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Abstract: This manuscript investigates the fractional Phi-four equation by using q-homotopy analysis

transform method (q-HATM) numerically. The Phi-four equation is obtained from one of the special

cases of the Klein-Gordon model. Moreover, it is used to model the kink and anti-kink solitary wave

interactions arising in nuclear particle physics and biological structures for the last several decades.

The proposed technique is composed of Laplace transform and q-homotopy analysis techniques, and

fractional derivative defined in the sense of Caputo. For the governing fractional-order model, the

Banach’s fixed point hypothesis is studied to establish the existence and uniqueness of the achieved

solution. To illustrate and validate the effectiveness of the projected algorithm, we analyze the

considered model in terms of arbitrary order with two distinct cases and also introduce corresponding

numerical simulation. Moreover, the physical behaviors of the obtained solutions with respect to

fractional-order are presented via various simulations.

Keywords: q-homotopy analysis method; Laplace transform; Phi-four equation; Caputo fractional

derivative.

1. Introduction

Recently, many new fractional-order operator types have been introduced to the literature by

some scholars, and established its fundamental properties [1–6]. Fractional theory is widely used to

explain many properties of phenomena such as nanotechnology [7], optics [8], human diseases [9],

chaos theory [10], and others [11–32]. As an example, the tumor-immune surveillance model has been

investigated in [33]. Some important properties of dengue fever have been effectively investigated

in [34,35]. The analytical as well as numerical solutions for the equations illustrating the above cited

phenomena, have an important role in describing the behavior of nonlinear models ascends [36–40].

For the differential equation, symmetry is a transformation that keeps its family of solutions invariant,

and further, its analysis can be applied to examine and illustrate various classes of differential equations.

The study of fractional calculus associated to symmetry recently attracted many researchers from

different disciplines in order to present their viewpoints while analyzing real-word problems.
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The Klein-Gordon (KG) equation is derived by physicists Klein and Gordon to investigate the

behavior of relativistic electrons. As a specific form of the KG equation, the Phi-four equation is defined

to illustrate wave interactions [41,42] which is considered as in fractional order, namely, fractional

Phi-four (FPF) equation

Dµv(x, t) = vxx(x, t) + λ1v(x, t) + λ2v3(x, t), 1 < µ ≤ 2, (1)

with

v(x, 0) = f1(x) and vt(x, 0) = f2(x).

Here, λ1 and λ2 are real-valued constants. Here, v(x, t) is the normalized propagation of distance

and retracted time t.

Many physicists and mathematicians recently proposed very accurate and more effective

algorithms to find and examine the solution for equations describing nonlinear mechanisms arising

in science and engineering. As an approximate method, the homotopy analysis method (HAM) has

been introduced by L. Shijun [43,44], which is formed to describe deformation from zero to 1. Recently,

it has been efficiently and beneficially employed to examine the nature of nonlinear problems without

linearization and perturbation. However, HAM necessitates huge time and computer memory for

computational work. Therefore, there is an essence of the consolidation of this scheme with familiar

transform algorithms. The projected solution procedure is the mixture of q-HAM with LT [45]. Since

the future scheme is a modified method of HAM, it does not kernel discretization, perturbation or

linearization [46–56].

The considered nonlinear problem recently fascinated authors from various areas of science.

Due to the numerous applications of the proposed model and the important role it plays in describing

various nonlinear phenomena, several researchers found and investigated the solution numerically

and also analytically; for instance, researchers in [57] find the new exact solution for the fractional

case of considered nonlinear problem, and the spectral collocation method is considered in [58] to

find the solution for PF equation. The considered nonlinear PF equation has attracted the attention

of researchers, and, in order to present their viewpoint, many techniques are considered [59–65],

presenting some interesting results. Recently many researchers from all over the world have investigated

Fractional Calculus (FC) as an effective tool by comparing with other operators some important physical

problems [66–79]. For instance, authors in [80] presented the reflection symmetry in fractional calculus,

and proposed some interesting properties and corresponding consequences.

The main aim of this paper is to investigate the numerical solutions for the considered fractional

Phi-Four equation using the novel technique. The proposed algorithm provides more liberty to

consider the diverse class complex as well as nonlinear problems and the initial guess.

In this paper, we try to capture in the physical behaviors obtained numerical solutions with distinct

arbitrary order and the parameters accessible by the projected algorithm. Moreover, in order to present

accuracy and effectiveness, we present the numerical simulations. By the help of these results, we try

to explain the diverse model exemplifying numerous phenomena arising in daily life. The rest of the

paper is organized as follows: the basic properties of FC are presented in Section 2, the basic solution

algorithm of the projected method for the considered problem is defined in Section 3, the convergence

analysis of the considered scheme is illustrated in Section 4, the solution for FPF equation and its

corresponding consequences in terms plots and also numerical simulation are respectively cited in

Sections 5 and 6. Finally, some important findings of the paper are presented as a conclusion section.

