
New Mini-Bucket Partitioning Heuristics for Bounding the Probabil ity of Evidence

Emma Rollon and Rina Dechter
Department of Information and Computer Science

University of California, Irvine
{erollon, dechter}@ics.uci.edu

Abstract

Mini-Bucket Elimination(MBE) is a well-known approxima-
tion algorithm deriving lower and upper bounds on quantities
of interest overgraphical models. It relies on a procedure
that partitions a set of functions, calledbucket, into smaller
subsets, calledmini-buckets. The method has been used with
a single partitioning heuristic throughout, so the impact of
the partitioning algorithm on the quality of the generated
bound has never been investigated. This paper addresses this
issue by presenting a framework within which partitioning
strategies can be described, analyzed and compared. We de-
rive a new class of partitioning heuristics from first-principles
geared for likelihood queries, demonstrate their impact on a
number of benchmarks for probabilistic reasoning and show
that the results are competitive (often superior) to state-of-
the-art bounding schemes.

Introduction
Mini-Bucket Elimination(MBE) (Dechter and Rish 2003) is
one of the most popular bounding techniques for reasoning
tasks defined overgraphical models. The power of MBE
has been demonstrated for optimization tasks such as finding
the most likely tuple of a probabilistic network, or finding
the optimal solution for a weighted csp (Dechter and Rish
2003; Kask and Dechter 2001; Marinescu and Dechter 2007;
Choi, Chavira, and Darwiche 2007) showing its power in
producing lower-bounding heuristics to guide search. In this
paper, however, we focus on the more challenging task of
weighted counting which includes finding the probability of
evidence over Bayesian networks, determining the partition
function over Markov networks, and counting solutions of a
constraint network. These tasks are#P -complete and are
central to both probabilistic and deterministic reasoning.

MBE derives bounds by applying exact Bucket Elimina-
tion (BE) algorithm (Dechter 1999; Bertele and Brioschi
1972) on a simplified version of the problem. In BE all
the functions in thebucketare processed together, yielding a
singlebucket’s functiondefined over the union of their argu-
ments. Since this processing can be computationally expen-
sive, MBE partitions the bucket into smallermini-buckets,
such that the number of variables in each mini-bucket is
bounded byz + 1, for a given constantz. Then, MBE

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

processes each mini-bucket independently, yielding a set of
mini-bucket functions defined over smaller subsets of vari-
ables which together bound the bucket’s function. The mini-
bucket scheme can be interpreted as the application of exact
algorithm (e.g., BE) to a relaxation of the problem which
is obtained via node duplication (Kask and Dechter 2001;
Choi, Chavira, and Darwiche 2007).

The partitioning of a bucket intoz bounded mini-buckets
can be carried out in many ways, each resulting in a differ-
ent impact on the overall accuracy. In all the earlier work,
the partitioning heuristic, wasscope-based, relying solely on
the functions arguments. It aimed at minimizing the number
of mini-buckets in the partitioning. Its effectiveness com-
pared against random partitioning heuristics was sporadi-
cally demonstrated, but no systematic study was ever carried
out.

Early attempts to evaluate the bounding power of the
mini-bucket scheme for likelihood queries were abandoned
due to very discouraging initial results. Focus was shifted
instead to treating the mini-bucket scheme as mere approx-
imation with no guarantees (Mateescu, Dechter, and Kask
2002).

In this paper we develop a new class ofcontent-
basedmini-bucket partitioning heuristics for counting-based
queries that consult the function’s contents in addition to
their scopes. We show that the resulting set of heuris-
tics provides an ensemble of bounds that taken together
yield a more effective bounding scheme across a varied
set of benchmarks. We demonstrate that our MBE based
bounding scheme is often far more accurate than recent
competing schemes (e.g., Tree-Reweighted Belief Propa-
gation (Wainwright, Jaakkola, and Willsky 2003), Box-
Prop (Mooij and Kappen 2008), and the Any-Time Bound-
ing scheme (Bidyuk and Dechter 2006)) over benchmarks
such asnoisy-or bayesian networks, coding networksand
genetic linkage analysis.

Background
Let X = {x1, . . . , xn} be an ordered set of variables and
D = {Dx1

, . . . ,Dxn
} an ordered set of domains, whereDxi

is the finite set of potential values forxi. The assignment of
variablexi with a ∈ Dxi

is noted(xi = a). A tuple t is
an ordered set of assignments to different variables(xi1 =
ai1 , . . . , xik

= aik
). Thescopeof t, notedvar(t), is the set

of variables that it assigns.

