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We present a new method to compute the absolute free energy of arbitrary solid phases by Monte
Carlo simulation. The method is based on the construction of a reversible path from the solid

phase under consideration to an Einstein crystal with the same crystallographic structure. As an

application of the method we have recomputed the free energy of the fcc hard-sphere solid at

melting. Our results agree well with the single occupancy cell results of Hoover and Ree. The
major source of error is the nature of the extrapolation procedure to the thermodynamic limit. We
have also computed the free energy difference between hcp and fcc hard-sphere solids at densities
close to melting. We find that this free energy difference is not significantly different from zero:

0.001 LIF< 0.002.

INTRODUCTION

In this paper we present a computer simulation method

to determine the domain of thermodynamic stability of solid

phases. The recent development by Parinello and Rahman'
of a new molecular dynamics simulation technique have sti-

mulated the use ofcomputer simulations in investigating sol-

id-solid phase transitions in model systems. The idea upon

which the Parinello-Rahman method is based is that the
fixed periodic boundary conditions employed in convention-

al MD simulations exclude the direct observation of solid-
solid phase transitions, as the boundary conditions chosen to

be compatible with one solid phase are, in general, incom-

patible with the other. Hence, fixed periodic boundary con-

ditions tend to stabilize one solid phase well beyond its range

of thermodynamic stability, and may easily overlook the ex-

istence of other more stable phases altogether. In the Parin-

elloRahman method the shape of the periodic box is no
longer fixed; shape and size of the periodic box are expressed

in terms of variables which play the role of generalized co-

ordinates in an extended Hamiltonian. The resulting equa-
tions of motion describe the "natural" time evolution of the
shape and size of the periodic box under constant applied

external pressure and zero applied stress. The Parinello-
Rahman method provides a "reaction path" from one solid

phase to the other as the boundary conditions adjust them-

selves to the favored solid structure. For this reason this
method is now being used to map phase diagrams involving

several solid phases (see e.g., Refs. 2 and 3). It should be
noted however that the method does not provide a reversible

route from one solid phase to the other; the solid-solid phase

transformation takes place when the initial solid phase be-
comes mechanically unstable. The actual thermodynamic
phase transition is bracketed by the width of the hysteresis

region. In order to locate the thermodynamic phase transi-
tion precisely one needs information on the free energy of
both solid phases.

"Present address: Lawrence Livermore National Laboratory L-454, Liver-

more, California 94550.
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Two methods have traditionally been used to obtain
such information. Both methods rely on the construction of
a reversible path from a state of known free energy to the
solid phase under consideration. The first method is the sin-

gle occupancy cell (SOC) method introduced by Hoover and

Ree.° This method starts with a lattice gas with one particle

per lattice cell. At high densities the centers of the lattice
cells coincide with the average atomic positions in the un-
constrained solid. Expanding this lattice uniformly leads to a

dilute gas which has the same pressure as an ideal gas at the
same density, and a free energy that can beevaluated exactly.

The free energy of the lattice gas at high densities coincides

with the free energy of the corresponding unconstrained sol-

id, provided that the density is sufficiently high to ensure
that the artificial cell walls have negligible effect on the parti-

cle displacements. The free energy of the solid is then ob-
tained by computing

P(V)dV II)
v.

at constant temperature. This method was used by Hoover
and Ree to obtain the absolute free energy of the hard-sphere

and hard-disk solids." The actual numerical integration of

Eq. (1) may require evaluating the pressure at many state

points because lattice-gas isotherms exhibit a cusp at the
point where the nearest-neighbor interactions take over
from the cell walls in constraining the particles. There is even

some evidence that a weak first-order transition takes place

at this point,' in which case, the supposedly reversible path
linking the solid to the dilute lattice gas may not be quite
reversible, after all.

