
Progress In Electromagnetics Research B, Vol. 3, 207–218, 2008

NEW NUMERICAL METHOD FOR DETERMINING
THE SCATTERED ELECTROMAGNETIC FIELDS
FROM THIN WIRES

S. Hatamzadeh-Varmazyar

Department of Electrical Engineering
Islamic Azad University
Science and Research Branch, Tehran, Iran

M. Naser-Moghadasi

Department of Electrical Engineering
Faculty of Engineering
Shahed University
Tehran, Iran

Abstract—In this paper an effective numerical method for determin-
ing the scattered electromagnetic fields from thin wires is presented
and discussed. This problem is modeled by the integral equations of
the first kind. The basic mathematical concept is the method of mo-
ments. The problem of determining these scattered fields is treated in
detail, and illustrative computations are given for several cases.

1. INTRODUCTION

Over several decades, electromagnetic scattering problems have been
the subject of extensive researches (see [1–25]). Scattering from
arbitrary surfaces such as square, cylindrical, circular, spherical [1–7]
are commonly used as test cases in computational Electromagnetics,
because analytical solutions for scattered fields can be derived for these
geometries [1].

Determining the scattered electromagnetic fields from thin wires
leads to solve the integral equations of the first kind with complex
kernels. These integral equations are inherently ill-posed problems,
meaning that the solution is generally unstable, and small changes to
the problem can make very large changes to the answers obtained [26].

Some methods use the basis functions and transform the integral
equation to a linear system. For integral equations of the first kind,
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the obtained linear systems usually have a large condition number and
must be solved by an appropriate method. These methods are very
difficult to apply and count of operations is very high.

In this paper a new set of orthogonal basis functions called
triangular functions (TFs) is used and applied to the method of
moments for determining the scattered fields from thin wires. Using
this method, the first kind integral equation reduces to a well-condition
linear system of algebraic equations. Solving this system gives a stable
approximate solution with good accuracy for these problems.

First of all, some characteristics of TFs are described. Then the
method of moments is proposed for solving integral equations of the
first kind using triangular functions. The problem of determining
the scattered electromagnetic fields from thin wires is described in
detail and solved by the presented method. Finally, the illustrative
computations are given for several cases.

2. TRIANGULAR FUNCTIONS

Triangular functions have been introduced by A. Deb et al. [27] as a
new set of orthogonal functions.

Two m-sets of triangular functions (TFs) are defined over the
interval [0, T) as:

T1i(t) =


1 − t− ih

h
ih ≤ t < (i+ 1)h,

0 otherwise

T2i(t) =



t− ih

h
ih ≤ t < (i+ 1)h,

0 otherwise

(1)

where i = 0, 1, . . . , m − 1, with a positive integer value for m. Also,
consider h = T/m, and T1i as the ith left-handed triangular function
and T2i as the ith right-handed triangular function.

These functions are orthogonal [27], so:

∫ 1

0
T1i(t)T1j(t)dt =



h

3
i = j,

0 i �= j

∫ 1

0
T2i(t)T2j(t)dt =



h

3
i = j,

0 i �= j

(2)
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Now, consider the first m terms of left-handed triangular functions
and the first m terms of right-handed triangular functions and write
them concisely as m-vectors:

T1(t) = [T10(t), T11(t), . . . , T1m−1(t)]t

T2(t) = [T20(t), T21(t), . . . , T2m−1(t)]t
(3)

where, T1(t) and T2(t) are called left-handed triangular functions
(LHTF) vector and right-handed triangular functions (RHTF) vector
respectively.

The expansion of a function f(t) with respect to TFs, may be
compactly written as:

f(t) �
m−1∑
i=0

ciT1i(t) +
m−1∑
i=0

diT2i(t)

= cTT1(t) + dTT2(t)

(4)

where ci and di are constant coefficients with respect to T1i and T2i

for i = 0, 1, . . . , m− 1, respectively.
Above coefficients can be determined by sampling f(t) such that:

ci = f(ih),
di = f((i+ 1)h), for i = 0, 1, . . . , m− 1

(5)

But the optimal representation of f(t) can be obtained if the
coefficients ci and di are determined from the following two
equations [27]:

∫ (i+1)h

ih

f(t)T1i(t)dt = ci

∫ (i+1)h

ih

[T1i(t)]
2dt + di

∫ (i+1)h

ih

[T1i(t)T2i(t)]dt

∫ (i+1)h

ih

f(t)T2i(t)dt = ci

∫ (i+1)h

ih

[T1i(t)T2i(t)]dt + di

∫ (i+1)h

ih

[T2i(t)]
2dt

(6)

Note that: ∫ (i+1)h

ih
[T1i(t)T2i(t)]dt =

h

6
(7)

From Eq. (6) and Eq. (7) coefficients ci and di for i =
0, 1, . . . , m− 1 can be easily computed.

It is clear that for piecewise linear functions, optimal and non-
optimal representations are identical.
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3. MOMENTS METHOD USING TRIANGULAR
FUNCTIONS

In this section, the definition of triangular functions is extended over
any interval [a, b). Then, these functions as the basis functions are
applied to solve the integral equations of the first kind by moments
method.

Consider the following Fredholm integral equation of the first kind:∫ b

a
k(s, t)x(t)dt = y(s) (8)

where, k(s, t) and y(s) are known functions but x(t) is unknown.
Moreover, k(s, t) ∈ L2([a, b) × [a, b)) and y(s) ∈ L2([a, b)).
Approximating the function x(s) with respect to triangular functions
by (4) gives:

x(s) � cTT1(s) + dTT2(s) (9)

such that the m-vectors c and d are TFs coefficients of x(s) that should
be determined.

Substituting Eq. (9) into (8) follows:

cT

∫ b

a
k(s, t)T1(t)dt+ dT

∫ b

a
k(s, t)T2(t)dt � y(s) (10)

Now, let si, i = 0, 1, . . . , 2m − 1 be 2m appropriate points in
interval [a, b); putting s = si in Eq. (10) follows:

cT

∫ b

a
k(si, t)T1(t)dt+ dT

∫ b

a
k(si, t)T2(t)dt � y(si),

i = 0, 1, . . . , 2m− 1
(11)

or:

m−1∑
j=0

[
cj

∫ b

a
k(si, t)T1j(t)dt+ dj

∫ b

a
k(si, t)T2j(t)dt

]
� y(si),

i = 0, 1, . . . , 2m− 1

(12)

Now, replace � with =, hence Eq. (12) is a linear system of 2m
algebraic equations for 2m unknown components c0, c1, . . . , cm−1 and
d0, d1, . . . , dm−1. So, an approximate solution x(s) � cTT1(s) +
dTT2(s), is obtained for Eq. (8).
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Note that using (5) follows:

di = ci+1, for i = 0, 1, . . . , m− 2 (13)

So, for this representation the number of unknown coefficients in
algebraic system (12) can be reduced to m + 1, therefore it should
be considered just m + 1 equations with selecting m + 1 appropriate
points in interval [a, b).

4. ELECTROMAGNETIC SCATTERING FROM THIN
WIRES

Now, we solve the problem of determining the scattered electromag-
netic fields from a thin wire in free space. In Fig. 1, an electromagnetic
wave traveling from the right encounters a wire at angle α.

Figure 1. An electromagnetic wave encounters a wire of radius a and
length L at an angle α.

According to boundary condition on the conductive surface:

Einc + Escat = 0 (14)

An expression is required to relate the current induced on a wire
by an incident electric field to the scattered field it produces. For a wire
along z-axis with a radius a of length L, the relationship is [28, 29]:

d2A(z)
dz2

+ k2A(z) = j4πωε0Ez(z) (15)

A(z) =
∫ L/2

−L/2
Iz(z′)G(z, z′)dz′ (16)

G(z, z′) =
∫ 2π

0

e−jkR

R
dφ′ (17)
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R =

√
(z − z′)2 +

(
2a sin

φ′

2

)2

(18)
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Figure 2. Current distribution along the thin wire of length 1
2λ for

α = π
2 .

In many applications, the wire radius is very small compared with
a wavelength. So, R is often approximated using the following form:

R ≈
√

(z − z′)2 + a2 (19)

The incident electric field along the conductor from a plane wave
at angle α is:

Ez = ejk cos α sinα (20)

Consider a special case of a plane wave at broadside (α = π
2 ).

