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We investigate the solution of the continued fraction equation by which we determine
“the renormalized angular momentum parameter”, ν, in the formalism developed by Leaver
and Mano, Suzuki and Takasugi. In this formalism, we describe the homogeneous solutions
of the radial Teukolsky equation, which is the basic equation of the black hole perturbation
formalism. We find that, contrary to the assumption made in previous works, the solution,
ν, becomes complex valued as ω (the angular frequency) becomes large for each l and m
(the degree and order of the spin-weighted spheroidal harmonics). We compare the power
radiated by gravitational waves from a particle in a circular orbit in the equatorial plane
around a Kerr black hole in two ways, one using the Mano-Suzuki-Takasugi formalism with
complex ν and the other using a direct numerical integration method. We find that the two
methods produce consistent results. These facts prove the validity of using complex solutions
to determine the homogeneous solutions of the Teukolsky equation.

§1. Introduction

Inspirals of stellar-mass compact objects into a supermassive black hole at galac-
tic nuclei are expected to be one of the most important sources of gravitational
waves for space-based detectors, such as the Laser Interferometer Space Antenna
(LISA).1),2) Through the observation of gravitational waves from such systems, we
may be able to obtain information regarding the central black hole’s spacetime geom-
etry encoded in multipole moments. We may also obtain astrophysical information,
such as the mass distribution of compact objects in galactic nuclei. Theoretical
waveforms of gravitational waves from such systems are required in order to extract
such information through data analysis.

To predict the waveforms of extreme mass ratio inspirals, we adopt the black hole
perturbation approach. In this approach, a compact star is treated as a point particle,
and the mass of the compact star, µ, is assumed to be very small compared to the
mass of the black hole, M , i.e. µ/M � 1. In this context, the Teukolsky equation3)

describes the evolution of a perturbation of the Kerr black hole spacetime. The
standard approach to solve the Teukolsky equation is based on the Green function
method. The Green function is constructed from two kinds of homogeneous solutions.
The solution of the Teukolsky equation is obtained by the integration of the Green
function multiplied by the source term.

In a previous paper4) (paper I), we discussed a numerical method to evaluate the
homogeneous solutions using a formalism developed by Mano et al.5) (MST). In this
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formalism, homogeneous solutions are expressed in series of hypergeometric func-
tions around the horizon and in series of Coulomb wave functions around infinity.
This formalism is an extension of the formalism of Leaver,6) in which only the series
of Coulomb wave functions are given. One of the most important problems in the
application of the Leaver and the MST formalisms to numerical computation is to
determine the so-called “renormalized angular momentum”, ν, by solving an equa-
tion of the form g(ν) = 0, where g(ν) is expressed in terms of continued fractions.
We found that, for each s, �, m and q (where s is the spin index of the Teukolsky
equation, � and m are the indices of the spin weighted spheroidal harmonics, and q
is the Kerr parameter divided by the mass of the black hole, q = a/M), there is a
maximum value of ω for which we can obtain ν, if we assume that the ν is real.

In this paper, we investigate in more detail the properties of the solution of the
continued fraction equation g(ν) = 0, defined in the Leaver and the MST formalisms.
We search for ν in the complex region if we cannot find ν in the real region. We
find that the solution is actually complex valued when no real solutions are found.
Further, we find that the real part of the complex solutions, when they exist, always
take integer or half-integer values. We confirm that these complex solutions of the
continued fraction equation can be used to determine the homogeneous solutions of
the Teukolsky equation. We compare the power radiated by gravitational waves from
a particle in a circular orbit in the equatorial plane around a Kerr black hole com-
puted by the MST formalism with complex ν and by a direct numerical integration
method. We find that the two methods give consistent results. These facts show the
validity of using the complex solutions to determine the homogeneous solutions of
the Teukolsky equation. By using complex ν, we can evaluate gravitational waves
even in the case that Mω becomes large. This range of Mω is important for the
LISA data analysis which deals with the case that a particle moves in the strong
gravitational field or more generic orbits.

This paper is organized as follows. In §2, we briefly review the MST formalism
and introduce the continued fraction equation, g(ν) = 0. In §3, we discuss the
properties of the solutions of the continued fraction equation. In §4, we compare
the power radiated by gravitational waves from a particle around a Kerr black hole
computed by the MST formalism and by a direct numerical integration method.
Section 5 is devoted to a summary and discussion. Throughout this paper, we use
units in which G = c = 1.

§2. Analytic solutions of the homogeneous Teukolsky equation,
and the continued fraction equation

In this paper, we consider only the case ω ≥ 0. Solutions in the case ω < 0
can be obtained from those in the case ω > 0 by the symmetry of the Teukolsky
equation.

The homogeneous Teukolsky equation is given by

∆2 d

dr

(
1
∆

dR�mω

dr

)
− V (r)R�mω = 0, (2.1)
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where the potential term V (r) is given by

V (r) = −K2 + 4i(r − M)K
∆

+ 8iωr + λ. (2.2)

Here ∆ = r2 − 2Mr + a2 = (r − r+)(r − r−), with r± = M ± √
M2 − a2 and

K = (r2 + a2)ω − ma, and λ is the eigenvalue of the angular Teukolsky equation.
We consider the incoming solution of the homogeneous Teukolsky equation de-

fined by the asymptotic behavior

Rin
lmω →

{
Btrans

lmω ∆2e−ikr∗ for r → r+,
r3Bref

lmωeiωr∗ + r−1Binc
lmωe−iωr∗ for r → +∞,

(2.3)

where k = ω − ma/2Mr+ and r∗ is the tortoise coordinate defined by

r∗ = r +
2Mr+

r+ − r−
ln

r − r+

2M
− 2Mr−

r+ − r−
ln

r − r−
2M

. (2.4)

Here r± = M ±√
M2 − a2.