A second method of computing the free energy of a
solid phase is to start from the low-temperature harmonic
solid, the free energy of which can be computed exactly. This

method was first used by Hoover, Gray, and Johnson.'
There are two factors limiting the applicability of the latter
method. The first is that it only works for solids which are
harmonic at low temperatures (and/or high densities). This

excludes all systems with discontinuous intermolecular

0021-9608/84/193188-06802.10 1984 American Institute of Physics

Reprint 11.4 107

'

fv,

(:)

<-

,was I ,s/



D. Frenkel and A. J. C. Ladd: Monte Carlo method for arbitrary solOs 3189

forces, e.g., the hard-sphere solid. Moreover, solid phases
that are mechanically unstable at low temperatures cannot

be investigated by this method. A practical problem with the

harmonic-lattice method is that for all but the simplest so-

lids, and in particular for molecular solids, evaluating the

harmonic lattice free energy involves lengthy computation.

METHOD

In this section we introduce a new method to compute

the absolute free energy of a solid phase. Our approach is

once again based on the construction of a reversible path to a

state of known free energy. In this case the reference state is

an Einstein crystal with the same structure as the solid under

consideration. This reference state can be reached from the

real solid by slowly switching on harmonic springs which

bind the atoms to their lattice sites. As the Einstein solid is
structurally identical to the initial solid, it is very likely that

such a path will be free of phase transitions and hence rever-

sible. The simplest way to transform a solid to an Einstein

crystal is to add a term AV to the unperturbed Hamiltonian

Ho, such that

HiA)= Ho+ AV = Ho+ A X (r, r?)2, (2)

I

where .1 is the lattice position ofparticle i. The derivative of

the free energy of this system with respect to the coupling

constant A is given by

aF kr 2- {In exp[ -13(Ho+ AV )] cle
dA

(3)

from which it follows that the free energy of the real crystal is

related to the free energy of a crystal with spring constant A

by

F(A = 0) = F(A)- f (V),.dA'. (4)

0

At sufficiently high A the free energy of the system reduces to

that of an Einstein crystal

F(A)= 00- kT MOAT /A )3" + C(T)+ (1a), (5)

where 00 is the potential energy of the corresponding static

lattice. C(T) is the kinetic contribution to the free energy

which depends only on the temperature T. Of course, a rath-

er high value of2 may be required before terms of order 0 (1/

A) in Eq. 5 become negligible. In practice there is no need to

go to very high values of A as it is rather simple to evaluate

the leading corrections to the free energy at finite A. In some

cases these corrections can be evaluated analytically, as in

the case of hard spheres to be discussed below, but in the
most general case the free energy difference between the

ideal Einstein crystal and the Einstein crystal with intermo-
lecular interactions (henceforth referred to as the interacting

Einstein crystal) can be found numerically by performing a

Monte Carlo simulation on the ideal Einstein crystal, and

deriving the free energy of the interacting Einstein crystal by

umbrella sampling.° Depending on the nature of the system

studied it may be useful to parametrize the Hamiltonian in a

different way. For instance, for systems with continuous in-
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termolecular interactions one may switch on the spring con-

stants while switching off the intermolecular interactions. In

general, the Hamiltonian may depend on A in a nonlinear

fashion. Equation (4) then becomes

F (A = 0) = F (A ) - it 1811(2( tht
..10 It 82' I

(4a)

By a suitable choice of the parametrization of H (A one may

achieve a situation where ((oH /82)1 is quite small for
OGA '<A. Such a parametrization corresponds to a situation

where the free energy of the Einstein crystal is quite close to

the free energy of the initial crystal. It is likely that such a
parametrization will result in an improved accuracy of the
free energy computation. This method is also applicable to

solids containing defects, particularly grain boundaries. The

reference lattice in this case is the fully relaxed lattice con-

taining the defect.

APPLICATION TO THE HARD-SPHERE SOLID

In order to test the usefulness of the method described

above we used it to compute the free energy of the fcc and

hcp phases of the hard-sphere solid at two densities close to

the solid-fluid coexistence point. We chose this particular
system for two reasons: First, of all reliable numerical results

on the free energy of the fcc phase of the hard sphere solid are

available,' yet the calculations on which these results are
based are by no means trivial; they involve the computation

of a complete isotherm of the single-occupancy cell system.