Belief Networks
A Bayesian network (Pearl 1988) is a quadruple
(X ,D,G,P) whereG is a directed acyclic graph overX
andP = {p1, . . . , pn}, wherepi = P (xi|pai) denotes the
conditional probability tables (CPTs). The setpai is the set
of parents of the variablexi in G. A Bayesian network rep-
resents a probability distributionP (X) =

∏n

i=1 P (xi|pai).
Given a Bayesian network and an evidence tuplee over a
subset of variablesE ⊆ X , theprobability of evidenceP (e)
is defined as:P (e) =

∑

X−var(e)

∏n

i=1 P (xi|pai)|e where
f(X)|e is a new functionh defined overX − var(e) such
that the variablesE are assigned toe.

Bucket and Mini-Bucket Elimination
Bucket elimination (BE) (Dechter 1999; Bertele and
Brioschi 1972) is an exact algorithm for answering a vari-
ety of queries over graphical models. In particular, given a
Bayesian network(X ,D,G,P), BE computes the probabil-
ity of evidencee as shown in the following pseudo-code:
function BE((X ,D,G,P), e)
1. S := {f|e | f ∈ P}; X := X − var(e);
2. while X 6= ∅ do
3. x := select variable(X);
4. Bx := {f ∈ S| x ∈ var(f)};
5. gx :=

P

x
(
Q

f∈Bx
f);

6. S := S − Bx ∪ {gx};
7. X := X − {x};
8. endwhile
9. return (P (e) =

Q

f∈S f());
endfunction

After incorporating the evidence in the network (line1), BE
eliminates the remaining variablesX −var(e) one at a time.
The elimination of variablex is as follows. First, BE com-
putes the so calledbucketof variablex, notedBx, which
contains all the functions inS havingx in their scope (line
4). Next, it computes the functiongx of bucketBx (line 5),

Definition 1 (the function of a bucket) Given a bucket
Bx = {f1, . . . , fr}, the function represented by the bucket
Bx is gx =

∑

x

∏

f∈Bx
f .

When all variables have been eliminated,S contains a set
of empty-scope functions (i.e., a set of constants). The mul-
tiplication of those functions is the probability of evidence
P (e). The time and space complexity of the algorithm is ex-
ponential in a graph parameter calledinduced width, which
equals the largest scope of all the functions computed.

Mini-bucket elimination(MBE) (Dechter and Rish 2003)
is an approximation of full bucket elimination that bounds
the exact solution when the induced width is too large.
Given a bucketBx = {f1 . . . , fm}, MBE generates a par-
tition Q = {Q1, . . . , Qp} of Bx, where each subsetQj ∈ Q
is calledmini-bucket. Abusing notation, the scope of a set
of functionsF , notedvar(F), is the union of scopes of the
functions it contains. Given an integer control parameterz,
MBE restricts the arity of each of its mini-buckets toz + 1.
We say thatQ is a z-partition. Then, each mini-bucket is
processed independently. The pseudo-code of MBE is ob-
tained by replacing lines5 and6 in BE by,

5. {Q1, . . . , Qp} := Partition(Bx, z);
5b. for each j = 1 . . . p do gx,j :=

P

x
(
Q

f∈Qj
f);

6. S := (S ∪ {gx,1, . . . , gx,p})− Bx;

Definition 2 (the function of a bucket partition) Given a
partition Q = {Q1, . . . , Qp} of a bucketBx, the function
represented by the partitionQ is gQ

x =
∏p

j=1

∑

x

∏

f∈Qj
f .

The time and space complexity of MBE isO(exp(z +1))
andO(exp(z)), respectively. The parameterz allows trad-
ing time and space for accuracy: as the partitions are more
coarced, both the complexity and accuracy of the algorithm
increase.

Definition 3 (refinement relation) A partition Q is a re-
finementof a partition Q′, notedQ ⊏ Q′, iff Q 6= Q′

and every element ofQ is a subset of some element ofQ′.
The finest partition, notedQ⊥, has one mini-bucket for each
function, and the coarcest partition, notedQ⊤, has only one
mini-bucket containing all functions.