In the MST method, the homogeneous solutions of the Teukolsky equation are
expressed in terms of two kinds of series of special functions.5),7) One consists of
series of hypergeometric functions, and the other consists of series of Coulomb wave
functions. The former is convergent at the horizon, while the latter at infinity.

For the homogeneous solution, Rin
lmω, we define pin by

Rin = eiεκx(−x)−s−i(ε+τ)/2(1 − x)i(ε−τ)/2pin(x). (2.5)

The function pin is expressed in the form of a series of hypergeometric functions as

pin(x) =
∞∑

n=−∞
anF (n + ν + 1 − iτ,−n − ν − iτ ; 1 − s − iε − iτ ; x), (2.6)

where x = ω(r+ − r)/εκ, ε = 2Mω, κ =
√

1 − q2, q = a/M and τ = (ε − mq)/κ, and
F (α, β; γ; x) is the hypergeometric function.

Next, we present a solution in the form of a series of Coulomb wave functions.
Let us denote a homogeneous solution by RC. We define the function fν(z) through
the relation

RC = z−1−s
(
1 − εκ

z

)−s−i(ε+τ)/2
fν(z). (2.7)

We express the function fν(z) in the form of a series of Coulomb wave functions as

fν(z) =
∞∑

n=−∞
(−i)n (ν + 1 + s − iε)n

(ν + 1 − s + iε)n
anFn+ν(−is − ε, z), (2.8)

where z = ω(r − r−) and (a)n = Γ (a + n)/Γ (a), and FN (η, z) is a Coulomb wave
function defined by

FN (η, z) = e−iz2NzN+1 Γ (N + 1 − iη)
Γ (2N + 2)

Φ(N + 1 − iη, 2N + 2; 2iz). (2.9)
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Here Φ(α, β; z) is the confluent hypergeometric function, which is regular at z = 0
(see §13 of Ref. 8)). The function RC is related to Rin by

Rin = KνR
ν
C + K−ν−1R

−ν−1
C , (2.10)

where Kν is given by Eq. (2·20) of paper I.
The expansion coefficients of the series of hypergeometric functions and the series

of Coulomb wave functions, {an}, satisfy the same three-term recurrence relation,
given by

αν
nan+1 + βν

nan + γν
nan−1 = 0, (2.11)

where

αν
n = iεκ(n + ν)(2n + 2ν − 1)(n + ν + 1 + s + iε)

×(n + ν + 1 + s − iε)(n + ν + 1 + iτ), (2.12)
βν

n =
(−λ − s(s + 1) + (n + ν)(n + ν + 1) + ε2 + ε(ε − mq)

)
×(n + ν)(n + ν + 1)(2n + 2ν + 3)(2n + 2ν − 1)

+ε(ε − mq)(s2 + ε2)(2n + 2ν + 3)(2n + 2ν − 1), (2.13)
γν

n = −iεκ(n + ν + 1)(2n + 2ν + 3)(n + ν − s + iε)
×(n + ν − s − iε)(n + ν − iτ). (2.14)

The definitions of αν
n, βν

n and γν
n are different from those given in paper I by the

factor (n + ν)(n + ν + 1)(2n + 2ν + 3)(2n + 2ν − 1). The series of Coulomb wave
functions and the three term recurrence relation Eq. (2.11) are equivalent to those
obtained by Leaver.6)

We note that the parameter ν introduced in the above formulas does not exist in
the Teukolsky equation. This parameter is introduced so that both series converge
and actually represent a solution of the Teukolsky equation. Here, we review the
method to determine ν and obtain the convergence of both series expansions, based
on Ref. 9).

There are two independent solutions of Eq. (2.11) whose asymptotic behavior
for n → ∞ is given by

lim
n→∞n

a
(1)
n

a
(2)
n−1

=
iεκ

2
, lim

n→∞
a

(2)
n

na
(2)
n−1

=
2i

εκ
. (2.15)

There are also two independent solutions whose asymptotic behavior for n → −∞
is given by

lim
n→−∞n

a
(3)
n

a
(3)
n−1

= − iεκ

2
, lim

n→−∞
a

(4)
n

na
(4)
n−1

= − 2i

εκ
. (2.16)

It is shown that in order to have convergence of Eqs. (2.6) and (2.8), the coefficients,
a

(1)
n , must be used for n → ∞, and the coefficients a

(3)
n must be used for n → −∞.

These two solutions are called the “minimal solution” as n → ±∞, respectively.
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In fact, it can be proved that if we use these solutions as the expansion coefficients
{an}, the series of hypergeometric functions Eq. (2.6) converges for x in the range
−∞ < x ≤ 0, and the series Eq. (2.8) converges for z > εκ, or equivalently,
r > r+. However, these two solutions do not coincide in general. In order to obtain
a consistent solution, the parameter ν is used.

We next introduce the following quantities:

Rn ≡ a
(1)
n

a
(1)
n−1

, Ln ≡ a
(3)
n

a
(3)
n+1

. (2.17)

We can express Rn and Ln in terms of continued fractions as

Rn = − γν
n

βν
n + αν

nRn+1

= − γν
n

βν
n−

αν
nγν

n+1

βν
n+1−

αν
n+1γ

ν
n+2

βν
n+2−

· · · , (2.18)

Ln = − αν
n

βν
n + γν

nLn−1

= − αν
n

βν
n−

αν
n−1γ

ν
n

βν
n−1−

αν
n−2γ

ν
n−1

βν
n−2−

· · · . (2.19)

The convergence of the above continued fractions is guaranteed, because {a(1)
n } and

{a(3)
n } constitute minimal solutions.10)

In order to have the coincidence of the two solutions {a(1)
n } and {a(3)

n }, we impose
the relation

RnLn−1 = 1. (2.20)

If we choose ν such that this implicit equation is satisfied for a certain n, we can
obtain a minimal solution {an} that is valid over the entire range −∞ < n < ∞.

