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We discuss a numerical method to compute the homogeneous solutions of the Teukolsky
equation which is the basic equation of the black hole perturbation method. We use the
formalism developed by Mano, Suzuki and Takasugi, in which the homogeneous solutions
of the radial Teukolsky equation are expressed in terms of two kinds of series of special
functions, and the formulas for the asymptotic amplitudes are derived explicitly. Although
the application of this method was previously limited to the analytical evaluation of the
homogeneous solutions, we find that it is also useful for numerical computation. We also
find that so-called “renormalized angular momentum parameter”, ν, can be found only in
the limited region of ω for each l, m if we assume ν is real (here, ω is the angular frequency,
and l and m are degree and order of the spin-weighted spheroidal harmonics respectively).
We also compute the flux of the gravitational waves induced by a compact star in a circular
orbit on the equatorial plane around a rotating black hole. We find that the relative error
of the energy flux is about 10−14 which is much smaller than the one obtained by usual
numerical integration methods.

§1. Introduction

Inspirals of stellar-mass compact objects into a supermassive black hole at galac-
tic nuclei are expected to be one of the most important sources of the gravitational
waves for space-based detectors, such as the Laser Interferometer Space Antenna
(LISA).1) Current best estimate of the number of such event is given by Gair et
al.2) They estimated the number of event for the inspirals of 10M� black holes into
106M� supermassive black holes to be 660 by 3 years observation. By observing
gravitational waves from such systems, we may be able to obtain information of the
central black hole’s spacetime geometry encoded in multipole moments, and test the
validity of the no-hair theorem of black hole.3) We may also obtain astrophysical in-
formation such like the mass distribution of compact objects in galactic nuclei. The
optimal detection strategy for such gravitational waves is matched filtering, which
requires theoretical waveforms to be correlated with the data. Although we may not
need very accurate waveforms in detection, we will need very accurate theoretical
waveforms to extract astrophysical information concerning the source.

To predict the waveforms of extreme mass ratio inspirals, we adopt the black
hole perturbation approach. In this approach, a compact star is treated as a point
particle, and the mass of the compact star, µ, is assumed to be very small compared
to the mass of the black hole, M , i.e. µ/M � 1. In this context, the Teukolsky equa-
tion4) describes the evolution of a perturbation of the Kerr black hole spacetime. The
standard approach to solve the Teukolsky equation is based on the Green function
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method. The Green function is constructed using two kinds of homogeneous solu-
tions. The solution of the Teukolsky equation is obtained by integrating the Green
function multiplied by the source term. In the case of a Kerr black hole, the ho-
mogeneous solution is calculated usually by the Sasaki-Nakamura equation,5) which
is derived with the Sasaki-Nakamura transformation from the Teukolsky equation.
The Sasaki-Nakamura transformation is a generalization of the Chandrasekhar trans-
formation6) by which we can obtain the Regge-Wheeler equation from the Bardeen-
Press-Teukolsky equation4),7) in the Schwarzschild case. The Sasaki-Nakamura equa-
tion is also a powerful formula when we compute the gravitational wave flux induced
by particles in unbound orbits.

In the past, there were several works which calculated the flux and waveforms
of gravitational waves induced by a compact star around a black hole computed
by the Teukolsky and the Sasaki-Nakamura equations, and its effects to the orbital
evolution of the star under the influence of radiation reaction. Here, we list some of
recent works treating bound orbits of the star. Many other works can also be found
in a review article by Nakamura et al.8)

Shibata9) calculated the gravitational waves in the case of circular, equatorial
orbits around a Kerr black hole. Finn and Thorne10) consider the same case, and
discussed the signal-to-noise ratio of such gravitational waves when detected by LISA
and the detectability of such sources by LISA. Tanaka et al.11) and Cutler et al.12) cal-
culated the gravitational waves in the case of eccentric orbits around a Schwarzschild
black hole, and discussed orbital evolution of the star. Apostolatos et al.13) consider
the slightly eccentric orbits around a Schwarzschild black hole, and discussed the
stability of the circular orbit under the influence of radiation reaction. Kennefick14)

consider the slightly orbits on the equatorial plane around a Kerr black hole, and
discussed the stability of the circular orbit under the influence of radiation reaction.
Shibata15) calculated the gravitational waves in the case of eccentric, equatorial or-
bits around a Kerr black hole, and discuss the importance of the black hole spin and
other relativistic effects. Glampedakis and Kennefick16) calculated the gravitational
waves in the case of eccentric, equatorial orbits around a Kerr black hole, and discuss
the orbital evolution of the star under the influence of radiation reaction. Shibata17)

calculated the gravitational waves in the case of circular, nonequatorial orbits around
a Kerr black hole, and discussed the radiation reaction effects. Hughes18),19) calcu-
lated the gravitational waves in the case of circular, nonequatorial orbits around a
Kerr black hole, and discuss the radiation reaction effects.

The source term of the Teukolsky equation is obtained by specifying the orbit
of the particle. In the case of a Kerr black hole, orbits around it are specified by
the energy, the z-component of the angular momentum, and the Carter constant.
In the case of bound orbits, when the orbit is limited to the equatorial plane but is
not circular, the orbits show exhibit the “zoom-whirl” property as the eccentricity
becomes larger.16) When the orbit is no longer limited to the equatorial plane, which
may be important for sources of LISA, the orbits become more complicated. In such
cases, we have to trace the orbit for much longer time than the dynamical time of
the system in order to integrate the source term multiplied by the Green function
accurately. Further, many side-bands in the spectrum of gravitational waves must
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be calculated to establish the good accuracy.
Let us assume for simplicity that LISA will observe gravitational waves at the

frequency f ∼ 10−2 Hz for one year. The total cycle of waves is typically Ncycle ∼
105. Thus, the relative error for the luminosity ∆Ė/Ė required to establish the
accuracy for the cycle, ∆Ncycle ≤ 1 is ∆Ė/Ė ≤ 10−520) in the simplest, circular
orbit cases. For more complicated orbits, the requirement to the accuracy would be
stronger than this. Although the accuracy, 10−5, is already established in many of
previous works, it would be very helpful for the future data analysis of LISA if we
had more efficient and accurate methods to compute the homogeneous solutions of
the Teukolsky equation to calculate the gravitational wave flux.

Among approaches to obtain homogeneous solutions of the Teukolsky equation,
Leaver21) formulated a method to express them in terms of a series of Coulomb
wave functions. Although this series is convergent at the spatial infinity, it does not
converge around the horizon. For this reason, it was suggested that a power series
expansion around the horizon be used to obtain all of the asymptotic amplitudes
of the homogeneous solution which are needed in the Green function. Using this
method, Tagoshi and Nakamura22) carried out a high precision computation of a
homogeneous solution of the Teukolsky equation and obtained high precision nu-
merical data of the gravitational wave flux induced by a particle in a circular orbit
around a Schwarzschild black hole. In this calculation, the convergence of the series
of Coulomb wave functions is very fast, and we can evaluate the series of Coulomb
wave functions very accurately. Contrastingly, because the convergence of the power
series expansion is very slow, it is not easy to evaluate it very accurately. In fact,
the accuracy of the numerical data of the homogeneous solution is limited by the
accuracy of the power series expansion.

Later, Mano, Suzuki and Takasugi (MST)23) formulated a method to express a
homogeneous solution in a series of hypergeometric functions around the horizon.
This series has a very convenient property that allows it to be matched with the
series of Coulomb wave functions around the infinity. Specifically, this property
is that the three term recurrence relation among the expansion coefficients for the
hypergeometric case is the same as that in Coulomb case. Owing to this property, it
is possible to match the two series expansions analytically, and we can express the
asymptotic amplitude of the homogeneous solution in terms of only the expansion
coefficients, not in terms of the hypergeometric or Coulomb functions themselves.
This property is that which distinguishes the MST method from the Leaver method.
Because we do not need to use a power series expansion to determine the asymptotic
amplitudes by numerical matching, it is expected that the matching can be done
very efficiently in the MST method.

So far, the MST method has been used only in analytic calculations. There is a
close relation between the Coulomb or hypergeometric series expansion and the low
frequency expansion of the Teukolsky equation. Here, low frequency usually implies
small post-Minkowskian or post-Newtonian expansion parameters. We can calculate
the higher order terms of the post-Newtonian expansion of the gravitational wave
flux from a black hole24),25) systematically using this method. Tagoshi, Mano and
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Takasugi26) also computed the energy absorbed by a rotating black hole analytically
assuming that the orbit of the particle is very large.

In this paper, we use the MST formalism for numerical computation of the
homogeneous Teukolsky equation. We discuss the numerical method to calculate
the homogeneous solutions in detail. One of the most important problem involving
the MST formalism is to determine the so-called “renormalized angular momentum”
ν by solving the equation g(ν) = 0, which is expressed in terms of continued fractions.
We investigate the numerical properties of this function g(ν). We find that, for each
s, �,m and q (s is the spin index of the Teukolsky equation, �,m are the indices
of the spin weighted spheroidal harmonics, and q is the Kerr parameter divided by
the mass of black hole, q = a/M .), there is a maximum value of Mω for which we
can find ν, assuming ν to be real. Because the applicability of the MST formalism
depends on the existence of ν, this is a serious problem. Although our preliminary
investigation suggests that we can find ν if we assume it to be complex, more effort
is needed to establish the numerical accuracy. Therefore, we restrict the region of
Mω for which we can find real ν.

Once we have the renormalized angular momentum ν, it is straightforward to
evaluate the expansion coefficients and the series of hypergeometric functions or
Coulomb wave functions. As expected, we find that the convergence of the series
of hypergeometric functions and Coulomb wave functions is very fast, and we can
evaluate the homogeneous solutions very accurately.

As a test calculation, we compute the gravitational wave flux induced by a
particle in a circular orbit on the equatorial plane around a Kerr black hole. This is
because that the numerical data for the energy flux can easily be compared with the
one obtained by other methods. The accuracy of the numerical data is compared
with that of previous works.

This paper is organized as follows. In §2, we review the Teukolsky formalism
and the MST method. In §3, we discuss the numerical method to calculate the
homogeneous solutions. We present numerical results of the gravitational wave flux
induced by a particle in circular, equatorial orbits around a Kerr black hole in §3.5.
Section 4 is devoted to a summary and discussion. Throughout this paper, we use
units in which G = c = 1.

§2. Analytic solutions of the homogeneous Teukolsky equation

2.1. The homogeneous solutions in series of hypergeometric functions and Coulomb
wave functions

The radial Teukolsky equation is given by (see Appendix A)

∆2 d

dr

(
1
∆

dR�mω

dr

)
− V (r)R�mω = T�mω, (2.1)

where the potential term V (r) is given by

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ. (2.2)
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Here, ∆ = r2 − 2Mr + a2 = (r − r+)(r − r−) with r± = M ± √
M2 − a2, K =

(r2 + a2)ω −ma and λ is the eigenvalue of the angular Teukolsky equation.
In the MST method, the homogeneous solutions of the Teukolsky equation are

expressed in terms of two kinds of series of special functions.23),27) One consists
of series of hypergeometric functions, and the other consists of series of Coulomb
wave functions. The former is convergent at the horizon and the latter at infinity.
We match the two kinds of solutions in the overlapping region of convergence. We
thereby obtain analytical expressions of the asymptotic amplitudes of the solution.
(See Ref. 25) for a more recent review.)

First, we present a solution consisting of a series of hypergeometric functions.
For the incoming solution Rin

lmω, we define pin by

Rin
lmω = eiεκx(−x)−s−i(ε+τ)/2(1 − x)i(ε−τ)/2pin(x). (2.3)

The function pin is expressed in a series of hypergeometric functions as

pin(x) =
∞∑

n=−∞
anF (n+ ν + 1 − iτ,−n− ν − iτ ; 1 − s− iε− iτ ;x), (2.4)

where x = ω(r+ − r)/εκ, ε = 2Mω, κ =
√

1 − q2, q = a/M, τ = (ε−mq)/κ and
F (α, β; γ;x) is the hypergeometric function.

