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ABSTRACT Time-variant problems, which can be classified into future and non-future problems, are often

encountered in academia and industry. In a future problem, we only know the information on the current

and past time instants, and we have to acquire the next-time-instant solution before the next time instant

arrives. Zeroing neural dynamics (ZND) and Zhang et al. discretization (ZeaD) formula group are two

essential tools to build discrete-time ZND (DT-ZND) models for future problems solving. The former uses

a systematical design formula to build a continuous-time ZND (CT-ZND) model, and the latter is used to

transform the CT-ZND model into the discrete-time forms. Many DT-ZND models have been developed

to solve various time-variant problems. In light of DT-ZND models and correction strategy, in this paper,

we mainly focus on designing and building improved models for future problems solving. Based on the

ZND method, extrapolation formulas, and correction steps, new models and corresponding computational

algorithms are proposed to solve future optimization and future matrix inversion problems. The numerical

experiments are also carried out to demonstrate the superiority of the proposed algorithms.

INDEX TERMS Future problem, zeroing neural dynamics (ZND), correction strategy, extrapolation

formula.

I. INTRODUCTION

Time-variant problems can be divided into two categories,

i.e., future problems and non-future problems. Future prob-

lems are often encountered in real-time application [1], [2],

where the information of future time instants is generally

unknown. In other words, the solutions of future problems

should be generated or predicted in real time without using

the information (e.g., the values of time-variant coefficients

and time-derivative information) of future time instants.

In contrast, in a non-future problem, some information of

future time instants can be acquired. For example, if the

specific formulation of the time-variant problem is given in

advance, we can use the information of future time instants

to help us estimate the next-time-instant solution. How-

ever, non-future problems appear less frequently in practical

application.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zheng H. Zhu.

Zeroing neural dynamics (ZND) is a commonly used

method to solve time-variant problems [3]–[15] on the basis

of recurrent neural network [16]–[19]. The core of the ZND

method is the adoption of a systematic design formula, which

guarantees that the defined error function converges rapidly

to zero. By using this method, continuous-time ZND (CT-

ZND)models can be established to solve various time-variant

problems.

In order to implement a CT-ZNDmodel on a digital device,

the CT-ZND model should be transformed into a discrete-

time form. Zhang et al. discretization (ZeaD) formula group

is a powerful tool for the transformation [1]–[3], [20]–[24].

By using a ZeaD formula to discretize a CT-ZND model,

a discrete-time ZND (DT-ZND) model can be obtained.

After setting some parameters such as the sampling period

and the stepsize appropriately, the resultant DT-ZND model

can successfully track the theoretical solution of the future

problem. From previous investigations [1]–[3], [21]–[24],
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DT-ZND models have excellent performance in solving dif-

ferent future problems.

Correction strategy is widely used in the field of numerical

algorithms [25], [26]. By using this strategy, many algorithms

have been improved to achieve better performance. Take the

Euler method as an example [25]. This method is a first-order

numerical algorithm to approximate the solution of a differen-

tial equation. It can be improved by taking the following two

steps, i.e., prediction and correction. First, the original Euler

method is used to predict a preliminary value. Then, by using

the predicted value and the trapezoidal method, a corrected

value can be obtained which is more accurate than the value

generated by the original method. This improved algorithm is

also known as the Heun method. The correction strategy has

already been used to solve time-variant problems. For exam-

ple, based on the prediction-correction method, the Newton

trajectory tracking (NTT) model has been established for

time-variant optimization problem solving [27]. Note that,

both of the DT-ZND and NTT models can be adopted to

solve time-variant optimization problem. However, the for-

mer can be used to solve future optimization problem, while

the latter is mainly used in solving non-future optimization

problem.

In the field of numerical algorithms, interpolation formulas

are often used to predict or generate new data points within

the domain of a given data set [25]. In contrast, extrapolation

formulas are used to estimate the data points outside the

domain [28], [29]. In this paper, in light of ZND method,

correction strategy and extrapolation formulas, new improved

models are established and proposed for future problems

solving. The main contributions of this paper are listed as

follows.
• The approach to building new models is proposed to

solve future problems.