Theorem 1 (Dechter and Rish 2003) Given two partitions
Q andQ′ of bucketBx, Q ⊏ Q′ ⇒ ∀t, gQ′

x (t) ≤ gQ
x (t)

In particular, given any partitionQ of Bx, ∀t, gQ⊤

x (t) =
gx(t) ≤ gQ

x (t). Therefore, the upper bound computed in
each bucket accumulates and yields an upper bound ofP (e).

For the sake of readability, in the following we fix the
bucket to beBx and drop subindex’s referring to variablex.

Scope-based Partitioning Heuristic
The scope-basedpartition heuristic (SCP) proposed in
(Dechter and Rish 1997) and used since, aims at minimiz-
ing the number of mini-buckets in the partition by includ-
ing in each mini-bucket as many functions as possible as
long as thez bound is satisfied. First, single function mini-
buckets are decreasingly ordered according to their arity.
Then, each mini-bucket is absorved into the left-most mini-
bucket with whom it can be merged. The time and space
complexity ofPartition(B, z) using the SCP heuristic
is O(|B| log (|B|) + |B|2) andO(exp(z)), respectively.

One virtue of the scope-based heuristic is its small over-
head. Its shortcoming is that it does not consider the actual
information contained in each function.

Partitioning Framework
Given a bucketB, the goal of the partition process is to find
az-partitionQ of B such thatgQ is theclosestto the bucket
function g, where closeness can be defined using any dis-
tance measured. Therefore, the partition task is to find a
z-partitionQ∗ of B such thatQ∗ = arg minQ{d(gQ, g)}.

We considered four distance measures:log relative error,
maximum log relative error, KL divergenceandabsolute er-
ror. For space reasons however, here we will report on the
first two1:
- Log relative error:

RE(f, h) =
∑

t(log (f(t)) − log (h(t)))

1Full details are available on-line in a technical report at http:
www.ics.uci.edu/∼dechter/publications.html

1 / 2 / 3 / 4

1 / 2 3 / 4 1 / 2 4 / 3 1 3 / 2 / 4 1 2 / 3 / 4 1 / 2 / 3 4

1 4 / 2 3 1 / 2 3 4 1 2 4 / 3 1 3 / 2 4 1 2 3 / 4 1 3 4 / 2 1 2 / 3 4

1 2 3 4

1 4 / 2 / 3

Figure 1: Partitioning lattice of bucket{f1, f2, f3, f4}. We
specify each function by its subindex.

- Max log relative error:

MRE(f, h) = maxt{log (f(t)) − log (h(t))}

We can organize the space of partitions in a lattice using
therefinementrelation since it yields a partial order.

Definition 4 (partitioning lattice of a bucket) Each parti-
tionQ ofB is a vertex in the lattice. There is an upward edge
fromQ to Q′ if Q′ results from merging two mini-buckets of
Q in which caseQ′ is achild of Q. The set of all children of
Q is denoted bych(Q). Thebottompartition in the lattice
is Q⊥ while thetoppartition isQ⊤.

Example 1 Figure 1 shows the partitioning lattice of bucket
B = {f1, f2, f3, f4}.

For any two partitionsQ andQ′, if Q′ is a descendent
of Q thengQ′

is clearly tighter thangQ (see Theorem 1).
Namely,

Corollary 1 Given two partitionsQ andQ′,

Q ⊏ Q′ ⇒ d(gQ′

, g) ≤ d(gQ, g)

for any distance measured defined earlier.

Since the distance to the top partition is always non-
increasing along any upward path in the lattice, any optimal
z-partitionQ∗ is maximal(i.e., all its children in the lattice
are l-partitions wherez < l). Therefore, we can view any
partition-seeking algorithm as a traversal algorithm overthe
partition lattice seeking for maximalz-partitions.

Greedy Heuristic Partitioning
Since an optimal partition-seeking algorithm may need to
traverse the partitioning lattice bottom-up along all paths,
a computationally hard task, we will focus on depth-first
greedy traversals only, as defined below. The traversal is
guided by a heuristic functionh defined on a partitionQ
and its child partitionQ′, denotedQ → Q′.

function GreedyPartition(B, z, h)
1. Initialize Q as the bottom partition ofB;
2. while ∃Q′ ∈ ch(Q) which is az-partitionselect

Q← arg minQ′{h(Q→ Q′)} among childz-partitions ofQ;
3. return Q;
endfunction

At each step, the algorithm ranks each childQ′ of the cur-
rent partitionQ according toh. Clearly, each iteration is
guaranteed to tighten the resulting bound.