In place of Eq. (2.20), we define an equivalent equation. First we divide Eq.
(2.11) by an and replace an/an−1 by Rn and an/an+1 by Ln. We then find

gn(ν) ≡ βν
n + αν

nRn+1 + γν
nLn−1 = 0, (2.21)

where Rn+1 and Ln−1 are given by the continued fractions Eqs. (2.18) and (2.19),
respectively. Equation (2.21) is a transcendental equation expressed in terms of
continued fractions. We call Eq. (2.21) the “continued fraction equation” in this
paper.

§3. Properties of the solutions of the continued fraction equation

We first note that gn(ν) in Eq. (2.21) is invariant under the simultaneous trans-
formation ν ↔ −ν − 1 and n ↔ −n. Thus, g0(ν) is symmetric under ν ↔ −ν − 1.
In particular, if we plot g0(ν) as a function of ν, g0(ν) is symmetric about the line
ν = −1/2 in the complex plane.
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Next, we note that the coefficients αν
n, βν

n and γν
n in Eqs. (2.12) – (2.14) contain

ν only in the form n+ν. This implies that gn(ν+1) = gn+1(ν). When ν is a solution
of Eq. (2.21), we have gn(ν) = 0. This can be rewritten as

gn+1(ν) = βn+1 + αn+1Rn+2 + γn+1Ln = 0.

We then have 0 = gn+1(ν) = gn(ν + 1). Thus, ν + 1 is also a solution. Namely, if
gn(ν) = 0, gn(ν + k) = 0 for an arbitrary integer k. These considerations show that
it is sufficient to investigate g0(ν) = 0 to find the solution ν.

When ε = 2Mω is small, there is an analytic expression of a solution ν in the
form of a series in ε, given by

ν = l +
1

2l + 1

[
−2 − s2

l(l + 1)
+

[(l + 1)2 − s2]2

(2l + 1)(2l + 2)(2l + 3)

− (l2 − s2)2

(2l − 1)2l(2l + 1)

]
ε2 + O(ε3). (3.1)

Thus, when ε → 0, ν takes an integer value ν = l + k (where k is an arbitrary
integer). As an example, we consider the case l = m = 2, q = 0 and k = 0. Then,
as ω increases from 0, the solution ν decreases from l and approaches l − 1/2 near
Mω = 0.36. If Mω is larger than 0.36, the real solution ν disappears. The plot
of g0(x)/l5 is shown in Fig. 1 in the case Mω ≤ 0.36 and in Fig. 2 in the case
Mω > 0.36. The factor l−5 is introduced so that the function g0(x)/l5 remains order
unity. At first glance, in Fig. 2, there seems to be a solution at x = l − 1/2 = 3/2,
x = 1 or x = 2. However, at these points, g0(x) always becomes 0, irrespective of
ω. These are solutions of g0(x) = 0 mathematically, but they are not solutions that
can be used to connect two minimal solutions in the limits n = ±∞, discussed in
the previous section. In Table I of paper I, we listed the maximum values of Mω for
which real ν is found. We also list them in Table I for convenience. We express the
maximum value of Mω as (Mω)max.

Next we consider the solution of g0(z) = 0 in the complex z plane in the case
that Mω is larger than (Mω)max and we cannot find a real solution. In Fig. 3, we
plot a contour of |g0(z)| in the case Mω = 0.5. We find that there is a minimum near
Re(z) = 3/2, Im(z) = 0.36. In Fig. 4, we plot Re(g0(z)) and Im(g0(z)) as functions
of Im(z) at Re(z) = 3/2. It is evident that there is a solution near z = 3/2 + 0.36i.
The precise value of the solution is z = 3/2+0.36188061539416i. It is also suggested
by Fig. 3 that there are no solutions other than this value. We find that when there
are no real solutions, a complex solution always exists. Further, the real part of the
complex solution is always a half-integer or integer. These properties are the same
when the parameters, s, l, m and q have different values.

We consider the case in which Mω is much larger than (Mω)max. In Table II,
we list numerical values of the solution ν in the case s = −2, l = m = 2 and q = 0.
We find that Im(ν) increases as Mω increases, and it reaches a maximum value near
Mω = 0.53. Then, Im(ν) begins to decrease and approaches 0, and the real solution
appears again at Mω = 0.594. This new real solution starts at the half integer value
ν = 3/2, and it approaches the integer value ν = 2. At Mω = 0.604, where the
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Fig. 1. The plot of g0(x)/l5 for Mω = 0.20

and 0.36. Here s = −2, l = m = 2 and

q = 0. There exist real solutions in these

cases.
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Fig. 2. The plot of g0(x)/l5 for Mω = 0.37,

0.40 and 0.50. Here s = −2, l = m = 2

and q = 0. No real solutions are found in

these cases.
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case Mω = 0.50, s = −2, l = m = 2 and

q = 0. There is a complex solution at ν =

1.5 + 0.36188061539416i.
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Fig. 4. The real and imaginary parts of the

function g0(z)/l5 at Re(z) = 1.5 in the

case Mω = 0.50, s = −2, l = m =

2 and q = 0. The real and imaginary

parts become 0 simultaneously at Im(z) =

0.36188061539416. Thus, this function sat-

isfies g0(z) = 0.

real solution reaches ν = 2, the real solution disappears, and the imaginary part
appears again. In Table III, we list numerical values of the solution ν in the case
s = −2, l = m = 2 and q = ±0.99. When q = 0.99, the real solution disappears
at Mω = 0.39, and a complex solution with Re(ν) = 3/2 appears. Then Im(ν)
continues to increase until Mω = 3.0. When q = −0.99, the real solution disappears
at Mω = 0.33, and a complex solution with Re(ν) = 3/2 appears. Then Im(ν)
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Table I. Maximum values of Mω for which real solutions ν are found.