Secondly, the old question of the relative stability of the hcp

and fcc phases of the hard-sphere solid at melting is, thus far,

unresolved. There is some evidence that as the solid density

approachespo, the density of closest packing, the fcc phase is

the more stable,'" but as the pressure of the dense hcp
phase is slightly higher than the pressure of the fcc phase,' it
is not obvious which phase is the more stable at the melting
point. In the present study we have computed the free energy

of both fcc and hcp solids at a reduced densityp/po = 0.7360

(i.e., the density of the solid at the solid-fluid coexistence
point, according to Ref. 5) and at a slightly higherdensity p/

= 0.7778. Each simulation consisted of ten runs, for dif-

ferent values of the spring constant A. Every run consisted of

at least 10' sweeps (i.e., l0 attempted moves per particle)
excluding equilibration; many runs were appreciably longer.

The values of A at which the different runs were carried out

were chosen as follows. For A >A, (A c:-._632 for p/

Po= 0.7360, and 2.,=-1775 forp/p0 = 0.7778) the freeen-

ergy of the interacting Einstein crystal could be accurately

approximated by an analytical expression based on a "virial-

like" cluster expansion, described in the Appendix. Hence,

the numerical simulations were limited to the interval
0 <A <A,o,,. The mean-square particle displacement (r2),
which is the integrand in Eq. (4), depends strongly on A. At

high values of A, (?)- 1/2 whereas as A.0, (r2)-(-(?)0,
the mean-square displacement of an atom around its lattice

site in the normal hard-sphere solid. Clearly, the function

(A + c)(c2) varies much less over the interval 0 < A , if

we choose c=-kTo2/(?)0. We make use of this fact to trans-

form the integral in Eq. (4) in such a way that the integrand

becomes a slowly varying function of the integration vari-
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able. To this end we write the integral in Eq. (4), i.e., the free

energy difference between the interacting Einstein crystal
and the hard-sphere solid as

(IA
AF =

0

(r2) 2(2 + c)
(A + c)

1.14_

(r2) (A + cold In(A + c). (6)
inco

Here the integrand is a very smooth function of In(A + c)[we

chose c = exp(3.5)], and the integral could be evaluated us-

ing a 10-point Gauss-Legendre quadrature.' Later tests in-
dicated that no significant loss of accuracy resulted if a five-

point quadrature was used. A typical simulation consisting
of ten runs of 104 sweeps for a 108 particle system took about

20 min on an IBM 192 computer.
Simulations were carried out for a number of fcc and

hcp crystals of different size and shape. In the simulation we

kept the center of mass of the system fixed. Without this
constraint the mean-square particle displacement would be-

come of order L'(L = boxlength) as A .0, in which case the

integrand in Eq. (6) would be sharply peaked around A = 0.

This would have an adverse effect on the accuracy of the

numerical integration. In contrast, with the center of mass
fixed, (r2) tends to (r2) 0, as A .0, and no problems occur.
The fixed center of mass MC was implemented as follows.

The coordinates of all particles were expressed relative to the

center of the periodic box. During a trial move a particle
displacement over a distance dr is attempted. As the inter-

molecular interactions depend only on relative distances the

tests for particle overlaps can be carried out without knowl-

edge of the position of the center of mass. In contrast, in

order to compute V = A I , (r, (1)2, one needs to know

the absolute position of each particle with respect to the ref-

erence lattice. The distance r, r? can be written as rr
r ((.j IM), where the superscript (B ) indicates

coordinates relative to the center of the periodic box; Ra!, is

the position of the center of mass in these units. In order to

compute r, 11 we have to keep track of the displacement
(RAI IM). This is a simple matter; every time a particle

is moved from 1.101.rv" + Ar, ItN, changes to CI + dr/
N. Note that changing the box coordinate of one particle
implies changing the absolute coordinates of all particles in