Proposition 1 The time complexity of
GreedyPartition is O(|B| × T) where O(T) is
the time complexity of selecting themin child partition
according toh.

It is natural to useh(Q → Q′) , d(gQ′

, g).

Definition 5 (greedily optimal partitioning heuristic)
Given a bucketB and its bucket functiong, and a partition
Q of B, a partitioning heuristich is greedily optimal
relative tod iff ∀Q′, Q′′ ∈ ch(Q) :

h(Q → Q′) ≤ h(Q → Q′′) ⇔ d(gQ′

, g) ≤ d(gQ′′

, g)

By definition, when usingh(Q → Q′) , d(gQ′

, g), h
is greedily optimal. However, computing such anh is time
exponential in the arity ofg (i.e., T = O(exp(var(B)))),
and therefore impractical.

We therefore focus on local heuristics. LetQjk ∈ ch(Q)
denote the childz-partition ofQ that results from merging
mini-bucketsQj , Qk ∈ Q.

Definition 6 (local partitioning heuristic) A partitioning
heuristich is local iff for any Qjk ∈ ch(Q), h(Q → Qjk)
depends on the merged mini-bucketsQj , Qk ∈ Q only.

The virtue of local heuristics is that they can be computed
in time exponential inz only (i.e.,T in Proposition 1 satis-
fiesT = O(exp(z))).

Content-based heuristics. We will next show that we can
derive a partition heuristic which is both greedily optimal
relative to the log relative error and local. We first define
a local log relative error distance measure and then show
that, when used as a guiding heuristic, it is greedily optimal
relative to the log relative error.

Let us denote the number of tuples over a set of variables
Y byW(Y) (i.e.,W(Y) =

∏

y∈Y |Dy|). Then,

Definition 7 (local RE) Thelocal RE(LRE) between a par-
tition Q and its childQjk is

LRE(gQ, gQjk

) = 1
W(var(Qj∪Qk))RE(g{Qj ,Qk}, gQj∪Qk)

Note thatLRE is only defined by the two merged mini-
buckets inQjk. This local function captures the gain due to
mergingQj andQk, independent of other mini-buckets in
Q.

We next provide the main theorem.

Theorem 2 Given a bucketB and its bucket functiong, and
given a partitionQ = {Q1, . . . , Qp} of B and two child
z-partitionsQjk andQlm of Q,

RE(gQjk

, g) ≤ RE(gQlm

, g) ⇐⇒

−LRE(gQ, gQjk

) ≤ −LRE(gQ, gQlm

)

Sketch of proof. First, let us suposse that(Qj ∪Qk)∩(Ql∪

Qm) = ∅. RE(gQjk

, g) ≤ RE(gQlm

, g), iff

∑

t

log
[

gQ1(t) × . . . × gQj∪Qk(t) × . . . × gQp(t)
]

≤

∑

t

log
[

gQ1(t) × . . . × gQl∪Qm(t) × . . . × gQp(t)
]

wherevar(t) = var(B). Using properties oflog function,
reordering and cancelling, the previous expression yields:

∑

t

(log
[

gQl(t) × gQm(t)
]

− log
[

gQl∪Qm(t)
]

) ≤

∑

t

(log
[

gQj (t) × gQk(t)
]

− log
[

gQj∪Qk(t)
]

)

Instead of summing over all tuples in the bucket’s scope, we
can sum over the tuples in the scopes of the mini-buckets
involved in each side of the inequality and weigh each side
by its number of extensions to the full scope. Note that the
number of extension of a tuplet′ to the full scope ofB is
W(var(B))
W(var(t′)) . Then, the previous expression can be rewritten
as,

1

W(var(t′))

∑

t′

(log
[

gQl(t′) × gQm(t′)
]

− log
[

gQl∪Qm(t′)
]

) ≤

1

W(var(t′′))

∑

t′′

(log
[

gQj (t′′) × gQk(t′′)
]

− log
[

gQj∪Qk(t′′)
]

)

wherevar(t′) = var(Ql ∪ Qm) andvar(t′′) = var(Qj ∪
Qk), which by definition is

−LRE(gQ, gQjk

) ≤ −LRE(gQ, gQlm

)

The derivation when(Qj ∪Qk)∩ (Ql ∪Qm) 6= ∅ is similar.
Therefore, we can conclude that the theorem holds.�

In words, the theorem states that when usingh(Q →

Q′) , −LRE(gQ, gQ′

) as the greedy partitioning heuris-
tic it yields a greedily optimal heuristic relative to distance
RE. The virtue ofLRE is that it is local and, therefore,
computationally feasible.
Proposition 2 Given a bucketB and a value ofz, using
h(Q → Q′) , −LRE(gQ, gQ′

) the time and space com-
plexity ofGreedyPartition is O(|B|3 × exp(z)) and
O(exp(z)), respectively.