2. Preliminaries

In this subsection of the paper, it is presented the basic definitions of fractional calculus.
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Definition 1. Fractional integral of v(x, t) ∈ Cδ(δ ≥ −1) with the order µ is defined in RL as

Jµv(x, t) =
1

Γ(µ)

∫ t

0
(t− ϑ)µ−1v(x,ϑ)dϑ,J0v(x, t) = v(x, t). (2)

Definition 2. Fractional derivative of f ∈ Cn
−1

is given in the sense of Caputo as the following:

D
µ
t v(x, t) =















dnv(x,t)
dtn , µ = n ∈ N,

1
Γ(n−µ)

∫ t

0
(x, t− ϑ)n−µ−1v(n)(x,ϑ)dϑ, n− 1 < µ < n , n ∈ N.

(3)

Definition 3. The Laplace transform (LT) of D
µ
t v(x, t) for a Caputo fractional derivative is introduced as below:

L
[

D
µ
t v(x, t)

]

= sµV(x, s) −
n−1
∑

r=0

sµ−r−1v(r)
(

x, 0+
)

, (n− 1 < µ ≤ n), (4)

where V(x, s) is LT of v(x, t).

3. Solution Procedure for Fractional Phi-Four Equation

Here, we consider the nonlinear FPF equation to illustrate the basic solution algorithm of the

projected method with associated initial conditions as follows:

D
µ
t v(x, t) =

∂2v(x, t)

∂x2
+ λ1v(x, t) + λ2v3(x, t), 1< µ ≤ 2, t >0, (5)

and

v(x, 0) = g1(x) and vt(x, 0) = g2(x). (6)

Here, D
µ
t v(x, t) signifies the fractional Caputo-derivative of v(x, t). Here, v(x, t) is a bounded

function. On using the LT on Equation (5), and then by the help of Equation (6), it is given as following

L[v(x, t)] − 1

s
[g1(x)] −

1

s2
[g2(x)] −

1

sµ
L

{

∂2v

∂x2
+ λ1 v + λ2v3

}

= 0. (7)

By the assist of Equation (7), the nonlinear operator is given as follows:

N [ϕ(x, t; q)] = L[ϕ(x, t; q)] − 1
s [g1(x)] − 1

s2 [g2(x)]

− 1
sµ L

{

∂2ϕ(x,t;q)

∂x2 + λ1ϕ(x, t; q) + λ2ϕ
3(x, t; q)

}

,
(8)

Now, the homotopy structure is defined by

(1− nq)L[ϕ(x, t; q) − v0(x, t)] = ℏqN [ϕ(x, t; q)], (9)

where q ∈
[

0, 1
n

]

(n ≥ 1) and ℏ , 0 are respectively the embedding and auxiliary parameter. Further,

these parameters help us to control and adjust the convergence region of the obtained solution. For the

proper choice of n and ℏ, the obtained solution quickly converges to the exact solution in an admissible

domain. The following results are respectively true for q = 0 and q = 1
n

ϕ(x, t; 0) = v0(x, t), ϕ
(

x, t;
1

n

)

= v(x, t). (10)
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Near to q, we define ϕ(x, t; q) in series form by help of the Taylor theorem and then one can obtain

ϕ(x, t; q) = v0(x, t) +
∞
∑

m=1

vm(x, t)qm, (11)

where

vm(x, t) =
1

m!

∂mϕ(x, t; q)

∂qm

∣

∣

∣

∣

∣

∣

q=0. (12)

For the proper chaise of v0(x, t), n and ℏ; the series (11) converges at q = 1
n . Then

v(x, t) = v0(x, t) +
∞
∑

m=1

vm(x, t)
(

1

n

)m

. (13)

Dividing by m! after m-times differentiating Equation (9) with q and then putting q = 0,

it simplifies to

L[vm(x, t) − kmvm−1(x, t)] = ℏℜm

(→
v m−1

)

, (14)

where km and vm are defined by

km =

{

0, m ≤ 1,

n, m > 1.
(15)

and
→
v m =

{

v0(x, t), v1(x, t), . . . , vm(x, t)
}

. (16)

On applying inverse LT on Equation (14), produces

vm(x, t) = kmvm−1(x, t) + ℏL−1
[

ℜm

(→
v m−1

)]

, (17)

where
ℜm

[→
v m−1

]

= L[vm−1(x, t)] −
(

1− km
n

)(

1
s [g1(x)] +

1
s2 [g2(x)]

)

− 1
sµ L















∂2vm−1

∂x2 + λ1vm−1 + λ2

m−1
∑

i=0













i
∑

j=0
v jvi− j













vm−1−i















.
(18)

With the help of Equations (17) and (18), we have

vm(x, t) = (km + ℏ)vm−1(x, t) −
(

1− km
n

)

L−1
{

1
s [g1(x)] +

1
s2 [g2(x)]

}

−ℏL−1
[

1
sµ L

{

∂2vm−1

∂x2 + λ1vm−1 + λ2
∑m−1

i=0

(

∑i
j=0 v jvi− j

)

vm−1−i

}]

.
(19)

Using Equation (19), we achieve the series of vm(x, t). Lastly, the series q-HATM solution is

defined as

v(x, t) =
∞
∑

m=0

vm(x, t). (20)

4. Convergence Analysis of the Proposed Method

In this part of the paper, for the considered problem, we introduce the convergence analysis

as follows.

