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Abstract
The pathology-based classification of Alzheimer’s disease (AD)

and other neurodegenerative diseases is a work in progress that is

important for both clinicians and basic scientists. Analyses of large

autopsy series, biomarker studies, and genomics analyses have pro-

vided important insights about AD and shed light on previously

unrecognized conditions, enabling a deeper understanding of neuro-

degenerative diseases in general. After demonstrating the impor-

tance of correct disease classification for AD and primary age-

related tauopathy, we emphasize the public health impact of an un-

derappreciated AD “mimic,” which has been termed “hippocampal

sclerosis of aging” or “hippocampal sclerosis dementia.” This pa-

thology affects >20% of individuals older than 85 years and is

strongly associated with cognitive impairment. In this review, we

provide an overview of current hypotheses about how genetic risk

factors (GRN, TMEM106B, ABCC9, and KCNMB2), and other path-

ogenetic influences contribute to TDP-43 pathology and hippocam-

pal sclerosis. Because hippocampal sclerosis of aging affects the

“oldest-old” with arteriolosclerosis and TDP-43 pathologies that ex-

tend well beyond the hippocampus, more appropriate terminology

for this disease is required. We recommend “cerebral age-related

TDP-43 and sclerosis” (CARTS). A detailed case report is pre-

sented, which includes neuroimaging and longitudinal neurocogni-

tive data. Finally, we suggest a neuropathology-based diagnostic

rubric for CARTS.

Key Words: Arteriosclerosis, Cerebrovascular disease, Frontotem-

poral lobar degeneration, Genome-wide association study, Neurofi-

brillary tangles, Plaques, VCID.

INTRODUCTION
Prospects for diagnosing and treating neurodegenerative

diseases are enhanced when disease classifications reflect the
underlying biologic complexity of these conditions. For most
neurodegenerative diseases, neuropathologic observations con-
stitute the “gold standard” used in diagnosis and nosology. Yet
the pathology-based classifications of neurodegenerative dis-
eases are also dynamic and have evolved recently to capture an
increased proportion of the changes in the aged brain that are
associated with cognitive impairment (1). These advances have
come about with the help of larger and more diverse autopsy
cohorts, increasingly robust and quantitative pathological pa-
rameters, and greater collaboration among neuropathologists,
clinician-scientists, and basic researchers. Here we discuss
both recent advances and some areas that merit revision in the
study of dementia-related neurodegenerative diseases (Table
1). These studies are directly relevant to the most well-known
dementia-inducing disorder, Alzheimer disease (AD).

Focusing on AD
AD has an enormous impact on public health and recent

studies have substantially revised the classic literature on AD
clinicopathologic correlations. For example, we have learned
that much of the morbidity attributed to AD as recently as 20
years ago is more accurately associated with non-AD diseases.
A basic assumption is that AD is defined by 2 pathologic hall-
marks: Ab amyloid plaques and tau neurofibrillary tangles
(NFTs) (2). The complex but coherent association between
AD pathologies and cognitive status was previously addressed
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(3, 4). Here, we focus on 3 basic factors that must be taken
into account in disease classifications: autopsy data, non-AD
pathologies, and chronological age.

Autopsy-based neuropathological diagnoses are central
to AD research. The salience of neuropathologic data and, by
extension, pathology-based classification schemes, is illus-
trated by many prior studies that arrived at correct conclusions
only when using the pathological criteria for AD diagnosis
rather than using purely clinical criteria for AD diagnosis. One
example selected from among many is in testing the associa-
tion between AD and type 2 diabetes mellitus (T2D), the latter
of which affects over a quarter of individuals>65 years of age
(5). Studies analyzing clinical data have reported that T2D is a
risk factor for AD (6–8). By contrast, studies that incorporated
autopsy results have consistently arrived at the opposite con-
clusion, i.e that T2D is not a risk factor for AD pathology.
Instead, T2D appears to exert its impact through a different
disorder, that is cerebrovascular disease (9–14). The inclusion
of the single study design element of autopsy data is critical to
guide all other related work.

The reason for the discrepancy between clinical and
pathology-based AD diagnoses relates to the prevalence of
non-AD brain diseases, including a-synucleinopathies, non-
AD tauopathies, hippocampal sclerosis ([HS] as discussed be-
low), and many subtypes of cerebrovascular disease, all of
which can mimic AD clinically (4, 15–17). In Table 2 we pro-
vide data from the University of Kentucky autopsy series
(18, 19) listing the frequency of non-AD pathologies by Braak
NFT stage (20). Note that>95% of brains in this cohort have

at least 1 brain pathology and most participants had more than
1 pathologic diagnosis. These results are consistent with prior
autopsy series (4, 19, 21–35).

Biomarker studies confirm the prevalence of in vivo
“suspected non-Alzheimer pathology” (SNAP) (36, 37), which
refers to neurodegeneration without Ab amyloidosis according
to biomarkers. Approximately 25% of “mild cognitive impair-
ment” (MCI) cases show the SNAP biomarker signature (36).

This does not indicate that only approximately 25% of
MCI subjects show substantial non-AD pathology, but instead,
approximately 25% of MCI subjects show impairment that is
almost exclusively related to non-AD pathology.