� m q = 0.9 q = 0 q = −0.9 � m q = 0.9 q = 0 q = −0.9

2 2 0.39 0.36 0.32 8 8 1.08 1.00 0.92

2 1 0.44 0.36 0.34 8 7 1.07 1.00 0.93

2 0 0.38 0.36 0.38 8 6 1.06 1.00 0.94

3 3 0.58 0.53 0.45 8 5 1.05 1.00 0.95

3 2 0.61 0.53 0.48 8 4 1.04 1.00 0.96

3 1 0.59 0.53 0.51 8 3 1.03 1.00 0.97

3 0 0.55 0.53 0.55 8 2 1.02 1.00 0.98

4 4 0.73 0.66 0.57 8 1 1.01 1.00 0.99

4 3 0.73 0.66 0.60 8 0 1.00 1.00 1.00

4 2 0.72 0.66 0.63 9 9 1.14 1.06 0.99

4 1 0.70 0.66 0.65 9 8 1.13 1.06 1.00

4 0 0.68 0.66 0.68 9 7 1.12 1.06 1.00

5 5 0.84 0.77 0.68 9 6 1.12 1.06 1.01

5 4 0.83 0.77 0.70 9 5 1.11 1.06 1.02

5 3 0.82 0.77 0.72 9 4 1.10 1.06 1.03

5 2 0.80 0.77 0.74 9 3 1.09 1.06 1.04

5 1 0.79 0.77 0.76 9 2 1.08 1.06 1.05

5 0 0.77 0.77 0.77 9 1 1.07 1.06 1.06

6 6 0.93 0.85 0.77 9 0 1.06 1.06 1.06

6 5 0.92 0.85 0.79 10 10 1.20 1.12 1.05

6 4 0.91 0.85 0.80 10 9 1.19 1.12 1.05

6 3 0.89 0.85 0.82 10 8 1.19 1.12 1.06

6 2 0.88 0.85 0.83 10 7 1.18 1.12 1.07

6 1 0.87 0.85 0.84 10 6 1.17 1.12 1.08

6 0 0.86 0.85 0.86 10 5 1.16 1.12 1.09

7 7 1.01 0.93 0.85 10 4 1.16 1.12 1.09

7 6 1.00 0.93 0.86 10 3 1.15 1.12 1.10

7 5 0.99 0.93 0.88 10 2 1.14 1.12 1.11

7 4 0.98 0.93 0.89 10 1 1.13 1.12 1.12

7 3 0.96 0.93 0.90 10 0 1.12 1.12 1.12

7 2 0.95 0.93 0.91

7 1 0.94 0.93 0.92

7 0 0.93 0.93 0.93

continues to increase until Mω = 3.0. In Tables II and III, we list values for the case
Mω ≤ 3.0. Above this value, it becomes difficult to evaluate the continued fraction
equation numerically, because of the loss of precision. This happens because as Mω
becomes large, βn approaches −(αν

nRn+1 + γν
nLn−1) irrespective of ν.

In Figs. 5–13, we plot the real and imaginary parts of ν for l = m = 2, 3, 4
and q = 0,±0.99. In Figs. 14 and 15, we plot the real and imaginary parts of ν
for l = 2, · · · , 9 in the case q = 0. We find that the properties of ν are very similar
to those in the case l = 2, although there are several quantitative differences. For
example, in the case l = 5, in Figs. 14 and 15, Re(ν) reaches 4.5 at Mω = 0.776,
and a complex solution appears. However, this complex solution exists only in a
very small interval of Mω, 0.776 ≤ Mω ≤ 0.778, and a real solution appears again
for Mω > 0.778.
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Table II. Table of ν for various values of Mω

in the case s = −2, l = m = 2 and q = 0.

Mω Re(ν) Im(ν)

0.1000 1.9793154547208 0.0000000000000

0.2000 1.9129832302687 0.0000000000000

0.3000 1.7792805424199 0.0000000000000

0.3100 1.7594378913945 0.0000000000000

0.3200 1.7375329132632 0.0000000000000

0.3300 1.7129796083608 0.0000000000000

0.3400 1.6847877144372 0.0000000000000

0.3500 1.6510165965479 0.0000000000000

0.3600 1.6066167352463 0.0000000000000

0.3700 1.5000000000000 0.0117805002266

0.3800 1.5000000000000 0.1080591170505

0.4000 1.5000000000000 0.1862468531447

0.4200 1.5000000000000 0.2393542510924

0.4400 1.5000000000000 0.2810676246093

0.4600 1.5000000000000 0.3149109523037

0.4800 1.5000000000000 0.3419264795996

0.5000 1.5000000000000 0.3618806153941

0.5200 1.5000000000000 0.3732918843902

0.5300 1.5000000000000 0.3748108599871

0.5400 1.5000000000000 0.3725753632958

0.5600 1.5000000000000 0.3508153681782

0.5800 1.5000000000000 0.2767032401575

0.5920 1.5000000000000 0.1112238120363

0.5930 1.5000000000000 0.0654237590662

0.5940 1.5671748369160 0.0000000000000

0.5960 1.6572267840117 0.0000000000000

0.5980 1.7231093132436 0.0000000000000

0.6000 1.7878302655744 0.0000000000000

0.6020 1.8649828581648 0.0000000000000

0.6030 1.9221344236998 0.0000000000000

0.6040 2.0000000000000 0.0739848339575

0.6060 2.0000000000000 0.1644030708573

0.6080 2.0000000000000 0.2167770350574

0.7000 2.0000000000000 0.8003377636925

0.8000 2.0000000000000 1.1099466644118

0.9000 2.0000000000000 1.3699138540831

1.0000 2.0000000000000 1.6085538776570

1.2000 2.0000000000000 2.0541150948294

1.4000 2.0000000000000 2.4772658891494

1.6000 2.0000000000000 2.8879097347262

1.8000 2.0000000000000 3.2903727081665

2.0000 2.0000000000000 3.6867890278893

2.2000 2.0000000000000 4.0782125805902

2.4000 2.0000000000000 4.4650426712959

2.6000 2.0000000000000 4.8471678988185

2.8000 2.0000000000000 5.2239336390821

3.0000 2.0000000000000 5.5939000509184

In Tables IV–VI, we list the values
of ν for various Mω in the cases s = 0,
l = m = 2 and q = 0,±0.99. We find
behavior of ν very similar to that in the
case s = −2.