Theorem 1 (Convergence theorem). Let F : E→ E is mapping (nonlinear) with Banach space E. Presume

that

‖F(u) − F(v)‖ ≤ α‖u− v‖, ∀ u, v ∈ E, (21)
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then there is a fixed point for F with the help of Banach’s fixed point theory [81–83]. Then, for u0, v0 ∈ E

the sequence obtained by q -HATM solution converges to a specified point of F, and

‖vm − vp‖ ≤
αp

1− α‖v1 − v0‖. (22)

Proof. Let us consider a Banach space (C[J], ‖.‖) with the norm defined as ‖g(t)‖ = max
t∈J

∣

∣

∣g(t)
∣

∣

∣ for all

continuous function on J. Now, we verify
{

vp

}

is Cauchy sequence in (C[J], ‖.‖). For that, let

‖vm − vp‖ = max
t∈J

∣

∣

∣vm − vp

∣

∣

∣

= max
t∈J

∣

∣

∣

∣

∣

(km + ℏ)
(

vm−1 − vp−1

)

− ℏL−1
(

1
sµ L

[(

∂2vm−1

∂x2 −
∂2vp−1

∂x2

)

+ λ1

(

vm−1 − vp−1

)

+ λ2

(

v3
m−1
− v3

p−1

)])

∣

∣

∣

∣

∣

≤ max
t∈J

{

(km + ℏ)
∣

∣

∣

∣

(

vm−1 − vp−1

)

∣

∣

∣

∣

− ℏL−1( 1
sµ L[

∣

∣

∣

∣

∣

∂2vm−1

∂x2 −
∂2vp−1

∂x2

∣

∣

∣

∣

∣

+λ1

∣

∣

∣vm−1 − vp−1

∣

∣

∣+ λ2

∣

∣

∣

∣

v3
m−1
− v3

p−1

∣

∣

∣

∣

])
}

.

For LT, with the help of the convolution theorem, we get

‖vm − vp‖ ≤ max
t∈J

[(km + ℏ)
∣

∣

∣

∣

(

vm−1 − vp−1

)

∣

∣

∣

∣

−ℏ
∫ t

0

(

∣

∣

∣

∣

∣

∂2vm−1

∂x2 −
∂2vp−1

∂x2

∣

∣

∣

∣

∣

+ λ1

∣

∣

∣vm−1 − vp−1

∣

∣

∣+ λ2

∣

∣

∣

∣

v3
m−1
− v3

p−1

∣

∣

∣

∣

)

]
(t−ξ)µ
Γ(µ+1)

dξ

≤ max
t∈J

[(km + ℏ)
∣

∣

∣vm−1 − vp−1

∣

∣

∣− ℏ
∫ t

0
(δ2

∣

∣

∣vm−1 − vp−1

∣

∣

∣+ λ1

∣

∣

∣

∣

(

vm−1 − vp−1

)

∣

∣

∣

∣

+λ2

∣

∣

∣

∣

(

vm−1 − vp−1

)(

P2 + Q2 + PQ
)

∣

∣

∣

∣

)]
(t−ξ)µ
Γ(µ+1)

dξ.

Then, the above inequality reduces to

‖vm − vp‖ ≤ max
t∈J

[(km + ℏ)
∣

∣

∣vm−1 − vp−1

∣

∣

∣+ ℏ(δ2
∣

∣

∣vm−1 − vp−1

∣

∣

∣

+λ1

∣

∣

∣

∣

(

vm−1 − vp−1

)

∣

∣

∣

∣

+ λ2

∣

∣

∣

∣

(

vm−1 − vp−1

)(

P2 + Q2 + PQ
)

∣

∣

∣

∣

)T ],
‖vm − vp‖ ≤ α‖vm−1 − vp−1‖.

Setting m = p + 1, it yields

‖vp+1 − vp‖ ≤ α‖vp − vp−1‖ ≤ α2‖vp−1 − vp−2‖ ≤ . . . ≤ αp‖v1 − v0‖.

On using triangular inequality, we have

‖vm − vp‖ ≤ ‖vp+1 − vp‖+ ‖vp+2 − vp+1‖+ · · ·+ ‖vm − vm−1‖
≤

[

αp + αp+1 + . . .+ αm−1
]

‖v1 − v0‖
≤ αp

[

1 + α+ α2 + . . .+ αm−p−1
]

‖v1 − v0‖
≤ αp

[

1−αm−p−1

1−α
]

‖v1 − v0‖.

As 0 < α < 1, so 1− αm−p−1 < 1, then we have

‖vm − vp‖ ≤
αp

1− α‖v1 − v0‖.

But ‖v1 − v0‖ < ∞, consequently as m→∞ than ‖vm − vp‖ → 0 , which proves
{

vp

}

is Cauchy

sequence in C[J]. It completes our required proof. �
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Theorem 2 (Uniqueness theorem). For Equation (5), the q -HATM solution is unique wherever 0 < α < 1,

where α = (km + ℏ) + ℏ

(

δ2 + λ1 + λ2

(

P2 + Q2 + PQ
))

T .