This expression can be rewritten, using the analytic properties of hypergeometric
functions, into the form of a series expansion with better convergence properties for
large |x| as

Rin
lmω = Rν

0 +R−ν−1
0 , (2.5)

where

Rν
0 = eiεκx(−x)−s− i

2
(ε+τ)(1 − x)

i
2
(ε+τ)+ν

×
∞∑

n=−∞
fν

n

Γ (1 − s− iε− iτ)Γ (2n+ 2ν + 1)
Γ (n+ ν + 1 − iτ)Γ (n+ ν + 1 − s− iε)

× (1 − x)nF

(
−n− ν − iτ,−n− ν − s− iε;−2n− 2ν;

1
1 − x

)
. (2.6)

Next, we present a solution in the form of series of Coulomb wave functions. Let
us denote a Teukolsky function by RC. We define the function fν(z) through the
relation

RC = z−1−s
(
1 − εκ

z

)−s−i(ε+τ)/2
fν(z). (2.7)

The function fν(z) is expressed in a series of Coulomb wave functions as

fν(z) =
∞∑

n=−∞
(−i)n (ν + 1 + s− iε)n

(ν + 1 − s+ iε)n
anFn+ν(−is− ε, z), (2.8)

where z = ω(r−r−), (a)n = Γ (a+n)/Γ (a) and FN (η, z) is a Coulomb wave function
defined by

FN (η, z) = e−iz2NzN+1Γ (N + 1 − iη)
Γ (2N + 2)

Φ(N + 1 − iη, 2N + 2; 2iz). (2.9)
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Here Φ(α, β; z) is the confluent hypergeometric function, which is regular at z = 0
(see §13 of Ref. 28)).

In this method, the expansion coefficients of the series of hypergeometric func-
tions and the series of Coulomb wave functions {an} exhibit the same recurrence
relation. We find that the expansion coefficients an satisfy the three-term recurrence
relation

αν
nan+1 + βν

nan + γν
nan−1 = 0, (2.10)

where

αν
n =

iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)(n+ ν + 1 + iτ)
(n+ ν + 1)(2n+ 2ν + 3)

,

βν
n = −λ− s(s+ 1) + (n+ ν)(n+ ν + 1) + ε2 + ε(ε−mq) +

ε(ε−mq)(s2 + ε2)
(n+ ν)(n+ ν + 1)

,

γν
n = − iεκ(n+ ν − s+ iε)(n+ ν − s− iε)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)
.

We note that the parameter ν introduced in the above formulas does not exist in
the Teukolsky equation. This parameter is introduced so that both series converge
and actually represent a solution of the Teukolsky equation. We next introduce the
following quantities:

Rn ≡ an

an−1
, Ln ≡ an

an+1
. (2.11)

We can express Rn and Ln in terms of continued fractions as

Rn = − γν
n

βν
n + αν

nRn+1

= − γν
n

βν
n−

αν
nγ

ν
n+1

βν
n+1−

αν
n+1γ

ν
n+2

βν
n+2−

· · · , (2.12)

Ln = − αν
n

βν
n + γν

nLn−1

= − αν
n

βν
n−

αν
n−1γ

ν
n

βν
n−1−

αν
n−2γ

ν
n−1

βν
n−2−

· · · . (2.13)

The expressions for Rn and Ln are valid if these continued fractions converge. It
has been proved29) that the continued fraction of the right-hand side of Eq. (2.12)
converges if and only if the recurrence relations Eq. (2.10) possess a minimal solution
as n → ∞. A similar theorem can be proven regarding the converge as n → −∞ of
the right-hand side of Eq. (2.13). Because the recurrence relation Eq. (2.10) possesses
minimal solutions as n → ±∞, the continued fractions on the right-hand sides of
Eqs. (2.12) and (2.13) converge. Although minimal solutions in the limits n → ∞
and n → −∞ do not coincide in general, we can match them by appropriately
choosing ν. Suppose {fν

n} is a solution that is minimal for both n → ±∞. It is
proved29) that the following relations are satisfied:

R̃n ≡ fν
n

fν
n−1

= − γν
n

βν
n−

αν
nγ

ν
n+1

βν
n+1−

αν
n+1γ

ν
n+2

βν
n+2−

· · · , (2.14)
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L̃ν
n ≡ fν

n

fν
n+1

= − αν
n

βν
n−

αν
n−1γ

ν
n

βν
n−1−

αν
n−2γ

ν
n−1

βν
n−2−

· · · . (2.15)

This implies the relation

R̃nL̃n−1 = 1. (2.16)

If we choose ν such that it satisfies the implicit equation for ν, Eq. (2.16), for a
certain n, we can obtain a minimal solution {fν

n} that is valid over the entire range
−∞ < n <∞. For the minimal solution, fν

n , we have

lim
n→∞n

fν
n

fν
n−1

=
iεκ

2
, lim

n→−∞n
fν

n

fν
n+1

= − iεκ
2
. (2.17)

The minimal solution is important for the convergence of the series Eqs. (2.4)
and (2.8). It can be proved that if we use the minimal solution {fν

n} for the expansion
coefficients {an}, the series of hypergeometric functions Eq. (2.4) converges for x in
the range −∞ < x ≤ 0. (In fact, this is true for all complex values of x, except at
|x| = ∞.) It has also been proved that if the expansion coefficients are given by the
minimal solution, the series Eq. (2.8) converges for z > εκ or, equivalently, r > r+.

Instead of Eq. (2.16), we can use an equivalent but practically more convenient
form of an equation that determines the value of ν. Dividing Eq. (2.10) by an, we
find

βν
n + αν

nR̃n+1 + γν
nL̃n−1 = 0, (2.18)

where Rn+1 and Ln−1 are given by the continued fractions Eqs. (2.14) and (2.15)
respectively.

2.2. Matching and the asymptotic amplitudes

Now, we match the two kinds of solutions, Rν
0 and Rν

C. If we expand solutions
in powers of x̃ = 1−x ≡ z/(εκ), we see that both solutions behave like x̃ν multiplied
by a single valued function of x̃ for large | x̃ |, as long as ω > 0. Thus, if we assume
ω > 0, the analytic properties of Rν

0 and Rν
C are the same. That implies that these

two solutions are identical up to a constant multiple. We set

Rν
0 = KνR

ν
C. (2.19)

Then, by comparing each power of x̃ in the region where both solutions converge,
i.e. 1 �| x̃ |<∞, we find

Kν =
eiεκ(2εκ)s−ν−N2−siNΓ (1 − s− iε− iτ)Γ (N + 2ν + 2)

Γ (N + ν + 1 − s+ iε)Γ (N + ν + 1 + iτ)Γ (N + ν + 1 + s+ iε)

×
( ∞∑

n=N

(−1)nΓ (n+N + 2ν + 1)
(n−N)!

Γ (n+ ν + 1 + s+ iε)Γ (n+ ν + 1 + iτ)
Γ (n+ ν + 1 − s− iε)Γ (n+ ν + 1 − iτ)

fν
n

)

×
(

N∑
n=−∞

(−1)n

(N − n)!(N + 2ν + 2)n

(ν + 1 + s− iε)n

(ν + 1 − s+ iε)n
fν

n

)−1

, (2.20)
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where N can be any integer, and the factor Kν should be independent of the choice
of N .

Now, we have an alternative expression for the ingoing-wave function Rin
lmω,

Rin
lmω = KνR

ν
C +K−ν−1R

−ν−1
C , (2.21)

which converges for r > r+, including r = ∞. Combining Eq. (2.21) with Eq. (2.4),
which converges everywhere except at r = ∞, we have a complete set of analytic
solutions for the ingoing-wave function.

Now, we can obtain analytical expressions for the asymptotic amplitudes Btrans
lmω ,

Binc
lmω and Bref

lmω, of Rin
lmω defined in Eq. (A.8). Comparing Rin

lmω with Eq. (2.4) in
the limit of r → r+ and Eq. (2.21) in the limit of r → ∞, we find

Btrans
lmω =

(εκ
ω

)2s
ei ε+τ

2
ln κ

∞∑
n=−∞

fν
n ,

Binc
lmω = ω−1

[
Kν − ie−iπν sinπ(ν − s+ iε)

sinπ(ν + s− iε)
K−ν−1

]
Aν

+e
−iε ln ε,

Bref
lmω = ω−1−2s[Kν + ieiπνK−ν−1]Aν

−e
iε ln ε, (2.22)

where

Aν
+ = 2−1+s−iεe−

πε
2 e

π
2
i(ν+1−s)Γ (ν + 1 − s+ iε)

Γ (ν + 1 + s− iε)

+∞∑
n=−∞

fν
n ,

Aν
− = 2−1−s+iεe−

πε
2 e

−π
2

i(ν+1+s)
+∞∑

n=−∞
(−1)n (ν + 1 + s− iε)n

(ν + 1 − s+ iε)n
fν

n . (2.23)

We can also obtain an analytical expression for Rup
lmω by transforming RC. We

note that an analytical property of the confluent hypergeometric function,

Φ(α, γ, x) =
Γ (γ)

Γ (γ − α)
eiαπσΨ(α, γ, x) +

Γ (γ)
Γ (ω)

eiπ(α−γ)σΨ(γ − α, γ,−x). (2.24)

Here σ = sgn[Im(x)] and Ψ(a, c, x) is the irregular confluent hypergeometric function.
We then rewrite Rν

C as

Rν
C = Rν

+ +Rν
−, (2.25)

where

Rν
+ = 2νe−πεeiπ(ν+1−s)Γ (ν + 1 − s+ iε)

Γ (ν + 1 + s− iε)
e−izzν+i(ε+τ)/2(z − εκ)−s−i(ε+τ)/2

×
∞∑

n=−∞
infν

n(2z)nΨ(n+ ν + 1 − s+ iε, 2n+ 2ν + 2; 2iz), (2.26)

Rν
− = 2νe−πεe−iπ(ν+1+s)eizzν+i(ε+τ)/2(z − εκ)−s−i(ε+τ)/2

∞∑
n=−∞

in

× (ν + 1 + s− iε)n

(ν + 1 − s+ iε)n
fν

n(2z)nΨ(n+ ν + 1 + s− iε, 2n+ 2ν + 2;−2iz). (2.27)
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For large | x |, Ψ(α, γ, x) behaves as

Ψ(α, β, x) → x−α as | x |→ ∞. (2.28)

We therefore have

Rν
+ = Aν

+z
−1e−i(z+ε ln z),

Rν
− = Aν

−z
−1−2sei(z+ε ln z). (2.29)

We can see that the functions Rν
+ and Rν− are ingoing-wave and outgoing-wave solu-

tions at infinity, respectively. In particular, we have the upgoing solution expressed
in terms of Coulomb wave functions as

Rup
lmω = Rν

−. (2.30)

Now, we can obtain an analytical expression of the asymptotic amplitude, Ctrans
lmω ,

of Rup
lmω defined in Eq. (A.9). We find

Ctrans
lmω = ω−1−2seiε ln εAν

−. (2.31)

§3. Numerical methods

In order to compute the homogeneous solutions of the Teukolsky equation, we
first compute the eigenvalue λ of the spin weighted spheroidal harmonics. This is
discussed in Appendix B. In this section, we discuss a numerical method to compute
the homogeneous solution of the radial part of the Teukolsky equation, assuming λ
is given. The eigenvalue λ can be computed similar in to ν. Although the MST
formalism was developed for arbitrary values of the spin s, in the rest of paper we
consider only the case s = −2, because this is important to evaluate gravitational
waves.

