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2 Australian National University, Canberra, ACT 0200, Aaditt
3 University of California at Santa Cruz, CA 95064, USA
* University of Potsdam, August-Bebel-Str. 89, 14482 Patsdaermany

Abstract. Splice sites are locations in DNA which separate proteidiog regions (ex-
ons) from noncoding regions (introns). Accurate splice diétectors thus form important
components of computational gene finders. We pose spliegesibgnition as a classifi-
cation problem with the classifier learnt from a labeled daaconsisting of only local
information around the potential splice site. Note thatifigdhe correct position of splice
sites without using global information is a rather hard t&8k analyze the genomes of the
nematode Caenorhabditis elegans and of humans using bpdegigned support vector
kernels. One of the kernels is adapted from our previous worlletecting translation ini-
tiation sites in vertebrates and another uses an exterwsitie tvell-known Fisher-kernel.
We find excellent performance on both data sets.

1 Introduction

Splice sites are locations in DNA at the boundaries of exevtgdh code for proteins) and
introns (which do not). The more accurately a splice site lmafocated, the easier and more
reliable it becomes to locate the genes — hence the codigngeg in a DNA sequence. For
this reason, splice site “detectors” are valuable comptneistate-of-the-art gene finders [4,
13,21, 14, 5]. Furthermore, since ever-larger chunks of RAto be analyzed by gene finders
the problem of accurate splice site recognition has neven bgore important.

Although present-day splice site detectors are report@etimrm at a fairly good level [13,
12, 7], several of the reported performance numbers shoallishterpreted with caution, for a
number of reasons. First of all, these results were basedhali data sets of a limited number
(one or two) organisms. Now that large, complex genomes baea fully sequenced, these
results will need to be re-evaluated. Second, issues inrgng negative examples (decoys)
were, if recognized, not adequately documeritdthird, the results are expected to be highly
dependent on the chosen window size. (The window definesxtikateof the context around
a site’s boundary used during training and classificati®mnge the different studies [13, 12,
7] chose different window sizes, and we choose a fourth miffeone; unfortunately no pair
of these studies is directly comparable. Finally, some wdfl?] highlighted their accuracy
(~error-rate) results. These can paint an overly optimisiitupe on this problem (also [2]).

Support vector machines (SVMs) (e.g. [20, 11, 15]) with itis¢iong theoretical roots are
known to be excellent algorithms for solving classificatmoblems. To date, they have been
applied only to a handful of Bioinformatics problems (seg 10, 22, 8, 19]). In this paper we
apply SVMs to two binary classification problems, the distgnation of donor sites (those at
the exon-intron boundary) from decoys for these sites, badliscrimination of acceptor sites
(those at the intron-exon boundary) from decoys for thetes siWe evaluate our SVMs on two

* We thank for valuable discussions with A. Zien, K. Karplusl@nFurey. G.R. would like to thank UC
Santa Cruz for warm hospitality. This work was partially fied by DFG under contract JA 379/9-2,
JA 379/7-2, MU 987/1-1, and NSF grant CCR-9821087. This weelks supported by an award under
the Merit Allocation Scheme on the National Facility of theiddralian Partnerschip for Advanced
Computing.

! To our knowledge, on the splice site recognition problenty time work of [13] explicitly documented
the care it exercised in the design of the experiments.



data sets: (a) on the IP-data data set (a relatively old @ataf uman splice sites with weak
decoys) where the SVM method outperforms nine other mettindsiding a recent one [12]

and (b) on splice sites extracted from tb@mplete C. Elegans genome [1]. Also here SVM
methods with a good kernel are able to achieve remarkably &éguracies. Apart from pure
bioinformatics and experimental insights we obtain a bettelerstanding about the important
issue of whether and when SV-kernels from probabilistic etedre preferable over specially
engineered kernels. Note that both kernel choices aredetéto incorporate prior knowledge
into SVM learning.

2 Basicldeasof the Methods

The essence of SVMs is that a very rich feature space is usdisfaimination purposes while
at the same time the complexity of the overall classifier istcdled carefully. This allows to
give guarantees for high performance on unseen data. This kayood choice of the so-called
support vector kernek which implicitely defines the feature space in which one sifées.
Three particularly successful options for the kernel cedgicDNA analysis exist: (a) available
biological prior knowledge is directly engineered into dymmmial-type kernel, for example
the so-called “locality improved (LI) kernel” as proposed[22] or a probabilistic model that
encodes the prior knowledge, e.g. an HMM is extracted frogrdtita and is used for construct-
ing a kernel: (b) the so called fisher-kernel [9] or its recextension (c) the TOP kernel [19].
In some cases, one can reinterpret (a) in the probabilistitext. For instance the locality im-
proved kernel corresponds to a higher order Markov modeh@DINA sequence [19, 18].
Support Vector Machines For a given data set; € R” (i = 1,...,N) with respec-

tive labelsy;, a SVM classifier yieldsf(x) = sign (Zfil v k(x, %) + b) given an in-
put vectorx For Iearning the parametess a quadratic program is to be solved by (cf. [20]):

maxy Z a;—1% Z a;a5y:y; k(x;, x;) such thaty; € [0, C], i Nandz a;y; = 0.

