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Abstract. In this paper, some observations on Camellia are presented,
by which the Square attack and the Collision attack are improved. 11-
round 256-bit Camellia without FL function is breakable with complex-
ity of 2250 encryptions. 9-round 128-bit Camellia without FL function
is breakable with the complexity of 290 encryptions. And 10-round 256-
bit Camellia with FL function is breakable with the complexity of 2210

encryptions and 9-round 128-bit Camellia with FL function is breakable
with the complexity of 2122 encryptions. These results are better than
any other known results. It concludes that the most efficient attack on
Camellia is Square attack.

1 Introduction

Camellia [1] is a 128-bit block cipher proposed by NTT and Mitsubishi in 2000.
It has the modified Feistel structure with irregular rounds, which is called the
FL/FL−1 function layers. Camellia had been submitted to the standardization
and the evaluation projects such as ISO/IEC JTC 1/SC 27, CRYPTREC, and
NESSIE.

The most efficient methods analyzing Camellia are truncated differential
cryptanalysis[4][5][6] and higher order differential attack[7][9]. Camellia with
more than 11 rounds is secure against truncated differential cryptanalysis. Square
attack[11] is a most efficient attack on AES[11][12] . Y. He and S. Qing [2] showed
that 6-round Camellia is breakable by it. Y.Yeom, S. Park, and I. Kim [3] im-
proved the result to 8 rounds. Collision attack on Camellia was presented by WL
Wu[10].

In this paper, some observations on Camellia are presented, by which the
Square attack and the Collision attack are improved. Variant Square Attack
can break 11-round 256-bit Camellia without FL function with complexity of
2250 encryptions. 9-round 128-bit Camellia without FL function is breakable
with the complexity of 290 encryptions. And 10-round 256-bit Camellia with FL
function is breakable with the complexity of 2210 encryptions and 9-round 128-bit
Camellia with FL function is breakable with the complexity of 2122 encryptions.
These results are better than any other known results.
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Brief description of Camellia and some new structures equivalent to Camellia
are presented in section2. In section 3, active bytes transformations on Camellias
are illustrated and some new properties are demonstrated. Our attacking meth-
ods are described in section 4. Section 5 is some extension. The paper concludes
with our most important results.

2 Equivalent Structures of Camellia

2.1 Description of the Camellia

Camellia has a 128-bit block size and supports 128-, 192- and 256-bit keys.Camellia
with a 128-bit key and 256-bit key is written as 128-Camellia, 256-Camellia. The
design of Camellia is based on the Feistel structure and its number of rounds is
18(128-bit key) or 24(192-, 256-bit key). The FL/FL−1 function layer is inserted
in it every 6 rounds in order to thwart future unknown attacks. Before the first
round and after the last round, there are pre- and post-whitening layers. F function
contains key-addition, S-function and P-function. S-function contains 4 types of S-
boxes s1, s2, s3, and s4. s2,s3,s4 are variations of s1. The P-function:{0, 1}64 �→
{0, 1}64 maps (z1, ..., z8) to (z′1, ..., z

′
8), defined as:

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

We refer X(r), K(r) to the rth round input and subkey, refer XL
(r) and XR

(r) to the
left, right half bytes of X(r), which implies X(r) = (XL

(r), X
R
(r)). Let X(ri) is the

ith byte of X(r), PL and CP be the Plaintext and Ciphertext, and X(L) be the
last round output. The round function of Camellia is written as follows (named
as Camellia-1) , which is shown in Fig. 1:

XL
(1) = PLL, XR

(1) = PLR,

XL
(r+1) = XR

(r) ⊕ P (s(XL
(r) ⊕ K(r))),

XR
(r+1) = XL

(r),

CPL = XL
(L), CPR = XR

(L)

rRoundPSK

Fig. 1. Round function of Camellia-1
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2.2 Three Equivalent Structures of Camellia

We can write Camellia in following form called Camellia-2, where P−1 is the in-
verse transformation of P-function and X̄(r) is the rth round input of Camellia-2.
Figure illustration of Camellia-2 is given in Fig. 2:

X̄L
(1) = P−1(PLL), X̄R

(1) = P−1(PLR),
X̄L

(r+1) = X̄R
(r) ⊕ s(P (X̄L

(r)) ⊕ K(r)),
X̄R

(r+1) = X̄L
(r),

CPL = P (X̄L
(L)), CPR = P (X̄R

(L))

P SK rRound

Fig. 2. Round function of Camellia-2

We can also write Camellia in the form of Camellia-3 where X̂(r) is the rth
round input. Figure illustration is given in Fig. 3:

X̂L
(1) = PLL, X̂R

(1) = P−1(PLR),

X̂L
(r+1) = X̂R

(r) ⊕ s(X̂L
(r) ⊕ K(r)), where r is odd

X̂L
(r+1) = P (X̂R

(r) ⊕ s(P (X̂L
(r)) ⊕ K(r))), where r is even

X̂R
(r+1) = X̂L

(r),

CPL = X̂L
(L), CPR = P (X̂R

(L))

12rRound

P SK

SK

P 22rRound

Fig. 3. Round function of Camellia-3

The structure of Camellia-4 is given as follows where X̃(r) is the rth round
input of that. Figure illustration is given in Fig. 4:

X̃L
(1) = P−1(PLL), X̃R

(1) = PLR,

X̃L
(r+1) = P (X̃R

(r) ⊕ s(P (X̃L
(r)) ⊕ K(r))), where r is odd

X̃L
(r+1) = X̃R

(r) ⊕ s(X̃L
(r) ⊕ K(r)), where r is even

X̃R
(r+1) = X̃L

(r),

CPL = P (X̃L
(L)), CPR = X̃R

(L)
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12rRoundP

SK

SK P

22rRound

Fig. 4. Round function of Camellia-4

3 New Observations on Camellia

3.1 Preliminaries

Let a Λ-set be a set of 256 states that are all different in some of the state bytes
(the active) and all equal in the other state bytes (the passive). We have:

∀x, y ∈ Λ : {xi �= yi

xi = yi

if xi is active
else

Let Γ -set be a set of 256 states that are all equal to zero in summation (the
balanced).

∀x ∈ Γ :
∑

xi = 0

Applying the S-function or Key-addition on a Λ-set results in a Λ-set with the
positions of the active bytes unchanged. The result set of applying P-function
to a Λ-set is not always a Λ-set but always a Γ -set.

Applying Key-addition or P-function on a Γ -set results in a Γ -set. Applying S-
function on a Γ -set results in the active bytes and passive bytes are still balanced.
Applying AND operation, OR operation or right shift operation on a Γ -set
results in a Γ -set.

Here, we give some definitions that are used in following sections.

F : A Λ − set has the form of {α1, α2, α3, α4, α5, α6, α7, α8, i, β2, β3, β4,
β5, β6, β7, β8}, in which αi, βj are constant, i ∈ {0, .., 255}.

Ft: A Λ − set has the form of {α1, α2, α3, α4, α5, α6, α7, α8, i, β2, β3, β4,
β5, β6, β7, γt}t, in which αi, βj , γk are constant, i ∈ {0, .., 255}.

F̃t: A Λ−set has the form of {i, β2, β3, β4, β5, β6, β7, γt, s1(i⊕k1), α2, α3, α4,
α5, α6, α7, s1(γt ⊕ k2)}t, in which αi, βj , γk, k1, k2 are constant, i ∈ {0, .., 255}.

F̂t: A Λ − set has the form of {β1, i ⊕ β2, i ⊕ β3, i ⊕ β4, i ⊕ β5, β6, β7,
i ⊕ γt, s1(i ⊕ k1), s1(i ⊕ k1) ⊕ α2, s1(i ⊕ k1) ⊕ α3, α4, s1(i ⊕ k1) ⊕ α5, α6, α7,
s1(i ⊕ k1) ⊕ α8}t, in which αi, βj , γk, k1 are constant, i ∈ {0, .., 255}.