• New models for future optimization and matrix inver-

sion problems solving are proposed, and the correspond-

ing algorithms are also provided.

• Numerical experiments are carried out, and the superi-

ority of the proposed models is demonstrated by com-

parison.
Notations: In this paper, symbols representing vectors and

matrices are presented as m-dimension vectors and m × m

matrices, respectively, and superscript T denotes the transpose

of a vector/matrix. Besides, we use || · ||2 and || · ||F to

denote the two-norm of a vector and the Frobenius-norm of

a matrix. The gradient of the function f (x, t) with respect to

x is denoted by ∇x f (x, t). Similarly, the Hessian matrix of

f (x, t) is denoted by ∇xx f (x, t), and ∇xt f (x, t) represents the

partial derivative of the gradient ∇x f (x, t) with respect to t,

i.e., ∇xt f (x, t) = ∂2f (x, t)/(∂x∂t).

II. ZND METHOD AND DT-ZND MODELS

In this section, the ZND method is briefly introduced. Future

optimization andmatrix inversion problems are used as exam-

ples to show the process of building CT-ZND models. ZeaD

formulas are also introduced to obtain DT-ZND models.

Besides, the corresponding computational algorithms are pre-

sented as well.

A. CT-ZND MODEL FOR FUTURE OPTIMIZATION

PROBLEM SOLVING

The problem formulation of future optimization is stated as

follows [22]–[24]:

argmin
xk+1∈Rm

f (xk+1, tk+1) ∈ R, k = 0, 1, 2, · · · , (1)

where f (·) is assumed to be a smooth strongly convex func-

tion, m ∈ N
+ denotes the length of the vector xk+1, and the

subscript k+1 denotes a variable at time instant t = (k + 1)g,

with g ∈ R
+ representing the sampling period. The value

of xk+1 should be estimated or predicted in the time interval

[tk , tk+1). Thus, in the solution process, the information of

future time instants (e.g., tk+1) cannot be used because it is

unknown/unavailable.

In order to solve future optimization problem (1), we con-

sider the following continuous-time time-variant optimiza-

tion problem at first, i.e.,

argmin
x(t)∈Rm

f (x(t), t) ∈ R, t ∈ R
+. (2)

When f (x(t), t) achieves its minimum at a certain time

instant, we have ∇x f (x
∗(t), t) = 0, where x∗(t) denotes the

theoretical solution. Therefore, we can define the following

error function [22]–[24]:

e(t) = ∇x f (x(t), t) ∈ R
m. (3)

In order to make error function (3) converge rapidly to zero,

the design formula of the ZND method is adopted [5], i.e.,

ė(t) = −λe(t), (4)

where λ ∈ R
+ is a parameter related to convergence. Based

on definition (3) and formula (4), the CT-ZND model for

problem (2) is obtained [22]–[24], [30]–[32]:

ẋ(t) = −∇−1
xx f (x(t), t) (∇xt f (x(t), t) + λ∇x f (x(t), t)) .

(5)

We assume that ∇xx f (x(t), t) is nonsingular. The correspond-

ing DT-ZND model to solve future optimization (1) is built

based on (5), which is presented in a later subsection.

B. CT-ZND MODEL FOR FUTURE MATRIX INVERSION

PROBLEM SOLVING

Future matrix inversion problem is described as follows: find

or predict Xk+1 ∈ R
m×m in time interval [tk , tk+1) which

satisfies

Mk+1Xk+1 − I = 0 ∈ R
m×m,

where Mk+1 denotes the value of a smoothly time-variant

nonsingular coefficient matrix M (t) at time instant

t = (k + 1)g. Similar to the previous subsection, let

us consider the corresponding continuous-time problem,
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Algorithm 1 N -Point DT-ZND Algorithm for Future