=1 = i=1
The Locality Imé)roved Kernel [22] is obtained by comparing the two sequences locally,
within a small window of lengtl2l/ + 1 around a sequence position, where we count matching
nucleotides. This number is then multiplied with weigpts, . . ., p4; increasing linearly from
the boundaries to the center of the window. The resultingytiteid counts are taken to tHg
power, whered; reflects the order of local correlations (within the windatlipt we expect
to be of importancewin, (x,y) = (Y72_, p; match,¢,(x,y))" . Here, match, ;(x,y) is 1 for
matching nucleotides at positipn- j and0 otherwise. The window scores computed with yvin
are summed over the whole length of the sequence. Cornesdbietween up td, windows are
taken into account by finally using the SV-kerngl(x,y) = (22:1 win, (x, y)> "
Fisher and TOP Kernel A further highly successful idea is to incorporate prior Wwho
edge via probabilistic models(x|6) of the data (e.g. HMMs) into SVM-kernels [9]. This
so-calledFisher Kernel (FK) is defined agkrk (x,x') = s(x,0)7Z~1(8)s(x',8), wheres
is the Fisher score(x, 8) = Vjlog p(x,8) and whereZ is the Fisher information matrix:
Z(60) = Ex [s(x,0)s(x,0)7| 6] (for further details see [9]). Our recent extension of the FK
uses the Tangent vectors Of Posterior log-odds (TOP) lgadithe TOP kernétrop (x,x') =
Fo(x)T f5(x)) [19], wherefy(x) = (v(x,8),dp,v(x,0),...,0,v(x,0))T with v(x,0) =
log(P(y = +1|x,0)) — log(P(y = —1|x, 0)) [19]. (We do not useZ ~! but a diagonal matrix
for FK & TOP such that the variance in each coordinatke S he essential difference between
both kernels is that the TOP kernel is explicitely desigrid] for discrimination tasks. In fact,
on protein family classification experiments we have shdvat it performs significantly better
than the Fisher kernel. As probabilistic models we emplogiddn Markov Models (HMMs),
with several biologically motivated architectures (dgstion below). We use the implementa-
tion described in [17] of the Baum-Welch algorithm [6] foaiming.



3 Data sets, experimentsand results

Two data sets are analysed with different purposes. For thielfi benchmark set the goal is
a comparison to other machine learning methods and we vélltlsat our approaches easily
outperform existing entries. For C. elegans we cannot coenfmaexisting algorithms for sys-
tematic reasons (see section 1) and since our results oR thaté tell us that SVMs with our
kernels are the method of choice, we focus in the second p#risosection on the evaluation
of different SVM kernels: locality improved vs. probabilsmodel based kernels. Whereas the
IP data is a fixed benchmark, for C. elegans, the decoys weseato be windows of the same
length as the true sites from -25 to +25 of the site with twoitatthl constraints: (i) the decoy
windows were limited to those near the true sites and (ii)deeoy windows were forced to
contain the conserved dinucleotid@or AG centered in the same location in the window as
in the true sites (donor and acceptor, respectively). Ttaderthe decoys not only harder than
random ones from throughout the genome but also modeledsthefia splice site detector in
a gene finder somewhat more realistically since it is morelyikhat a gene finder invokes a
splice site detector in the proximity of true sites than atdritrary place in the genome (vast
amounts of intergenic regions are already filtered out leedmy splice site prediction needs to
be done). Not surprisingly, the performance reported ifj,[Mere the decoys were similarly
constructed, though in the proximity -40 and +40, was sigaiftly poorer than in [12].

IPData is a benchmark set of human splice site data from the UC Irmiaehine learning
repository [3]. It contains 765 acceptor sites, 767 donmssand 1654 decoys; the latter are
however of low quality as they do not have a true site’s cosgerdint
centered except by chance. The task is a donor/acceptsifidaton given

a position in the middle of a window of 60 DNA letters as input.