Proof. For fractional PF equation cited in Equation (5), the solution is illustrated as following

v(x, t) =
∞
∑

m=0

vm(x, t)

where
vm(x, t) = (km + ℏ)vm−1(x, t) −

(

1− km
n

)

L−1
{

1
s [ f1(x)] +

1
s2 [ f2(x)]

}

−ℏL−1
[

1
sµ L

{

∂2vm−1

∂x2 + λ1vm−1 + λ2
∑m−1

i=0

(

∑i
j=0 v jvi− j

)

vm−1−i

}]

.

Suppose v and v⋆ be the two different solutions for Equation (5) such that |v| ≤ P and
∣

∣

∣v⋆
∣

∣

∣ ≤ Q,

then using the above relation, it is obtained as following

∣

∣

∣v− v⋆
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

(km + ℏ)
(

v− v⋆
)

− ℏL−1

{

1

sµ
L

((

∂2v

∂x2
− ∂

2v⋆

∂x2

)

+ λ1

(

v− v⋆
)

+ λ2

(

v3 − v⋆3
)

)}
∣

∣

∣

∣

∣

∣

. (23)

For Laplace transform, we have, by the help of the convolution theorem,

∣

∣

∣v− v⋆
∣

∣

∣ = (km + ℏ)
∣

∣

∣v− v⋆
∣

∣

∣+ ℏ

∫ t

0

(∣

∣

∣

∣

∂2v
∂x2 − ∂

2v⋆

∂x2

∣

∣

∣

∣

+
∣

∣

∣λ1(v− v⋆)
∣

∣

∣+
∣

∣

∣

∣

λ2

(

v3 − v⋆3
)

∣

∣

∣

∣

)

(t−ξ)µ
Γ(µ+1)

dξ,

≤ (km + ℏ)
∣

∣

∣v− v⋆
∣

∣

∣+ ℏ

∫ t

0
( ∂

2

∂x2

∣

∣

∣v− v⋆
∣

∣

∣+ λ1

∣

∣

∣(v− v⋆)
∣

∣

∣+λ2

∣

∣

∣

∣

(v− v⋆)
(

v2 + v⋆2 + vv⋆
)

∣

∣

∣

∣

(t−ξ)µ
Γ(µ+1)

dξ,

≤ (km + ℏ)
∣

∣

∣v− v⋆
∣

∣

∣+ ℏ

∫ t

0
(δ2

∣

∣

∣v− v⋆
∣

∣

∣+ λ1

∣

∣

∣(v− v⋆)
∣

∣

∣+λ2

∣

∣

∣

∣

(v− v⋆)
(

P2 + Q2 + PQ
)

∣

∣

∣

∣

(t−ξ)µ
Γ(µ+1)

dξ,

where δ2 = ∂2

∂x2 . Using integral mean value, we have

∣

∣

∣v− v⋆
∣

∣

∣ ≤ (km + ℏ)
∣

∣

∣v− v⋆
∣

∣

∣+ ℏ(δ2
∣

∣

∣v− v⋆
∣

∣

∣+ λ1

∣

∣

∣(v− v⋆)
∣

∣

∣

+λ2

∣

∣

∣

∣

(v− v⋆)
(

P2 + Q2 + PQ
)

∣

∣

∣

∣

)T
∣

∣

∣v− v⋆
∣

∣

∣ ≤ α
∣

∣

∣v− v⋆
∣

∣

∣(1− α)
∣

∣

∣v− v⋆
∣

∣

∣ ≤ 0.

Since 0 < α < 1, therefore
∣

∣

∣v− v⋆
∣

∣

∣ = 0, which gives v = v⋆. This completes the required proof. �

5. Solution for Fractional PF Equation

In order to validate the applicability and efficiency of the future technique, here we consider the

two distinct examples.

Example 1. Consider the time-fractional Phi-four equation [84–86]

D
µ
t v(x, t) =

∂2v(x, t)

∂x2
− λ1v(x, t) − λ2v3(x, t), (24)

subjected to the initial conditions

v(x, 0) =
√

−λ1
2

λ2
tan h

(

λ1

√

1
2(η2−1)

x
)

andvt(x, 0) = −λ1η

√

−λ1
2

2λ2(η2−1)
sec h2

(

λ1

√

1
2(η2−1)

x
)

. (25)
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By using the proposed algorithm and Equation (25), the Equation (24) becomes

vm(x, t) = (km + ℏ)vm−1(x, t) −
(

1− km
n

)

L−1

{

1
s

(

√

−λ1
2

λ2
tan h

(

λ1

√

1
2(η2−1)

x
)

)

− 1
s2

(

λ1η

√

−λ1
2

2λ2(η2−1)
sec h2

(

λ1

√

1
2(η2−1)

x
)

)}

− ℏL−1[ 1
sµ L

{

∂2vm−1

∂x2 − λ1v

−λ2
∑m−1

i=0

(

∑i
j=0 v jvi− j

)

vm−1−i

}

].