The clinical and biomarker data on patients with cogni-
tive impairments must be guided by pathologic classification
to appreciate the heterogeneous diseases underlying these im-
pairments. A first-line biomarker used for diagnosing the
cause of cognitive impairment in the elderly is brain MRI
(38). Although MRI-detected hippocampal shrinkage is a rela-
tively strong predictor of subsequent cognitive deterioration
(39–41), this finding has low specificity because multiple
separate brain pathologies are associated with hippocampal at-
rophy. For example, HS of aging (HS-Aging) is a common
condition that causes even more severe hippocampal atrophy
than AD (42–44). Distinguishing between causes of hippo-
campal atrophy is critical because therapies that might impact
one condition (eg AD) may not have any effect in another
disease (eg HS-Aging). Thus, optimal AD biomarkers would
indicate the severity of AD neuropathology rather than cognitive
impairment per se, which is not specific to AD (27, 29, 45).

TABLE 1. Topics and Organization of the Current Review

Disease condition Impact of recent progress and revised pathology-based classification

Alzheimer disease (AD) Increased appreciation of importance of autopsy data and non-AD pathologies

Primary age-related tauopathy (PART) Revised classification is useful for study of non-AD brain disease

Hippocampal sclerosis of aging (HS-Aging)/

Cerebral age-related TDP-43 and sclerosis

A common age-related brain disease, lacking an accurate classification

TABLE 2. Even in an Autopsy Cohort That Includes Many Subjects Free of Dementia, Most Individuals Manifest More Than 1 Sub-
type of Brain Pathology

Braak NFT Stages

0 I II III IV V VI

Cases (n) 20 57 97 58 57 101 188

Cases with B-ASC: moderate or severe 0% 12.3% 21.6% 12.1% 21.1% 19.8% 14.4%

Cases with CAA: moderate or severe 20.0% 10.5% 20.6% 19.0% 24.6% 37.6% 50.5%

Cases with Lacunar and/or microinfarcts 35.0% 36.8% 43.3% 37.9% 49.1% 46.5% 38.3%

Cases with Neocortical Lewy bodies 5.0% 14.0% 9.3% 10.3% 7.0% 10.9% 19.7%

Cases with HS-Aging 15.0% 10.5% 6.2% 17.2% 8.8% 18.8% 15.4%

Cases with >1 non-AD pathologya 20.0% 21.1% 27.0% 24.1% 33.3% 43.6% 40.1%

Cases with PART n/a 71.9% 56.7% 37.9% 17.5% n/a n/a

Shown are pathologies among subjects at the University of Kentucky Alzheimer’s Disease Center autopsy cohort who died after age 75 years (total n¼ 578, of whom 161 sub-

jects had final MMSE score of 28/30 or better) without frontotemporal dementia, stratified by Braak NFT stages. Data are presented as percentages.

B-ASC: brain arteriolosclerosis; CAA: cerebral amyloid angiopathy; HS-Aging: hippocampal sclerosis of aging; PART: primary age-related tauopathy.
aFor this purpose, PART is not considered “non-AD” pathology.
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Recent autopsy studies have also shed new light on
the interaction between aging and brain disease. The clas-
sic AD clinical-pathologic correlation studies of Tomlin-
son and colleagues were performed on cohorts with aver-
age age of death in their early 70s (46–49). However, the
fastest growing population group is persons older than 85
years of age (10). It is increasingly clear that this “oldest-
old” population is affected by conditions that differ from
younger cohorts (10, 50–52). “Pure” AD cases tend to be
younger and to have particular gene variants (10, 29, 31,
53–55), whereas the prevalence of AD pathology levels off
or decreases in advanced old age (10, 15, 31, 56) (Figs. 1
and 2). By contrast, some non-AD brain pathologies in-
crease in the “oldest-old” (10, 24, 59). Thus, the statement

that age is the greatest risk factor for AD should not be
taken literally (24, 87); a more accurate statement is that
age is a risk factor for dementia due to multiple diseases
that usually include AD.

Although new insights into AD-related brain patholo-
gies have been achieved, many more questions remain. These
questions illustrate that there are controversies about disease
classifications: What, other than APOE e4, leads to the devel-
opment of plaques and tangles? Do some cognitively intact in-
dividuals tolerate a high burden of plaques and tangles for
long periods? Are there environmental and genetic influences
that confer protection against the disease? And why do many
individuals in advanced old age lack amyloid plaques but still
develop hippocampal NFTs?