Here, we briefly explain our numeri-
cal method of searching for a solution of
g0(z) = 0. When we search for a real so-
lution, it should be sufficient, in princi-
ple, to search the region l−1/2 < x < l,
because of the symmetry property of the
solution mentioned above. However, in
some cases, the function g0(x) becomes
very steep around the solution in that
region. In such cases, it is often easier
to search for the solution in the region
l − 1 < x < l − 1/2. We thus search the
region l − 1 < x < l. We discard solu-
tions at integer and half-integer values,
x = l − 1, l − 1/2, l.

When we do not find any solutions
on the real z axis, we search for a solu-
tion in the imaginary direction. We con-
sider only half-integer and integer values
of Re(z), and search in the imaginary di-
rection of the z-plane. Thus, the prob-
lem becomes a simple one-dimensional
search for a root of the complex equa-
tion g0(z) = 0. Further, we utilize a
very useful property of g0(z): The func-
tion g0(z) (with complex z) is real when
z = −1/2 + iy (with real variable y).
This is derived using the fact that βk =
β∗
−k and αkγk+1 = (α−k−1γ−k)∗ (where

∗ denotes complex conjugation, and k is
an arbitrary integer). Thus, when we
search for a solution with half-integer
real part, it is convenient to search at
Re(z) = −1/2, since when ν is a solu-
tion, ν + k (with k an arbitrary inte-
ger) is also a solution. For a solution
with integer real part, we search for a
solution which simultaneously satisfies
Re(g0(z)) = 0 and Im(g0(z)) = 0. In
particular, we search for the real part
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Fig. 5. The values of the real and imaginary

parts of ν as functions of Mω in the case

s = −2, l = m = 2 and q = 0.
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s = −2, l = m = 2 and q = 0.99.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Mω

R
e
(

ν)
, 
Im
(

ν)

Re( ν)

Im( ν)

Fig. 7. The values of the real and imaginary parts of ν as functions of Mω in the case s = −2,

l = m = 2 and q = −0.99.

Re(z) = 1 irrespective of l, because the function g0(z) becomes steeper around the
solution as Re(z) becomes larger, and it becomes more difficult to find the solution
in such cases.

§4. Gravitational wave luminosity

Since the role of ν is to match two minimal solutions in the limits n → ±∞ of
the recurrence relation, it is evident that once we find a solution of Eq. (2.21), it
can be used to generate homogeneous solutions irrespective of whether it is real or
complex. In this section, we confirm this by using the luminosity of gravitational
waves radiated by a particle in a circular, equatorial orbit around a Kerr black hole.
The complete formulas are given in Appendix A of paper I. We compare the numerical
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Table III. Table of ν for various values of Mω in the case q = 0.99 and −0.99, s = −2, l = m = 2.

q = 0.99 q = −0.99

Mω Re(ν) Im(ν) Re(ν) Im(ν)