(26)

We get the iterative terms of vm(x, t) by solving Equation (26), and as follows

v0(x, t) =
√

−λ1
2

λ2
tan h

(

λ1

√

1
2(η2−1)

x
)

− λ1ηt

√

−λ1
2

2λ2(η2−1)
sec h2

(

λ1

√

1
2(η2−1)

x
)

v1(x, t) =
λ1

2η2ℏtµ

8(−1+η2)Γ[µ+1]
sec h6















λ1x
√

1
−1+η2√
2















(−3
√

2λ1tη

√

λ1
2

λ2−η2λ2

+2
√

2λ1
3t3η

√

λ1
2

λ2−η2λ2

−2
√

2λ1tη

√

λ1
2

λ2−η2λ2
cos h

(√
2λ1x

√

1
−1+η2

)

+
√

2λ1tη

√

λ1
2

λ2−η2λ2
cos h

(

2
√

2λ1x
√

1
−1+η2

)

+2

√

−λ1
2

λ2
sin h

(√
2λ1x

√

1
−1+η2

)

+ 6t2
(

−λ1
2

λ2

)3/2

λ2sinh
(√

2λ1x
√

1
−1+η2

)

+
√

−λ1
2

λ2
sinh

(

2
√

2λ1x
√

1
−1+η2

)

),

Similarly, the remaining part of the series can be calculated (See Figures 1–3 and Table 1). Now,

the series form of the q-HATM solution is as follows:

v(x, t) = v0(x, t) +
∞
∑

m=1

vm(x, t).

Table 1. Numerical simulation conducted for FPF equation defined in Example1 with different x and t

at λ1 = 1, λ2 = −1, η = 3, n = 1, µ = 2 and ℏ = −1.

∣

∣

∣

∣

vExact − v
(3)
q−HATM

∣

∣

∣

∣

x/t 0.01 0.02 0.03 0.04 0.05

−5 9.18570× 10−8 7.38629× 10−7 2.50566× 10−6 5.96979× 10−6 1.17195× 10−5

−3 3.68683× 10−8 3.07718× 10−7 1.08179 × 10−6 2.66706× 10−6 5.41063× 10−6

−1 2.15263× 10−7 1.70951 × 10−6 5.72612 × 10−6 1.34678× 10−5 2.60945× 10−5

1 2.18306× 10−7 1.75819 × 10−6 5.97254 × 10−6 1.42464× 10−5 2.79946× 10−5

3 3.36893× 10−8 2.56849× 10−7 8.24228× 10−7 1.85290× 10−6 3.42245× 10−6

5 9.09190× 10−8 7.23617× 10−7 2.42963× 10−6 1.11322× 10−5
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( , ) = ℏ8(−1 + )Γ[ + 1] sech √2 (−3√2 −
+ 2√2 −
− 2√2 − cosh √2 1−1 +
+ √2 − cosh 2√2 1−1 +

+	2 − sinh √2 1−1 + + 6 (− ) ⁄ sinh √2 1−1 +
+ − sinh 2√2 )

  

(a) (b) 

 

(c) ( ) ( ) ( ) = . − .= 1, ℏ = −1, = 1, = −1, = 3 = 2Figure 1. 3D graphs of (a) Obtained solution, (b) Exact solution, (c) Absolute error =
∣

∣

∣vExa. − vApp.

∣

∣

∣ for

Example 1 at n = 1, ℏ = −1, λ1 = 1, λ2 = −1, η = 3 and µ = 2.

 = 1, =1, = −1, = 3, = 1 ℏ = −1

	ℏ ( , ) ( )	 = 1, ( )	 = 2	 	= 1, = −1, = 3, = 1	 = 0.01
= 1, = −1, = 3, = 1, = 2	 ℏ = −1− ( ) 	/ 	 0.01	 0.02	 0.03	 0.04	 0.05	−5	 9.18570	 × 	10 	 7.38629	× 	 10 	 2.50566	× 	 10 	 5.96979	× 	 10 	 1.17195	× 	 10 	−3	 3.68683 × 	10 	 3.07718 × 	10 	 1.08179		× 	 10 	 2.66706	× 	 10 	 5.41063× 	 10 	−1	 2.15263 × 	10 	 1.70951		× 	 10 	 5.72612		× 	 10 	 1.34678× 	 10 	 2.60945× 	 10 	1	 2.18306 × 	10 	 1.75819		× 	 10 	 5.97254		× 	 10 	 1.42464× 	 10 	 2.79946× 	 10 	3	 3.36893 × 	10 	 2.56849 × 	10 	 8.24228	× 	10 	 1.85290	× 	 10 	 3.42245	× 	 10 	5	 9.09190 × 	10 	 7.23617 × 	10 	 2.42963	× 	 10 	 5.72939	× 	 10 	 1.11322	× 	 10 	= −1	 	 = 1	( , ) = ( , ) + ( , ) − ( , ),

Figure 2. 2D graph of q-homotopy analysis transform method (q -HATM) solution at n = 1, λ1 =

1, λ2 = −1, η = 3, x = 1 and ℏ = −1 with distinct µ for Example 1.
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= 1, =1, = −1, = 3, = 1 ℏ = −1