A

B

FIGURE 1. Dementia is associated with risk factors and
pathologies that vary across the human aging spectrum.
(A, B) Among the “oldest-old” with the clinical diagnosis of
“Probable AD,” APOE e4 alleles are decreasingly common
after age 75 years (A), whereas HS-Aging pathology is more
prevalent with increasing age (p<0.001 for both) in the NACC
Data Set (n¼993 of subjects who died between 2005 and 2013)
(57) (B). Methodology for data analyses was as described
previously (58). These data demonstrate the contribution to
dementia of non-APOE genetic risk factors, and common non-
AD pathologies in advanced old age.
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FIGURE 2. Depiction of prevalence and morbidity of specific
pathologies that contribute to dementia. These charts
represent the subjective synthesis of the results of multiple
published studies (19, 29, 33, 52, 59, 60, 61, 62, 63, 58, 64,
65–86). (A) The prevalence of multiple different specific CNS
disease pathologies is depicted (50% prevalence is shown for
reference). Note that in large autopsy series the prevalence of
advanced AD pathology levels off or decreases in advanced
old age whereas other pathologies (HS-Aging, cerebrovascular
diseases) increase in that group. Panel (B) shows the same
conditions ranked according to the morbidity (neurologic
impact and rate of disease progression). Prevalence, morbidity,
and age range vary significantly. For example, FTLD is a rare but
devastating illness whereas PART is relatively common but lower
morbidity, and each mostly afflicts people at separate parts of
the human aging spectrum.
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A Common Pathology With a New
Classification: Primary Age-Related
Tauopathy (PART)

We consider PART to represent a distinct non-AD pa-
thology (59, 88), as indicated in the most recent consensus-
based guidelines for the neuropathologic assessment of AD
(2) (Fig. 3). However, since tau, a-synuclein, Ab, and TDP-43
are all pathologically aggregated in multiple diseases
(1, 4, 92–98), there are debates about the pathology-based cri-
teria applied to define each disease, including PART
(99, 100). What is agreed upon is that NFTs are virtually
always seen with advanced age, whereas Ab amyloid
plaques are absent in a substantial proportion of elderly brains
(24, 59, 87—91, 101–103). The NFTþ/Ab- pathologic combi-
nation (PART) is common, occurring in approximately 20%
of all individuals (Table 2).

The update of pathology classification to include PART
(59) provides a universal terminology with both theoretical and
clinical implications. To summarize multiple prior studies, hu-
man autopsy data indicate the existence of at least 2 common
but distinct biologic processes producing NFTs in the hippo-
campus of elderly persons (23, 60, 104–106). One process
(AD) includes Ab plaques as well as tau NFTs and tends to
evolve into dementia. The other (PART) lacks the Ab plaques
and is associated with lesser degree of cognitive impairment
and/or other morbidities. Notably, APOE e4 genotype does not
appear to be a risk factor for PART, whereas the MAPT “H1”
haplotype confers an increased risk for PART (59, 105, 107)
and for less common non-AD tauopathies (108, 109).

PART differs from AD in terms of overall morbidity
and the age range of maximum vulnerability (59) (Fig. 2). The
higher stage PART cases (Braak NFT stages III/IV) tend to
show evidence of cognitive impairment (59). Prior biomarker
studies identified neurodegeneration biomarkers in the ab-
sence of brain or cerebrospinal fluid Ab amyloidosis
(37, 110–112). We also found evidence that PART is a patho-
logic substrate for individuals who die with subjective
memory complaints (113), which is a very common clinical
phenomenon among elderly individuals (114, 115).

Whether PART pathology inevitably progresses to AD
is controversial (99, 107). Approximately 20% of individuals
have PART pathology by their ninth decade 87). The overall
proportion of AD and PART cases seems to be stable in cente-
narians, supporting the hypothesis that PART pathology is not
necessarily destined to progress to AD (24, 87). A separate is-
sue that remains to be addressed relates to the presence of
PART in individuals who satisfy criteria for AD (i.e moderate
or frequent neuritic plaques). Using current diagnostic classifi-
cation (Fig. 3), those cases are not classifiable as PART. How-
ever, with the identification of PART, clinicians, pathologists,
and basic scientists worldwide can better discriminate amongst
various tauopathic diseases, aiding both clinical and basic
research. Such studies will set the stage for future preventive or
therapeutic strategies.

At the Frontier of Disease Classification: HS-Aging
Despite the recent progress in the field, there are still

common and high-morbidity age-related brain diseases that

lack a consensus-based classification. Here, we focus on a spe-
cific brain disease, with clinical manifestations that overlap
with AD, and which has been classified using the term “HS”
based on pathologic observations (116–126). HS in aged indi-
viduals is diagnosed at autopsy (according to consensus-based
guidelines) when neuron loss and astrocytosis are observed in
the hippocampal formation, “out of proportion to AD neuro-
pathologic change in the same structures” (2).

Unfortunately, the current terminology is suboptimal.
There is no formal operationalization of what “out of propor-
tion” exactly means. Moreover, the word “sclerosis” (Gr.,
skl�er�osis, “hardness”) lacks a specific connotation in terms of
molecular pathogenesis. Pathologists observe what they de-
scribe as HS in widely differing conditions including epilepsy,
hypoxia and hypoglycemia, frontotemporal lobar degeneration
(FTLD), chronic traumatic encephalopathy, and some tauopa-
thies (125, 127–133). Recently, a group of experts discussed
HS pathologic classification terminology (134); however,
the research subjects in that study were relatively young
(most<80 years at death) in comparison to many HS-Aging
cases (53, 116, 135, 136).