3.1. Continued fractions

Because the computation of continued fractions is very important in our numer-
ical method, we first review Steed’s algorithm to compute continued fractions.30) Let
us define a continued fraction by

hn ≡ An

Bn
= b0 +

a1

b1+
a2

b2+
a3

b3+
· · · an

bn
. (3.1)

It can be shown that An and Bn satisfy the recurrence relations(
An

Bn

)
=
(
An−1 An−2

Bn−1 Bn−2

)(
bn
an

)
,

(
A0 A−1

B0 B−1

)
=
(
b0 1
1 0

)
. (3.2)

Here, we introduce the quantityDn = Bn−1/Bn. Then, the above recurrence relation
of Bn is identical to

Dn =
1

bn + anDn−1
. (3.3)
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We can rewrite the right-hand side of Eq. (3.1) in terms of Dn as

hn =
An

Bn
=
bnAn−1 + anAn−2

bnBn−1 + anBn−2
,

=
bn(An−1/Bn−1) + an(An−2Bn−2/Bn−2Bn−1)

bn + an(Bn−2/Bn−1)
,

= (hn−1bn + hn−2Dn−1an)Dn. (3.4)

Furthermore, from Eq. (3.3), we have the relation anDn−1Dn = 1 − bnDn, which
then yields the difference between hn and hn−1,

∆hn ≡ hn − hn−1,

= (bnDn − 1)(hn−1 − hn−2),
= (bnDn − 1)∆hn−1. (3.5)

Steed’s algorithm is summarized as follows. We first set h0 = b0, D1 = 1/b1, ∆h1 =
a1/b1 and h1 = h0+∆h1. We then compute hn beginning with n = 2 until | ∆hn/hn |
is smaller than the required accuracy.

3.2. Determination of the renormalized angular momentum ν

The parameter ν is determined as a solution of Eq. (2.18). In particular, we set
n = 0 and obtain

g(ν) ≡ βν
0 + αν

0R̃1 + γν
0 L̃−1 = 0, (3.6)

where R̃1 and L̃−1 are expressed by the continued fractions Eqs. (2.14) and (2.15),
respectively.

In order to search for a root of the implicit equation g(ν) = 0, we can use various
numerical techniques. Among them, we adopt Brent’s algorithm (e.g. Ref. 31)). In
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Fig. 1. g(ν) for � = 2, m = 2.
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order to search for a root of implicit equations, we need an initial value of the search
which is not very far away from the root of the equation. In the case that Mω
is small, we can use an analytic expression of ν as the initial value. Among the
infinite number of roots, there is an analytic expression of ν in the form of a series
of ε ≡ 2Mω given by

ν = �+
1

2�+ 1

[
−2 − s2

�(�+ 1)
+

[(�+ 1)2 − s2]2

(2�+ 1)(2�+ 2)(2�+ 3)

− (�2 − s2)2

(2�− 1)2�(2�+ 1)

]
ε2 +O(ε3). (3.7)
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When Mω is not very large (less than ∼ 0.36 in the case q = 0), this expression
is useful as an initial value for the root search algorithm. Note that the analytic
expression for ν truncated at O(ε2) is always slightly less than �. Thus, in practice,
it is sufficient to search for a root in the range � − 1/2 < ν < �. We can see in
Figs. 1–4 that the function g(ν) is smooth in this range. Although numerically we
find poles at half integer values of ν, it is not difficult to find a root in this region.
In fact, we can find a root as long as Mω � 0.36 in the case � = m = 2 and q = 0.

However, the situation is different when Mω becomes larger. In this case, ν
approaches �−1/2, and beyond a certain value of Mω, it becomes impossible to find
roots ν. The maximum values of Mω for which real ν can be found in the region
� − 1/2 < ν < � are listed in Table I. The maximum values depend on �,m and
q. This maximum value of Mω increases with �. The maximum value is larger for
q > 0 than for q < 0. The behavior of ν beyond Mω in Table I depends on � and
m. In some cases, we can find ν as a real value. However, in other cases, there is no
root of Eq. (3.6) for any real value of ν.

We note that we have attempted to find a complex root ν. Our preliminary
investigation suggests that there is such a root in the complex value of ν when we
cannot find a real root. However, more work is needed to confirm this, and we leave
this as a future project. In the rest of this paper, we concentrate on the case of real
ν and the region of ε in which we can find such a root. The values of ν for various
values of Mω = ε/2, �, and q are plotted in Fig. 5.

Note that there are some roots at integer and half integer values of ν that are
independent of �,m, q, and ω. Although they are solutions of g(ν) = 0, they do not
connect the two minimal solutions in the limits n→ ±∞.

When ν is a root of Eq. (3.6), the quantities ν+k (k = ±1,±2, · · · ) are also roots
of Eq. (3.6), since ν only appears as ν+n in the continued fractions of Eq. (3.6). This
fact can be checked numerically for k = ±1. However, as we can see in Figs. 1–4,
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Table I. Maximum values of Mω for which real ν is found.

� m q = 0.9 q = 0 q = −0.9 � m q = 0.9 q = 0 q = −0.9

2 2 0.39 0.36 0.32 8 8 1.08 1.00 0.92

2 1 0.44 0.36 0.34 8 7 1.07 1.00 0.93

2 0 0.38 0.36 0.38 8 6 1.06 1.00 0.94

3 3 0.58 0.53 0.45 8 5 1.05 1.00 0.95

3 2 0.61 0.53 0.48 8 4 1.04 1.00 0.96

3 1 0.59 0.53 0.51 8 3 1.03 1.00 0.97

3 0 0.55 0.53 0.55 8 2 1.02 1.00 0.98

4 4 0.73 0.66 0.57 8 1 1.01 1.00 0.99

4 3 0.73 0.66 0.60 8 0 1.00 1.00 1.00

4 2 0.72 0.66 0.63 9 9 1.14 1.06 0.99

4 1 0.70 0.66 0.65 9 8 1.13 1.06 1.00

4 0 0.68 0.66 0.68 9 7 1.12 1.06 1.00

5 5 0.84 0.77 0.68 9 6 1.12 1.06 1.01

5 4 0.83 0.77 0.70 9 5 1.11 1.06 1.02

5 3 0.82 0.77 0.72 9 4 1.10 1.06 1.03

5 2 0.80 0.77 0.74 9 3 1.09 1.06 1.04

5 1 0.79 0.77 0.76 9 2 1.08 1.06 1.05

5 0 0.77 0.77 0.77 9 1 1.07 1.06 1.06

6 6 0.93 0.85 0.77 9 0 1.06 1.06 1.06

6 5 0.92 0.85 0.79 10 10 1.20 1.12 1.05

6 4 0.91 0.85 0.80 10 9 1.19 1.12 1.05

6 3 0.89 0.85 0.82 10 8 1.19 1.12 1.06

6 2 0.88 0.85 0.83 10 7 1.18 1.12 1.07

6 1 0.87 0.85 0.84 10 6 1.17 1.12 1.08

6 0 0.86 0.85 0.86 10 5 1.16 1.12 1.09

7 7 1.01 0.93 0.85 10 4 1.16 1.12 1.09

7 6 1.00 0.93 0.86 10 3 1.15 1.12 1.10

7 5 0.99 0.93 0.88 10 2 1.14 1.12 1.11

7 4 0.98 0.93 0.89 10 1 1.13 1.12 1.12

7 3 0.96 0.93 0.90 10 0 1.12 1.12 1.12

7 2 0.95 0.93 0.91

7 1 0.94 0.93 0.92

7 0 0.93 0.93 0.93

the function g(ν) around the roots ν ± 1 is a very steep function. When |k| is larger
than 2, the slope of g(ν) becomes much steeper, and it becomes difficult to find the
root ν + k.

3.3. Expansion coefficients

Once we have ν, it is straightforward to evaluate the expansion coefficients using
the three-term recurrence relations Eq. (2.10). As discussed in §2, the expansion
coefficients {an} must be the minimal solution {fn}. It is well known that the
minimal solution cannot be computed numerically with forward recursion of the
three-term recurrence relations from n = 0 to ±∞. This is because a small numerical
errors in the minimal solution fn contain dominant parts of the solution of the
recurrence relation. For this reason, the numerical solution obtained using forward
recursion will be dominated by errors after several recursions, since the dominant



New Numerical Methods to Evaluate the Homogeneous Teukolsky Equation 429

Table II. ν for Mω = 0.1.

� m q = −0.9 q = 0 q = 0.9

2 2 1.9780030721 1.9793154547 1.9805149449

2 1 1.9787154140 1.9793154547 1.9799783120

2 0 1.9793759881 1.9793154547 1.9793759881

2 −1 1.9799783120 1.9793154547 1.9787154140

2 −2 1.9805149449 1.9793154547 1.9780030721

3 3 2.9871135866 2.9875539197 2.9879712028

3 2 2.9872683427 2.9875539197 2.9878392372

3 1 2.9874180082 2.9875539197 2.9877032005

3 0 2.9875628720 2.9875539197 2.9875628720

3 −1 2.9877032005 2.9875539197 2.9874180082

3 −2 2.9878392372 2.9875539197 2.9872683427

3 −3 2.9879712028 2.9875539197 2.9871135866

4 4 3.9906679155 3.9909066870 3.9911355283

4 3 3.9907299644 3.9909066870 3.9910804817

4 2 3.9907909277 3.9909066870 3.9910245146

4 1 3.9908508359 3.9909066870 3.9909676019

4 0 3.9909097180 3.9909066870 3.9909097180

4 −1 3.9909676019 3.9909066870 3.9908508359

4 −2 3.9910245146 3.9909066870 3.9907909277

4 −3 3.9910804817 3.9909066870 3.9907299644

4 −4 3.9911355283 3.9909066870 3.9906679155

5 5 4.9926264974 4.9927797435 4.9929276871

5 4 4.9926581101 4.9927797435 4.9928989965

5 3 4.9926893758 4.9927797435 4.9928700024

5 2 4.9927203003 4.9927797435 4.9928406998

5 1 4.9927508893 4.9927797435 4.9928110837

5 0 4.9927811486 4.9927797435 4.9927811486

5 −1 4.9928110837 4.9927797435 4.9927508893

5 −2 4.9928406998 4.9927797435 4.9927203003

5 −3 4.9928700024 4.9927797435 4.9926893758

5 −4 4.9928989965 4.9927797435 4.9926581101

5 −5 4.9929276871 4.9927797435 4.9926264974

6 6 5.9938843772 5.9939919474 5.9940963285

6 5 5.9939027772 5.9939919474 5.9940793756

6 4 5.9939210379 5.9939919474 5.9940622984

6 3 5.9939391609 5.9939919474 5.9940450957

6 2 5.9939571478 5.9939919474 5.9940277660

6 1 5.9939750003 5.9939919474 5.9940103079

6 0 5.9939927198 5.9939919474 5.9939927198

6 −1 5.9940103079 5.9939919474 5.9939750003

6 −2 5.9940277660 5.9939919474 5.9939571478

6 −3 5.9940450957 5.9939919474 5.9939391609

6 −4 5.9940622984 5.9939919474 5.9939210379

6 −5 5.9940793756 5.9939919474 5.9939027772

6 −6 5.9940963285 5.9939919474 5.9938843772
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solutions grow very rapidly.
In such a situation, we can use the continued fractions given in Eqs. (2.14) and

(2.15) to evaluate the minimal solution. First, we set the initial value of fn as f0 = 1.
We evaluate f1 from f1/f0, which is evaluated by the continued fraction, the right-
hand side of Eq. (2.14) with n = 1. We then obtain f1 as f1 = R̃1f0. In the same
way, we can evaluate fn (n > 1) from fn−1 and R̃n recursively. For n < 0, we use
the same algorithm and evaluate fn from fn+1 and L̃n.

3.4. Homogeneous solutions

Given the eigenvalue of the spin weighted spheroidal harmonics λ, the renormal-
ized angular momentum ν, and the expansion coefficients fn, it is straightforward
to compute the asymptotic amplitude of the homogeneous solutions, Eqs. (2.22)
and (2.31). It is also straightforward to compute the homogeneous functions using
Eq. (2.3) or Eq. (2.30). We found that the convergence of the series of hypergeomet-
ric functions or Coulomb wave functions and that of the formulas for the asymptotic
amplitude are very rapid. This is because the expansion coefficients {fν

n}, which
constitute a minimal solution of the three-term recurrence relation, decrease very
rapidly as |n| becomes large, as can be seen from Eq. (2.17). For example, we only
need to carry out the summation in Eq. (2.4) from n = 0 to n ∼ ±20 to have an
accuracy 10−16 in the case ε < 0.4.