  

(i) (ii) 	ℏ ( , ) ( )	 = 1, ( )	 = 2	 	= 1, = −1, = 3, = 1	 = 0.01
= 1, = −1, = 3, = 1, = 2	 ℏ = −1− ( ) 	/ 	 0.01	 0.02	 0.03	 0.04	 0.05	−5	 9.18570	 × 	10 	 7.38629	× 	 10 	 2.50566	× 	 10 	 5.96979	× 	 10 	 1.17195	× 	 10 	−3	 3.68683 × 	10 	 3.07718 × 	10 	 1.08179		× 	 10 	 2.66706	× 	 10 	 5.41063× 	 10 	−1	 2.15263 × 	10 	 1.70951		× 	 10 	 5.72612		× 	 10 	 1.34678× 	 10 	 2.60945× 	 10 	1	 2.18306 × 	10 	 1.75819		× 	 10 	 5.97254		× 	 10 	 1.42464× 	 10 	 2.79946× 	 10 	3	 3.36893 × 	10 	 2.56849 × 	10 	 8.24228	× 	10 	 1.85290	× 	 10 	 3.42245	× 	 10 	5	 9.09190 × 	10 	 7.23617 × 	10 	 2.42963	× 	 10 	 5.72939	× 	 10 	 1.11322	× 	 10 	= −1	 	 = 1	( , ) = ( , ) + ( , ) − ( , ),

Figure 3. 2D graphs of ℏ-curves for v(x, t) of Example 1 at (i) n = 1, (ii) n = 2 with different µ with

λ1 = 1, λ2 = −1, η = 3, x = 1 and t = 0.01.

For n = 1, µ = 2 and ℏ = −1, the q-HATM solution converges to analytical solution

v(x, t) =

√

−λ1
2

λ2
tan h















λ1

√

1

2(η2 − 1)
(x− ηt)















.

Example 2. Consider the FPF equation at λ1 = −1 and λ2 = 1 [57]

D
µ
t v(x, t) =

∂2v(x, t)

∂x2
+ v(x, t) − v3(x, t), (27)

subjected to the initial conditions

v(x, 0) = tan h















√

1

2(1− k2)
x















andvt(x, 0) = tan h















√

1

2(1− k2)
x















. (28)

By using the proposed algorithm and Equation (28), the Equation (27) becomes

vm(x, t) = (km + ℏ)vm−1(x, t) −
(

1− km
n

)

L−1
{

(

1
s +

1
s2

)

tan h
(
√

1
2(1−k2)

x
)}

−ℏL−1















1
sµ L















∂2vm−1

∂x2 + v−
m−1
∑

i=0













i
∑

j=0
v jvi− j













vm−1−i





























.
(29)
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We evaluate the iterative terms of vm(x, t) with the assistance of Equation (29), and as follows

v0(x, t) = (1 + t) tan h
(
√

1
2(1−k2)

x
)

,

v1(x, t) = ℏtµ

Γ[µ+1]
tan h

(
√

1
2(1−k2)

x
)























−1− t−
(1+t)sec h2













√

1
2(1−k2)

x













k2−1
+ (1 + t)3tan h2

(
√

1
2(1−k2)

x
)























,

v2(x, t) =
ℏ(n+ℏ)tµ

Γ[µ+1]
tan h

(
√

1
2(1−k2)

x
)























−1− t−
(1+t)sec h2













√

1
2(1−k2)

x













k2−1
+ (1 + t)3tan h2

(
√

1
2(1−k2)

x
)























+ ℏ2t2µ

Γ[2µ+1]
tan h

(
√

1
2(1−k2)

x
)

(1 + t +
(1+t)

−1+k2 sec h2
(
√

1
2(1−k2)

x
)

+
2(1+t)(k2(1+t)2−t(2+t))

(−1+k2)2

×sec h4
(
√

1
2(1−k2)

x
)

−
(1+t)(k2(1+t)2−t(2+t))

(

−2+cos h
(√

2
√

1
1−k2 x

))

(−1+k2)2 sec h4
(
√

1
2(1−k2)

x
)

−(1 + t)3tan h2
(
√

1
2(1−k2)

x
)

+
2sec h2













√

1
2(1−k2)

x













2−2k2 (−1− t−
(1+t)Sech

[
√

1
2−2k2 x

]2

−1+k2

+(1 + t)3tan h2
(
√

1
2(1−k2)

x
)

) + 3(1 + t)2tan h2
(
√

1
2(1−k2)

x
)

(−1− t

−
(1+t)sec h2













√

1
2(1−k2)

x













−1+k2 + (1 + t)3tan h2
(
√

1
2(1−k2)

x
)

)),

Now, the series form of q-HATM solution is as follows:

v(x, t) = v0(x, t) +
∞
∑

m=1

vm(x, t).

For n = 1, µ = 2 and ℏ = −1, the q-HATM solution converges to analytical solution v(x, t) =

tan h
(
√

1
2(1−k2)

(x− kt)
)

(See Figures 4–6 and Table 2).