order to keep the center of mass fixed. Keeping the center of

mass of the system fixed reduces the partition function by a

factor V (in the limit A = 0). Hence, the free energy per parti-

cle in the fixed center of mass solid is (In V)/ N higher than in

the unconstrained system. We have corrected our data for
this effect; all final results refer to hard-sphere solids with

unconstrained center of mass. In order to compare fcc and
hcp crystals of the same size and shape, we chose the shape of

the periodic box such that the basal plane (xy plane) was
parallel to a set of close-packed planes [e.g., the fcc (III)
plane]. The height of the boxwas chosen such that a multiple

of six close-packed planes fitted in the box. For hcp and fcc

crystal structures only the stacking of these planes differs:
ABA BAB... stacking for hcp and ABCABC... stacking for fcc.

In addition, we performed a number of simulations at p/
po = 0.7360 with fcc crystals of different sizes in a cubic box

with edges parallel to the crystallographic 100,010, and 001

axes. All Monte Carlo data are collected in Table I. In order

to compute the free energy of an N-particle hard-sphere
crystal we first evaluated the free energy of the interacting

Einstein crystal with fixed center of mass, at A . This free

energy contains three contributions: (i) the free energy of the

corresponding noninteracting Einstein crystal, (ii) the virial

contribution described in the Appendix, and (iii) a small cor-

rection to the virial contribution, which is also described in
the Appendix; for the simulations with p/po= 0.7778 this
correction turned out to be negligible. The free energy of the

unconstrained hard-sphere solid is then obtained by adding
AF [Eq. (6)], together with a term (In V)/ N to account for the

contribution of the center of mass motion to the free energy

of the solid. Finally we compute the excess free energy F,
i.e., the free energy difference between the N-particle hard-

sphere solid and an ideal gas with the same number of parti-

cles at the same density. All different contributions have
been collected in Table I. In order to obtain the free energies

of the different solid phases in the thermodynamic limit, we
have toextrapolate to infinite system size. This extrapolation

is not straightforward because we observe that the excess
free energy depends not just on the number of particles, but

also on the box shape. For instance, there is no significant

difference between the excess free energy of a 54

( = 3 X 3 X 6) particle system and a 108 ( = 3 X 3 X 12) parti-

cle system. But the excess free energy of the latter system
does differ significantly from the corresponding value for the

108 particle system in a cubic box. We observed, however,

that the excess free energy is a reasonably smooth function of

u;,2 , where u is the volume of the largest cubic box that

fits into the periodic box (see Fig. 1). For a cubic box u

equals the total box volume, for all other shapes u
= (L)3, where L,, is the shortest diameter of the box.

Clearly for fixed box shape extrapolating as a function of

u is equivalent to extrapolating as a function of N. We
considered two types of extrapolation viz., F F:
1/u and F )/u, which correspond

to I/Nand (In N)/ N extrapolations for fixed box shape. The

results for the different extrapolation procedures have been

collected in Table II. In most cases we find that the 1/u

extrapolation fits marginally better to the MC data than the

(In u,..)/n,., extrapolation. In Table IIwe have also includ-

ed the extrapolated values for the free energy difference

F (hcp) F:: (fcc).

Let us first look at the fcc data at p/p = 0.7360. From

the data shown in Table II it is clear that the nature of the
extrapolation procedure is the major source of uncertainty in

the final result. This is probably made worse by the fact that

we have combined the results for a number of different box

shapes. At p/po = 0.7778, where we have studied systems
with rather similar box shapes, the different extrapolations
yield more consistent results. The present values for the ex-

cess free energy of the fcc solid at p/po := 0.7360 agree well

with the Hoover and Ree value

F ::(fcc) = 5.924(15).