˜̃F t: A Λ − set has the form of {s1(i ⊕ k1), α2, α3, α4, α5, α6, α7, s1(γt ⊕ k2),
∆1 ⊕ i,∆2, ∆3, ∆4, ∆5, ∆6, ∆7, ∆8 ⊕ γt}, in which {∆1, ∆2, ∆3, ∆4, ∆5, ∆6,
∆7, ∆8} satisfy Eq.(1), αi, βj , γk, η1, η2, η3, η4, η5, η6, η7, η8 k1, k2, k3, k4, k5,
k6, k7, k8, k9 are constant, i ∈ {0, .., 255}.
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1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎤
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s1(s1(i ⊕ k1) ⊕ η1 ⊕ s1(γt ⊕ k2))
s2(s1(i ⊕ k1) ⊕ η2 ⊕ s1(γt ⊕ k2))
s3(s1(i ⊕ k1) ⊕ η3 ⊕ s1(γt ⊕ k2))

s4(η4)
s2(s1(i ⊕ k1) ⊕ η5 ⊕ s1(γt ⊕ k2))

s3(η6 ⊕ s1(γt ⊕ k2))
s4(η7 ⊕ s1(γt ⊕ k2))
s1(s1(i ⊕ k1) ⊕ η8)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

̂̂F t: A Λ− set has the form of {s1(i ⊕ k1), s1(i ⊕ k1)⊕ α2, s1(i ⊕ k1)⊕α3, α4,
s1(i ⊕ k1) ⊕ α5, α6, α7, s1(i ⊕ k1), s1(s1(i ⊕ k1) ⊕ k2), s2(s1(i ⊕ k1) ⊕ k3) ⊕ i,
s3(s1(i⊕k1)⊕k4)⊕ i, α4 ⊕ i, s2(s1(i⊕k1)⊕k5)⊕ i, α6, α7, s1(s1(i⊕k1)⊕k6)⊕
i ⊕ γt)}t, in which αi, βj , γk, k1, k2, k3, k4, k5, k6 are constant, i ∈ {0, .., 255}.

In next section, we trace the position changes of the active bytes through 5
rounds transformations of Camellia-1∼4 and the plaintext set {PL} is a Λ −
set F . We just describe the evolution of left half bytes of round outputs, for the
left half bytes of previous round pass to right half bytes of next round unchanged.

3.2 Active Bytes Changing Properties

In Camellia-1, XR
(1,1) is active byte, 1st round transformations convert the active

byte to XL
(2,1), other bytes are passive. In 2nd round transformations, P-function

converts the active byte to 5 active bytes which are XL
(31), XL

(32), XL
(33), X

L
(35),

XL
(38) and three passive bytes. In 3rd round transformation, P-function converts

the active bytes to 8 balanced bytes. In 4th round transformation, S-function
converts balanced bytes to unbalanced bytes. After 5th round transformation all
bytes are unbalanced. Evolutions of active bytes are illustrated in Fig. 5.

),...,,(PL 821
L ),...,(A,PL 82

R

LCP RCP

PSK

PSK

PSK

PSK

PSK

Round1

Round2

Round3

Round4

Round5

BytePassive ByteBalanced ByteUnbalanced

Fig. 5. Round function of Camellia-1

In Camellia-2, 1st byte of {PL} is active, the pre-P−1-function converts the
active byte to 5 active bytes. 1st round transformations convert the 5 active
bytes and 3 passive bytes to 5 active bytes and 3 passive bytes. 2nd round
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transformations convert the 5 active bytes and 3 passive bytes to 1 active byte
and 7 passive bytes. 3rd round transformation convert the 5 active bytes and
3 passive bytes to 2 active bytes, 4 balanced bytes and 2 passive bytes, where
X̄L

(41), X̄
L
(42) are active, X̄L

(42), X̄
L
(43), X̄

L
(45), X̄

L
(48) are balanced and X̄L

(46), X̄
L
(47)

are passive. 4th round transformations convert those bytes to unbalanced bytes.
Evolutions of active bytes are illustrated in Fig. 6.

Details of 2nd and 3rd transformation are given in Eq.(2)and Eq.(3).