Table 2. Numerical simulation conducted for fractional Phi-four (FPF) equation defined in Example2

with different x and t at k = 0.1, µ = 2, n = 1 and ℏ = −1.

∣

∣

∣

∣

vExact − v
(3)
q−HATM

∣

∣

∣

∣

x/t 0.01 0.02 0.03 0.04 0.05

−5 1.96030× 10−5 9.96170× 10−3 1.99430× 10−2 2.99243× 10−2 3.99056× 10−2

−3 3.17168× 10−4 9.36662× 10−3 1.90505× 10−2 2.87343× 10−2 3.84183× 10−2

−1 4.33502× 10−3 1.33124× 10−3 6.99789× 10−3 1.26649× 10−2 1.83324× 10−2

1 1.65573× 10−2 2.31142× 10−2 2.96714× 10−2 3.62290× 10−2 4.27869× 10−2

3 1.97624× 10−2 2.95239× 10−2 3.92856× 10−2 4.90472× 10−2 5.88089× 10−2

5 1.99868× 10−2 2.99728× 10−2 3.99588× 10−2 4.99447× 10−2 5.99307× 10−2
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( , ) = ( , ) + ( , )∞ .
= 1, = 2	 ℏ = −1 ( , ) =tanh ( ) ( − )

  

(a) (b) 

 
(c) ( )	 ( ) ( ) = . −. = 1, ℏ = −1, = 0.1 = 2Figure 4. 3Dsurfaces of (a) q-HATM solution, (b) Exact solution, (c) Absolute error =

∣

∣

∣vExa. − vApp.

∣

∣

∣

for Example2 at n = 1, ℏ = −1, k = 0.1 and µ = 2.

( , ) = ( , ) + ( , )∞ .
= 1, = 2	 ℏ = −1 ( , ) =tanh ( ) ( − )

( )	 ( ) ( ) = . −. = 1, ℏ = −1, = 0.1 = 2

 

Figure 5. 2D graph of q-HATM solution at n = 1, ℏ = −1, x = 0.01 and k = 0.1 with different µ

for Example2.
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(i) 

 

(ii) ( , ) ( )	 = 1, ( )	 = 2 = 0.1, =1	 = 0.01
= 0.1, = 2, = 1	 ℏ = −1− ( )/ 0.01	 0.02	 0.03	 0.04	 0.05−5	 1.96030 × 10 9.96170 × 10 1.99430 × 10 2.99243 × 10 3.99056 × 10−3	 3.17168 × 10 9.36662 × 10 1.90505 × 10 2.87343 × 10 3.84183 × 10−1	 4.33502 × 10 1.33124 × 10 6.99789 × 10 1.26649 × 10 1.83324 × 101	 1.65573 × 10 2.31142 × 10 2.96714 × 10 3.62290 × 10 4.27869 × 103	 1.97624 × 10 2.95239 × 10 3.92856 × 10 4.90472 × 10 5.88089 × 105	 1.99868 × 10 2.99728 × 10 3.99588 × 10 4.99447 × 10 5.99307 × 10

q 	 ( , )
q

Figure 6. 2D graphs of for of Example2 at (i) n = 1, (ii) n = 2 with distinct µ with k = 0.1, x = 1 and

t = 0.01.

6. Numerical Results and Discussion

Here, we have demonstrated the numerical simulations of the Phi-four equation having

fractional-order by using q-HATM. The fourth order solution (i.e., up to v4(x, t)) we consider to

illustrate the behavior of the obtained solution in terms of plots and tables. In Tables 1 and 2, the

numerical studies have been conducted to ensure the exactness of the projected algorithm, and

further from the tables, it is confirmed that the considered model conspicuously depends on the time.

The surfaces of the q-HATM solution, exact solution and absolute error are captured in Figure 1 for

the FPF equation considered in Example 1. To show the projected problem remarkably depends on

arbitrary order and the response of q-HATM solution for different µ, the plots have been drowned and

are cited in Figures 2 and 5 for Examples 1 and 2., respectively. Similarly, nature obtained and exact

solutions in association with absolute error for Example 2, are presented in Figure 4. The ℏ-curves have

been drowned to analyze the behavior of the achieved solution related homotopy parameter ℏ with

different µ for both examples and have been respectively captured in Figures 3 and 6. These curves can

help us to adjust and regulate the region of convergence for the q-HATM solution. For unsuitable ℏ,

the q-HATM solution swiftly converges to exact solution. The demonstrated plots help us to better

understand the nature of the fractional Phi-four equation when temporal-spatial variables vary in

comparison with arbitrary order.

7. Conclusions

In the present framework, q-HATM has been employed to find the numerical solutions for the

fractional Phi-four equation. With the help of Banach’s fixed point theory, the convergence analysis
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projecting the nonlinear problem has been presented. To present the efficiency as well as the applicability

of the projected algorithm, we have considered two distinct cases. The present study confirms that the

projected nonlinear problem is remarkable with the time instant as well as the time history and these

can be effectively exemplified by employing the concept of fractional calculus. The governing model

plays a vibrant role while analyzing many physical phenomena, and thus, for future work, this can

be examined by using recently proposed and nurtured effective and accurate methods [87,88]. With

the help of the obtained results, we can capture more interesting consequences. Finally, it has been

observed that the considered scheme is highly effective, more accurate and extremely methodical, and

this can be employed to exemplify the various classes of nonlinear models that exist in science and

technology. The results obtained demonstrate that the considered method is more effective and easy to

employ to scrutinize the behaviors of fractional differential equations with multi-dimensions arising in

associated areas of science and technology.