Next we turn to the hcp solid at the same density. The ex-

trapolated values for F;;: (hcp) have also been collected in

J. Chem. Phys., Vol. 81, No. 7, 1 October 1984
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TABLE I. Contributions to the excess free energy of an N-particle hard-sphere solid. N-number of particles, fcc/hcp-crystal structure of the solid under

consideration. N, -number of atoms in a close-packed plane, N, -number of stacked close-packed planes. Three simulations on the fcc solid at p/

po= 0.7360 were carried out in a cubic box, as indicated in the table. FL, -free energy of noninteracting Einstein crystal with fixed center of mass and

spring constant .4,(A,,, = 632.026 at p/ = 0.7360. = 1774.927 at p/po = 0.7778). All free energies in this table are expressed per particle. AF.-

virial correction to the free energy of an Einstein crystal [Eq. (A6)]. riFoa, -correction to virial correction (see the Appendix). JF., -Monte Carlo result for

the free energy difference between a hard-sphere solid and an interacting Einstein crystal (spring constant An,) at the same density, both systems with fixed

center of mass. F 0-fret energy of an N-particle ideal gas at density p. FLoo -free energy difference between an N-particle hard-sphere solid and an

ideal gas with the same number of particles at the same density. = F 'Zoo + AFoo, + AF,,e - a(p) qn 1/N.p/p0-Idensity)/(density

at close packing). The error in the last two digits is indicated in brackets.

Type NxN,xN, no r1F, AFo,, AF,,0 F:oao(a) P/Po

54 fcc 3x 3 x6 7.9198 0.0183 1.5 x 10" 2.8929(39) - 0.9060 5.87664391 0.7360

54 hcp 3X3 5<6 7.9198 0.0183

0.0183

2.2 x 10" 2.8976(42) 0.9060 5.8712(42) 0.7360

108 fcc 3 x 3 x12 7.9477 6.0x 10" 2.9722(08) - 0.9275 5.8799(08) 0.7360

108 hcp 3 x3 X12 7.9477 0.0183 1.2 x 10" - 2.9729(07) 0.9275 5.8787(07) 0.7360

72 fcc 3 x4 x 6 7.9349 0.0183 1.7 x 10 ' 2.9190(28) - 0.9175 5.8912(28) 0.7360

72 hcp 3x 4 X6 7.9349 0.0183 2.5 x 10' 2.9205(24) - 0.9175 5.8889(24) 0.7360

96 fcc 4x4 x 6 7.9447 0.0183 1.5 x 10" 2.9364130)

2.9335(30)

- 0.9266
0.9266

5.9047(30) 0.7360

96 hcp 4 x4 x 6 7.9447 0.0183 1.5 x 10- ' 5.9076(30)

5.9030)30)

0.7360

192 fcc

hcp

fcc

4 X 4 X12 7.9559 0.0183 1.5 x 10- " 2.9841(30) - 0.9415 0.7360

192 4 x4 x 12 7,9559 0.0183 1.5 x 10" - 2.9825(30) 0.9415 5.9046(30) 0.7360

216 6 X 6 x 6 7.9568

7.9568

7.8701

0.0183

0.0183

0.0183

2.4 x ' 2.9754(10) - 0.9432 5.9159(10) 0.7360

216 hcp

fcc

6x 6 x6
box

8.0X 10r' - 2.9761(09) 0.9432 5.9168(09) 0.7360

32 cubic 8.0X 10-1 2.7933(30) - 0.8771 5.8644130) 0.7360

108 fcc cubic box 7.9477 0.0183 7.0 x 10- ' 2.9403)30) 0.9298 5.9117130) 0.7360

256 fee cubic box 7.9577 0.0183 1.7 x 10' ' - 2.9776(21) 0.9455 5.9208(21) 0.7360

72 fcc 3 X 4 X 6 9.4623 0.0006

0.0006

3.7710(33)

3.7639(33)

3.8165(26)

- 0.8622 6.4960(33) 0.7778

72 hcp

fcc

3 x 4 x 6 9.4623 - 0.8622 6.5031(33) 0.7778

144 4x 6 x 6 9.4909 0.0006 - 0.8811 6.5223)26)

6.5263(21)