In our experiments, first a careful model selection of thedmygarameters
of the HMMs and SVM is performed (cf. [11]). This is done segialy on
each of ten random (train, test) split of the data of size (2D086) (a single
Fig.1: Acceptor same-sized split was used in [12]). As HMM architecture wedug@) a
and Donor Model  combination of a linear model and a fully connected modettieracceptor
sites (cf. Fig. 1, upper), (b) a combination of two fully cemted model for the donor sites (cf.
Fig. 1, lower) and (c) a fully connected model for modelingales. (These architectures can
be biologically motivated.) The corresponding number ates in the components, as well as
the regularization parameter of the SVM, are found by 1@-fobss validation.
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For our comparison we computed the plgin System | Neither | Donor | Acceptor
HMM, SVMs with locality improved kernel| HMM  |2.6+0.5%41.0+£0.4992.44+-0.7%
and with FK and TOP kernel (based on the LI-SVM (2.0+0.3940.8+0.2940.9+0.3%
HMMs for each class). Each classifier wasTOP-SVM |2.24+0.4%1.5+0.4941.7+0.3%
then evaluated on the test set and results prEK-SVM |2.14+0.4%1.6+0.59%1.6+0.4%
averaged over the 10 runs and the standahN-BRAIN| n.d. 2.6% 4.3%
deviation is given in Table 1 (shows errors gn BRAIN 4.0% 5.0% 4.0%
each of the classes). KBANN 4.6% 7.6% 8.5%
Comparing our classifiers we observe thatBackProp| 5.3% 5.7% 10.7%
SVMs with TOP and FK (total errob.4% PEBLS 6.9% 8.2% 7.6%
and5.3%) cannot improve the HMM, which| Perceptron 4.0% 16.3% | 17.4%
performs quite well (6.0%), but has a quite D3 8.8% 10.6% | 14.0%
large error in classifying the acceptor sites COBWEB | 11.8% | 15.0% | 9.5%
The SVM with locality improved kernel doesNear. Neigh. 31.1% | 11.7% | 9.1%

not suffer from this problem and achieves thable 1: Test-set errors on the IPData data set. All
except the first 4 results are cited from [12], Table 6.

best total error of 08.7%.

We observe that the SVM methods outpén-d.=not documented)



form all other documented methods on the IP data set (taken fi2]). These include not
only the BRAIN algorithms of [12] published recently, busalestablished machine learning
methods such as nearest-neighbor classifiers, neural etwod decision trees. The SVM
achieves test-set errors that are half of the best otheradsthout only if the kernel is suitabfe.
The C. Elegans data set was derived from the Caenorhabditis Elegans genome [1tifspe
ically from the chromosome and GFF files at http://genomsthedu/gsc/Celegans. From
these files, windows of -50 to +50 around the true sites weraeted® This resulted in 74,455
acceptor sites and 74,505 donor sites, each of which weedipp -25 to +25 (i.e. length 50)
with the consensus dinucleotide centered. For the decaygxivacted, from the -50/+50 win-
dows around each site, all windowgexcept the true site’s window) of length 50 as the true site
windows, with the consensus di&T or AGcentered inv in the same offset as in a true site’s
window. This resulted in 122,154 acceptor decoys and 177¢afor decoys. The complete
data is available at our web-sitgtp://mlg.anu.edu.au/raetsch/splice re-
lated to this paper. In this paper we will only use subsetg of@st 25000 examples.

In our study, we consider the classification of C. elegangpgior sites only. We expect
similar results on the donor sites. As probabilistic modelstrue acceptor sites we use the
HMM described in Fig. 1 (upper). Since we assume that the
decoy splice sites are close to a true splice site (in fact, in
our data they are never further away then 25 base pairs), we
can exploit this in our probabilistic model for the decoyse W
Fig.2: The HMM architecture for propose to append the previosly obtained HMM for the true
modeling C. elegans decoys sites to a linear strand of length 25 (as in Fig. 2). Then we
allow all new stateg’, 2’,...,25' and all states in the positive model (except the first state) t
be the starting states of this model. Hence, true sites mbérd are detected as decoys. (Only
the emission probabilities of the new states and the sete siistribution are optimized.)

For training of HMMs and SVM§g HMM Loc.Imp. FK TOP
we use 100, 1000 and 10000 eX- 100 10.7+£2.8% 7.6+1.0%)| 9.4+4.294 20.8:3.0%
amples. For simplicity we use addit 1004 2.8+0.1% | 5.2+0.19% 3.5:0.29% 4.6+0.4%

tional 5000 examples for model s§10000 2.6+0.2%| 3.9+0.294 2.5+0.3% 2.3+0.1%

lection (to select number of states,
regularization constant; not possibl@able 2: Test errors of our 4 methods on 100-10000 examples

in practice, but makes the comparison easier). This is doreach of 5 realizations and then
the best classifiers are chosen and evaluated on the tedt)880 Eexamples) leading to the
results in Table 2. Our first result reveals that the testresfdhe SVM classifier decreased
consistently as the training set size was increased. Thamthat although the larger data
set certainly contains redundant information, the SVMs stilhextract some additional in-
sights for the classification. We conjecture that there efulsstatistical signal away from the
conserved portion of the sites that the SVM classifier is madly picking up from the larger
training set. Also observe that the locality improved késtarts with a very good result on
100 examples and then cannot gain much from more examplesoWyecture that it profited
from the weak prior information incoded in the kernel, bugrtonly improves slowly. The TOP
kernel, however, starts with a poor result (possibly dueumerical problems) and improves
much with more examples. The HMM reaches a plateau at 100@p®a (using 100.000 ex-
amples the HMMs achieve 2.4%), whereas TOP and FK SVMs camirapvhen seeing more
patterns (prelimary results show error rates even by

2 |f one uses RBF kernels, one gets worse results than the BR#&tkod [11].