We investigated all other distance measures, but unfortu-
nately none lead to a local partitioning heuristic which is
greedily optimal. Namely, greedily optimal heuristics rela-
tive to those distance measures seem to be inherently expo-
nential in the bucket arity.

Nevertheless, we define two distance measures derived
based on approximating anMRE-based greedily optimal
heuristic that yield two local heuristics2. The first one, de-
notedMRE1, is defined by

MRE1(gQ, gQjk

) = max
t

{log
[

g{Qj ,Qk}
]

} +

−max
t

{log
[

gQj∪Qk
]

}

and the second one, denotedLMRE, is defined by

LMRE(gQ, gQjk

) = MRE(g{Qj ,Qk}, gQj∪Qk)

The time and space complexity ofGreedyPartition
with any of these two heuristics is captured by Proposition 2.

We also developed local partitioning heuristics using the
KL divergence and the absolute error which, for space rea-
sons, we do not report here.

2Full details are available on-line in a technical report at http:
www.ics.uci.edu/∼dechter/publications.html

Empirical Evaluation
We evaluated the performance of the mini-bucket partition-
ing heuristics and compare with state of the art bounding
schemes. We also considered the impact of a combined ap-
proach, taking the minimum upper bound over all partition-
ing heuristics. This combined MBE approach is more time
consuming: linear in the number of participating partition
heuristics.

We compare against three recently introduced bounding
schemes: (i) the any-time bounding scheme ATB (Bidyuk
and Dechter 2006) which depends on a control pa-
rameter H and uses an improved version of Bound-
Propagation (Leisink and Kappen 2003) as plug-in algo-
rithm; (ii) BoxProp (Mooij and Kappen 2008), which was
derived for bounding posterior probabilities (and therefore
P(e) is obtained by applying the chain rule to individual
bounds on posteriors); and (iii) Tree-Reweighted Belief
Propagation (Wainwright, Jaakkola, and Willsky 2003).

We conduct our empirical evaluation on three bench-
marks3. We report log upper bound on P(e) and cpu time
in seconds. The value ofz reported is the highest feasible
value given the available memory (2GB ram). The value of
H reported is indicated in each benchmark. MBE uses the
variable ordering established by themin-fill heuristic after
instantiating evidence variables. We will index each run of
MBE usingGreedyPartition by the type of heuristic
functionh used.
Coding Networks. Figure 2 (top row) reports the results.
The exact P(e) is too hard to compute. Looking at the dif-
ferent partitioning heuristics we see that for each instance
there is a huge range of upper bounds. The improvement
of the best partitioning heuristic over the second best is al-
ways higher than50% and of orders of magnitude on some
instances (e.g., 3 onBN 130 and 1 onBN 132). SCP and
LMRE heuristics obtain the best upper bounds on 4 in-
stances each, while LRE does on one. The least accurate
heuristic is MRE1. All content-based heuristics are2 to 3
times slower than the scope-based heuristic (SCP computes
bounds in around30 seconds, while content-based heuris-
tics in around60 − 80 seconds). The reason is that during
the traversal of the partitioning lattice content-based heris-
tics have to compute intermediate functions.

Another, more detailed view of the relative performance
of the different heuristics as a function of their boundz is
given in the bottom right graph. It reinforces our analysis
above, and also shows the changes as a function ofz. Similar
behaviour was observed in other benchmarks.