X̄L
(3) = X̄R

(2) ⊕ s(P (X̄L
(2) ⊕ K(2))

= X̄L
(1) ⊕ s(P (X̄R

(1) ⊕ s(P (X̄L
(1)) ⊕ K(1))) ⊕ K(2))

= X̄L
(1) ⊕ s(P (P−1(PLR) ⊕ s(P (X̄L

(1)) ⊕ K(1))) ⊕ K(2))
= X̄L

(1) ⊕ s((PLR ⊕ s(P (X̄L
(1)) ⊕ K(1))) ⊕ K(2))

(2)

),...,,(PL 821
L ),...,(A,PL 82

R

LCP RCP

P SK

P SK

P SK

P SK

P SK

Round1

Round2

Round3

Round4

Round5

ByteFixed byteBalanced byteUnbalanced

-1P-1P

P P

Fig. 6. Round function of Camellia-2

X̄L
(11) is the only active byte in {X̄L

(1)}, since applying addition and S-function
on it results in {X̄L

(3)} with position of active byte unchanged, demonstrated
in Eq.(2). Each byte of X̄L

(4) can be written in the form of Eq.(3), in which
X̄L

(41), X̄
L
(44) are influenced by an active byte X̄L

(31) so active, X̄L
(42), X̄L

(43), X̄L
(45),

X̄L
(48) are influenced by 2 active bytes thus balanced and X̄L

(46), X̄
L
(47) are derived

from passive bytes, still passive.

X̄L
(41) = s(X̄L

(31) ⊕ X̄L
(33) ⊕ X̄L

(34) ⊕ X̄L
(36) ⊕ X̄L

(37) ⊕ X̄L
(38) ⊕ K(31)) ⊕ X̄R

(31)
X̄L

(42) = s(X̄L
(31) ⊕ X̄L

(32) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(37) ⊕ X̄L

(38) ⊕ K(32)) ⊕ X̄R
(32)

X̄L
(43) = s(X̄L

(31) ⊕ X̄L
(32) ⊕ X̄L

(33) ⊕ X̄L
(35) ⊕ X̄L

(36) ⊕ X̄L
(38) ⊕ K(33)) ⊕ X̄R

(33)
X̄L

(44) = s(X̄L
(32) ⊕ X̄L

(33) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(36) ⊕ X̄L

(37) ⊕ K(34)) ⊕ X̄R
(34)

X̄L
(45) = s(X̄L

(31) ⊕ X̄L
(32) ⊕ X̄L

(36) ⊕ X̄L
(37) ⊕ X̄L

(38) ⊕ K(35)) ⊕ X̄R
(35)

X̄L
(46) = s(X̄L

(32) ⊕ X̄L
(33) ⊕ X̄L

(35) ⊕ X̄L
(37) ⊕ X̄L

(38) ⊕ K(36)) ⊕ X̄R
(36)

X̄L
(47) = s(X̄L

(33) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(36) ⊕ X̄L

(38) ⊕ K(37)) ⊕ X̄R
(37)

X̄L
(48) = s(X̄L

(31) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(36) ⊕ X̄L

(37) ⊕ K(38)) ⊕ X̄R
(38)

(3)

In Camellia-3, 1st byte of {PL} is active, the pre-P-function converts the
active byte to 5 active bytes. 1st round transformations convert the 5 active
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bytes, 3 passive bytes to 5 active bytes,3 passive bytes. 2nd round transfor-
mations convert the 5 active bytes, 3 passive bytes to 5 active bytes, 3 active
bytes. 3rd round transformation convert 5 active bytes, 3 passive bytes to 2
active bytes, 4 balanced bytes and 2 passive bytes, where X̂L

(41), X̂
L
(42) are ac-

tive, X̂L
(42), X̂

L
(43), X̂

L
(45), X̂

L
(48) are balanced and X̂L

(46), X̂
L
(47) are passive.And 4th

round transformations convert those bytes to unbalanced bytes. The deducing
procedure is similar to that of Camellia-2. Figure illustration is given in Fig.7.

),...,,(PL 821
L ),...,(A,PL 82

R

LCP RCP

P SK P

SK

SK

P SK

SK

Round1

Round2

Round3

Round4

Round5

ByteFixed byteBalanced byteUnbalanced

-1P

P

P

Fig. 7. Round function of Camellia-3

The outstanding properties of Camellia-3 are Eq.(4) and Eq.(5), that are
used in Improved Square attack and Improved Collision attack in section 4.2
and section 4.3.