The term “HS-Aging” was previously applied to sepa-
rate this disease from other conditions referred to as HS
(15, 56, 116, 137–139). HS-Aging is distinguished by the ad-
vanced age of the affected individuals, by the usual lack of ei-
ther seizure disorder or frontotemporal dementia symptoms
clinically, and by the presence of hippocampal TDP-43
pathology (116, 117, 140–143). Other terms that have been
applied include “HpScl” (124, 125, 144) and “HS dementia”
(125, 145, 146), with “combined” and “pure” subtypes recog-
nized according to the presence or absence of comorbid pa-
thologies (128). We note that fewer than 2% of citations
returned after a current PubMed search using the words

FIGURE 3. Both Alzheimer disease (AD) and primary age-
related tauopathy (PART) are diagnosed based on a grid that
incorporates pathologic staging information related to
amyloid plaques and neurofibrillary tangles (NFTs). Shown is
the grid for determining the level of AD neuropathologic
changes at autopsy (2), based on Thal Ab stages (89), CERAD
neuritic amyloid plaque stages (90), and Braak NFT stages
(91). Superimposed on the AD classification scheme are
criteria for “Definite PART” (red) and “Possible PART” (yellow)
(59) based on the same information.
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“hippocampal sclerosis” are related to HS-Aging, HpScl, or
HS dementia. Thus, whatever final terminology is adopted, it
should not be simply “HS” because this is clearly not a
disease-defining pathologic endpoint. Here, we describe what
is known about this disease including data germane to a useful
new terminology.

HS-Aging Is a Common High-Morbidity Disease
of Advanced Old Age

The disease referred to as “HS-Aging” affects up to 25%
of individuals beyond 85 years of age (53, 56, 116, 117, 135,
136, 147). The reported prevalence varies across cohorts, per-
haps because the “sclerosis” is diagnosed subjectively. Fur-
ther, 40%–50% of the HS-Aging cases have unilateral HS
pathology on hematoxylin and eosin (H&E) stain (116, 147).
Because this unilateral pathology is associated with cognitive
impairment (34), there would be a large number of false-
negatives reported if only one side of the brain were evaluated.
Another very important variable is study design. Among re-
search cohorts that are linked to dementia clinics, the samples
have tended to be enriched with “pure” AD and FTLD cases,
whereas in community-based cohorts, FTLD is quite rare and
there are greater numbers of cognitively intact subjects as well
as those with dementia due to cerebrovascular disease and HS-
Aging (22, 25, 33, 61, 62, 116, 117, 148–153).

Research from many centers has found that HS-Aging-
type pathology is associated with impaired cognition (15, 34,
42, 44, 53, 56, 119, 122–124, 136, 147, 154–162). Lacking
more specific biomarkers, some studies have demonstrated
associations between HS-Aging pathology and particular cog-
nitive domains (116, 119, 135, 136). A cognitive profile in pa-
tients with autopsy-confirmed HS-Aging was described with
relatively impaired Logical Memory Delayed Recall, yet with
preserved verbal fluency (116). These findings were validated
in a separate sample to differentiate cognitive impairment
with HS-Aging pathology, versus AD or FTLD pathologies, at
the group level (15).

HS-Aging is generally misdiagnosed in living individ-
uals as AD because of the presence of a memory impairment
and cognitive deterioration (15, 124). Put another way, a rela-
tively large proportion (>10%, increased in advanced age) of
“clinical AD” is actually HS-Aging. This may improve as
some individuals with SNAP (36), based on clinical bio-
markers, are removed from clinical AD cohorts. However,
identification of HS-Aging cases will remain challenging
in the large group of individuals with comorbid AD and
HS-Aging pathologies because they are not SNAP (15, 53,
116, 163). Indeed, HS-Aging was found in 2 (9%) of the first
22 subjects followed to autopsy among intensely longitudi-
nally studied subjects with clinical AD in the AD Neuroimag-
ing Initiative (ADNI) cohort (164), whereas only 4 (18%) of
these cases had pure AD pathology (165).

HS-Aging: Clues About Pathogenesis and the
Preclinical State

Although the pathogenesis of HS-Aging is incompletely
understood, some prior findings suggest that ischemia or other

vascular dysfunction may contribute to the disease phenotype.
As stated by Zarow et al (117), “HS has long been hypothe-
sized to result from ischemic–hypoxic insult to the brain”. The
CA1 sector is fed by small end-arterioles from the anterior
choroidal and posterior cerebral arteries and is known to be
susceptible to hypoxic injury (166). In a study of 13 aged indi-
viduals with HS, Dickson et al reported severe “arteriosclero-
sis” in 12 of the 13 cases (121), and others have also published
data compatible with a link between HS-Aging and cerebro-
vascular disease (117, 123, 157, 167, 168). Subsequent studies
have provided a more specific focus. We found that among
vascular neuropathologies, only arteriolosclerosis is associ-
ated with HS-Aging pathology (169). The association between
HS-Aging and arteriolosclerosis pathology throughout the
brain was confirmed in a subsequent study (24) and is dis-
cussed further below.