0.7778

0.7778144 hcp

fcc

4x 6 x 6 9.4909 0.0006 - 3.8125(21) - 0.8811

576 6 X 8 X 12 9.5052 0.0006

0.0006

3.8575(121 - 0.8976 6.5351(121 0.7778

576 hcp 6 x 8 x 12 9.5052 - 3.8551(11) 0.8976 6.5375)111 0.7778

1152 fcc 8 X 12 x 12 9.5061 0.0036 3.8637(15) - 0.9008 6.5375)15)

6.5363(10)

0.7778

0.7778
1152 hcp 8 12 x12 9.5061 0.0006 - 3.8652(10) -0.9008

0 0.05
V.,

FIG. 1. System size dependence of the excess free energy of fcc (open

squares( and hcp (open circles) hard-sphere solids at a reduced density p/

pa= 0.7360. The excess free energy is in reduced units (kT 1). The system

size is characterized by the volume vo,o, of the largest cube that fits in the

periodic box (see the text); the unit of volume is a '. Note that the excess free

energy appears to be a smooth function of c-,2, for all but the smallest sys-

tem sizes even though this figure displays results of simulations on boxes of

widely different shape. The drawn line is the best fit of F: (feel to an

expression of the form F, = ii/v,.. The dashed line is the corre-

sponding

these and

fit to the HCP data. The intercepts and regression coefficients for

other fits have been collected in Table II.
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Table II. Note that for both extrapolations the difference in
excess free energy between hcp and fcc is very small:
0.0012(14) and 0.0015(15) for the 1/u,, and (In u,, Vu,
extrapolations respectively. Of course, we can alsofirst com-

pute AF "1, the free energy difference between corresponding

hcp and fcc systems, and then exrapolate to the thermody-

TABLE II. Estimate of the excess free energy (per particle) of the hard-

sphere fcc and hcp solids at infinite system size. The nature of the 1/u.,,,

and (In c000,)/17.o extrapolations are discussed in the text. As a measure for

the quality of the extrapolation procedure the regression coefficient R is also

shown. F (hen) - Prdfcc)-difference between the extrapolated excess

free energies. ffi'fficp)F1fcc11 -extrapolated free energy difference, i.e.,
Al" (see the text). The error in the last two digits is indicated

between brackets.

p/po= 0.7360

extrapolation

R (In u)/1,,..
extrapolation

R

(feel 5.9222(10) 0.97 5.9284(11) 0.97

(hen) 5.9234410) 0.996 5.9299(12) 0.996

F: (hop) - FZI fee) 0.0012(14) 0.0015(15)

[F(hcp) - /(fce)] 0.0017(14) 0.74 0.0021(17) 0.72

p/po = 0.7778
1/u.,

extrapolation

/In

extrapolation

Fr.)fcc1 6.5397(09) 0.97 6.5417110) 0.94

6.540401) 0.999 6.5436(13) 0.991

(hen) - (fee) 0.0007(14) 0.0019(16)

(F(hcp) Flfcc)( " - 0.0004414) 0.79 0.0011(16) 0.84
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namic limit. This procedure is not quite equivalent to the
previous one, because different data points have different
statistical weights. Due to a cancellation of N-dependent

contributions AFN will be much less strongly N dependent

than F. If we assume that there is no systematic number
dependence in AF" we obtain AF = OF' = 0.0001(8).

Assuming a /vo,,, or a (In dependence of AFN,

yields AF = 0.0017(14) and AF' = 0.0021(17), respec-
tively. The extrapolated excess free energies of the hcp and

fcc hard-sphere solid at p/po = 0.7778 have been collected in

the lower half of Table II. The corresponding differences

between the hcp and fcc free energies are F:' (hcp)
FZifcci= 0.0007 (1/v, extrapolation) and F;(hcp)-