Comparing MBE with alternative approaches, we see that
BoxProp is clearly the worst algorithm on this benchmark.
Otherwise, all the partitioning heuristics outperform ATBon
most of all instances. All the partitioning heuristics are su-
perior to TRW (SCP and LRE heuristics outperform TRW
on 6 instances, LMRE on 7, and MRE1 on 5). When we
consider the combination of all partitioning heuristics, the
resulting combined MBE approach outperforms ATB and
TRW on all instances butBN 129. In general, the improve-

3All instances are included in the UAI08 evaluation:
http://graphmod.ics.uci.edu/uai08/Software

ment of the combined approach with respect to ATB and
TRW is of orders of magnitude. In terms of cpu time, Box-
Prop computes upper bounds is around60 seconds, the com-
bined MBE scheme is around190 seconds, TRW in around
500 seconds, and ATB in around1300 seconds.
Noisy-or Bayesian Networks. Figure 2 (second row) re-
ports the results. Looking at the different partitioning heuris-
tics we see that theSCP heuristic computes upper bounds
greater than the trivial upper bound of1 on 8 instances.
Content-based heuristics however compute informative up-
per bounds in all cases. For each instance, the range of up-
per bounds depends on the value of P(e): small when the
evidence is very probable (i.e., P(e) near1), while of orders
of magnitude when the evidence is small (i.e., P(e) smaller
than10−4). The improvement of the best over the second
best upper bound is typically higher than25% on instances
’∗a’, while higher than10% on instances ’∗b’. LMRE is
the most accurate heuristic in this benchmark, obtaining the
best upper bound on 11 instances, whileSCP is the least
accurate. As expected, content-based heuristics are slower
than SCP heuristic (from2 to 6 times slower).

Comparing with competing approaches, we see again that
BoxProp is the worst, obtaining upper bounds around0.9 for
all instances, even when P(e) is smaller than10−4. TRW is
the most accurate approach on this benchmark. The gap be-
tween the upper bounds computed by TRW and any of the
MBE schemes seems to depend on the value of P(e). For in-
stances with high P(e), the gap is very small, and it increases
for instances with relatively small P(e). Disregarding unin-
formative upper bounds computed by SCP, all content-based
heuristics outperform ATB.
Linkage Analysis. Figure 2 (third row) reports the results.
Comparison with ATB and BoxProp was not possible. Both
algorithms require a Bayesian network and an independent
set of evidence. However, the pedigree instances we have
already incorporate the evidence into the network.

Looking at the different partitioning heuristics we see
that the improvement of the best over the second best up-
per bound is typically higher than30% and, in some case,
up to orders of magnitude (e.g., seeped31, ped33, ped34,
ped38and ped41). SCP obtains the best upper bound on
7 instances, while each content-based heuristic is best on
4 instances (all heuristics obtain the same upper bound on
ped20). The content-based heuristics are typically 2 to 3
times slower than the SCP heuristic.

TRW is clearly not good on this benchmark. For some in-
stances, TRW computes upper bounds greater than the triv-
ial upper bound of1. Moreover, TRW requires in almost
all cases 1 to 2 orders of magnitude more computation time.
The combined MBE scheme increases further the gap on ac-
curacy compared with TRW.

Conclusions
The paper investigates new heuristic schemes for mini-
bucket partitioning that consider the actual function’s con-
tent for generating upper bounds on the probability of ev-
idence over Bayesian networks and partition function over
Markov networks. Its contribution is (i) introducing the first

systematic investigation of partition heuristics for the mini-
bucket scheme and, (ii) showing that MBE is competitive
with other schemes for upper-bounding counting type tasks.

We consider several guiding distance measures and we
show that in general a greedily optimal heuristic is compu-
tationally too expensive. However, for the log relative error
we derive a greedily optimal heuristic that is time and space
exponential in the control parameterz only. We also derive
a set of local heristics based on other distance measures that
approximate the greedy optimallity goal.

Our experimental results show that the mini-bucket
scheme is competitive with recent state of the art bounding
schemes and, often, far more accurate. Most remarkably,
the combination of all heuristics yields a far more effective
bounding scheme at the cost of only a linear increase in time.
Note that one way to improve the mini-bucket accuracy is by
increasing the value of the control parameterz. However,
the largest feasible value ofz is bounded by memory and
not by its computation time, which is typically a few sec-
onds only. Therefore, the availability of various heuristics
for the same value ofz may be the only practical enhance-
ment of MBE.