3 We thank David Kulp and others at University of Californiara Cruz for preparing these datasets
and David Haussler for granting us permission to use thenanfextra step, we verified their extracted
sites by matching them to the chromosome DNA sequences.



Figure 3 shows the ROC plot of the performance of our fourgifeess on the C. elegans
acceptor data set of size 10,000 on a test set of size 10,000. The pivedperformance was
plotted as a function of the classification threshold sweptary the trade-off between false
positives and false negatives. From the perspective of fijetieg as well as researchers want-
ing to locate the sites, it is important to keep the false tiegaate as low as possible. But since
the number of true negatives (non-sites) when scanning tieregions of the genome in the
proximity of the true sites will vastly outnumber the trugesi, it is also important to keep the
false positive rate down. Since we cannot keep both downlsimepously, we should look at
the performance of the classifier at least at two extremedowafalse positive rate and at low
false negative rate. 1
We see that TOP- and FK-SVM classifier achieve
simultaneous 1% false-positive rate (i.e., a sensiti\
of 0.99) and a 5% and 8% false-negative rate (i.e .4
specificity of about 0.95 and 0.92), respectively. Wh,,
conclusive comparisons are inadvisable owing to ex;:% 07
iments having been done on different data sets, S8
comparisons with the results of [13] are still helpful. =
[13] a similar methodology as ours was applied to sir ost |
lar data sets, in particular, the procedure to construct i
decoys is similar (although, as already indicated abc
in the proximity -40 and +40 of the site instead of -i 3 :
and +25). The result in [13] could achieve a simultar 000t false positves °
ous 1% false-positive rate and 20% false-negative rate, )
which is worse than our result. Fig.3: ROC Curves
We would also like to highlight an interesting outcome canogy the issue of SV-kernel
choice. The experiments show that the locality improvedh&krwhere biological knowledge
has been directly engineered into the kernel geometry, svadty nicely. Nevertheless this
approach can be outperformed by a SV kernel derived from batitistic model like fisher
or TOP kernel. The important point is, however, that thisitioldal improvement holds only
for very problem-specific probabilistic models, like theesjally taylored negative and posi-
tive HMMs used here (cf. section 2). Already as stand-aldassifiers those HMMs perform
very competitive. If less fine-tuned HMMs are used as a basidicriminative training with
FK or TOP kernel, the performance decreases considerablgglice site recognition results
in [10]). So the incorporation of detailed biological prikmowledge makes the difference in
performance.

0.9
Locality Improved

Fisher Kernel

0.4

4 Conclusions

In this paper we successfully applied SVMs to the problemptits site detection. The key
for obtaining our excellent results was a smart inclusiopridr knowledge into SVMs, more
precisely into their kernels. A general problem in assegslassification performance on bioin-
formatics data is that, while there is a lot of publically éafale molecular data, at present there
are few standardized data sets to evaluate new classifitins (e contribute to overcom-
ing this problem by making all data and detailed results jpaby available on the previously
mentioned website.) Another issue is that the problems wleead here (as well as many other
classification problems in bioinformatics) involve sepigng signal (one class) from noise (the
other class). The noise class is generally far denser thasitimal class. Both due to this im-
balance, and because the noise class is ill-defined, clasdifave to be designed and evaluated
with special care.

Our first set of experiments used the well-known but small #ddhmark data set and
showed that our SVMs compare favourably over existing teskbr the C. Elegans study, we



could not find any preprocessed benchmark data, and thereéaid not compare the perfor-
mance directly against existing methods (except HMMs)r&foee, we decided to study more
closely the SVM-based learning itself, and in particulag tuality of probabilistic vs. engi-
neered kernels. Clearly, including biological prior knedge like in locality improved kernels
gives an excellent performance which cannot be surpassedtbgight forward probabilistic
kernel (e.g. a first order Markov model as used in [10]). Hasvel we use sophisticated prob-
abilistic modeling like in specific HMMs that are fine-tunex plice site recognition, then an
additional discriminative training on top of the probasiic model provides a further improve-
ment.

Future research will focus on the construction of bettebphilistic models and SV kernels.
We furthermore plan to train our classifiers on larger proisgwe used only 10.000 out of
180.000 examples), for which some additional practicabfenms have to be solvédAnd
finally we would like to apply our insights to splice site deten on the complete human
genome.
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