Optimization Problem Solving

Require: Randomly generated initial value x0, sampling

period g, stepsize h1 and h2, coefficients ϑi (i =

0, 1, · · · ,N − 1), initial objective function f (x, t0)

1: for k = 0, 1, · · · ,N − 3 do

2: Generate N − 2 additional initial values for DT-ZND

model (10) by using the 2-point DT-ZND model

xk+1=̇xk− ∇−1
xx f (xk , tk )

(

g∇xt f (xk , tk )

+h1∇x f (xk , tk )
)

3: end for

4: for k = N − 2,N − 1, · · · do

5: Predict the value xk+1 before tk+1 arrives

xk+1 =̇−
∇−1
xx f (xk , tk )

ϑ0

(

g∇xt f (xk , tk )

+h2∇x f (xk , tk )
)

−
1

ϑ0

N−1
∑

i=1

(ϑixk+1−i)

6: end for

i.e., continuous-time time-variant matrix inversion problem.

The problem formulation is [3], [13]–[15], [33]–[35]:

M (t)X (t) − I = 0 ∈ R
m×m, t ∈ R

+. (6)

In terms of problem (6), many definitions of the error func-

tion are workable. In this paper, we choose the following

definition:

E(t) = M (t) − X−1(t). (7)

The design formula (4) can be rewritten as [5]:

Ė(t) = −λE(t). (8)

Considering that d(X−1(t))/dt = −X−1(t)Ẋ (t)X−1(t), we

have the following CT-ZND model on the basis of the defini-

tion (7) and formula (8) [3], [35]–[39]:

Ẋ (t) = −X (t)Ṁ (t)X (t) − λX (t)(M (t)X (t) − I ),

which is also known as the G-M dynamic system for time-

variant matrix inversion.

C. DT-ZND MODELS AND ALGORITHMS

In this subsection, we transform the CT-ZND models

obtained in the previous subsections into DT-ZND models.

A discretization formula is needed in the process of transfor-

mation. According to previous studies, traditional numerical

differentiation formulas are inappropriate to the time dis-

cretization of CT-ZNDmodels. On the contrary, these models

can be successfully discretized by using ZeaD formulas. The

general computational form of an N -point ZeaD formula is

[3], [20]–[23]:

ψ̇k=̇
1

g

N−1
∑

i=0

(ϑiψk+1−i),with ϑ0, ϑN−1 6= 0, (9)

Algorithm 2 N -Point DT-ZND Algorithm for Future Matrix

Inversion Problem Solving

Require: Initial valueX0, sampling period g, stepsize h1 and

h2, coefficients ϑi (i = 0, 1, · · · ,N − 1), initial matrix

M (t0)

1: for k = 0, 1, · · · ,N − 3 do

2: Generate N − 2 additional initial values for DT-ZND

model (11) by using the 2-point DT-ZND model

Xk+1 =̇Xk −
(

gXkṀkXk + h1 Xk (MkXk − I )
)

3: end for

4: for k = N − 2,N − 1, · · · do

5: Predict the value Xk+1 before tk+1 arrives

Xk+1 =̇ −
1

ϑ0

(

gXkṀkXk + h2 Xk (MkXk − I )
)

−
1

ϑ0

N−1
∑

i=1

(ϑiXk+1−i)

6: end for

where =̇ denotes the computational assignment operation,

and the coefficients ϑi (i = 0, 1, · · · ,N − 1) satisfy certain

rules. The precision of a ZeaD formula is related to the

number of points. In recent years, the ZeaD-formula-related

studies have been carried out in depth, many specific ZeaD

formulas and even some general ZeaD formulas have been

found and proposed. Table 1 presents some general ZeaD

formulas. In fact, when N = 2, the general ZeaD formula

is specific and unique, and it has been widely used as the

Euler forward difference formula. By adopting the N -point

ZeaD formula (9) to approximate ẋ(t) and Ẋ (t), CT-ZND

models (2) and (6) can be transformed into DT-ZND models.