The hypergeometric function F (α, β; γ, x) is computed using the transformation
formula

F (α, β; γ, x) = (1 − x)−αΓ (γ)Γ (β − α)
Γ (β)Γ (γ − α)

F

(
α, γ − β;α− β + 1;

1
1 − x

)

+(1 − x)−β Γ (γ)Γ (α− β)
Γ (α)Γ (γ − β)

F

(
β, γ − α;β − α+ 1;

1
1 − x

)
, (3.8)

and using the Gauss hypergeometric series for the hypergeometric functions on the
right-hand side of Eq. (3.8). For the gamma function, we use the routines available
on the world wide web.32)

3.5. Gravitational wave luminosity

In order to check the accuracy of our numerical code, we calculated the grav-
itational wave flux from a point particle in circular orbits on the equatorial plane
around a Kerr black hole. The formula for the luminosity is given in Appendix A.

Our computations presented here were done using a double precision code. In
Tables III–VI, we list the luminosities for r0 = 6, 10, 100 and 1000 from � = 2 to 6
and for q = 0 and q = ±0.9. We also list the total luminosity for various values q
and r0 in Table VII.

We compared these results with those of Tagoshi and Nakamura22) in the
Schwarzschild case q = 0. The results are given in Table VIII for cases r0 = 10M .
We find that our results agree with them with relative error 10−14 – 10−15. Because
the estimated accuracy of Ref. 22) is more than 20 significant figures, we estimate
that the accuracy of our code is about 13–14 significant figures. We also compare
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Table III. The gravitational wave luminosity for r0 = 6M .

� | m | q = −0.9 q = 0 q = 0.9

2 2 1.4672643416 × 10−3 7.3475638881 × 10−4 4.6183912921 × 10−4

2 1 2.4135187915 × 10−5 5.0413451839 × 10−6 6.6947435866 × 10−7

3 3 3.4798321412 × 10−4 1.4534938751 × 10−4 8.0343009373 × 10−5

3 2 1.0938697387 × 10−5 2.0567575315 × 10−6 2.9212522769 × 10−7

3 1 4.3891293595 × 10−8 1.1384270937 × 10−8 4.3010746650 × 10−9

4 4 1.0477344711 × 10−4 3.5849943696 × 10−5 1.7293785265 × 10−5

4 3 3.9195590828 × 10−6 6.2995356560 × 10−7 8.6369900044 × 10−8

4 2 7.5231697792 × 10−8 1.7547382460 × 10−8 6.1994559709 × 10−9

4 1 4.5312182607 × 10−11 7.0534448975 × 10−12 9.3343722027× 10−13

5 5 3.4447343626 × 10−5 9.5758155537 × 10−6 4.0148159555 × 10−6

5 4 1.3473368296 × 10−6 1.8048918361 × 10−7 2.2863071277 × 10−8

5 3 5.0155535469 × 10−8 1.0218507481 × 10−8 3.3101913526 × 10−9

5 2 2.3873981915 × 10−10 3.1974516361 × 10−11 3.9575575812× 10−12

5 1 4.8597838388 × 10−14 9.3414524994 × 10−15 2.8261985682× 10−15

6 6 1.1820336377 × 10−5 2.6570852921 × 10−6 9.6579842085 × 10−7

6 5 4.5987487190 × 10−7 5.0650467610 × 10−8 5.7941986759 × 10−9

6 4 2.5069319096 × 10−8 4.3708099159 × 10−9 1.2798607028 × 10−9

6 3 2.7050690849 × 10−10 3.0671520252 × 10−11 3.4745761467× 10−12

6 2 8.1558279125 × 10−13 1.3490851660 × 10−13 3.6798960699× 10−14

6 1 2.8413832649 × 10−17 3.3772691941 × 10−18 3.9283478383× 10−19

our results with those given by Kennefick∗) in the Kerr case q �= 0. The results are
given in Table IX for cases r0 = 3M and q = 0.998. We find that our results agree
with them with relative error 10−6 – 10−7. This is consistent with the estimated
accuracy in his works. Although we do not have a quantitative estimate of the accu-
racy for the luminosity in the Kerr case, because ν is computed with accuracy in the
Schwarzschild case, we expect that the accuracy of our results is also about 13–14
significant figures in the Kerr case.

§4. Summary and discussion

In this paper, we described numerical methods to compute the homogeneous
solutions of the Teukolsky equation. We used the MST formalism, in which the
homogeneous solutions of the Teukolsky equation are expressed in terms of series of
hypergeometric functions and Coulomb wave functions. We found that the renor-
malized angular momentum ν can be found only for a limited values of Mω. When
Mω becomes large, ν approaches �− 1/2, and over a certain range of values of Mω,
which depends on �,m and q, we could not find real ν. Our preliminary investiga-
tions suggest that ν becomes complex when Mω becomes sufficiently large. However,
because further investigation is needed to confirm this, we continue to work on this
point.

In the region of Mω in which we can find real ν, we found that the convergence of

∗) This data was calculated by D. Kennefick based on his previous work,16) and was kindly

provided for us.
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Table IV. The gravitational wave luminosity for r0 = 10M .

� | m | q = −0.9 q = 0 q = 0.9

2 2 6.8120258138 × 10−5 5.3687954791 × 10−5 4.4546001102 × 10−5

2 1 5.0656468066 × 10−7 1.9316093512 × 10−7 5.2735787002 × 10−8

3 3 8.7890229491 × 10−6 6.4260827562 × 10−6 5.0413559470 × 10−6

3 2 1.2628541265 × 10−7 4.7959164616 × 10−8 1.4271936289 × 10−8

3 1 9.7967935639 × 10−10 5.7148989126 × 10−10 3.7294384569× 10−10

4 4 1.4106496214 × 10−6 9.5396003949 × 10−7 7.0641315437 × 10−7

4 3 2.4037498342 × 10−8 8.7787575252 × 10−9 2.6507201263 × 10−9

4 2 9.3303939387 × 10−10 5.2622453090 × 10−10 3.3420025690× 10−10

4 1 4.1524457529 × 10−13 1.4575856423 × 10−13 4.2218942492× 10−14

5 5 2.4401253104 × 10−7 1.5241547646 × 10−7 1.0642982525 × 10−7

5 4 4.3181478959 × 10−9 1.4921162749 × 10−9 4.4382292146× 10−10

5 3 3.3947862663 × 10−10 1.8291013252 × 10−10 1.1221183734× 10−10

5 2 1.1385202800 × 10−12 3.8193532372 × 10−13 1.0943525441× 10−13

5 1 4.6491185735 × 10−16 2.3676371874 × 10−16 1.3782555714× 10−16

6 6 4.3683996396 × 10−8 2.5182131568 × 10−8 1.6571971666 × 10−8

6 5 7.6349317589 × 10−10 2.4746386947 × 10−10 7.1425097921× 10−11

6 4 9.1394784860 × 10−11 4.6633398847 × 10−11 2.7471342862× 10−11

6 3 6.6822442144 × 10−13 2.1238827476 × 10−13 5.9371098714× 10−14

6 2 4.0965704268 × 10−15 1.9763689535 × 10−15 1.1021357357× 10−15

6 1 1.1358089132 × 10−19 3.5977953599 × 10−20 9.9623097231× 10−21

the series of hypergeometric functions or Coulomb wave functions is very rapid. This
is because the expansion coefficients {fν

n}, which constitute a minimal solution of the
three-term recurrence relation, decrease very rapidly as |n| becomes large. Thus, we
concluded that the MST formalism is a powerful method to compute the homoge-
neous solutions numerically. By comparing the numerical data for the gravitational
wave luminosity emitted to infinity in the case that a particle display circular orbits
in the equatorial plane with the results of previous works, we estimated the accuracy
of our code to be about 13–14 significant figures in the double precision computation.
This accuracy will be sufficient as a Green function of the Teukolsky equation in the
computation of the templates for the data analysis of LISA. Currently, the accuracy
is limited not by the MST formalism itself but by the accuracy of the evaluation of
the hypergeometric functions.

In the near future, we will investigate the question of whether complex ν exist
in order to broaden the region of Mω, in which this method can be applied. We
also hope to improve the accuracy of the evaluation of the hypergeometric func-
tions and Coulomb wave functions and to apply this method to the computation of
gravitational waves from a compact star in the case of more generic orbits around a
supermassive black hole.
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Table V. The gravitational wave luminosity for r0 = 100M .
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Appendix A
Teukolsky Formalism

A.1. Teukolsky equation

In terms of the Boyer-Lindquist coordinates (t, r, θ, φ), the metric of a Kerr black
hole is expressed as

ds2 = − ∆

Σ
(dt− a sin2 θdφ)2 +

sin2 θ

Σ

[
(r2 + a2)dφ− a dt

]2
+
Σ

∆
dr2 +Σdθ2 ≡ gαβdx

αdxβ. (A.1)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. In the Teukolsky formalism,4)

the gravitational perturbations of a Kerr black hole are described by the Newman-
Penrose quantity ψ4 = −Cαβγδn

αmβnγmδ, where Cαβγδ is the Weyl tensor and

nα =
[
(r2 + a2),−∆, 0, a] /(2Σ),

mα = [ia sin θ, 0, 1, i/ sin θ] /(
√

2(r + ia sin θ)),
mα = [−ia sin θ, 0, 1,−i/ sin θ] /(

√
2(r − ia sin θ)). (A.2)
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Table VI. The gravitational wave luminosity for r0 = 1000M .

� | m | q = −0.9 q = 0 q = 0.9

2 2 6.3710447707 × 10−15 6.3699449938 × 10−15 6.3688661222× 10−15

2 1 1.9312210104 × 10−19 1.7759713679 × 10−19 1.6272619997× 10−19

3 3 8.6164205339 × 10−18 8.6144354096 × 10−18 8.6124927366× 10−18

3 2 5.4522769983 × 10−22 5.0596103733 × 10−22 4.6817315382× 10−22

3 1 7.8992896709 × 10−22 7.8958536669 × 10−22 7.8924917557× 10−22

4 4 1.4308259101 × 10−20 1.4304135903 × 10−20 1.4300106837× 10−20

4 3 1.1099463480 × 10−24 1.0346766311 × 10−24 9.6207662590× 10−25

4 2 8.0054989997 × 10−24 8.0018141364 × 10−24 7.9982051838× 10−24

4 1 2.4183146906 × 10−29 2.2541754488 × 10−29 2.0958722688× 10−29

5 5 2.5377450811 × 10−23 2.5368671349 × 10−23 2.5360100929× 10−23

5 4 2.0796404136 × 10−27 1.9438447940 × 10−27 1.8126926234× 10−27

5 3 3.0770492071 × 10−26 3.0755338762 × 10−26 3.0740495814× 10−26

5 2 6.7754641895 × 10−31 6.3326624808 × 10−31 5.9050352599× 10−31

5 1 4.9684166900 × 10−32 4.9656062758 × 10−32 4.9628506310× 10−32

6 6 4.6302492101 × 10−26 4.6283797773 × 10−26 4.6265561943× 10−26

6 5 3.7846535394 × 10−30 3.5438278934 × 10−30 3.3110410807× 10−30

6 4 8.6738999088 × 10−29 8.6692973914 × 10−29 8.6647902975× 10−29

6 3 4.0483295654 × 10−33 3.7905188064 × 10−33 3.5413297645× 10−33

6 2 4.4179556837 × 10−33 4.4152753953 × 10−33 4.4126466761× 10−33

6 1 9.4073281205 × 10−40 8.8079986933 × 10−40 8.2287305560× 10−40

Table VII. The gravitational wave luminosity, up through � = 6, for various q and orbital radii

r0/M .

r0/M q = −0.9 q = −0.6 q = −0.3 q = 0 q = 0.3 q = 0.6 q = 0.9

6 2.0073×10−3 1.5089×10−3 1.1707×10−3 9.3619×10−4 7.7061×10−4 6.5182×10−4 5.6555×10−4