∑

PL∈F
X̂R

(5i) = 0 ⇒
∑

PL∈F
(s(X̂R

(6i) ⊕ K(5i)) ⊕ X̂L
(6i) = 0, 6 ≤ i ≤ 7. (4)

X̂R
(5i) ≡ C ⇒ s(X̂R

(6i) ⊕ K(5i)) ⊕ X̂L
(6i) ≡ C, PL ∈ F , 1 ≤ i ≤ 8. (5)

Camellia-3 also have the property of Eq.(6) that is used in section 4.4.

X̂R
(5i) = B ⇒ s(X̂R

(6i) ⊕K(5i))⊕ X̂L
(6i) = B, PL ∈ F , B is active, i ∈ {1, 4}. (6)

In Camellia-4, XR
(11) is active, 1st round transformations convert the active

byte to an active byte, 2nd round transformations convert the active byte to
an active byte and 3rd round transformations convert the active byte to 8 ac-
tive bytes. Figure illustration is shown in Fig.8. The outstanding property of
Camellia-4 is that seven 3rd round output bytes are passive, which will be used
in variant Square attack in section 4.1.

∑
PL∈F X̃L

(4i) ⊕ K(4i) = 0, i �= 1, C̃i is a constant.

⇒
∑

PL∈F
(s−1(X̃L

(5i)) ⊕ C̃i) = 0, i �= 1, C̃i is a constant. (7)
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),...,,(PL 821
L ),...,(A,PL 82

R

LCP
RCP

SK

PSK

P SK P

SK

P SK

Round1

Round2

Round3

Round4

Round5

ByteFixed ByteBalanced ByteUnbalanced

-1P

P

P

P

Fig. 8. Round function of Camellia-4

4 Some Attacks

In this section, we construct the attacks on Camellia without pre-, post- whiten-
ing and FL/FL−1 function. The influences of FL/FL−1 function are discussed
in section 5.

4.1 Variant Square Attack

The 6-round variant Square attack use the property of Eq.(8), which is derives
from Eq.(7), and use the structure of Camellia-4. This attack can be described
by the following steps.

∑

PL∈Ft

(s−1(s(X̃(R)
(7i) ⊕ K(6i)) ⊕ X̃L

(7i) ⊕ C̃i) = 0, C̃i is a constant, i �= 1. (8)

– Step 1: Select the Plaintext sets {PL}t as {PL}t = Ft, 1 ≤ t ≤ 3, calculate
the values of (XL

(7), X
R
(7)) and record them, which will be used in following

steps.
– Step 2: Guess k(65) and C̃5, then check whether Eq.(8) is satisfied or not,

where the Plaintext set is F1. If Eq.(8) is satisfied, record the values of k(65)

and C̃5 that may be the correct pair. Step 2 is ended until all possible values
are checked.

– Step 3: For all ’correct’ pairs from step 2, checks whether Eq.(8) is satisfied
or not, where the Plaintext set are Ft, 2 ≤ t ≤ 3. (γt does not influence the
value of C̃5 ).

In this 6-round attack, the time that step 1 takes is 3×28 6-round encryptions
takes. Since Eq.(8) has 256 + 256 × 3 additions, 256 × 2 substitutions, and 6-
round Camellia has 44 × 6 additions, 8 × 6 substitutions, the time Eq.(8) takes
is nearly 6 times of that 6-round encryptions of Camellia take. In step 2, Eq.(8)
repeats 28 × 28 times. The probability of wrong key passing the checking is 28,
so there is 28 pairs passing the checking in step 2, that implies the time of step
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3 and 4 take 28 × 3 and 3 times of that 6-round encryptions take, respectively.
In this 6-round attack, we only do the step 1, step 2 and step 3 one time. So the
6-round attack’s complexity is 28 × 3 + 216 × 6 + 28 × 6 × 2 ≈ 218.6. The counts
of selected Plaintexts are 28 × 3.

