
Fisher and TOP Kernel A further highly successful idea is to incorporate prior knowl-
edge via probabilistic modelsp(xj�̂) of the data (e.g. HMMs) into SVM-kernels [9]. This
so-calledFisher Kernel (FK) is defined askFK(x;x0) = s(x; �̂)>Z�1(�̂)s(x0; �̂); wheres
is the Fisher scores(x; �̂) = r� log p(x; �̂) and whereZ is the Fisher information matrix:Z(�) = Ex �s(x; �)s(x; �)>�� �� (for further details see [9]). Our recent extension of the FK
uses the Tangent vectors Of Posterior log-odds (TOP) leading to the TOP kernelkTOP(x;x0) =f �̂(x)>f �̂(x0) [19], wheref �̂(x) := (v(x; �̂); ��1v(x; �̂); : : : ; ��pv(x; �̂))> with v(x; �) =log(P (y = +1jx; �))� log(P (y = �1jx; �)) [19]. (We do not useZ�1 but a diagonal matrix
for FK & TOP such that the variance in each coordinate is1.) The essential difference between
both kernels is that the TOP kernel is explicitely designed [19] for discrimination tasks. In fact,
on protein family classification experiments we have shown that it performs significantly better
than the Fisher kernel. As probabilistic models we employ Hidden Markov Models (HMMs),
with several biologically motivated architectures (description below). We use the implementa-
tion described in [17] of the Baum-Welch algorithm [6] for training.



3 Data sets, experiments and results

Two data sets are analysed with different purposes. For the first IP benchmark set the goal is
a comparison to other machine learning methods and we will see that our approaches easily
outperform existing entries. For C. elegans we cannot compare to existing algorithms for sys-
tematic reasons (see section 1) and since our results on the IP data tell us that SVMs with our
kernels are the method of choice, we focus in the second part of this section on the evaluation
of different SVM kernels: locality improved vs. probabilistic model based kernels. Whereas the
IP data is a fixed benchmark, for C. elegans, the decoys were chosen to be windows of the same
length as the true sites from -25 to +25 of the site with two additional constraints: (i) the decoy
windows were limited to those near the true sites and (ii) thedecoy windows were forced to
contain the conserved dinucleotide (GTor AG) centered in the same location in the window as
in the true sites (donor and acceptor, respectively). This made the decoys not only harder than
random ones from throughout the genome but also modeled the use of a splice site detector in
a gene finder somewhat more realistically since it is more likely that a gene finder invokes a
splice site detector in the proximity of true sites than at anarbitrary place in the genome (vast
amounts of intergenic regions are already filtered out before any splice site prediction needs to
be done). Not surprisingly, the performance reported in [13], where the decoys were similarly
constructed, though in the proximity -40 and +40, was significantly poorer than in [12].
IPData is a benchmark set of human splice site data from the UC Irvinemachine learning
repository [3]. It contains 765 acceptor sites, 767 donor sites and 1654 decoys; the latter are
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Fig. 1: Acceptor
and Donor Model

however of low quality as they do not have a true site’s consensus dint
centered except by chance. The task is a donor/acceptor classification given
a position in the middle of a window of 60 DNA letters as input.
In our experiments, first a careful model selection of the hyper-parameters
of the HMMs and SVM is performed (cf. [11]). This is done separately on
each of ten random (train, test) split of the data of size (2000,1186) (a single
same-sized split was used in [12]). As HMM architecture we used (a) a
combination of a linear model and a fully connected model forthe acceptor

sites (cf. Fig. 1, upper), (b) a combination of two fully connected model for the donor sites (cf.
Fig. 1, lower) and (c) a fully connected model for modeling decoys. (These architectures can
be biologically motivated.) The corresponding number of states in the components, as well as
the regularization parameter of the SVM, are found by 10-fold cross validation.

For our comparison we computed the plain
HMM, SVMs with locality improved kernel
and with FK and TOP kernel (based on the
HMMs for each class). Each classifier was
then evaluated on the test set and results are
averaged over the 10 runs and the standard
deviation is given in Table 1 (shows errors on
each of the classes).
Comparing our classifiers we observe that
SVMs with TOP and FK (total error5:4%
and5:3%) cannot improve the HMM, which
performs quite well (6.0%), but has a quite
large error in classifying the acceptor sites.
The SVM with locality improved kernel does
not suffer from this problem and achieves the
best total error of of3:7%.
We observe that the SVM methods outper-