8 2.9124×10−4 2.5217×10−4 2.2097×10−4 1.9593×10−4 1.7577×10−4 1.5948×10−4 1.4631×10−4

10 7.9272×10−5 7.2377×10−5 6.6505×10−5 6.1499×10−5 5.7229×10−5 5.3588×10−5 5.0488×10−5

12 2.9095×10−5 2.7287×10−5 2.5693×10−5 2.4289×10−5 2.3052×10−5 2.1965×10−5 2.1010×10−5

14 1.2794×10−5 1.2190×10−5 1.1646×10−5 1.1157×10−5 1.0717×10−5 1.0323×10−5 9.9699×10−6

16 6.3614×10−6 6.1235×10−6 5.9062×10−6 5.7079×10−6 5.5272×10−6 5.3627×10−6 5.2134×10−6

18 3.4599×10−6 3.3541×10−6 3.2565×10−6 3.1666×10−6 3.0837×10−6 3.0075×10−6 2.9376×10−6

20 2.0155×10−6 1.9640×10−6 1.9160×10−6 1.8714×10−6 1.8301×10−6 1.7918×10−6 1.7563×10−6

22 1.2397×10−6 1.2127×10−6 1.1874×10−6 1.1637×10−6 1.1416×10−6 1.1210×10−6 1.1018×10−6

24 7.9701×10−7 7.8197×10−7 7.6782×10−7 7.5452×10−7 7.4204×10−7 7.3033×10−7 7.1938×10−7

26 5.3155×10−7 5.2276×10−7 5.1445×10−7 5.0661×10−7 4.9922×10−7 4.9227×10−7 4.8572×10−7

28 3.6566×10−7 3.6030×10−7 3.5522×10−7 3.5041×10−7 3.4586×10−7 3.4156×10−7 3.3751×10−7

30 2.5830×10−7 2.5492×10−7 2.5170×10−7 2.4865×10−7 2.4575×10−7 2.4300×10−7 2.4040×10−7

40 6.0949×10−8 6.0447×10−8 5.9964×10−8 5.9502×10−8 5.9058×10−8 5.8632×10−8 5.8225×10−8

50 1.9959×10−8 1.9844×10−8 1.9732×10−8 1.9625×10−8 1.9521×10−8 1.9421×10−8 1.9324×10−8

60 8.0278×10−9 7.9930×10−9 7.9592×10−9 7.9264×10−9 7.8947×10−9 7.8640×10−9 7.8342×10−9

70 3.7189×10−9 3.7062×10−9 3.6939×10−9 3.6819×10−9 3.6702×10−9 3.6589×10−9 3.6479×10−9

80 1.9100×10−9 1.9047×10−9 1.8996×10−9 1.8945×10−9 1.8896×10−9 1.8849×10−9 1.8802×10−9

90 1.0613×10−9 1.0588×10−9 1.0564×10−9 1.0541×10−9 1.0518×10−9 1.0496×10−9 1.0474×10−9

100 6.2743×10−10 6.2620×10−10 6.2500×10−10 6.2382×10−10 6.2267×10−10 6.2155×10−10 6.2045×10−10

110 3.9001×10−10 3.8935×10−10 3.8870×10−10 3.8807×10−10 3.8745×10−10 3.8685×10−10 3.8626×10−10

120 2.5268×10−10 2.5230×10−10 2.5194×10−10 2.5158×10−10 2.5123×10−10 2.5088×10−10 2.5054×10−10

130 1.6949×10−10 1.6927×10−10 1.6905×10−10 1.6884×10−10 1.6863×10−10 1.6842×10−10 1.6822×10−10

140 1.1711×10−10 1.1697×10−10 1.1683×10−10 1.1670×10−10 1.1657×10−10 1.1645×10−10 1.1632×10−10

150 8.3001×10−11 8.2914×10−11 8.2829×10−11 8.2745×10−11 8.2662×10−11 8.2581×10−11 8.2501×10−11

The Weyl curvature component ψ4 contains all the information regarding the
gravitational radiation. Teukolsky showed that if we carry out Fourier-harmonic
decomposition of ρ−4ψ4, we can separate the Teukolsky equation into a radial part
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Table VIII. Relative error of the energy flux between Ref. 22) and our results for r0 = 10M, q = 0.

� | m | Tagoshi and Nakamura This paper Absolute values of relative error

2 1 1.9316093511566875× 10−7 1.9316093511566907× 10−7 1.64 × 10−15

2 2 5.3687954791021136× 10−5 5.3687954791021361× 10−5 4.20 × 10−15

3 1 5.7148989126147667× 10−10 5.7148989126147834× 10−10 2.91 × 10−15

3 2 4.7959164615902625× 10−8 4.7959164615902543× 10−8 1.71 × 10−15

3 3 6.4260827562472322× 10−6 6.4260827562472412× 10−6 1.39 × 10−15

4 1 1.4575856422971336× 10−13 1.4575856422971290× 10−13 3.19 × 10−15

4 2 5.2622453089592304× 10−10 5.2622453089592954× 10−10 1.24 × 10−14

4 3 8.7787575252149415× 10−9 8.7787575252150748× 10−9 1.52 × 10−14

4 4 9.5396003948519482× 10−7 9.5396003948518797× 10−7 7.18 × 10−15

5 1 2.3676371874495427× 10−16 2.3676371874495484× 10−16 2.40 × 10−15

5 2 3.8193532371989606× 10−13 3.8193532371989253× 10−13 9.24 × 10−15

5 3 1.8291013252282956× 10−10 1.8291013252283069× 10−10 6.20 × 10−15

5 4 1.4921162748528251× 10−9 1.4921162748527967× 10−9 1.91 × 10−14

5 5 1.5241547645798743× 10−7 1.5241547645799033× 10−7 1.90 × 10−14

6 1 3.5977953599117842× 10−20 3.5977953599117314× 10−20 1.47 × 10−14

6 2 1.9763689535200328× 10−15 1.9763689535200461× 10−15 6.73 × 10−15

6 3 2.1238827476369010× 10−13 2.1238827476368560× 10−13 2.12 × 10−14

6 4 4.6633398847411170× 10−11 4.6633398847412050× 10−11 1.89 × 10−14

6 5 2.4746386947271652× 10−10 2.4746386947272387× 10−10 2.97 × 10−14

6 6 2.5182131568101545× 10−8 2.5182131568101642× 10−8 3.82 × 10−15

7 1 3.2913629491589289× 10−23 3.2913629491588661× 10−23 1.91 × 10−14

7 2 9.0841508908488114× 10−19 9.0841508908487538× 10−19 6.34 × 10−15

7 3 2.0373627509685863× 10−15 2.0373627509686016× 10−15 7.53 × 10−15

7 4 6.9940936502071495× 10−14 6.9940936502074081× 10−14 3.70 × 10−14

7 5 1.0340989127935083× 10−11 1.0340989127934911× 10−11 1.66 × 10−14

7 6 4.0679948091711724× 10−11 4.0679948091710895× 10−11 2.04 × 10−14

7 7 4.2345226712846746× 10−9 4.2345226712847762× 10−9 2.40 × 10−14

and an angular part, or

ρ−4ψ4(t, r, θ, φ) =
∑
�,m

∫
dωe−iωt+imϕ −2S

aω
�m(θ)R�mω(r),

4πΣT̂ =
∑
�,m

∫
dωe−iωt+imϕ −2S

aω
�m(θ)T�mω(r), (A.3)

where ρ = (r − ia cos θ)−1.
The radial function Rlmω(r) and the angular function −2S

aω
lm(θ) satisfy the fol-

lowing Teukolsky equations:

∆2 d

dr

(
1
∆

dR�mω

dr

)
− V (r)R�mω = T�mω, (A.4)

[
1

sin θ
d

dθ

{
sin θ

d

dθ

}
− a2ω2 sin2 θ − (m− 2 cos θ)2

sin2 θ

+4aω cos θ − 2 + 2maω + λ

]
−2S

aω
�m = 0. (A.5)
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Table IX. Relative error of the energy flux between Kennefick’s results?) and our results for

r0 = 3M, q = 0.998.

� | m | Kennefick This paper Absolute values of relative error

2 1 6.328361227 × 10−6 6.3283737145864869× 10−6 1.97 × 10−6

2 2 7.335124682 × 10−3 7.3350910900390372× 10−3 4.58 × 10−6

3 1 3.451784675 × 10−8 3.4517924227877552× 10−8 2.24 × 10−6

3 2 5.645895586 × 10−6 5.6458902861747337× 10−6 9.39 × 10−7

3 3 2.208481088 × 10−3 2.2084763695700243× 10−3 2.14 × 10−6

4 1 8.842632418× 10−12 8.8426341846420484× 10−12 2.00 × 10−7

4 2 9.650747825 × 10−8 9.6507761069096606× 10−8 2.93 × 10−6

4 3 3.157205166 × 10−6 3.1572084515052529× 10−6 1.04 × 10−6

4 4 7.897993006 × 10−4 7.8979614897263311× 10−4 3.99 × 10−6

5 1 2.226601380× 10−14 2.2266003587317006× 10−14 4.59 × 10−7

5 2 7.623615371× 10−11 7.6236253541558626× 10−11 1.31 × 10−6

5 3 9.637713992 × 10−8 9.6377094209411545× 10−8 4.74 × 10−7

5 4 1.524036288 × 10−6 1.5240423964556889× 10−6 4.01 × 10−6

5 5 3.044015502 × 10−4 3.0439980326075501× 10−4 5.74 × 10−6

6 1 3.850986300× 10−18 3.8509863211419323× 10−18 5.49 × 10−9

6 2 5.736053080× 10−13 5.7360410503468190× 10−13 2.10 × 10−6

6 3 1.315574802× 10−10 1.3155762424734953× 10−10 1.09 × 10−6

6 4 6.788432814 × 10−8 6.7884404091806854× 10−8 1.12 × 10−6

6 5 6.900330654 × 10−7 6.9003809076206216× 10−7 7.28 × 10−6

6 6 1.219262418 × 10−4 1.2192534271212692× 10−4 7.37 × 10−6

7 1 5.063200000× 10−21 5.0631852897823082× 10−21 2.91 × 10−6

7 2 3.106010424× 10−16 3.1060171837611518× 10−16 2.18 × 10−6

7 3 1.769856886× 10−12 1.7698525192439268× 10−12 2.47 × 10−6

7 4 1.284621326× 10−10 1.2846205001945888× 10−10 6.43 × 10−7

7 5 4.051197224 × 10−8 4.0511763345368075× 10−8 5.16 × 10−6

7 6 3.023851152 × 10−7 3.0238471412501713× 10−7 1.33 × 10−6

7 7 4.993950576 × 10−5 4.9939392339609413× 10−5 2.27 × 10−6

The potential is given by

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ, (A.6)

where K = (r2+a2)ω−ma and λ is the eigenvalue of −2S
aω
�m(θ). The angular function

−2S
aω
�m(θ) is called a spin-weighted spheroidal harmonic with spin weight −2. It is

usually normalized as ∫ π

0
| −2S

aω
�m|2 sin θdθ = 1. (A.7)

In the case of a Kerr black hole, analytic form of the spin-weighted spheroidal
harmonics and the eigenvalue λ are not known. However, in the case of a Schwarzschild
black hole, the spin-weighted spheroidal harmonics reduce to the spin-weighted
spherical harmonics, and its eigenvalue is λ = �(�+ 1) − s(s+ 1).33)

We solve the radial Teukolsky equation using the Green function method. For
this purpose, we introduce two kinds of the homogeneous solutions of the radial
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Teukolsky equation,

Rin
lmω →

{
Btrans

lmω ∆2e−ikr∗ for r → r+,
r3Bref

lmωe
iωr∗ + r−1Binc

lmωe
−iωr∗ for r → +∞,

(A.8)

Rup
lmω →

{
Cup

lmωe
ikr∗ +∆2Cref

lmωe
−ikr∗ for r → r+,

r3Ctrans
lmω eiωr∗ for r → +∞,

(A.9)

where k = ω −ma/2Mr+ and r∗ is the tortoise coordinate defined by

r∗ =
∫
dr∗

dr
dr,

=
∫
r2 + a2

∆
dr,

= r +
2Mr+
r+ − r−

ln
r − r+
2M

− 2Mr−
r+ − r−

ln
r − r−
2M

. (A.10)

Here r± = M ±√
M2 − a2.