In 7-round attack, we add one round at the beginning, use the structure of
Camellia-3 and select the input sets {X̃(1)}t as F̃t, where k1 and k2 are guessing
key, for that: if k1 = k(11), k2 = k(18) then ∀X̃(1) ∈ F̃t ⇒ X̃(2) ∈ Ft.

This 7-round attack use Eq.(9) for checking and select the T as 7, for the
probability of all key bytes pass the checking is 2−8×T . The guessing step is as
follows:

∑

X̃(1)∈F̃t

(s−1(s(X̃(R)
(8i) ⊕ K(7i)) ⊕ X̃L

8i ⊕ C̃i) = 0, i �= 1, 1 ≤ t ≤ T }. (9)

– Step 1: Guess the values of k(11) and k(18).
– Step 2: For each X(1) ∈ F̃t calculate the result of {X(8)}t .
– Step 3: Guess k(75) and C̃5, and record the values that pass the checking

Eq.(9),where the Plaintext set is F̃1.
– Step 4: For all ’correct’ pairs from step 3, checks whether Eq.(9) is satisfied

or not, where 2 ≤ t ≤ 7, if all the pairs can’t pass the check, go to step 1.

The attacking complexity is 216 × (28 × 7 + 216 × 6 + 28 × 6 × 6) ≈ 233.6. The
complexity of 256-Camellia is 225.6, since its 1st round key bits are the same as
7th round key bits.

The 8-round attack is similar to 7-round attack, the only difference is that
X̃

(R)
(8i) is unknown. Getting X̃

(R)
(8i) from X̃(9) needs five 8th round key bytes, then

complexity of this attack is 216 × (28 × 12 + 256 × 6 + 248 × 6 × 11) � 274.6, the
complexity of 256-Camellia becomes 266.6.

In 9-round attack, we add one round at the beginning and use the structure of
Camellia-4, where the selected special plaintexts should satisfy the properties of

that {X̃(2)}t is a Γ − set with the from of F̃t. So we select {X̃(1)}t as ˜̃Ft, where
k1,...,k9 are guessing key. . The complexity of this attack is 272 × (28 ×19+256×
4 + 248 × 4 × 18) ≈ 2130. In 256-Camellia, the 2nd round key bytes are the same
as 8th round key bytes, so the complexity of the attack is 2122. In 128-Camellia
1st round key bytes are the same as 9th round key, so the complexity is 290. In
10-round attack, we add 1 round at the end and use the structure of Camellia-4,
it will need to guess another 8 bytes key. The complexity is 2186. And attacking
on 11-round Camellia, the complexity is 2250.

4.2 Improved Square Attack

The best result of Square attack against Camellia was given by Y.Yeom, S. Park,
and I. Kim [3]. In this paper we improved the attacking result, since Camellia-3
satisfying Eq.(4), so called Improved Square attack.

The basic attack on 5-round camellia use the property of s(X̂R
(65) ⊕ K(55)) ⊕

X̂L
(65) is balanced byte if the plaintext set is Ft, which is illustrated in Eq.(4),
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and the probability of wrong key pass the checking is 2−8. The attacking details
are as follows.

– Step 1: Choose Ft, 1 ≤ t ≤ 2 as plaintext sets, calculate the values of X̂L
(65)

and record them.
– Step 2: For each possible values of K(55), check whether Eq.(4) is satisfied or

not, where the Plaintext set is F1, and record the passed key bytes, which
may be the correct key byte. Go to next step until all possible values are
checked.

– Step 3: For all ’correct’ key bytes in step 2, checks whether Eq.(4) is satisfied
or not, where the Plaintext set is F2.

For this 5-round attack, the time that step 1 takes equals the time that 2×28

5-round encryptions takes. Since Eq.(4) has 256 × 2 + 256 additions and 256
substitutions, and 5-round Camellia has 44×5 additions and 8×5 substitutions,
so the time Eq.(4) takes is nearly 5 times of that 5-round Camellia encryptions
take. In step 2, Eq.(4) repeats 28 times. The probability of wrong key passing
the checking is 2−8, so there will be few passing the checking, that means the
time of step 3 takes 5 times of that 5-round encryptions take. So the complexity
of 5-round attack is 28 × 2 + 28 × 5 + 5 ≈ 210.6.