System Neither Donor Acceptor
HMM 2.6�0.5%1.0�0.4%2.4�0.7%

LI-SVM 2.0�0.3%0.8�0.2%0.9�0.3%
TOP-SVM 2.2�0.4%1.5�0.4%1.7�0.3%
FK-SVM 2.1�0.4%1.6�0.5%1.6�0.4%

NN-BRAIN n.d. 2.6% 4.3%
BRAIN 4.0% 5.0% 4.0%
KBANN 4.6% 7.6% 8.5%
BackProp 5.3% 5.7% 10.7%
PEBLS 6.9% 8.2% 7.6%

Perceptron 4.0% 16.3% 17.4%
ID3 8.8% 10.6% 14.0%

COBWEB 11.8% 15.0% 9.5%
Near. Neigh. 31.1% 11.7% 9.1%

Table 1: Test-set errors on the IPData data set. All
except the first 4 results are cited from [12], Table 6.
(n.d.=not documented)



form all other documented methods on the IP data set (taken from [12]). These include not
only the BRAIN algorithms of [12] published recently, but also established machine learning
methods such as nearest-neighbor classifiers, neural networks and decision trees. The SVM
achieves test-set errors that are half of the best other methods, but only if the kernel is suitable.2

The C. Elegans data set was derived from the Caenorhabditis Elegans genome [1], specif-
ically from the chromosome and GFF files at http://genome.wustl.edu/gsc/Celegans. From
these files, windows of -50 to +50 around the true sites were extracted.3 This resulted in 74,455
acceptor sites and 74,505 donor sites, each of which we clipped to -25 to +25 (i.e. length 50)
with the consensus dinucleotide centered. For the decoys, we extracted, from the -50/+50 win-
dows around each site, all windowsw (except the true site’s window) of length 50 as the true site
windows, with the consensus dintGTor AGcentered inw in the same offset as in a true site’s
window. This resulted in 122,154 acceptor decoys and 177,061 donor decoys. The complete
data is available at our web-sitehttp://mlg.anu.edu.au/˜raetsch/splice re-
lated to this paper. In this paper we will only use subsets of at most 25000 examples.

In our study, we consider the classification of C. elegans acceptor sites only. We expect
similar results on the donor sites. As probabilistic modelsfor true acceptor sites we use the

1’ 2’ 1 2 24 A G

Fig. 2: The HMM architecture for
modeling C. elegans decoys

HMM described in Fig. 1 (upper). Since we assume that the
decoy splice sites are close to a true splice site (in fact, in
our data they are never further away then 25 base pairs), we
can exploit this in our probabilistic model for the decoys. We
propose to append the previosly obtained HMM for the true
sites to a linear strand of length 25 (as in Fig. 2). Then we

allow all new states10; 20; : : : ; 250 and all states in the positive model (except the first state) to
be the starting states of this model. Hence, true sites not centered are detected as decoys. (Only
the emission probabilities of the new states and the start state distribution are optimized.)

For training of HMMs and SVMs
we use 100, 1000 and 10000 ex-
amples. For simplicity we use addi-
tional 5000 examples for model se-
lection (to select number of states,
regularization constant; not possible

HMM Loc.Imp. FK TOP
100 10.7�2.8% 7.6�1.0% 9.4�4.2% 20.8�3.0%

1000 2.8�0.1% 5.2�0.1% 3.5�0.2% 4.6�0.4%
10000 2.6�0.2% 3.9�0.2% 2.5�0.3% 2.3�0.1%

Table 2: Test errors of our 4 methods on 100-10000 examples

in practice, but makes the comparison easier). This is done on each of 5 realizations and then
the best classifiers are chosen and evaluated on the test set (10000 examples) leading to the
results in Table 2. Our first result reveals that the test error of the SVM classifier decreased
consistently as the training set size was increased. This means that although the larger data
set certainly contains redundant information, the SVMs canstill extract some additional in-
sights for the classification. We conjecture that there is useful statistical signal away from the
conserved portion of the sites that the SVM classifier is eventually picking up from the larger
training set. Also observe that the locality improved kernel starts with a very good result on
100 examples and then cannot gain much from more examples. Weconjecture that it profited
from the weak prior information incoded in the kernel, but then only improves slowly. The TOP
kernel, however, starts with a poor result (possibly due to numerical problems) and improves
much with more examples. The HMM reaches a plateau at 1000 examples (using 100.000 ex-
amples the HMMs achieve 2.4%), whereas TOP and FK SVMs can improve when seeing more
patterns (prelimary results show error rates even below2%).