In apparent contradiction to the hypothesis that HS-Aging
is purely associated with cerebrovascular disease, HS-Aging
brains also demonstrate characteristics that are indicative of
a neurodegenerative condition. The clinical course of HS-
Aging tends to follow the trajectory of a neurodegenerative
disease (53, 116). A key pathologic biomarker for HS-Aging
is aberrant hippocampal TDP-43 pathology that often resem-
bles the pathologic pattern observed in FTLD-TDP (140,
141, 146, 170–172). In both HS-Aging and FTLD-TDP,
slender TDP-43-immunoreactive neurites are observed in
hippocampus, subiculum, and amygdala (termed “Type A”
TDP-43 pathology) (86, 140, 170). Some gene variants that are
associated with increased risk for HS-Aging (53, 124, 144,
173, 174) were previously associated with increased risk for
FTLD (175, 176).

Thus, HS-Aging has been suggested to reflect both cere-
brovascular dysfunction and abnormal proteostasis leading to
protein misfolding, a mechanistic leitmotif of neurodegenera-
tive processes (177, 178). Although these dual vascular and
proteostasis mechanisms may seem contradictory, there is in-
creasing evidence of synergistic “mixed” mechanisms that
could lead to neurodegeneration (179–181). Analyzing this re-
quires insights into TDP-43 pathology, which is the most spe-
cific marker for HS-Aging (116, 117, 140).

TDP-43 pathology was discovered in the context of
brains along the clinical/genetic/pathologic spectrum that in-
cludes both amyotrophic lateral sclerosis (ALS) and FTLD
(141); however, TDP-43 pathology is not specific for ALS/
FTLD spectrum disorders. TDP-43 pathology has been re-
ported in Alexander disease, Cockayne syndrome, Down syn-
drome, Guam ALS-parkinsonism-dementia, a subset of Lewy
body disorders, low-grade glial neoplasms, inclusion body
myositis, and chronic traumatic encephalopathy (97, 120, 142,
182–187). As such, TDP-43 pathology in some cases must
represent a secondary (“downstream”) manifestation of di-
verse neurodegenerative, developmental, and “reactive”
influences. Moreover, monogenic, early onset familial AD is
frequently comorbid with hippocampal TDP-43 pathology
(120, 188), which indicates molecular synergy for specific
misfolded proteins, likely due to abnormal proteostasis. These
observations argue strongly that conditions outside the ALS/
FTLD spectrum may include TDP-43 pathology. A staging
schema has been proposed to describe how TDP-43 pathology
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is distributed in brains with comorbid AD pathology, many of
which also had HS-Aging (189, 190). Notably, in multiple co-
horts of aged persons, TDP-43 pathology is far more strongly
linked to HS-Aging than early AD pathology (15, 53, 116,
136, 191). However, within the amygdala of subjects with ad-
vanced AD, protein misfolding of tau, Ab, a-synuclein, and
TDP-43 pathologies tends to occur (61, 192, 193). Account-
ing for the existing uncertainties, the above findings collec-
tively indicate that multiple mechanisms can result in hippo-
campal TDP-43 pathology. The challenge is to define a
unique condition with both TDP-43 (TDP[þ]) and HS
(HS[þ]) pathologies.

For determining “boundary zones” that are meaningful
for pathology-based classification, a key goal is to understand
the disease in its preclinical stage(s). Current knowledge de-
rives predominantly from cross-sectional data, and here we
are referring mostly to autopsy series that include subjects
over 85 years of age. The term “pre-HpScl” was used to de-
scribe hippocampal pathology characterized by none to mini-
mal neuronal loss yet with abundant TDP-43 pathology (170).
This partially overlaps with “segmental” HS-Aging, where
only select portions of the TDP[þ] hippocampal formation
showed evidence of neuronal loss on H&E despite extensive
additional sampling (194). Notably, in cases with unilateral
HS according to H&E evaluation, the contralateral side is al-
most always positive for TDP-43 pathology (116).

Prior autopsy studies that reported a relatively high pro-
portion of cases with HS[�]TDP[þ] pathology (136, 61, 195),
in contrast to studies with a higher proportion of HS[þ]TDP[þ]
cases (116, 147), reflect the lack of universally applied diag-
nostic criteria for aging-related TDP-43 or HS-Aging patholo-
gies. Thus, what one group may call HS[þ]TDP[þ], another
would categorize as HS[�]TDP[þ]. Yet taken together, the
published studies are compatible with a progressive disease
with limbic TDP-43 pathology in the early stages and HS in
later stages.

Do TDP[þ] cases in advanced age represent a subtype
of FTLD-TDP? This is debatable, but there are reasons to con-
sider TDP[þ] in older subjects to be separate from FTLD-
TDP. TDP-43 pathology seen in HS-Aging cases does not
appear to progress to full-blown frontotemporal dementia
(clinically) or FTLD-TDP (pathologically) when evaluated in
community-based cohorts (25, 26, 135, 151, 61). TDP-43 pa-
thology is rare before 65 years but allocortical TDP-43 pathol-
ogy (i.e within amygdala, hippocampus, entorhinal cortex) is
common in octogenarians and nonagenarians (136, 196, 197).
In a high-quality community-based cohort (n¼ 544, average
age of death 89.0 years), 52% had limbic TDP-43 pathology
but none had FTLD-TDP (198). Likewise, in the largest neuro-
pathologic study to date of centenarians, there was not a single
example of FTLD-TDP (24). The enormous difference in
prevalence (Fig. 2) is a key point: FTLD-TDP affects approxi-
mately 20 000 individuals in United States (62), whereas HS-
Aging afflicts well over 10 times as many if one extrapolates
from large autopsy series (15, 56, 116, 117, 120, 135, 157,
199). In Figure 4, we provide cognitive, neuroimaging, and
neuropathologic data on a patient with clinical “probable AD”
yet whose autopsy showed HS[þ]TDP[þ] pathology by our
criteria, and with very minimal Ab deposition. To make prog-