The computational DT-ZND model for future optimization

problem solving is [22]–[24], [30]–[32]:

xk+1=̇ −
∇−1
xx f (xk , tk )

ϑ0
(g∇xt f (xk , tk ) + h∇x f (xk , tk ))

−
1

ϑ0

N−1
∑

i=1

(ϑixk+1−i), (10)

where h = γ g ∈ R
+ is termed as the stepsize. Besides,

the computational DT-ZNDmodel for future matrix inversion

problem solving is [3], [35], [36]:

Xk+1=̇ −
1

ϑ0

(

gXkṀkXk + hXk (MkXk − I )
)

−
1

ϑ0

N−1
∑

i=1

(ϑiXk+1−i). (11)

The corresponding algorithms of DT-ZND models for future

optimization and matrix inversion problems solving are pre-

sented as Algorithms 1 and 2.

III. CORRECTION STRATEGY AND NEW MODELS

In this section, the NTT model is introduced to show the

correction strategy. Based on the thought of correction and
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TABLE 1. General ZeaD formulas of N points with N = 2, 3, 4, 5.

Algorithm 3 NTT Algorithm for Non-Future Optimization

Problem Solving

Require: Randomly generated initial value x0, sampling

period g, number of iterations χ, initial objective func-

tion f (x, t0)

1: for k = 0, 1, · · · do

2: Estimate the solution of next time instant

x̆k+1=̇xk − g∇−1
xx f (xk , tk )∇xt f (xk , tk )

3: Perform χ iterations to correct the estimated solution

4: for j = 0, 1, · · · , χ − 1 do

5: x̆k+1=̇x̆k+1 − ∇−1
xx f (x̆k+1, tk+1)∇x f (x̆k+1, tk+1)

6: end for

7: xk+1=̇x̆k+1

8: end for

extrapolation formulas, new models are proposed to solve

future optimization and matrix inversion problems.

A. NTT MODEL FOR NON-FUTURE OPTIMIZAITON

For better understanding of correction strategy, the NTT

model is introduced to solve non-future optimization problem

[27] (i.e., to solve the problem (1) when the future infor-

mation is available). This model is built on the basis of

prediction-correction method. In the prediction step of the

NTT model, we estimate the solution of the next time instant

using the following dynamic equation of the theoretical solu-

tion [27], i.e.,

ẋ∗(t) = −∇−1
xx f (x

∗(t), t)∇xt f (x
∗(t), t). (12)

By using the Euler forward difference formula to dis-

cretize (12), the solution can be roughly estimated, i.e.,

x̆k+1=̇xk − g∇−1
xx f (xk , tk )∇xt f (xk , tk ).

Then, in the correction step, the above estimated value is

corrected by using the Newton method [25]–[27]:

xk+1=̇x̆k+1 − ∇−1
xx f (x̆k+1, tk+1)∇x f (x̆k+1, tk+1).

Note that the above formula shows the correction step of the

NTT model by using one iteration. Actually, we can correct

TABLE 2. Specific extrapolation formulas of P points with P = 2, 3, 4, 5.

the estimated value by using multiple iterations to make it

closer to the theoretical one. The complete algorithm for the

NTT model is presented as Algorithm 3. We can find that the

NTT model needs the information of the time instant tk+1.

Therefore, it is hard to directly employ the NTT model when

future information is unknown. If we have to use this model

to solve the future optimization problem, the required future

information needs to be estimated.

B. NEW MODELS FOR FUTURE PROBLEMS SOLVING

In light of the correction strategy and the designing process

of the ZND and NTT models, let us consider how to build a

more accurate model to solve future optimization problem.