Author Contributions: Conceptualization, D.G.P.; writing—original draft preparation, P.V.; supervision, W.G.
and H.M.B., G.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank the helpful and important suggestions of the editors and reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liouville, J. Memoire surquelques questions de geometrieet de mecanique, etsurun nouveau genre de calcul

pour resoudrecesquestions. J. Ecole Polytech. 1832, 13, 1–69.

2. Riemann, G.F.B. Versuch Einer Allgemeinen Aufassung der Integration und Diferentiation; Gesammelte

Mathematische Werke: Leipzig, Germany, 1896.

3. Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969.

4. Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York,

NY, USA, 1993.

5. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.

6. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier:

Amsterdam, The Netherlands, 2006.

7. Cruz-Duarte, J.M.; Garcia, J.R.; Correa-Cely, C.R.; Perez, A.G.; Avina-Cervantes, J.G. A closed form expression

for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun.

Nonlinear Sci. Numer. Simul. 2018, 61, 138–148. [CrossRef]

8. Esen, A.; Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons and other solutions to the conformable

space–time fractional Fokas–Lenells equation. Optik 2018, 167, 150–156. [CrossRef]

9. Sweilam, N.H.; Hasan, M.M.A.; Baleanu, D. New studies for general fractional financial models of awareness

and trial advertising decisions. Chaos Solitons Fractals 2017, 104, 772–784. [CrossRef]

10. Baleanu, D.; Wu, G.C.; Zeng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional

differential equations. Chaos Solitons Fractals 2017, 102, 99–105. [CrossRef]

11. Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. New numerical surfaces to the mathematical model of cancer

chemotherapy effect in Caputo fractional derivatives. Chaos 2019, 29. [CrossRef]

12. Atangana, A. Fractional discretization: The African’s tortoise walk. Chaos Solitons Fractals 2020, 130, 109399.

[CrossRef]

13. Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses

pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515.

14. Kolade, O.M.; Hammouch, Z. Mathematical modeling and analysis of two-variable system with

noninteger-order derivative. Chaos 2019, 29, 013145.

15. Khan, M.A.; Hammouch, Z.; Baleanu, D. Modeling the dynamics of hepatitis E via the Caputo–Fabrizio

derivative. Math. Model. Nat. Phenom. 2019, 14, 311. [CrossRef]

16. Prakash, A.; Veeresha, P.; Prakasha, D.G.; Goyal, M. A homotopy technique for fractional order

multi-dimensional telegraph equation via Laplace transform. Eur. Phys. J. Plus 2019, 134, 1–18. [CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2018.01.020
http://dx.doi.org/10.1016/j.ijleo.2018.04.015
http://dx.doi.org/10.1016/j.chaos.2017.09.013
http://dx.doi.org/10.1016/j.chaos.2017.02.007
http://dx.doi.org/10.1063/1.5074099
http://dx.doi.org/10.1016/j.chaos.2019.109399
http://dx.doi.org/10.1051/mmnp/2018074
http://dx.doi.org/10.1140/epjp/i2019-12411-y


Symmetry 2020, 12, 478 14 of 16

17. Cattani, C.; Srivastava, H.M.; Yang, X.J. Fractional Dynamics; De Gruyter: Berlin, Germany, 2019; pp. 1–5.

18. Zhang, Y.; Cattani, C.; Yang, X.J. Local fractional homotopy perturbation method for solving

non-homogeneous heat conduction equations in fractal domains. Entropy 2015, 17, 6753–6764. [CrossRef]

19. Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a

modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [CrossRef]

20. Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel theory and

application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]

21. Seadawy, A.R. Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a

stratified shear flow: Part I. Comp. Math. Appl. 2015, 70, 345–352. [CrossRef]

22. Atangana, A.; Alkahtani, B.T. Analysis of the Keller-Segel model with a fractional derivative without singular

kernel. Entropy 2015, 17, 4439–4453.

23. Kaya, D.; Gulbahar, S.; Yokus, A.; Gulbahar, M. Solutions of the fractional combined kdv–mkdv equation

with collocation method using radial basis function and their geometrical obstructions. Adv. Differ. Equ.

2018, 77, 2018. [CrossRef]

24. Prakash, A.; Prakash, D.G.; Veeresha, P. A reliable algorithm for time-fractional Navier-Stokes equations via

Laplace transforms. Nonlinear Eng. 2019, 8, 695–701. [CrossRef]

25. Kumar, D.; Singh, J.; Baleanu, D. Analysis of regularized long-wave equation associated with a new fractional

operator with Mittag-Leffler type kernel. Physica A 2018, 492, 155–167. [CrossRef]
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