2 If one uses RBF kernels, one gets worse results than the BRAINmethod [11].
3 We thank David Kulp and others at University of California, Santa Cruz for preparing these datasets

and David Haussler for granting us permission to use them. Asan extra step, we verified their extracted
sites by matching them to the chromosome DNA sequences.



Figure 3 shows the ROC plot of the performance of our four classifiers on the C. elegans
acceptor data set of size 10,000 on a test set of size 10,000. The predictive performance was
plotted as a function of the classification threshold swept to vary the trade-off between false
positives and false negatives. From the perspective of genefinding as well as researchers want-
ing to locate the sites, it is important to keep the false negative rate as low as possible. But since
the number of true negatives (non-sites) when scanning eventhe regions of the genome in the
proximity of the true sites will vastly outnumber the true sites, it is also important to keep the
false positive rate down. Since we cannot keep both down simultaneously, we should look at
the performance of the classifier at least at two extremes – atlow false positive rate and at low
false negative rate.
We see that TOP- and FK-SVM classifier achieves a
simultaneous 1% false-positive rate (i.e., a sensitivity
of 0.99) and a 5% and 8% false-negative rate (i.e., a
specificity of about 0.95 and 0.92), respectively. While
conclusive comparisons are inadvisable owing to exper-
iments having been done on different data sets, some
comparisons with the results of [13] are still helpful. In
[13] a similar methodology as ours was applied to simi-
lar data sets, in particular, the procedure to construct the
decoys is similar (although, as already indicated above,
in the proximity -40 and +40 of the site instead of -25
and +25). The result in [13] could achieve a simultane-
ous 1% false-positive rate and 20% false-negative rate,
which is worse than our result.
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Fig. 3: ROC Curves

We would also like to highlight an interesting outcome concerning the issue of SV-kernel
choice. The experiments show that the locality improved kernel, where biological knowledge
has been directly engineered into the kernel geometry, works very nicely. Nevertheless this
approach can be outperformed by a SV kernel derived from a probabilistic model like fisher
or TOP kernel. The important point is, however, that this additional improvement holds only
for very problem-specific probabilistic models, like the specially taylored negative and posi-
tive HMMs used here (cf. section 2). Already as stand-alone classifiers those HMMs perform
very competitive. If less fine-tuned HMMs are used as a basis for discriminative training with
FK or TOP kernel, the performance decreases considerably (cf. splice site recognition results
in [10]). So the incorporation of detailed biological priorknowledge makes the difference in
performance.

4 Conclusions
In this paper we successfully applied SVMs to the problem of splice site detection. The key
for obtaining our excellent results was a smart inclusion ofprior knowledge into SVMs, more
precisely into their kernels. A general problem in assessing classification performance on bioin-
formatics data is that, while there is a lot of publically available molecular data, at present there
are few standardized data sets to evaluate new classifiers with. (We contribute to overcom-
ing this problem by making all data and detailed results publically available on the previously
mentioned website.) Another issue is that the problems we address here (as well as many other
classification problems in bioinformatics) involve separating signal (one class) from noise (the
other class). The noise class is generally far denser than the signal class. Both due to this im-
balance, and because the noise class is ill-defined, classifiers have to be designed and evaluated
with special care.

Our first set of experiments used the well-known but small IP benchmark data set and
showed that our SVMs compare favourably over existing results. For the C. Elegans study, we



could not find any preprocessed benchmark data, and therefore could not compare the perfor-
mance directly against existing methods (except HMMs). Therefore, we decided to study more
closely the SVM-based learning itself, and in particular the quality of probabilistic vs. engi-
neered kernels. Clearly, including biological prior knowledge like in locality improved kernels
gives an excellent performance which cannot be surpassed bya straight forward probabilistic
kernel (e.g. a first order Markov model as used in [10]). However, if we use sophisticated prob-
abilistic modeling like in specific HMMs that are fine-tuned for splice site recognition, then an
additional discriminative training on top of the probabilistic model provides a further improve-
ment.
Future research will focus on the construction of better probabilistic models and SV kernels.
We furthermore plan to train our classifiers on larger problems (we used only 10.000 out of
180.000 examples), for which some additional practical problems have to be solved.4 And
finally we would like to apply our insights to splice site detection on the complete human
genome.
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19. K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.R. Müller. A new discriminative kernel

from probabilistic models. InAdv. in Neural Inf. proc. systems, volume 14, 2002. In press.
20. V.N. Vapnik.The nature of statistical learning theory. Springer Verlag, New York, 1995.
21. Y. Xu and E. Uberbacher. Automated gene identification.J. Comp. Biol., 4:325–338, 1997.
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