ress in studying this common disease phenotype, it is critical
to generate consensus about the disease-defining criteria.
These efforts will be aided by clinical studies because there
currently is no validated animal model.

In a recent neuroimaging study, Kotrotsou et al found
that in elderly individuals dying with eventual autopsy-proven
HS-Aging, premortemMRI studies showed extensive brain at-
rophy outside of the hippocampal formation, particularly in
the frontal lobes (200). Furthermore, in the AD Neuroimaging
Initiative (ADNI) data set (164), the HS-Aging risk alleles (de-
scribed below) were associated with widespread MRI-
detected brain atrophy outside of the hippocampus (201). Pre-
vious pathologic observations are compatible with the hypoth-
esis that HS-Aging is actually a generalized disease that is of-
ten comorbid with pan-cerebral arteriolosclerosis pathology,
rather than one localized to medial temporal lobe structures
(15, 56, 136, 158, 169, 194).

We interpret these prior findings to indicate that there is
a common cerebral disease, affecting persons in advanced
age, characterized by a spectrum of pathologies:

preclinical disease ! TDP� 43 pathology

! TDP� 43 pathology with HS and cerebral atrophy:

In other words, the signal feature of the disease is TDP-
43 pathology, rather than HS. Yet, there are more complexi-
ties. Perhaps analogous to the many non-AD diseases that are
associated with hippocampal NFTs (202–204), some rare dis-
eases, fundamentally different from HS-Aging, also show the
HS[þ]TDP[þ] pattern (127, 132, 205, 206). To understand
what makes HS-Aging unique, further knowledge is required
about its specific pathogenesis.

Genetics of HS-Aging
Genetic risk factors can provide insights into disease-

specific mechanisms. For example, APOE gene variants are
not associated with altered risk for either TDP[þ] or HS[þ]
neuropathology (15, 116, 124, 135, 207). This supports the hy-
pothesis that HS-Aging is a separate disease entity from AD.

Genotypes linked to HS-Aging pathology have now
been identified (Table 3). Potential risk alleles were first ana-
lyzed in 2 specific genes (GRN and TMEM106B), in line with
the hypothesis that HS-Aging is related pathogenetically to
FTLD-TDP. The first gene variant linked to HS-Aging pathol-
ogy was rs5848, a single nucleotide polymorphism (SNP) lo-
cated in the 30UTR of GRN (173). This SNP is also associated
with altered expression ofGRN (144, 211). Whereas many dif-
ferent GRN mutations cause FTLD-TDP (212–216), the HS-
Aging SNP (rs5848) is apparently a disease-modifying allele
that impacts the manifestation of multiple different diseases
rather than specifically of HS-Aging. For example, rs5848 has
been linked to AD, Parkinson disease, C9ORF72 neurodegen-
eration, and bipolar disorder (173, 217–221), whereas several
groups have reported that rs5848 is not linked to FTLD
(208, 222).

The TMEM106B SNP rs1990622 is a risk allele for
FTLD-TDP, as determined using a genome-wide association
study (GWAS) (223), and the same SNP is linked to a coding
variant and altered protein expression (224). TMEM106B
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FIGURE 4. Case study illustrates clinical and neuropathologic features of common comorbid diseases. The female subject was
followed from 77 years until death at age 102 years. Detailed neurocognitive tests were performed until age 98 years; MCI was
diagnosed clinically at age 93, “Probable Alzheimer Disease” at age 95. APOE genotype was e3/e3. (A) Panel shows results of
MMSE (global cognition) and animal naming (verbal fluency) results; note that the verbal fluency was relatively stable even after
global cognitive status was impaired. A brain MRI (horizontal plane) 10 years before death (B) showed hippocampal atrophy
(arrows). Immunohistochemistry demonstrated extremely sparse Ab amyloid pathology in temporal neocortex (C) and no
neuritic plaques. Ab amyloid in AD brain (D) is shown for comparison. In the hippocampal formation there was Braak NFT stage
II tauopathy (E) and PART and HS-Aging were both diagnosed. Note that the hippocampal sclerosis is diagnosed according to
consensus-based criteria (2): “cell loss and gliosis out of proportion to plaques and tangles,” rather than complete destruction of
the structure. TDP-43 pathology was present in the hippocampus; (F) shows dentate gyrus with inclusions (arrows) and (G)
shows subiculum with neuronal inclusion (arrow) and slender nontapering TDP-43 neurites (arrowheads). Widespread brain
arteriolosclerosis pathology was also observed (Fig. 5). Panel (H) is a low-power photomicrograph showing the hippocampal
formation including CA1, dentate granule (dg), and subiculum (Sub) regions. Adjacent sections were stained for phospho-Tau
(P-Tau) and P-TDP-43 and the pathology was depicted schematically (inset I) using an Aperio ScanScope as described previously
(56): red dots for NFTs, green dots for P-TDP-43 inclusions, and cyan region shows area with P-TDP-43 neurites. As noted
previously (56), the tauopathic distribution in TDP[þ]HS[þ] cases is slightly different from “classic” early Braak NFT stages. Scale
bars: C, 100 lm; D, 80 lm; E, 40 lm; F, 30 lm; G, 70 lm; H, 2mm.
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polypeptide is a lysosomal protein that apparently affects
GRN expression (225–227). The risk allele is associated with
increased vulnerability to ALS and for neurodegeneration
linked to C9ORF72 repeat expansions (209,228). Further, in
SNP-focused studies, rs1990622 status was found to be associ-
ated with HS pathology (53, 151, 229), altered AD phenotype
(210, 229, 230), and cognition independent of AD or HS pa-
thologies (196).