Note that the initial value in the ZND model is not nec-

essarily the theoretical one. By using the DT-ZND model,

the residual error will quickly converge to a near-zero steady

state, and the order of the residual error is closely related

to the ZeaD formula applied. When the generated P-point

sequence {xk , xk−1, · · · , xk−P+1} is sufficiently close to the

theoretical solution sequence {x∗
k , x

∗
k−1, · · · , x

∗
k−P+1}, we

can use aP-point numerical extrapolation formula to generate

xk+1. The P-point numerical extrapolation formula we adopt

has the following general form [28], [29] (with the truncation

error considered):

ψk+1 =

P−1
∑

j=0

(ωjψk−j) + O(gP).
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Algorithm 4 New Algorithm for Future Optimization

Problem Solving

Require: Randomly generated initial value x0, sampling

period g, stepsize h1 and h2, coefficients ϑi (i =

0, 1, · · · ,N − 1) and ωj (j = 0, 1, · · · ,P− 1), threshold

value ηe, initial objective function f (x, t0)

1: for k = 0, 1, · · · ,N − 3 do

2: Generate the corrected value x̆k

x̆k=̇xk − ∇−1
xx f (xk , tk )∇x f (xk , tk )

3: Generate N − 2 additional initial values by using the

2-point DT-ZND model

xk+1=̇xk−∇−1
xx f (xk , tk )

(

g∇xt f (xk , tk )

+ h1∇x f (xk , tk )
)

4: end for

5: for k = N − 2,N − 1, · · · do

6: Generate the corrected value x̆k

x̆k=̇xk − ∇−1
xx f (xk , tk )∇x f (xk , tk )

7: if ||ek ||2 > ηe then

8: Predict the value xk+1 by using the N -point DT-

ZND model

xk+1=̇−
∇−1
xx f (xk , tk )

ϑ0

(

g∇xt f (xk , tk )

+h2∇x f (xk , tk )
)

−
1

ϑ0

∑N−1
i=1 (ϑixk+1−i)

9: else

10: Predict the value xk+1 by using the P-point extrap-

olation formula

xk+1=̇

P−1
∑

j=0

(ωjx̆k−j)

11: end if

12: end for

Table 2 presents some specific multi-point extrapolation for-

mulas. By using an accurate and appropriate extrapolation

formula, the estimated next-time-instant solution (i.e., xk+1)

is obtained. It is worth mentioning that, if we keep on using

the extrapolation formula to predict the next-time-instant

solution, the computational error will accumulate. Therefore,

a correction step is needed. Although we cannot use the

future information to correct the predicted next-time-instant

solution xk+1, we can use the current information (i.e., infor-

mation of tk ) to correct the previously predicted value xk . The

Newton method is used in the correction step [25]–[27], i.e.,

x̆k=̇xk − ∇−1
xx f (xk , tk )∇x f (xk , tk ).

The corresponding algorithm of the new model to solve the

future optimization problem is presented as Algorithm 4,

Algorithm 5 New Algorithm for Future Matrix Inversion

Problem Solving

Require: Initial valueX0, sampling period g, stepsize h1 and

h2, coefficients ϑi (i = 0, 1, · · · ,N − 1) and ωj (j =

0, 1, · · · ,P− 1), threshold value ηe, initial matrixM (t0)

1: for k = 0, 1, · · · ,N − 3 do

2: Generate the corrected value X̆k

X̆k = 2Xk − XkMkXk

3: Generate N − 2 additional initial values by using the

2-point DT-ZND model

Xk+1 =̇Xk −
(

gXkṀkXk + h1 Xk (MkXk − I )
)

4: end for

5: for k = N − 2,N − 1, · · · do

6: Generate the corrected value X̆k

X̆k = 2Xk − XkMkXk

7: if ||Ek ||F > ηe then

8: Predict the value Xk+1 by using the N -point DT-

ZND model

Xk+1 =̇ −
1

ϑ0

(

gXkṀkXk + h2Xk (MkXk − I )
)

−
1

ϑ0

∑N−1
i=1 (ϑiXk+1−i)

9: else

10: Predict the value Xk+1 by using the P-point extrap-

olation formula

Xk+1=̇

P−1
∑

j=0

(ωjX̆k−j)

11: end if

12: end for

where || · ||2 denotes the two-norm operator. In Algorithm 4,

ηe is a pre-set threshold value. If the residual error is smaller

than ηe, we assume that the generated P-point sequence is

sufficiently close to the theoretical one, and a P-point extrap-

olation formula is then used to predict the next-time-instant

solution.