0.10 1.9806255500899 0.0000000000000 1.9778681909419 0.0000000000000

0.20 1.9239618344032 0.0000000000000 1.8984257752783 0.0000000000000

0.30 1.8183581833078 0.0000000000000 1.6857218860079 0.0000000000000

0.31 1.8027568870615 0.0000000000000 1.6371352569052 0.0000000000000

0.32 1.7854692988454 0.0000000000000 1.5499916877959 0.0000000000000

0.33 1.7660512947108 0.0000000000000 1.5000000000000 0.1201460888531

0.34 1.7438484200603 0.0000000000000 1.5000000000000 0.1788957377084

0.35 1.7178247791233 0.0000000000000 1.5000000000000 0.2240840951862

0.36 1.6861420552899 0.0000000000000 1.5000000000000 0.2628158063725

0.37 1.6447942140179 0.0000000000000 1.5000000000000 0.2976343179397

0.38 1.5793009665553 0.0000000000000 1.5000000000000 0.3297922470347

0.39 1.5000000000000 0.0974489094430 1.5000000000000 0.3600132102046

0.40 1.5000000000000 0.1628152952473 1.5000000000000 0.3887584134857

0.50 1.5000000000000 0.5368498162041 1.5000000000000 0.6365360949922

0.60 1.5000000000000 0.8672067267975 1.5000000000000 0.8571228112204

0.70 1.5000000000000 1.1838651090370 1.5000000000000 1.0704661825964

0.80 1.5000000000000 1.4840266489876 1.5000000000000 1.2821245153699

0.90 1.5000000000000 1.7701386563708 1.5000000000000 1.4938849397247

1.00 1.5000000000000 2.0454330629622 1.5000000000000 1.7061371538867

1.10 1.5000000000000 2.3125401729619 1.5000000000000 1.9187278288162

1.20 1.5000000000000 2.5734029380085 1.5000000000000 2.1313317677628

1.30 1.5000000000000 2.8294329783970 1.5000000000000 2.3436142271920

1.40 1.5000000000000 3.0816629547228 1.5000000000000 2.5552922279595

1.50 1.5000000000000 3.3308588672551 1.5000000000000 2.7661482256677

1.60 1.5000000000000 3.5775977157128 1.5000000000000 2.9760238443012

1.70 1.5000000000000 3.8223206679586 1.5000000000000 3.1848072932141

1.80 1.5000000000000 4.0653697494531 1.5000000000000 3.3924204618486

1.90 1.5000000000000 4.3070135210021 1.5000000000000 3.5988078524059

2.00 1.5000000000000 4.5474653357747 1.5000000000000 3.8039277638612

2.10 1.5000000000000 4.7868965237373 1.5000000000000 4.0077454471779

2.20 1.5000000000000 5.0254460525305 1.5000000000000 4.2102277404164

2.30 1.5000000000000 5.2632277012574 1.5000000000000 4.4113386736802

2.40 1.5000000000000 5.5003354519402 1.5000000000000 4.6110355696752

2.50 1.5000000000000 5.7368475857391 1.5000000000000 4.8092651925867

2.60 1.5000000000000 5.9728298259083 1.5000000000000 5.0059594834575

2.70 1.5000000000000 6.2083377711225 1.5000000000000 5.2010303381768

2.80 1.5000000000000 6.4434187950814 1.5000000000000 5.3943626971054

2.90 1.5000000000000 6.6781135409542 1.5000000000000 5.5858048534288

3.00 1.5000000000000 6.9124571056503 1.5000000000000 5.7751542098469

data with those computed with the numerical integration method of Kennefick.∗)

The innermost stable circular orbit (ISCO) around a Kerr black hole is given by

rISCO = M [3 + Z2 ∓
√

(3 − Z1)(3 + Z1 + 2Z2)], (4.1)
Z1 = 1 + (1 − q2)1/3[(1 + q)1/3 + (1 − q)1/3], (4.2)

∗) The numerical data were kindly provided to us by D. Kennefick and are based on the work

presented in Ref. 11).
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Z2 =
√

3q2 + Z2
1 , (4.3)

Table IV. Table of ν for various values of Mω

in the case s = 0, l = m = 2 and q = 0.

Mω Re(ν) Im(ν)

0.1000 1.9848275014852 0.0000000000000

0.2000 1.9376748241581 0.0000000000000

0.3000 1.8522206563655 0.0000000000000

0.4000 1.7069234201112 0.0000000000000

0.4100 1.6861876869380 0.0000000000000

0.4200 1.6631943548601 0.0000000000000

0.4300 1.6369668328189 0.0000000000000

0.4400 1.6053426169451 0.0000000000000

0.4500 1.5608220358616 0.0000000000000

0.4600 1.5000000000000 0.0580486824445

0.4700 1.5000000000000 0.1001804231496

0.4800 1.5000000000000 0.1273338678120

0.4900 1.5000000000000 0.1476523972303

0.5000 1.5000000000000 0.1633287233824

0.5100 1.5000000000000 0.1751890776086

0.5200 1.5000000000000 0.1834763247507

0.5300 1.5000000000000 0.1880516714671

0.5400 1.5000000000000 0.1883986754070

0.5500 1.5000000000000 0.1834683228152

0.5600 1.5000000000000 0.1712231357384

0.5700 1.5000000000000 0.1472113005187

0.5800 1.5000000000000 0.0974051775175

0.5900 1.5967266037405 0.0000000000000

0.6000 1.6978839941760 0.0000000000000

0.6040 1.7370771353709 0.0000000000000

0.6080 1.7796485136225 0.0000000000000

0.6120 1.8295192010822 0.0000000000000

0.6160 1.8982359899500 0.0000000000000

0.6200 2.0000000000000 0.0881232882027

0.6600 2.0000000000000 0.4182708018765

0.7000 2.0000000000000 0.5798590491029

0.8000 2.0000000000000 0.8682632610900

0.9000 2.0000000000000 1.0958382861914

1.0000 2.0000000000000 1.2916407295318

1.1000 2.0000000000000 1.4596540676691

1.2000 2.0000000000000 1.5871735288388

1.3000 2.0000000000000 1.5757480036493

1.4000 1.5000000000000 1.8980859589471

1.6000 1.5000000000000 2.5246610689374

1.8000 1.5000000000000 3.0134306373653

2.0000 1.5000000000000 3.4652896348154

2.2000 1.5000000000000 3.8988668745912

2.4000 1.5000000000000 4.3212911554702

2.6000 1.5000000000000 4.7360933390574

2.8000 1.5000000000000 5.1452723630699

3.0000 1.5000000000000 5.5500484659006

where the upper and lower signs refer to
the cases q > 0 and q < 0, respectively.
The orbital angular frequency of a cir-
cular orbit is given by

Ω =
M1/2

r3/2(1 + q(M/r)3/2)
. (4.4)

The angular frequency of gravitational
waves corresponding to the harmonic m
is given by ω = mΩ. For q > 0,
the orbital radius of the ISCO becomes
smaller than that in the Schwarzschild
case, and it approaches the event hori-
zon as q → 1. Thus, Mω around the
ISCO can be larger than (Mω)max.

In Table VII, we list the numerical
data for the gravitational wave luminos-
ity induced by a particle in a circular
orbit in the case that Mω is larger than
(Mω)max. We find that the numerical
data computed using a complex ν agree
with those computed using the numeri-
cal integration method to about 5 or 6
digits. This is approximately the same
degree of accuracy of the numerical in-
tegration. This demonstrates the valid-
ity of using a complex ν to produce the
homogeneous solutions of the Teukolsky
equation.

In the case of eccentric orbits, there
are infinite number of higher harmonics
for each l, m. Thus, in principle, there
are many harmonics for which Mω is
larger than (Mω)max. Here, we estimate
the range of harmonics needed to ex-
press the total power of the gravitational
waves with the relative error less than
10−5 using the Newtonian, quadrupole
approximation, in the case of a non-
spinning binary. The power radiated in
nth harmonics is given by12)
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Fig. 8. The values of the real and imaginary

parts of ν as functions of Mω in the case

s = −2, l = m = 3 and q = 0.
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Fig. 9. The values of the real and imaginary

parts of ν as functions of Mω in the case

s = −2, l = m = 3 and q = 0.99.
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Fig. 10. The values of the real and imaginary parts of ν as functions of Mω in the case s = −2,

l = m = 3 and q = −0.99.