Then, a solution of the radial Teukolsky equation that is ingoing at the horizon
and outgoing at the infinity can be written as

R�mω(r) =
1

Wlmω

{
Rup

�mω(r)
∫ r

r+

dr′
T�mω(r′)Rin

�mω(r′)
∆2(r′)

+Rin
�mω(r)

∫ ∞

r
dr′

T�mω(r′)Rup
�mω(r′)

∆2(r′)

}
,

where Wlmω is the Wronskian given by

W�mω = W [∆−1/2Rin
�mω, ∆

−1/2Rup
�mω] = 2iωCtrans

�mω B
inc
�mω. (A.11)

The asymptotic behavior at the horizon is given by

R�mω(r → r+) → Btrans
�mω ∆

2e−ikr∗

2iωCtrans
�mω B

inc
�mω

∫ ∞

r+

dr′
T�mω(r′)Rup

�mω(r′)
∆2(r′)

≡ Z̃H
�mω∆

2e−ikr∗ . (A.12)

The asymptotic behavior at infinity is given by

R�mω(r → ∞) → r3eiωr∗

2iωBinc
�mω

∫ ∞

r+

dr′
T�mω(r′)Rin

�mω(r′)
∆2(r′)

≡ Z̃∞
�mωr

3eiωr∗ . (A.13)

In this paper, we focus on the gravitational wave flux from a point particle in
circular, equatorial orbits around a Kerr black hole. In this case, Z̃lmω in Eq. (A.13)
takes the form

Z̃∞
lmω =

∑
n

δ(ω − ωn)Z∞
lmωn

, (A.14)

where ωn = mM1/2/(r3/2 + aM1/2).
Then, the time-averaged flux (luminosity) radiated to infinity is given by

dE

dt
=
∑
l,m,n

| Z∞
lmωn

|2
4πω2

n

. (A.15)
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A.2. Source term

The source term of the Teukolsky equation, Eq. (A.4), is given by

T�mω = 4
∫
dΩdtρ−5ρ̄−1(B′

2 +B′∗
2 )e−imϕ+iωt−2S

aω
�m√

2π
, (A.16)

where B′
2 and B∗

2 are given by

B′
2 = −1

2
ρ8ρ̄L−1[ρ−4L0(ρ−2ρ̄−1Tnn)]

− 1
2
√

2
ρ8ρ̄∆2L−1[ρ−4ρ̄2J+(ρ−2ρ̄−2∆−1Tm̄n)],

B′∗
2 = −1

4
ρ8ρ̄∆2J+[ρ−4J+(ρ−2ρ̄Tm̄m̄)]

− 1
2
√

2
ρ8ρ̄∆2J+[ρ−4ρ̄2∆−1L−1(ρ−2ρ̄−2Tm̄n)] , (A.17)

Ls = ∂θ +
m

sin θ
− aω sin θ + s cot θ, (A.18)

J+ = ∂r + iK/∆ ; K = (r2 + a2)ω −ma,

and Tnn, Tmn, Tmm are the tetrad components of the energy momentum tensor
(Tnn = Tµνn

µnν etc.). Here the bar denotes the complex conjugation.
We consider Tµν of a monopole particle of mass µ. In this case, the energy

momentum tensor takes the form

Tµν = µ

∫
dτ
d zµ

dτ

d zν

dτ

δ(4)(x− z(τ))√−g ,

= µ
uµuν

Σ sin θut
δ(r − r(t))δ(θ − θ(t))δ(φ− φ(t)) ,

where uµ = dzµ/dτ and zµ = (t, r(t), θ(t), φ(t)) is a geodesic trajectory and τ = τ(t)
is the proper time along this geodesic. The geodesic equations in the Kerr geometry
are given by

Σ
dt

dτ
=
r2 + a2

∆

[
E(r2 + a2) − aLz

]− a
[
aE sin2 θ − Lz

]
,

Σ
dr

dτ
= ±

√
R,

Σ
dθ

dτ
= ±

√
Θ,

Σ
dφ

dτ
=

a

∆

[
E(r2 + a2) − aLz

]− aE +
Lz

sin2 θ
, (A.19)

where E and Lz are the energy and the z-component of the angular momentum of
a test particle, respectively. Also, we have

R =
[
(r2 + a2)E − aLz

]2 −∆[r2 + (Lz − aE)2 + C],

Θ = C −
[
(1 − E2)a2 +

L2
z

sin2 θ

]
cos2 θ,
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where C is the Carter constant of a test particle. Note that E,Lz and C are measured
in units of µ. If they are expressed in the standard units, E,Lz and C in the above
equations must be replaced by E/µ, Lz/µ and C/µ2.

Using Eq. (A.19), we obtain the tetrad components of the energy momentum
tensor as

Tnn = µ
Cnn

sin θ
δ(r − r(t))δ(θ − θ(t))δ(φ− φ(t)), (A.20)

Tm̄n = µ
Cm̄n

sin θ
δ(r − r(t))δ(θ − θ(t))δ(φ− φ(t)), (A.21)

Tm̄m̄ = µ
Cm̄m̄

sin θ
δ(r − r(t))δ(θ − θ(t))δ(φ− φ(t)) , (A.22)

where

Cnn =
1

4Σ3ut

[
E(r2 + a2) − aLz +Σ

dr

dτ

]2

,

Cm̄n = − ρ

2
√

2Σ2ut

[
E(r2 + a2) − aLz +Σ

dr

dτ

] [
i sin θ

(
aE − Lz

sin2 θ

)
+Σ

dθ

dτ

]
,

Cm̄m̄ =
ρ2

2Σut

[
i sin θ

(
aE − Lz

sin2 θ

)
+Σ

dθ

dτ

]2

. (A.23)

Substituting Eq. (A.17) into Eq. (A.16) and performing integration by parts, we
obtain

T�mω =
4µ√
2π

∫ ∞

−∞
dt

∫ π

0
dθeiωt−imϕ(t)

×
[
−1

2
L†

1

{
ρ−4L†

2(ρ
3Saω

�m)
}
Cnnρ

−2ρ̄−1δ(r − r(t))δ(θ − θ(t))

+
∆2ρ̄2

√
2ρ

(
L†

2S
aω
�m + ia(ρ̄− ρ) sin θSaω

�m

)
×J+

{
Cm̄nρ

−2ρ̄−2∆−1δ(r − r(t))δ(θ − θ(t))
}

+
1

2
√

2
L†

2

{
ρ3Saω

�m(ρ̄2ρ−4),r

}
Cm̄n∆ρ

−2ρ̄−2δ(r − r(t))δ(θ − θ(t))

− 1
4
ρ3∆2Saω

�mJ+

{
ρ−4J+

(
ρ̄ρ−2Cm̄m̄δ(r − r(t))δ(θ − θ(t))

)}]
, (A.24)

where
L†

s = ∂θ − m

sin θ
+ aω sin θ + s cot θ , (A.25)

and Saω
�m denotes −2S

aω
�m(θ) for simplicity.

The integration over θ can be performed directly. It yields

T�mω = µ

∫ ∞

−∞
dteiωt−imϕ(t)∆2

[
(Ann0 +Am̄n0 +Am̄m̄0)δ(r − r(t))

+ {(Am̄n1 +Am̄m̄1)δ(r − r(t))},r + {Am̄m̄2δ(r − r(t))},rr

]
θ=θ(t)

, (A.26)
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where

Ann0 =
−2√
2π∆2

Cnnρ
−2ρ̄−1L+

1 {ρ−4L+
2 (ρ3Saω

�m)}, (A.27)

Am̄n0 =
2√
π∆

Cm̄nρ
−3
[(
L+

2 S
aω
�m

) ( iK
∆

+ ρ+ ρ̄
)

−a sin θ(t)Saω
�m

K

∆
(ρ̄− ρ)

]
, (A.28)

Am̄m̄0 = − 1√
2π
ρ−3ρ̄Cm̄m̄S

aω
�m

[
−i
(K
∆

)
,r
− K2

∆2
+ 2iρ

K

∆

]
, (A.29)

Am̄ n 1 =
2√
π∆

ρ−3Cm̄n[L+
2 S

aω
�m + ia sin θ(t)(ρ̄− ρ)Saω

�m], (A.30)

Am̄m̄1 = − 2√
2π
ρ−3ρ̄Cm̄m̄S

aω
�m

(
i
K

∆
+ ρ
)
, (A.31)

Am̄m̄2 = − 1√
2π
ρ−3ρ̄Cm̄m̄S

aω
�m. (A.32)

Inserting Eq. (A.26) into Eqs. (A.12) and (A.13), we obtain Z∞,H
�mω as

ZH
�mω =

µBtrans
lmω

2iωCtrans
lmω Binc

lmω

∫ ∞

−∞
dteiωt−imϕ(t)IH

�mω(r(t), θ(t)) , (A.33)

Z∞
�mω =

µ

2iωBinc
lmω

∫ ∞

−∞
dteiωt−imϕ(t)I∞

�mω(r(t), θ(t)) , (A.34)

where

IH
�mω =

[
Rup

�mω{Ann0 +Am̄n0 +Am̄ m̄ 0}

−dR
up
�mω

dr
{Am̄n1 +Am̄m̄1} +

d2Rup
�mω

dr2
Am̄m̄2

]
r=r(t),θ=θ(t)

, (A.35)

I∞
�mω =

[
Rin

�mω{Ann0 +Am̄n0 +Am̄m̄0}

−dR
in
�mω

dr
{Am̄n1 +Am̄m̄1} +

d2Rin
�mω

dr2
Am̄m̄2

]
r=r(t),θ=θ(t)

. (A.36)

Appendix B
The Spin-Weighted Spheroidal Harmonics

In this section, we review the formalism to represent the spin-weighted spheroidal
harmonics in a series of Jacobi polynomials based on Ref. 34). We also discuss a
method to implement this formalism in the numerical computation.

We first transform the angular Teukolsky equation as[
(1 − x2)

d2

dx2
− 2x

d

dx
+ ξ2x2 − m2 + s2 + 2msx

1 − x2
− 2sξx+E

]
sS

aω
lm(x) = 0,

(B.1)
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where ξ = aω, x = cos θ and E = λ+ s(s+ 1) − a2ω2 + 2 amω.
The angular function sS

aω
lm(x) is called the spin-weighted spheroidal harmonics.