The studies on specific GRN and TMEM106B gene vari-
ants due to their link with other diseases left unaddressed the
possibility of genotypes associated specifically with HS-
Aging. A complementary experimental approach is GWAS,
which is unbiased by prior mechanistic hypotheses. GWASs
have now identified 2 putative HS-Aging risk genes, both of
which encode potassium channel regulators: ABCC9 and
KCNMB2 (151, 231).

The association between ABCC9 SNP rs704180 and
HS-Aging pathology attained genome-wide significance in
the GWAS paper (151), and has since been replicated (174),
although not as extensively as GRN and TMEM106B. This
intronic SNP is associated with altered ABCC9mRNA expres-
sion (232), and nearby ABCC9 gene variants are also linked to
other neurologic diseases such as sleep disorder and depres-
sion (233–235). The ABCC9 gene encodes proteins that regu-
late potassium channels (233, 234), serving as a metabolic
“sensor” relevant to vascular responses to hypoxia, ischemia,
and inflammation (236). There are published studies that sup-
port direct connections between ABCC9 and neurodegenera-
tive disease mechanisms (237–244).

A second gene linked through GWAS to HS-Aging pa-
thology is KCNMB2 (231). Intriguingly, Zarei et al found that
the KCNMB2 gene product could be relevant to hippocampal
physiology (245). As yet, the finding of association between
the KCNMB2 SNP rs9637454 and HS-Aging remains to be
replicated.

In summary, genomic studies provided meaningful indi-
cations about what may cause or protect against HS-Aging.
The associations for both GRN and TMEM106B SNPs with
HS-Aging risk have now been replicated, providing strong
support for a mechanism relevant to both HS-Aging and
FTLD-TDP. However, these HS-Aging risk SNPs are risk-
modifying alleles in multiple diseases, thereby begging the
question about the disease-specific “upstream” factors. The
impact of these particular gene variants may be analogous to
theMAPT H1 haplotype that confers increased risk for PART,
progressive supranuclear palsy, and other “sporadic” tauopa-
thies (57, 105, 108, 246, 247), as opposed to MAPT mutations

that directly cause familial FTLD-MAPT (248–250). As with
PART in comparison to FTLD-MAPT, the ultimate manifesta-
tions of HS-Aging and FTLD-TDP are also profoundly differ-
ent from each other in terms of clinical (i.e course and age
range) and pathological features (15, 56). Although it is an im-
portant insight that particular GRN and TMEM106B SNPs can
increase risk for TDP-43 pathology in multiple diseases, the
experiments that discovered these phenomena were blind to
the disease-specific “upstream” mechanisms involved in a dis-
ease that is far more common than FTLD-TDP. Published
genome-wide analyses have implicated ABCC9 gene variants
specific to HS-Aging. Because genomics information pro-
vides insights into pathogenesis, this may help in the delin-
eation of the disease phenotype, shifting the focus to another
brain pathology, namely aging-related brain arteriolosclerosis
(B-ASC).

Previously Unsuspected Pathologic Synergies:
B-ASC and HS-Aging

B-ASC describes pathologic thickening of the walls of
brain arterioles not due to brain amyloid (58, 63, 169, 251–
255). This subtype of small vessel pathology is very common
in the brains of older individuals and is associated with im-
paired cognitive status, independent of other pathologies
(255). In prior studies by us and others, it was implied that
B-ASC represents a well-defined and classifiable subtype of
vascular pathology in the CNS.

However, we have much to learn about brain arterioles
in healthy and disease states. A recent review made trenchant
points: “The term arteriolosclerosis actually does not define a
lesion at all. It is a generic term meaning ‘hardening of small
arteries’. In fact, the term encompasses 2 distinct lesions: (1) a
fibromuscular proliferation of the intima, the ‘hyperplastic
type’ and (2) a deposition of amorphous material in the arteri-
olar wall, the ‘hyaline type’” (256). Moreover, the current
classification of arteriosclerosis is not based on a consensus
document by a major cerebrovascular, cardiovascular, or pa-
thology organization (256). Despite progress in the field, rela-
tively little is known about the neuropathology of elements
that comprise brain arterioles, a complicated arrangement of
endothelial cells, pericytes, smooth muscle cells, basement
membrane, astrocyte end-feet, and extracellular matrix (64, 255,
257–261). Small blood vessels participate in energy exchange,
removal of waste, blood pressure regulation, neuroglial activ-
ity, and neuroimmune functions and it seems clear that we still
have much to learn.