6-round attack add one round at the begin and select the F̂t, 1 ≤ t ≤ 5
as plaintext sets and use the structure of Camellia-4. If k1 in F̂t, 1 ≤ t ≤ 5
equals k(11), then s(X̂R

(75) ⊕K(65))⊕ X̂L
(75) is balanced byte. So in this attack for

each guessing k1 we check wether the byte s(X̂R
(75) ⊕ K(65)) ⊕ X̂L

(75) is balanced
or not, similar as 5-round attack. The complexity of the attack is 28 × (28 ×
5 + 28 × 4 + 4 × 4) ≈ 218. We extend 6 round attacks to 7-round by adding
one round at the end and select the plaintexs as 6-round attack. Then to get
to know X̂R

(75) we have to guess 5 7th round key bytes, so the complexity is
28 × (28 × 10 + 248 × 4 + 240 × 4) ≈ 258.

In 8-round attack, adding one round at the beginning, use the structure of

Camellia-4. The input sets {X̂(1}t is selected as ̂̂F t, 1 ≤ t ≤ 15. The key bytes are
used in attack. The complexity of the attack is 248×(28×15+248×4+240×14) ≈
298. The complexity of the attack on 256-Camellia is 282, since the 1st and 2nd
round key bytes are the same as 7th and 8th round key bytes, respectively. The
complexity of the attacks on 9 and 10 rounds are 2146 and 2212, respectively.

4.3 Improved Collision Attack

Collision attack on Camellia is given by WL wu[10]. We improve the attacking
results, called Improved Collision attack. In 5-round attack, Eq.(10) is used for
checking, which is derived from Eq.(5).

s(X̂R
(6i)⊕K(5i))⊕X̂L

(6i) ≡ s(X̂ ′R
(6i)⊕K(5i))⊕X̂ ′L

(6i), X̂(1), X̂ ′
(1) ∈ F , i ∈ {6, 7}. (10)

The procedure of this attack is similar to that of 5 round Improved Square
attack. The time Eq.(10) takes is nearly 1/4 times that of 1-round Camellia
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encryptions take, then the complexity of 5 round attack is 4 + 4 × 28/(4 × 5) ≈
25.8. Similarly as section 4.2, The complexities of the attack on 6,7,8,9 rounds
are 28 × (5 + 5 × 28/(6 × 4)) ≈ 213.7, 28 × (10 + 10 × 248/(7 × 4)) ≈ 254.5,
248 × (15 + 15 × 248/(8 × 4)) ≈ 294.9 and 248 × (23 + 23 × 2112/(9 × 4)) ≈ 2159.4.
The complexity of 9-round attack on 128-Camellia is 2119.4. The complexities of
the attack on 256-Camellia with 7,8,9 and 10 are 246.5, 278.9, 2143.4 and 2205.6.

4.4 Other Observations

We can build a new attack on Camellia based on Eq.(6), which implies the
result of s(X̂R

(6i) ⊕ K(5i)) ⊕ (̂X)L
(6i) is a active byte. We select the Λ − set F as

plaintext sets,then check whether s(X̂R
(6i) ⊕ K(5i))⊕ (̂X)L

(6i) is active byte or not
for guessing key byte K(5i).

There is also an interesting property in Camellia-4. If we select the Plaintext
(X̃L

1 , X̃R
1 ) ∈ F ,then X̃R

(58) with the form of Eq.(11).

X̃R
(58) = s1(s1(B ⊕ γ)⊕ s2(B ⊕ γ)⊕ δ)⊕ ε, γ, δ, ε are passive, B is active (11)

5 The Influence of FL/FL−1

In this section, we construct the attacks on Camellia with FL/FL−1 function
and without pre- and post-whitening.

5.1 Variant Square Attack

In 7-round variant Square attack, we use the structure of Camellia-4 and select
the plaintexts {X̃L

(1), X̃
R
(1)}t as a series of Λ−sets ¯̄F t . The equation used in this

attack is Eq.(12).
∑

X̃L
(1),X̃

R
(1)∈ ¯̄Ft

(s−1(X̃L
(7i) ⊕ C̃i) = 0, i ∈ {1, 2, ..., 8}, t ∈ {1, 2, ..., T}. (12)

If there is a FL/FL−1 function in Camellia-4, we have X̃L
(7i) �= X̃R

(8i). Getting
X̃L

(7i) from X̃R
(8i) needs to guess eight key bytes, which are used in FL−1 function.