P (n) =
32
5

m2
1m

2
2(m1 + m2)

r5
a

g(n, e), (4.5)

where m1 and m2 are the masses of the two stars forming the binary, e is the
eccentricity, ra is the semi-major axis of the orbit, and we have

g(n, e) =
n4

32

{ [
Jn−2(ne) − 2eJn−1(ne) +

2
n

Jn(ne) + 2eJn+1(ne) − Jn+2(ne)
]2

+(1 − e2)[Jn−2(ne) − 2Jn(ne) + Jn+2(ne)]2 +
4

3n2
(Jn(ne))2

}
, (4.6)
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Fig. 11. The values of the real and imaginary

parts of ν as functions of Mω in the case

s = −2, l = m = 4 and q = 0.
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Fig. 12. The values of the real and imaginary

parts of ν as functions of Mω in the case

s = −2, l = m = 4 and q = 0.99.
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Fig. 13. The values of the real and imaginary parts of ν as functions of Mω in the case s = −2,

l = m = 4 and q = −0.99.

where Jn(z) is the Bessel function. The angular frequency for each harmonic is given
by ω = nω0, with ω0 = (m1 + m2)1/2/r

3/2
a . In Fig. 16, we plot the contours of the

values of Mω that must be included in the total power as functions of e and ra. We
find that for small ra, there is a relatively wide range of values of e for which the
required value of Mω exceeds (Mω)max = 0.36 in the case l = m = 2 and q = 0.
In such cases, complex ν must be employed in order to evaluate the gravitational
radiation. Of course, we should keep in mind that, because this is based on the
Newtonian, quadrupole approximation, this result will be changed quantitatively in
the case of fully relativistic treatment.
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Fig. 14. The values of the real parts of ν as

functions of Mω in the cases l = 2, 3, · · · , 9,

s = −2 and q = 0.
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Fig. 15. The values of the imaginary parts of

ν as functions of Mω in the cases from l =

2, 3, · · · , 9, s = −2 and q = 0.
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Fig. 16. The contours of the values of Mω(= Mnω0) that must be included in the evaluation of

the total power in order to obtain the the relative error less than 10−5. Here, M = m1 + m2.

The thick curve corresponds to the contour for Mω = 0.36, which is equal to (Mω)max, in the

case l = m = 2 and q = 0, above which ν becomes complex. The region under thick dashed

curve should be excluded from consideration, because there, the pericenter distance is less than

2M . Thus, in the region between the thick curve and the thick dashed curve, the parameter ν

can have a complex value.

§5. Summary and discussion

We have investigated the numerical properties of the solutions of the continued
fraction equation derived by Leaver and Mano et al. in the formalism of the analytic
representation of the homogeneous solution of the Teukolsky equation. We have
found that, for each s, l, m and q, the solution ν takes a real or complex value,
depending on the value of ω. We have also found that, when ν is complex, its real
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Table V. Table of ν for various values of Mω

in the case s = 0, l = m = 2 and q = 0.99.

Mω Re(ν) Im(ν)

0.10 1.9855006468982 0.0000000000000

0.20 1.9433423104280 0.0000000000000

0.30 1.8738919793067 0.0000000000000

0.40 1.7745498379081 0.0000000000000

0.50 1.6249603205669 0.0000000000000

0.51 1.6016482354182 0.0000000000000

0.52 1.5720774742602 0.0000000000000

0.53 1.5140777829215 0.0000000000000

0.54 1.5000000000000 0.0683318312500

0.55 1.5000000000000 0.0970789832967

0.56 1.5000000000000 0.1187106486632

0.57 1.5000000000000 0.1367752823053

0.58 1.5000000000000 0.1526950899429

0.59 1.5000000000000 0.1672593963838

0.60 1.5000000000000 0.1809982771760

0.70 1.5000000000000 0.3387878153683

0.80 1.5000000000000 0.5844007364833

0.90 1.5000000000000 0.8212346456388

1.00 1.5000000000000 0.9679578324407

1.10 2.0000000000000 1.0719514201554

1.20 2.0000000000000 1.5606928653937

1.30 2.0000000000000 1.8822793013188

1.40 2.0000000000000 2.1581224329993

1.50 2.0000000000000 2.4081352814494

1.60 2.0000000000000 2.6392239009791

1.70 2.0000000000000 2.8536938783809

1.80 2.0000000000000 3.0506896346940

1.90 2.0000000000000 3.2246989210551

2.00 2.0000000000000 3.3561709666536

2.10 2.0000000000000 3.2904400721719

2.20 1.5000000000000 3.7368758127391

2.30 1.5000000000000 4.0811236068986

2.40 1.5000000000000 4.3637677117354

2.50 1.5000000000000 4.6216867037460

2.60 1.5000000000000 4.8652774867248

2.70 1.5000000000000 5.0989848264810

2.80 1.5000000000000 5.3251065286991

2.90 1.5000000000000 5.5449488222337

3.00 1.5000000000000 5.7592716343452

Table VI. Table of ν for various values of Mω

in the case s = 0, l = m = 2 and q = −0.99.