This plane wave will drive the current in a symmetrical manner. This
implies that I(z) = I(−z), which means A(z) = A(−z). For these
conditions, the final form of the integral equation of the wire current
is [28]:∫ L/2

−L/2
Iz(z′)G(z, z′)dz′ = C1 cos kz + j

4πωε0
k2 sinα

ejkz cos α (21)
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Figure 3. Current distribution along the thin wire of length λ for
α = π

2 .
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Figure 4. Current distribution along the thin wire of length 3
2λ for

α = π
2 .
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Figure 5. Current distribution along the thin wire of length 2λ for
α = π

2 .
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Figure 6. Radiation pattern of the thin wire of length 2λ.
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Figure 7. Radiation pattern of the thin wire of length 4λ.

This is a Fredholm integral equation of the first kind and C1 is an
unknown coefficient that must be determined. For determining C1, the
number of match points must be m+1 instead of m. The approximate
solution of this equation gives the current distribution along the wire.
Considering a = 0.001L, the current distributions for L = 1

2λ, λ,
3
2λ

and 2λ, and for α = π
2 are shown in Figs. 2–5 respectively.

The radiation pattern of this wire is obtained of the following
equation [30]:

f(α) =
∫ L/2

−L/2
Iz(z′)ejkz′ cos αdz′ (22)

Also, it is possible to define a logarithmic quantity with respect
to f , so that:

F = 20 log10 |f | (dB) (23)

Figures 6 and 7 give the radiation pattern F for L = 2λ and 4λ
respectively.
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5. CONCLUSION

The presented method in this paper is applied to solve the problem of
determining the scattered electromagnetic fields from thin wires.

As the numerical results showed, this method reduces an integral
equation of the first kind that is generally ill-posed to a well-condition
linear system of algebraic equations.

The problem of determining the scattered fields was treated in
detail. The presented approach can be generalized to apply to objects
of arbitrary geometry.

REFERENCES

1. Mishra, M. and N. Gupta, “Monte Carlo integration technique
for the analysis of electromagnetic scattering from conducting
surfaces,” Progress In Electromagnetics Research, PIER 79, 91–
106, 2008.

2. Arnold, M. D., “An efficient solution for scattering by a perfectly
conducting strip grating,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 7, 891–900, 2006.

3. Zhao, J. X., “Numerical and analytical formulations of the
extended MIE theory for solving the sphere scattering problem,”
Journal of Electromagnetic Waves and Applications, Vol. 20,
No. 7, 967–983, 2006.

4. Ruppin, R., “Scattering of electromagnetic radiation by a perfect
electromagnetic conductor sphere,” Journal of Electromagnetic
Waves and Applications, Vol. 20, No. 12, 1569–1576, 2006.

5. Ruppin, R., “Scattering of electromagnetic radiation by a perfect
electromagnetic conductor cylinder,” Journal of Electromagnetic
Waves and Applications, Vol. 20, No. 13, 1853–1860, 2006.

6. Hussein, K. F. A., “Efficient near-field computation for radiation
and scattering from conducting surfaces of arbitrary shape,”
Progress In Electromagnetics Research, PIER 69, 267–285, 2007.

7. Hussein, K. F. A., “Fast computational algorithm for EFIE
applied to arbitrarily-shaped conducting surfaces,” Progress In
Electromagnetics Research, PIER 68, 339–357, 2007.

8. Kishk, A. A., “Electromagnetic scattering from composite objects
using a mixture of exact and impedance boundary conditions,”
IEEE Transactions on Antennas and Propagation, Vol. 39, No. 6,
826–833, 1991.

9. Caorsi, S., A. Massa, and M. Pastorino, “A numerical solution
to full-vector electromagnetic scattering by three-dimensional



Progress In Electromagnetics Research B, Vol. 3, 2008 217

nonlinear bounded dielectrics,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 43, No. 2, 428–436, 1995.

10. Shore, R. A. and A. D. Yaghjian, “Dual-surface integral equations
in electromagnetic scattering,” IEEE Transactions on Antennas
and Propagation, Vol. 53, No. 5, 1706–1709, 2005.
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