Equation (B.1) is a Sturm-Liouville type eigenvalue equation with the boundary
conditions of the regularity at x = ±1. The eigenvalue E depends on � for fixed
parameters s, m and aω. Therefore we express the eigenvalue as sE

m
l (ξ). When aω =

0, sS
aω
lm(x) is reduced to the spin-weighted spherical harmonics, and the eigenvalue

sE
m
l (ξ) becomes l(l + 1).33)

The differential equation Eq. (B.1) has singularities at x = ±1 and ∞. We
transform the angular function as

sS
aω
lm(x) = eξx

(
1 − x

2

)α
2
(

1 + x

2

)β
2

sUlm(x), (B.2)

where α = |m+ s| and β = |m− s|. Then, Eq. (B.1) becomes

(1 − x2) sU
′′
lm(x) + [β − α− (2 + α+ β)x] sU

′
lm(x)

+
[

sE
m
l (ξ) − α+ β

2

(
α+ β

2
+ 1
)]

sUlm(x)

= ξ
[−2(1 − x2) sU

′
lm(x) + (α+ β + 2s+ 2)x sUlm(x)

−(ξ + β − α) sUlm(x)] . (B.3)

When ξ = 0, the right-hand side of Eq. (B.3) is zero, while the left-hand side becomes
the differential equation satisfied by the Jacobi polynomials,

(1 − x2)P (α,β)
r

′′
(x) + [β − α− (α+ β + 2)x] P (α,β)

r

′
(x)

+r(r + α+ β + 1)P (α,β)
r (x) = 0. (B.4)

In this limit, the eigenvalue sE
m
� in the equation (B.3) becomes �(� + 1), where

� = r + (α+ β)/2 = r + max(| m |, | s |).
In this paper, we use the Jacobi polynomials defined using the Rodrigue’s formula

by

P (α,β)
n (x) =

(−1)n

2n n!
(1 − x)−α(1 + x)−β

(
d

dx

)n [
(1 − x)α+n(1 + x)β+n

]
. (B.5)

Now, we expand sUlm(x) in a series of Jacobi polynomials:

sUlm(x) =
∞∑

n=0

sA
(n)
lm (ξ)P (α,β)

n (x). (B.6)

The expansion coefficients sA
(n)
lm (ξ) satisfy the recurrence relations

α(0)
sA

(1)
lm(ξ) + β(0)

sA
(0)
lm(ξ) = 0, (B.7)

α(n)
sA

(n+1)
lm (ξ) + β(n)

sA
(n)
lm (ξ) + γ(n)

sA
(n−1)
lm (ξ) = 0, (n ≥ 1) (B.8)
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where

α(n) =
4ξ(n+ α+ 1)(n+ β + 1)(n+ (α+ β)/2 + 1 − s)

(2n+ α+ β + 2)(2n+ α+ β + 3)
,

β(n) = sE
m
l (ξ) + ξ2 −

(
n+

α+ β

2

)(
n+

α+ β

2
+ 1
)

+
2ξs(α− β)(α+ β)

(2n+ α+ β)(2n+ α+ β + 2)
,

γ(n) = −4ξn(n+ α+ β)(n+ (α+ β)/2 + s)
(2n+ α+ β − 1)(2n+ α+ β)

. (B.9)

The method to determine the eigenvalue sE
m
l is similar to that in the case

of renormalized angular momentum presented in §3.2. The three-term recurrence
relation Eq. (B.8) has two independent solutions, which behave for large n as

A
(n)
(1) ∼ const(−ξ)n

Γ (n+ (α+ β + 3)/2 − s)
, (B.10)

A
(n)
(2) ∼ constξnΓ (n+ (α+ β + 1)/2 + s). (B.11)

The first one, A(n)
(1) , is the minimal solution, and the second one, A(n)

(2) , is a dominant

solution, since limn→∞A
(n)
(1)/A

(n)
(2) = 0. For the case of A(n)

(2) , these coefficients increase

with n, and the series Eq. (B.6) diverges for all values of x. In the case of A(n)
(1) , this

series converges. Thus, we have to choose A(n)
(1)

in the series expansion Eq. (B.6).
Next, we introduce the following:

Rn ≡
An

(1)

An−1
(1)

, Ln ≡
An

(1)

An+1
(1)

. (B.12)

The ratio Rn can be expressed as a continued fraction:

Rn =
A

(n)
(1)

A
(n−1)
(1)

= − γ(n)

β(n)−
α(n)γ(n+1)

β(n+1)−
α(n+1)γ(n+2)

β(n+2)− · · · . (B.13)

We can also express Ln as a continued fraction:

Ln = − α(n)

β(n) + γ(n)Ln−1

= − α(n)

β(n)−
α(n−1)γ(n)

β(n−1)−
α(n−2)γ(n−1)

β(n−2)− · · · α
(1)γ(2)

β(1)−
α(0)γ(1)

β(0)
. (B.14)

This expression for Rn is valid if the continued fraction converges. By using the
properties of the three-term recurrence relations (Ref. 29), p. 35), it is proved that
the continued fractions Eq. (B.13) converge as long as the eigenvalue sE

m
l is finite.
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Now, we divide Eq. (B.8) by the expansion coefficients sA
(n)
lm and obtain

h( sE
m
� ) ≡ β(n) + α(n)Rn+1 + γ(n)Ln−1 = 0. (B.15)

We replace Rn+1 and Ln−1 by the continued fractions given in Eqs. (B.13) and
(B.14). We can determine the eigenvalue sE

m
� as a root of the equation Eq. (B.15),

where l = n+ (α + β)/2. Because the equations in Eq. (B.15) with different values
of n are independent, they give different values of sE

m
� . We thus obtain each sE

m
�

for different � even if the recurrence relation Eq. (B.8) does not contain � explicitly.
As in §3.2, we adopt Brent’s algorithm31) in order to determine sE

m
� . In the

case that aω is not large, we can use an analytical expression of sE
m
� as the initial

value of the root search algorithm. An analytical expression of sE
m
� in a series of

powers of ξ = aω is given by

sE
m
� = �(�+ 1) − 2s2m

�(�+ 1)
ξ + [H(�+ 1) −H(�) − 1] ξ2 +O(ξ3), (B.16)

where

H(�) =
2(�2 −m2)(�2 − s2)2

(2�− 1)�3(2�+ 1)
. (B.17)

The function h( sE
m
� ) is usually monotonic, and therefore it is very easy to find the

root of Eq. (B.15).
After we obtain the eigenvalue sE

m
� , we can determine all the coefficients. The

coefficient for n = n� = l − (α+ β)/2 is usually the largest term. The ratio of other
terms to those for n = n�, i.e. A(n)

(1)/A
(n�)
(1) , can be determined using Eqs. (B.13) and

(B.14) from n = n� to n = 0 or n = ∞.
The factor A(n�)

(1) is determined by the normalization condition. For this, we
introduce a new function sVlm(x) through

sS
aω
lm(x) = e−ξx

(
1 − x

2

)α
2
(

1 + x

2

)β
2

sVlm(x). (B.18)

From Eqs. (B.2) and (B.18), we find

sVlm(x) = exp(2ξx) sUlm(x). (B.19)

We insert Eq. (B.18) into Eq. (B.1) and find that sVlm(x) satisfies the differential
equation

(1 − x2) sV
′′
lm(x) + [β − α− (2 + α+ β)x] sV

′
lm(x)

+
[

sE
m
l (ξ) − α+ β

2

(
α+ β

2
+ 1
)]

sVlm(x)

= ξ
[
2(1 − x2) sV

′
lm(x) − (α+ β − 2s+ 2)x sVlm(x)

−(ξ − β + α) sVlm(x)] . (B.20)



444 R. Fujita and H. Tagoshi

In the same way as in the case of sUlm(x), we expand sVlm(x) in a series of
Jacobi polynomials:

sVlm(x) =
∞∑

n=0

sB
(n)
lm P (α,β)

n (x). (B.21)

The expansion coefficients sB
(n)
lm (ξ) satisfy the recurrence relations

α̃(0)
sB

(1)
lm (ξ) + β̃(0)

sB
(0)
lm (ξ) = 0,

α̃(n)
sB

(n+1)
lm (ξ) + β̃(n)

sB
(n)
lm (ξ) + γ̃(n)

sB
(n−1)
lm (ξ) = 0, (n ≥ 1) (B.22)

where

α̃(n) = −4ξ(n+ α+ 1)(n+ β + 1)(n+ (α+ β)/2 + 1 + s)
(2n+ α+ β + 2)(2n+ α+ β + 3)

,

β̃(n) = sE
m
l (ξ) + ξ2 −

(
n+

α+ β

2

)(
n+

α+ β

2
+ 1
)

+
2ξs(α− β)(α+ β)

(2n+ α+ β)(2n+ α+ β + 2)
,

γ̃(n) =
4ξn(n+ α+ β)(n+ (α+ β)/2 − s)

(2n+ α+ β − 1)(2n+ α+ β)
. (B.23)

In order for the series Eq. (B.21) to converge, the coefficients sB
(n)
lm must con-

stitute the minimal solution of the recurrence relation Eq. (B.22). Suppose {B(n)
(1) }

is the minimal solution. Then, we have

B
(n)
(1)

B
(n−1)
(1)

= − γ̃(n)

β̃(n)−
α̃(n)γ̃(n+1)

β̃(n+1)−
α̃(n+1)γ̃(n+2)

β̃(n+2)− · · · , (B.24)

B
(n)
(1)

B
(n+1)
(1)

= − α̃(n)

β̃(n)−
α̃(n−1)γ̃(n)

β̃(n−1)−
α̃(n−2)γ̃(n−1)

β̃(n−2)− · · · α̃
(1)γ̃(2)

β̃(1)−
α̃(0)γ̃(1)

β̃(0)
. (B.25)

From these equations, we can determine the ratios of all the coefficients, B(n)
(1) /B

(n�)
(1) .

Now, we determine the value of the two coefficients A(n�)
(1)

and B
(n�)
(1)

. Because
Eq. (B.19) must be satisfied for any value of x, we set x = 1 in Eq. (B.19) and obtain

sB
(n�)
lm (ξ)

∞∑
n=0

sB
(n)
lm (ξ)

sB
(n�)
lm (ξ)

(
n+ α

n

)
= exp(2ξ) sA

(n�)
lm (ξ)

∞∑
n=0

sA
(n)
lm (ξ)

sA
(n�)
lm (ξ)

(
n+ α

n

)
.

(B.26)

Also, from the normalization condition Eq. (A.7), we find∫ 1

−1
dx

(
1 − x

2

)α(1 + x

2

)β ∞∑
n1=0

sA
(n1)
lm P (α,β)

n1
(x)

∞∑
n2=0

sB
(n2)
lm P (α,β)

n2
(x) = 1.

(B.27)
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Table X. Elm for Mw = 0.1.

� m q = −0.9 q = 0.9

2 2 6.2340859091× 100 5.7540002160 × 100

2 1 6.1153623140× 100 5.8752937655 × 100

2 0 5.9957562220× 100 5.9957562220 × 100

2 −1 5.8752937655× 100 6.1153623140 × 100

2 −2 5.7540002160× 100 6.2340859091 × 100

3 3 1.2175986227× 101 1.1815913335 × 101

3 2 1.2116698236× 101 1.1876700620 × 101

3 1 1.2057141841× 101 1.1937158320 × 101

3 0 1.1997300442× 101 1.1997300442 × 101

3 −1 1.1937158320× 101 1.2057141841 × 101

3 −2 1.1876700620× 101 1.2116698236 × 101

3 −3 1.1815913335× 101 1.2175986227 × 101

4 4 2.0141120497× 101 1.9853070617 × 101

4 3 2.0105083654× 101 1.9889090042 × 101

4 2 2.0069068104× 101 1.9925093222 × 101

4 1 2.0033067556× 101 1.9961086374 × 101

4 0 1.9997075735× 101 1.9997075735 × 101

4 −1 1.9961086374× 101 2.0033067556 × 101

4 −2 1.9925093222× 101 2.0069068104 × 101

4 −3 1.9889090042× 101 2.0105083654 × 101

4 −4 1.9853070617× 101 2.0141120497 × 101

5 5 3.0117824408× 101 2.9877790649 × 101

5 4 3.0093445069× 101 2.9901445845 × 101

5 3 3.0069155402× 101 2.9925172191 × 101

5 2 3.0044953129× 101 2.9948972039 × 101

5 1 3.0020835961× 101 2.9972847731 × 101

5 0 2.9996801598× 101 2.9996801598 × 101

5 −1 2.9972847731× 101 3.0020835961 × 101

5 −2 2.9948972039× 101 3.0044953129 × 101

5 −3 2.9925172191× 101 3.0069155402 × 101

5 −4 2.9901445845× 101 3.0093445069 × 101

5 −5 2.9877790649× 101 3.0117824408 × 101

6 6 4.2101144835× 101 4.1895407126 × 101

6 5 4.2083478965× 101 4.1912048117 × 101

6 4 4.2065910934× 101 4.1928777542 × 101

6 3 4.2048439822× 101 4.1945596361 × 101

6 2 4.2031064705× 101 4.1962505533 × 101

6 1 4.2013784654× 101 4.1979506008 × 101

6 0 4.1996598734× 101 4.1996598734 × 101

6 −1 4.1979506008× 101 4.2013784654 × 101

6 −2 4.1962505533× 101 4.2031064705 × 101

6 −3 4.1945596361× 101 4.2048439822 × 101

6 −4 4.1928777542× 101 4.2065910934 × 101

6 −5 4.1912048117× 101 4.2083478965 × 101

6 −6 4.1895407126× 101 4.2101144835 × 101
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Table XI. Spin weighted spheroidal harmonics for Mω = 0.1 and cos θ = −0.9.