References
Bertele, U., and Brioschi, F. 1972.Nonserial Dynamic Pro-
gramming. Academic Press.
Bidyuk, B., and Dechter, R. 2006. An anytime scheme for
bounding posterior beliefs. InAAAI, 1095–1100.
Choi, A.; Chavira, M.; and Darwiche, A. 2007. Node split-
ting: A scheme for generating upper bounds in bayesian net-
works. InUAI, 57–66.
Dechter, R., and Rish, I. 1997. A scheme for approximating
probabilistic inference. InUAI, 132–141.
Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for bounded inference.J. ACM50(2):107–153.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning.Artificial Intelligence113:41–85.
Kask, K., and Dechter, R. 2001. A general scheme for
automatic generation of search heuristics from specification
dependencies.Artificial Intelligence129:91–131.
Leisink, M. A. R., and Kappen, H. J. 2003. Bound propaga-
tion. J. of Artificial Intelligence Research19:139–154.
Marinescu, R., and Dechter, R. 2007. Best-first and/or
search for graphical models. InAAAI, 1171–1176.
Mateescu, R.; Dechter, R.; and Kask, K. 2002. Tree approx-
imation for belief updating. InAAAI/IAAI, 553–559.
Mooij, J. M., and Kappen, H. J. 2008. Bounds on marginal
probability distributions. InNIPS, 1105–1112.
Pearl, J. 1988.Probabilistic Reasoning in Intelligent Sys-
tems. Networks of Plausible Inference. Morgan Kaufmann.
Wainwright, M. J.; Jaakkola, T. S.; and Willsky, A. S. 2003.
Tree-reweighted belief propagation algorithms and approx-
imate ml estimation by pseudo-moment matching. InAIS-
TATS.

Coding networks: z = 22; H = 150; Nb. vars = 516; Nb. evid = 256

-50

-45

-40

-35

-30

BN-126

BN-127

BN-128

BN-129

BN-130

BN-131

BN-132

BN-133

BN-134

w* : 55 54 49 53 53 53 51 55 55

lo
g

U
pp

er
 B

ou
nd

P(e)
SCP
LRE

LMRE
MRE1

ATB+BdP

BoxProp
TRW

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

BN-126

BN-127

BN-128

BN-129

BN-130

BN-131

BN-132

BN-133

BN-134

T
im

e
(s

ec
.)

bn2o networks: z = 18; H = 200; Nb. vars = (45, 50, 55); Nb. evid = (15, 20, 25)

-10

-8

-6

-4

-2

 0

 2

15-1a

15-1b

15-2a

15-2b

15-3a

15-3b

20-1a

20-1b

20-2a

20-2b

20-3a

20-3b

25-1a

25-1b

25-2a

25-2b

25-3a

25-3b

w* : 23 26 25

lo
g

U
pp

er
 B

ou
nd

 0

 100

 200

 300

 400

 500

 600

15-1a

15-1b

15-2a

15-2b

15-3a

15-3b

20-1a

20-1b

20-2a

20-2b

20-3a

20-3b

25-1a

25-1b

25-2a

25-2b

25-3a

25-3b

T
im

e
(s

ec
.)

Pedigree networks: z = zmax; Nb. vars = #Vars

-60

-50

-40

-30

-20

-10

 0

ped1
ped7

ped13

ped19

ped20

ped23

ped31

ped33

ped34

ped38

ped41

ped42

ped50

ped51

w* : 17 35 40 27 24 31 33 33 38 17 39 25 17 49

lo
g

U
pp

er
 B

ou
nd

 0

 500

 1000

 1500

 2000

 2500

ped1
ped7

ped13

ped19

ped20

ped23

ped31

ped33

ped34

ped38

ped41

ped42

ped50

ped51

T
im

e
(s

ec
.)

Pedigree networks
Inst. #Vars zmax Inst. #Vars zmax

ped1 334 16 ped33 798 20
ped7 1068 20 ped34 1160 18
ped13 1077 20 ped38 724 16
ped19 793 18 ped41 1062 18
ped20 437 18 ped42 448 18
ped23 402 18 ped50 514 16
ped31 1183 19 ped51 1152 20

-46

-44

-42

-40

-38

-36

-34

-32

 4 6 8 10 12 14 16 18 20 22

M
ea

n
lo

g
U

pp
er

 B
ou

nd

z

Coding networks

SCP
LRE

LMRE
MRE1

Figure 2: Experimental results oncoding networks(first row), two-layer noisy-or networks(second row), andlinkage analysis
(third row). Left column shows log upper bound, along with the induced widthw∗ of each instance on the top x-axis, and right
column shows cpu time in seconds. The bottom left table indicates the number of varibles (#V ars column) and the highest
feasible value of the control parameterz (zmax column) for each pedigree instance. The bottom right graph shows the mean
log upper bound among all coding instances as a function of the control parameterz. For pedigree networks, only on instance
ped41theP (e) is not available.