Similarly, in terms of the future matrix inversion problem,

we can use the following equation to correct the previously

predicted value Xk before using the extrapolation formula:

X̆k = M−1
k .

However, computing the inverse of a matrix is time-

consuming, which is unsuitable for practical application.

Therefore, the Newton method can be used for correction

[25], [38], [39], [41], i.e.,

X̆k = 2Xk − XkMkXk .
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FIGURE 1. Algorithms 1 and 4 solving future optimization problem (13) with h1 = 1, h2 = 0.240, ηe = 10−6
, and g = 0.01 s.

FIGURE 2. Algorithms 1 and 4 solving future optimization problem (13) with h1 = 1, h2 = 0.240, ηe = 10−6
, and g = 0.001 s.

Algorithm 5 shows the corresponding computational steps

of solving the future matrix inversion problem, where || · ||F
denotes the Frobenius-norm operator. The residual error at

time instant tk is defined as ||Ek ||F = ||MkXk − I ||F,which is

different from the definition (7) in that computing the inverse

of the matrix Xk requires a large amount of computation and

is thus not recommended.

Remarks: It is worth mentioning that the convergence

of a DT-ZND model is related to the stepsize h. If the

value of the stepsize is set improperly, the DT-ZND model

will diverge in terms of the residual error. Besides, differ-

ent values of the stepsize may bring different convergence

rates for a DT-ZND model. Some stepsize-related investiga-

tions have already been carried out, such as the theoretical

stepsize interval and the optimum of the stepsize (the opti-

mum of the stepsize makes the DT-ZND model converge

with the fastest rate in terms of the residual error) corre-

sponding to a general/specific DT-ZND model [1], [2], [22],

[24]. Note that, when the residual error is larger than the

pre-set threshold value ηe, the proposed new models actu-

ally have the same operation with the corresponding DT-

ZND models. Therefore, the conclusions of the previous

stepsize-related investigations can be applicable to the new

models.
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FIGURE 3. Algorithms 2 and 5 solving future matrix inversion problem (13) with h1 = 1, h2 = 0.240, ηe = 10−5
, and g = 0.01 s.

FIGURE 4. Algorithms 2 and 5 solving future matrix inversion problem (13) with h1 = 1, h2 = 0.240, ηe = 10−5
, and g = 0.001 s.

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted to show

the superiority of the new models. The new models are

compared with the corresponding DT-ZNDmodels for future

optimization and matrix inversion problems solving.

A. FUTURE OPTIMIZATION PROBLEM

Let us consider the following time-variant function for

optimization:

f (xk , tk ) = exp
(

2 tanh (x1(tk ))− x2(tk ) + tk − sin2 tk
)

+
exp

(

x2(tk ) − tk
)

2 tanh (x1(tk ))+ cos2 tk
. (13)

The theoretical solution of the above future optimization

problem is

x∗
k+1 = [x∗

1 (tk+1), x
∗
2 (tk+1)]

T

=

[

1

2
ln

2 + sin2 tk+1

2 − sin2 tk+1

, tk+1

]T

,

and f (x∗
k+1, tk+1) = 2. A specific ZeaD formula is needed to

perform the DT-ZND and the new models. In this numerical

experiment, the following 4-point ZeaD formula is adopted:

ψ̇k=̇
2ψk+1 − 3ψk + 2ψk−1 − ψk−2

2g
, (14)
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which is also the second formula in Table 1 with ζ = 0.5.