� m q = −0.9 q = 0.9

2 2 4.3386981105 × 10−3 3.5950865567× 10−3

2 1 −3.7087357243 × 10−2 −3.1984590567 × 10−2

2 0 1.9411700165 × 10−1 1.7424257031× 10−1

2 −1 −6.7728189805 × 10−1 −6.3276040875 × 10−1

2 −2 1.4469520014× 100 1.4070158595× 100

3 3 2.6579791433 × 10−3 2.3432796925× 10−3

3 2 −2.3106765235 × 10−2 −2.0900105378 × 10−2

3 1 1.2376650604 × 10−1 1.1489471197× 10−1

3 0 −4.4858142218 × 10−1 −4.2770231715 × 10−1

3 −1 1.0509804998× 100 1.0312667647× 100

3 −2 −1.1695230417 × 100 −1.1936637613 × 100

3 −3 −9.1785502130 × 10−1 −8.8540840083 × 10−1

4 4 1.3964986285 × 10−3 1.2717039185× 10−3

4 3 −1.2581385396 × 10−2 −1.1651738472 × 10−2

4 2 7.0862042637 × 10−2 6.6759828566× 10−2

4 1 −2.7776127987 × 10−1 −2.6634215480 × 10−1

4 0 7.5267562259 × 10−1 7.3543750538× 10−1

4 −1 −1.2550656615 × 100 −1.2540767509 × 100

4 −2 6.8973736289 × 10−1 7.2640111281× 10−1

4 −3 1.2548549058× 100 1.2430573062× 100

4 −4 4.9003837955 × 10−1 4.7271311939× 10−1

5 5 6.8987908263 × 10−4 6.4066680667× 10−4

5 4 −6.4686885018 × 10−3 −6.0782911246 × 10−3

5 3 3.8436104725 × 10−2 3.6551010190× 10−2

5 2 −1.6262489225 × 10−1 −1.5656422649 × 10−1

5 1 4.9724643493 × 10−1 4.8496714304× 10−1

5 0 −1.0442277264 × 100 −1.0333677913 × 100

5 −1 1.2430710500× 100 1.2553442781× 100

5 −2 −9.9162402163 × 10−2 −1.3327302849 × 10−1

5 −3 −1.3250352372 × 100 −1.3300224425 × 100

5 −4 −8.7853110913 × 10−1 −8.6299962142 × 10−1

5 −5 −2.4419490099 × 10−1 −2.3603241859 × 10−1

6 6 3.2984531756 × 10−4 3.1033107890× 10−4

6 5 −3.2192050631 × 10−3 −3.0549982369 × 10−3

6 4 2.0138768387 × 10−2 1.9279986867× 10−2

6 3 −9.1318426706 × 10−2 −8.8215649196 × 10−2

6 2 3.0845665000 × 10−1 3.0079608194× 10−1

6 1 −7.6021402310 × 10−1 −7.4896406387 × 10−1

6 0 1.2535400677× 100 1.2503499550× 100

6 −1 −1.0079278456 × 100 −1.0282273588 × 100

6 −2 −4.8304664552 × 10−1 −4.5779972946 × 10−1

6 −3 1.1370699694× 100 1.1530844521× 100

6 −4 1.1913495835× 100 1.1822538661× 100

6 −5 5.2560056636 × 10−1 5.1488724800× 10−1

6 −6 1.1736688454 × 10−1 1.1371714705× 10−1
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Table XII. Spin weighted spheroidal harmonics for Mω = 0.1 and cos θ = 0.

� m q = −0.9 q = 0.9

2 2 4.1111211672 × 10−1 3.7950484443× 10−1

2 1 −8.0605525927 × 10−1 −7.7444328043 × 10−1

2 0 9.6770343965 × 10−1 9.6770343965× 10−1

2 −1 −7.7444328043 × 10−1 −8.0605525927 × 10−1

2 −2 3.7950484443 × 10−1 4.1111211672× 10−1

3 3 5.8559507510 × 10−1 5.5982341302× 10−1

3 2 −9.3732214203 × 10−1 −9.3264155844 × 10−1

3 1 7.1502176780 × 10−1 7.6307833481× 10−1

3 0 3.8419145390 × 10−2 −3.8419145390 × 10−2

3 −1 −7.6307833481 × 10−1 −7.1502176780 × 10−1

3 −2 9.3264155844 × 10−1 9.3732214203× 10−1

3 −3 −5.5982341302 × 10−1 −5.8559507510 × 10−1

4 4 7.1154532347 × 10−1 6.9134142570× 10−1

4 3 −9.8923696324 × 10−1 −9.9458839545 × 10−1

4 2 5.0542053337 × 10−1 5.5505006446× 10−1

4 1 4.0134847826 × 10−1 3.4802911340× 10−1

4 0 −8.3798585128 × 10−1 −8.3798585128 × 10−1

4 −1 3.4802911340 × 10−1 4.0134847826× 10−1

4 −2 5.5505006446 × 10−1 5.0542053337× 10−1

4 −3 −9.9458839545 × 10−1 −9.8923696324 × 10−1

4 −4 6.9134142570 × 10−1 7.1154532347× 10−1

5 5 8.1075684145 × 10−1 7.9470010304× 10−1

5 4 −1.0107000628 × 100 −1.0200385934 × 100

5 3 3.3710130936 × 10−1 3.8104293488× 10−1

5 2 6.0312055648 × 10−1 5.6888007421× 10−1

5 1 −7.6566919046 × 10−1 −7.8489902785 × 10−1

5 0 −2.5485570450 × 10−2 2.5485570450× 10−2

5 −1 7.8489902785 × 10−1 7.6566919046× 10−1

5 −2 −5.6888007421 × 10−1 −6.0312055648 × 10−1

5 −3 −3.8104293488 × 10−1 −3.3710130936 × 10−1

5 −4 1.0200385934× 100 1.0107000628× 100

5 −5 −7.9470010304 × 10−1 −8.1075684145 × 10−1

6 6 8.9272963150 × 10−1 8.7970600210× 10−1

6 5 −1.0179015837 × 100 −1.0287597521 × 100

6 4 1.9938800690 × 10−1 2.3714685226× 10−1

6 3 7.2764306367 × 10−1 7.0598308423× 10−1

6 2 −6.6414145769 × 10−1 −6.8995712931 × 10−1

6 1 −2.7229278396 × 10−1 −2.3136795981 × 10−1

6 0 8.1612099685 × 10−1 8.1612099685× 10−1

6 −1 −2.3136795981 × 10−1 −2.7229278396 × 10−1

6 −2 −6.8995712931 × 10−1 −6.6414145769 × 10−1

6 −3 7.0598308423 × 10−1 7.2764306367× 10−1

6 −4 2.3714685226 × 10−1 1.9938800690× 10−1

6 −5 −1.0287597521 × 100 −1.0179015837 × 100

6 −6 8.7970600210 × 10−1 8.9272963150× 10−1
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Table XIII. Spin weighted spheroidal harmonics for Mω = 0.1 and cos θ = 0.9.

� m q = −0.9 q = 0.9

2 2 1.4070158595× 100 1.4469520014× 100

2 1 −6.3276040875 × 10−1 −6.7728189805 × 10−1

2 0 1.7424257031 × 10−1 1.9411700165× 10−1

2 −1 −3.1984590567 × 10−2 −3.7087357243 × 10−2

2 −2 3.5950865567 × 10−3 4.3386981105× 10−3

3 3 8.8540840083 × 10−1 9.1785502130× 10−1

3 2 1.1936637613× 100 1.1695230417× 100

3 1 −1.0312667647 × 100 −1.0509804998 × 100

3 0 4.2770231715 × 10−1 4.4858142218× 10−1

3 −1 −1.1489471197 × 10−1 −1.2376650604 × 10−1

3 −2 2.0900105378 × 10−2 2.3106765235× 10−2

3 −3 −2.3432796925 × 10−3 −2.6579791433 × 10−3

4 4 4.7271311939 × 10−1 4.9003837955× 10−1

4 3 1.2430573062× 100 1.2548549058× 100

4 2 7.2640111281 × 10−1 6.8973736289× 10−1

4 1 −1.2540767509 × 100 −1.2550656615 × 100

4 0 7.3543750538 × 10−1 7.5267562259× 10−1

4 −1 −2.6634215480 × 10−1 −2.7776127987 × 10−1

4 −2 6.6759828566 × 10−2 7.0862042637× 10−2

4 −3 −1.1651738472 × 10−2 −1.2581385396 × 10−2

4 −4 1.2717039185 × 10−3 1.3964986285× 10−3

5 5 2.3603241859 × 10−1 2.4419490099× 10−1

5 4 8.6299962142 × 10−1 8.7853110913× 10−1

5 3 1.3300224425× 100 1.3250352372× 100

5 2 1.3327302849 × 10−1 9.9162402163× 10−2

5 1 −1.2553442781 × 100 −1.2430710500 × 100

5 0 1.0333677913× 100 1.0442277264× 100

5 −1 −4.8496714304 × 10−1 −4.9724643493 × 10−1

5 −2 1.5656422649 × 10−1 1.6262489225× 10−1

5 −3 −3.6551010190 × 10−2 −3.8436104725 × 10−2

5 −4 6.0782911246 × 10−3 6.4686885018× 10−3

5 −5 −6.4066680667 × 10−4 −6.8987908263 × 10−4

6 6 1.1371714705 × 10−1 1.1736688454× 10−1

6 5 5.1488724800 × 10−1 5.2560056636× 10−1

6 4 1.1822538661× 100 1.1913495835× 100

6 3 1.1530844521× 100 1.1370699694× 100

6 2 −4.5779972946 × 10−1 −4.8304664552 × 10−1

6 1 −1.0282273588 × 100 −1.0079278456 × 100

6 0 1.2503499550× 100 1.2535400677× 100

6 −1 −7.4896406387 × 10−1 −7.6021402310 × 10−1

6 −2 3.0079608194 × 10−1 3.0845665000× 10−1

6 −3 −8.8215649196 × 10−2 −9.1318426706 × 10−2

6 −4 1.9279986867 × 10−2 2.0138768387× 10−2

6 −5 −3.0549982369 × 10−3 −3.2192050631 × 10−3

6 −6 3.1033107890 × 10−4 3.2984531756× 10−4
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Because the Jacobi polynomials are orthogonal, we have∫ 1

−1
dx

(
1 − x

2

)α(1 + x

2

)β

P (α,β)
n1

(x)P (α,β)
n2

(x)

=
2Γ (n+ α+ 1)Γ (n+ β + 1)δn1,n2

(2n+ α+ β + 1)Γ (n+ 1)Γ (n+ α+ β + 1)
. (B.28)

Then, Eq. (B.27) reduces to
∞∑

n=0

[
sA

(n)
lm

sA
(n�)
lm

][
sB

(n)
lm

sB
(n�)
lm

]
2Γ (n+ α+ 1)Γ (n+ β + 1)

(2n+ α+ β + 1)Γ (n+ 1)Γ (n+ α+ β + 1)

=
1

sA
(n�)
lm sB

(n�)
lm

. (B.29)

We can obtain the squares of sA
(n�)
lm and sB

(n�)
lm from Eqs. (B.26) and (B.29). Finally,

we determine the signs of sA
(n�)
lm and sB

(n�)
lm by requiring that the sign of sS

aω
�m(x)

be the same as the sign of the spin-weight spherical harmonics in the limit aω → 0.
In Table X, we list the eigenvalues of the spin-weighted spheroidal harmonics

for q = ±0.9 from � = 2 to 6 in the case Mω = 0.1. In Tables XI–XIII, we list the
values of the spin-weighted spheroidal harmonics for cos θ = −0.9, 0, 0.9, q = ±0.9
and � = 2 − 6.
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