F r(fcc) = 0.0019(16) [(In v, )/v,. extrapolation]. Once
again we can perform subtraction and extrapolation in re-

verse order. In that case we obtain for AF": 0.0012(11) (no

number dependence), 0.0004(14) (1/u,.,) and

0.0011(16) [(In )/v ] . As before, the free energy dif-

ference is very small. At neither density is the free energy

difference between hcp and fcc solids significantly different

from zero. The upper bound on the free energy difference is

once again largely determined by the uncertainty in the ex-

trapolation procedure. If we assume that the procedure in
which 4Fmis extrapolated to its infinite-system value is least

error prone lit involves the smallest number of assumptions),

we conclude that the free energy difference between hcp and

fcc hard-sphere solids close to melting is most likely in the

interval 0.001 < zIF" <0.002, where we have lumped the

results at both densities together. Note that the simulations
atp/po = 0.7778, which were performed over a wide range

of system sizes (between N = 72 and N = 1152), suggest that

there is a pronounced system size dependence of the free

energy difference AFN (see Fig. 2). We are notaware of other

direct computations of the hcp-fcc free energy difference

close to melting. However, several estimates exist for densi-

ties at or near close packing. For instance, Alder, Hoover,

and Young" conclude that at close packing ILIF < 0.04.

In later work by Alder, Carter and Young" and Alder,
Young, Mansigh, and Salzburg'° the free energy difference

between hcp and fcc at close packing is estimated to be AF

= 0.002. More recent work by Kratky" yields a much high-

er estimate of this free energy difference, viz, LIF

= 0.021(5) atp/po= 0.995. This value is much larger than

the earlier estimates, but fairly close to the free-volume pre-

diction AF' = 0.015(9). The present result is compatible

with the results of Alderet al. but it appears to be incompati-

ble with Kratky's value because if both the present results

and the results of Ref. II were correct, this would imply that

the pressure difference AP = Pies Pr must be, on aver-
age, LIP = 0.05 between melting and close packing. This rel-

atively large pressure difference is larger than the upper
bound for AP that follows from the MD results of Refs. 10

and 13. It should be noted that in view of the very small free

energy difference between hcp and fcc phases, the true state

of lowest free energy at densities below close packing must

contain stacking faults (i.e., stacking of the type ABACB-

CABA...). Of course, the contribution to the free energy due

to this kind of disorder vanishes in the thermodynamic limit.

0.01

MAX

0.02 0 03

FIG. 2. System size dependence of the free energy difference between hcp
and fcc hard-sphere solids of the same size and shape at a reduced density p/

Po= 0.7775. Although the error bars on these data points are relatively

large (but quite small in an absolute sense), the data suggest that the hcpfcc

free energy difference dF° is strongly system size dependent. The dashed

line is fit to the MC data of the form 4Fn = 4F" . The inter-

cept and regression coefficient for this fit are quoted in Table It. Units are as

in Fig. I.

CONCLUSION

In this paper we have developed a new method to com-

pute the absolute free energy of arbitrary solid phases. The

method is fast and accurate, and can also be applied to mo-

lecular solids" and solids containing defects. The basic idea

is to constrict a reversible path between the solid under con-

sideration and an Einstein crystal with the same structure.
In the previous section we have demonstrated the conceptu-

ally simplest but numerically least sophisticated example of

this method, namely one in which the spring constants are

switched on while the intermolecular interations remain un-

affected. For continuous intermolecular potentials the meth-

od may be expected to work much better if the intermolecu-

lar forces are swtiched off while the spring constant are being

switched on, in such a way that the mean-square particle
displacement remains approximately constant for all values

ofA. Even for hard-core interactions it is easy to find a well

behaved, nonlinear parametrization of the Hamiltonian
which yields the unperturbed Hamiltonian at A = 0 and the

perfect Einstein crystal at A =
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APPENDIX

In this Appendix wederive an approximate expression

for the free energy of an interacting Einstein crystal, which
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becomes exact at sufficiently high values of the spring con-

ofstant A. The configurational part of the partition function
the interacting Einstein crystal is of the following form:

Q(T; A ) = f exp[ )2] exp[ f/Xu(r,, )jdr",
1.0

(Al)

where 4 r, = r, r (r? is the lattice site of particle 1), /3 = 1/

kT and u(r,,) is the value of the pair potential of particles i

and j at separation r. Equation [All can be rewritten as

Q(T; A )== QAT; A )(exp[ fi'E u(r,,)}) , (A2)

where QE(T; ) is the partition function of the noninteracting

Einstein crystal with spring constant A. The subscript E in

Eq. (A2) stands for averaging over all configurations of the

noninteracting Einstein crystal. Such an average can, in

principle, be carried out by Monte Carlo (umbrella sam-
pling) but in the present case we use an expansion in cluster

functionsf = exp[ flu(r,,)] -

3193

(exp[flE u(r,,)]) = (I + +
E <,1 1<j k<I

(A3)

Note that for hard spheres = ), the prob-
ability that particles i and j in the noninteracting Einstein
crystal are separated by a distance Ir I <a. At high values of

A all ( ,) for i and j not nearest neighbors become negligi-

ble, while I( f7.7)1<1 (nn stands fo. "nearest neighbors"). In

this limit we may approximate Eq. (A3) by

(exp[ flE WA) (.1-77)Y"12. (A4)
.< E

In Eq. (A4) n stands for the number of nearest neighbors of a

particle i (for both hcp and fcc solids n = 12). To the same

level of approximation ( f ) can be evaluated by computing

the probability of overlap of two isolated harmonically
bound penetrating spheres of diametera at an average separ-

ation a = _ This probability can be evaluated ana-

lytically. The result is

= iferf[( /2)1(a + a)l + err /2)i(a a))

lexp( /3A (a - a)2/2 - exp[ (a + a)2/21)/ [ (2a /32 (AS)

The expression which relates the free energy of the interacting Einstein crystal to that of a noninteracting Einstein crystal FE

then becomes

F(T; A = F EV; Al- N(n/2)kT In( (P ). (A6)

From this expression for F (T; A) we can derive an estimate for the mean-square particle displacement in the interacting

Einstein crystal (.2)E = N ):

(.2) (2)E
l[aa - ( flA )- exp [ (a - a)21 + + - (13A ) ')exp [18A. + ar))

2a127 flA (PM000) A)

Q 'E(T; ) = N -31201./13Ari (A8)In Eq. (A7) ('2)E stands for the mean-square particle dis-

placement in the nonintracting Einstein crystal. The second

term on the right-hand side is the correction due to hard-

core interactions. Theabove expression for the mean-square

particle displacement in the interacting Einstein crystal can

be compared directly to Monte Carlo results at high values

of A. In fact, our choice of I, (see Eq. (6)) was dictated by

the requirement that the mean-square particle displacement

at A,.. obeyed Eq. (A7). On closer scrutiny of the MC results

we found that the MC results for the simulations at p/
po= 0.7360, A = 632.026 still deviated slightly [0(10 5)]
from Eq. (A7). However, it was found that this difference

= - (.2)1- the superscript "vir" stands for the

"virial" expression [Eq. (A7)] depends exponentially on A:

A = a exp( A /6 ) with a = 0(10') and 8 = 0(102). As a
consequence, Eq. (A6) overestimates the free energy of the

interacting Einstein crystal by an amount AF
= dA = a.2 exp( A ). This correction,

which turned out to be of the same order as the estimated
error in the free-energy integration [Eq. (6)] was taken into

account in the evaluation of the free energy of the hard-

sphere solid. At p/po = 0.7778, A = 1774.927 AF

was negligible. Finally, we also corrected for the fact that in

the Monte Carlo simulations we kept the center of mass of

the system fixed. Hence, our reference state is not the normal

Einstein crystal, but an Einstein crystal with fixed center of

mass. The partition function ofan Einstein crystal with fixed

center of mass is given by
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(A7)

Similarly, the state at A = 0 in our simulation was not the
normal hard-sphere solid, but a hard-sphere solid with fixed

center of mass. The partition function of the latter system
differs from the partition function of the former by a factor

v--,.
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Notes to Reprint 11.4

1. The method described in this paper was later extended to continuous potentials (see Reprint

IV.8).

2. Reference [15] was later published as (Frenkel and Mulder, Mol. Phys. 55 (1985) 1171).
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