Mω Re(ν) Im(ν)

0.10 1.9840980928918 0.0000000000000

0.20 1.9308382464262 0.0000000000000

0.30 1.8203733727014 0.0000000000000

0.31 1.8041051082066 0.0000000000000

0.32 1.7863405245509 0.0000000000000

0.33 1.7667869072726 0.0000000000000

0.34 1.7450236585402 0.0000000000000

0.35 1.7204062673298 0.0000000000000

0.36 1.6918506722768 0.0000000000000

0.37 1.6572410906180 0.0000000000000

0.38 1.6110789879720 0.0000000000000

0.39 1.5000000000000 0.0186032751635

0.40 1.5000000000000 0.1154238436610

0.50 1.5000000000000 0.3965366549457

0.60 1.5000000000000 0.5628860942422

0.70 1.5000000000000 0.6786359420169

0.80 1.5000000000000 0.6765122702806

0.90 2.0000000000000 0.9125809354487

1.00 2.0000000000000 1.2541180907051

1.10 2.0000000000000 1.5100321536697

1.20 2.0000000000000 1.7355022863878

1.30 2.0000000000000 1.9421454082317

1.40 2.0000000000000 2.1324040070446

1.50 2.0000000000000 2.3031629738421

1.60 2.0000000000000 2.4408891644519

1.70 2.0000000000000 2.4732101098580

1.80 1.5000000000000 2.7185951268120

1.90 1.5000000000000 3.0969911535975

2.00 1.5000000000000 3.3873306639375

2.10 1.5000000000000 3.6492406015533

2.20 1.5000000000000 3.8963211129597

2.30 1.5000000000000 4.1339652371712

2.40 1.5000000000000 4.3648798107882

2.50 1.5000000000000 4.5906202696084

2.60 1.5000000000000 4.8121617032199

2.70 1.5000000000000 5.0301522240344

2.80 1.5000000000000 5.2450395718077

2.90 1.5000000000000 5.4571399180362

3.00 1.5000000000000 5.6666774973656

part is always an integer or half integer. Although there are certain regularities in the
behavior of the solution, we have not determined how such behavior is controlled by
the continued fraction equation. We hope to investigate the behavior of ν analytically
in the future.

In order to confirm the existence of complex ν, we have computed the gravita-
tional wave luminosity emitted by a particle in circular, equatorial orbit around a
Kerr black hole in the case that ν is complex, and compared the results with those
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Table VII. Comparison of the energy fluxes obtained using the numerical integration method of

Kennefick and the method presented here in the case r0 = 1.55M and q = 0.99, with complex

ν.

l | m | Re(ν) Im(ν) Numerical integration This paper Relative error

2 2 1.5 1.1374192131794 3.568050135 × 10−2 3.568033154338851× 10−2 4.76 × 10−6

3 3 2.5 1.4249576682707 2.152962111 × 10−2 2.152959342790158× 10−2 1.29 × 10−6

4 4 3.5 1.7677955367662 1.230541176 × 10−2 1.230541952573211× 10−2 6.31 × 10−7

5 4 4.5 0.3735768429955 1.933923538 × 10−5 1.933924400940079× 10−5 4.46 × 10−7

5 5 4.5 2.1437000387424 7.259841388 × 10−3 7.259849874157195× 10−3 1.17 × 10−6

6 5 5.5 0.8032470628900 1.536518877 × 10−5 1.536520289551414× 10−5 9.19 × 10−7

6 6 5.5 2.5395166388946 4.404590776 × 10−3 4.404599359654937× 10−3 1.95 × 10−6

7 6 6.5 1.2521347909128 1.148793520 × 10−5 1.148795883734041× 10−5 2.06 × 10−6

7 7 6.5 2.9481395894691 2.726943363 × 10−3 2.726949666682515× 10−3 2.31 × 10−6

8 7 7.5 1.6997166387020 8.267139284 × 10−6 8.267168128593364× 10−6 3.49 × 10−6

8 8 7.5 3.3654788843469 1.713109264 × 10−3 1.713110726903289× 10−3 8.54 × 10−7

9 7 8.5 0.3781387034254 1.650193407 × 10−7 1.650193971262395× 10−7 3.42 × 10−7

9 8 8.5 2.1467598463840 5.800131555 × 10−6 5.800152000099428× 10−6 3.53 × 10−6

9 9 8.5 3.7890216134824 1.087833559 × 10−3 1.087830324625970× 10−3 2.97 × 10−6

10 8 9.5 0.8445521091574 1.423932484 × 10−7 1.423939557356283× 10−7 4.97 × 10−6

10 9 9.5 2.5936449978532 3.998328655 × 10−6 3.998328388790399× 10−6 6.66 × 10−8

10 10 9.5 4.2171390613851 6.963970144 × 10−4 6.963929698290593× 10−4 5.81 × 10−6

computed using a numerical integration method. We found that the two results are
consistent. This shows clearly the validity of the existence of complex ν. Even if
Mω becomes larger than a certain critical value and a real ν does not exist, we can
use the MST formalism by treating ν as a complex value. Thus, the region of ω in
which the MST formalism can be used becomes much wider than in the case that
we consider only real ν, as in paper I.

There is, however, a limitation on the values of ω for which we can use the
MST formalism for actual numerical computations. When Mω becomes very large
(say Mω > 5 in the case s = −2, l = 2 and q = 0), it becomes very difficult
to evaluate the continued fraction equation (2.21) accurately because of the loss of
accuracy. As ω becomes large, βn approaches −(αν

nRn+1 + γν
nLn−1) irrespective of

ν. Thus, it becomes difficult to evaluate Eq. (2.21) numerically with high accuracy.
We must solve this problem because Mω becomes very large in the cases of generic
orbits, which are important for the data analysis for LISA. A possible solution is to
derive the high frequency expansion of ν. If we cannot solve the problem, we may
need to use numerical integration methods to evaluate the homogeneous solutions
of the Teukolsky equation when Mω becomes very large. However, we believe that
the MST method supplemented by some numerical integration is a very powerful
method for the numerical computation of the Teukolsky equation.

Based on the analysis presented in this paper, we plan to apply the MST formal-
ism to the evaluation of the gravitational wave luminosity in the cases of eccentric
orbits and more generic, non-equatorial orbits, and to investigate the data analysis
issue for LISA in the near future.
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