In this situation, DT-ZND model (10) can be rewritten as

xk+1=̇ − ∇−1
xx f (xk , tk ) (g∇xt f (xk , tk ) + h∇x f (xk , tk ))

+
3

2
xk − xk−1 +

1

2
xk−2.

According to previous investigations, the stepsize inter-

val of the above DT-ZND model is h ∈ (0, 1), and

the optimum of the stepsize is 0.240 [2]. We perform

Algorithms 1 and 4 with initial value x0 = [0, 0]T, h1 = 1,

h2 = 0.240 and different values of g (i.e., g = 0.01 s and

0.001 s). Besides, in Algorithm 4, we use a 5-point extrapo-

lation formula, i.e., the fourth formula shown in Table 2, and

the error threshold ηe is set to 10
−6.

The corresponding numerical experimental results are

shown in Figs. 1 and 2. Figs. 1(a) and 2(a) show that the

steady-state residual error of Algorithm 4 is smaller than that

of Algorithm 1. Additionally, as seen in Figs. 1(b) and 2(b),

the next-time-instant solution generated by Algorithm 4 is

closer to the theoretical solution than that by Algorithm 1,

which means that Algorithm 4 has a better performance than

Algorithm 1 in terms of tracking error.

B. FUTURE MATRIX INVERSION PROBLEM

In this subsection, Algorithms 2 and 5 are comparedwith each

other for future matrix inversion problem solving. We use the

following time-variant matrix for inversion [39]:

Mk =

[

sin tk cos tk
− cos tk sin tk

]

. (15)

In order to better compare the performance of Algorithms 2

and 5, the theoretical inversion of Mk+1 is given by

X∗
k+1 = M−1

k+1 =

[

x∗
11(tk+1) x∗

12(tk+1)

x∗
21(tk+1) x∗

22(tk+1)

]

=

[

sin tk+1 − cos tk+1

cos tk+1 sin tk+1

]

.

Algorithms 2 and 5 are performed to solve the matrix inver-

sion problem of (15) by using the 4-point ZeaD formula (14),

and the fourth extrapolation formula in Table 2 is used

in Algorithm 5. Additionally, the initial value X0 is set to

[0.5,−0.5; 0.5, 0.5]. In this case, Figs. 3 and 4 show the

corresponding numerical results with h1 = 1, h2 = 0.240,

and ηe = 10−5 for g = 0.01 s and 0.001 s. Specifically,

Figs. 3(a) and 4(a) illustrate the curves of the residual error

||Ek+1||F = ||Mk+1Xk+1 − I ||F. The curves of Algorithms 2

and 5 coincide with each other at the beginning in that ||Ek ||F
is larger than the threshold ηe, and these two algorithms

perform the same operation in this situation. As shown,

the steady-state residual error of Algorithm 5 is much less

than that of Algorithm 2. Besides, the tracking error of each

element of the generated matrix Xk+1 is shown in Figs. 3(b)

and 4(b). It is clear that the tracking error of Algorithm 5

is smaller than that of Algorithm 2. These numerical results

demonstrate the validity and superiority of Algorithm 5.

V. CONCLUSION

In this paper, ZND method and ZeaD formulas have been

introduced to build DT-ZND models for time-variant prob-

lems solving. The correction strategy has also been intro-

duced. Then, based on ZND method, extrapolation formulas,

and correction strategy, a new approach to building discrete-

time models for future problems solving has been given.

Two newmodels and the corresponding algorithms have been

proposed to solve future optimization and matrix inversion

problems. Comparative numerical experiments have been

carried out to substantiate the validity and the superiority of

these new models.

There are some future directions. First, the convergence of

the proposed new models, such as the order of the residual

error, can be investigated much further. Second, in this paper,

we use future optimization and matrix inversion problems

as examples to demonstrate the approach to building new

models. Actually, for other future problems such as future lin-

ear system solving, nonlinear equation solving, and quadratic

programming, the corresponding new models may also be

built by using the similar steps. Third, practical physical

experiments can also be carried out to further explore the

superiority of the proposed new models.
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