Hence the attacking complexity is 272 × (28×21+272×6+264×6×20) ≈ 2146.6,
where the value of T is 21. In 128-Camellia,the complexity becomes 290.6, since
the key bytes used in FL−1 function are the same as 1st round key bytes.

In this 8-round attack, we add one round at the end. Then the attacking
complexity is 2146.6+64. It becomes 2194.6 in 256-Camellia, since in 256-Camellia
2nd round key bytes are the same as 8th round key.

5.2 Improved Square Attack

In 7-round Improved Square attack, we use the structure of Camellia-3 and select
the {X̂L

(1), X̂
R
(1)} as ¯̄F t, and use Eq.(13) for checking .

∑

X(1)∈ ¯̄F
s(X̂R

(8i) ⊕ K(7i)) ⊕ X̂L
(8i) = 0, i ∈ {1, 2, ..., 8}. (13)
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If there is a FL/FL−1 function in Camellia-3, we have to consider the prop-
erty of FL(X̂L

(7)). Since the FL function results a Γ −set in a Γ −set, we have a
conclusion that whether there is a FL/FL−1 or not Eq.(13) always holds. Hence
the complexity of that attack is 248 × (28 × 10 + 28 × 6 + 3 × 9) ≈ 258.6, the key
bytes required in this attack are {k(11), k(12), k(13), k(15), k(18), k(21), k(75)}.

Table 1. The Summary of known attacks on Camellia

Rounds FL/FL−1 Methods
T ime

128 − bit
T ime

256 − bit
Notes

5 No SA 248 [2]
5 No SA 216 [3]
5 No Improved SA 210.6 This Paper
5 No Improved CA 25.8 This Paper
6 No SA 256 [3]
6 No Higher Order DC 218 [9]
6 No Improved SA 218 This Paper
6 No Improved CA 213.7 This Paper
6 No Variant SA 218.6 This Paper
7 No Truncated DC 192 [5]
7 No Higher Order DC 257 [9]
7 Yes SA — 257.2 [3]
7 No Improved SA 258 250 This Paper
7 No Improved CA 254.7 246.7 This Paper
7 No Variant SA 233.5 225.6 This Paper
7 Yes Improved SA 258.6 This Paper
7 Yes Variant SA 290.6 2146.6 This Paper
8 No Truncated DC 255.6 [5]
8 No Higher Order DC 2120 [9]
8 Yes SA — 2116 [3]
8 Yes Improved SA 298 282 This Paper
8 No Improved CA 294.9 278.9 This Paper
8 No Variant SA 274.6 266.6 This Paper
8 Yes Improved CA 274.6 266,6 This Paper
8 Yes Variant SA — 2194.6 This Paper
9 No Higher Order DC — 2188 [9]
9 Yes SA — 2181.4 [3]
9 Yes Improved SA 2122 2146 This Paper
9 No Improved CA 2119.4 2143.4 This Paper
9 No Variant SA 290 2122 This Paper
10 No Higher Order DC — 2252 [9]
10 Yes Improved SA — 2210 This Paper
10 No Improved CA — 2207.4 This Paper
10 No Variant SA — 2186 This Paper
11 No Higher Order DC — 2259.6 [9]
11 No Variant SA — 2250 This Paper
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In 8-round attack, we add one round at the end and still use Eq.(13) for
checking, than the attacking procedure becomes the same as that of section 4.2.
The attacks on 9-and 10-round Camellia with FL function are also no difference
from that of without FL function, which have been described in section 4.2.

6 Conclusions

Variant Square attack can break 9-round 128bit Camellia, 11-round 256 bit
Camellia without FL function, further more, it is faster than exhaustive key
search. The conclusions can be made that key schedule and P-function influence
the security of Camellia and Square attack is still the best attack on Camellia.
Table(1) give a summary of known attacks on Camellia.
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