TABLE 3. Genes and Single Nucleotide Polymorphisms Associated With Risk for Hippocampal Sclerosis of Aging

Gene SNP Experiment that Linked the Gene to

HS-Aging: SNP-Focused or GWAS

Replicated? References

GRN rs5848 SNP-focused Yes (124, 144, 173, 174)

TMEM106B rs1990622 SNP-focused Yes (170, 174, 194, 196, 208, 209)

ABCC9 rs704180 GWAS Yes (24, 151, 174, 58) a

KCNMB2 rs9637454 GWAS No (210)

aReference (58) refers only to ABCC9 association with brain arteriolosclerosis.
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Photomicrographs to convey some of the heterogeneity
of vascular changes that may be diagnosed as B-ASC at
autopsy are shown in Figure 5. In aged brains, arteriolar mor-
phologies include pathologic variants other than “hyperplastic-
” and “hyaline”-type changes. For example, some arterioles
show degenerative changes in smooth muscle cells, whereas
other arteriolar structures comprise multiple lumens (262, 263).
Future work may better capture the heterogeneity of arteriolar
disease phenotypes and provide the basis for robust clinical-
pathologic correlations.

Although many unknowns remain in the study of
B-ASC, insights have been gained. Studies of organs outside
the brain indicate that arteriolosclerosis is associated with met-
abolic or cardiovascular disorders such as diabetes and hyper-
tension (57, 256, 264–267). Ighodaro et al recently tested risk
factors of B-ASC among 2390 persons who had come to
autopsy with known B-ASC status using the National Alz-
heimer’s Coordinating Center data set (255, 268). These anal-
yses indicated that advanced age at death was associated with
B-ASC severity. Self-reported hypertension was only associ-
ated with B-ASC in the<80 years age at death group.

Interestingly, in the�80 years age at death group, the
ABCC9 gene variant rs704180, previously associated with
HS-Aging, was also associated with B-ASC (255). By con-
trast, neither GRN nor TMEM106B SNPs were associated
with B-ASC (255). The hypothesis that ABCC9 is associated
with arteriolosclerosis pathology throughout many different
brain regions was supported in analyses of centenarians’
brains (24). Intriguingly, Lim et al recently reported that
B-ASC is associated with “sleep fragmentation,” (269) and
ABCC9 gene variants have been linked to sleep problems
(235,, 270, 271).

The observation that the same ABCC9 gene variant is
associated with risk for both B-ASC and HS-Aging patholo-
gies in old age provides the basis for a novel hypothesis com-
bining cerebrovascular and neurodegenerative paradigms
(255). One exciting aspect of implicating ABCC9 in disease
pathogenesis is that ABCC9 gene product-modifying drugs
(both agonists and antagonists) are widely used in the human
pharmacopeia (272–275). We emphasize that the findings of
ABCC9 require further validation; this is still a new hypothesis
that requires more study.

*

*

Masson’s trichrome stain

αα-SMA 

Immunohistochemistry

FIGURE 5. Brain arteriolosclerosis (B-ASC) pathology is a complex phenotype. These panels show B-ASC vascular profiles in
brains from different aged individuals to provide a small sampling of the heterogeneity of B-ASC. (A-C) Panels show hematoxylin
and eosin staining. Panel (A) is a low-power photomicrograph depicting a vessel in the amygdala of a person with advanced AD
and cerebrovascular disease. Note the large expanse of hyalinized material (*) that extends from the vessel wall, along with a
patch of lymphocytic inflammation (arrow). By contrast, in the hippocampus of the case study (Fig. 4) there is a smaller blood
vessel (boxed in B, magnified in C) that shows a vascular profile with apparent fibrinoid necrosis and/or microcalcifications in the
paucicellular vessel wall. Another pattern we have seen in many cases is multiple vascular profiles in the same vessel bed, as
shown in panel (D) (arterioles are here visualized using a-SMA immunohistochemistry). Collagen can be visualized using a
trichrome stain (panels E, F are separate HS-Aging cases); a B-ASC profile is shown in E with the collagen labeled green. Cases
with hippocampal TDP-43 in our experience often show neocortical B-ASC as visualized by the green-staining arterioles (arrows)
in this low-power photomicrograph near the pia (*) of frontal neocortex, Brodmann Area 9. Scale bars: A, 200 lm; B, 90 lm; C,
10 lm; D, 25 lm; E, 70 lm; F, 100 lm.
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Any hypothesis to conceptualize the aging-related dis-
ease that was previously labeled HS-Aging or HS dementia
must include TDP-43 pathology. In each of the many condi-
tions associated with TDP-43 pathology there is a chronic

genetic and/or environmental insult to the brain. It is possible
that a subtype of chronic vascular insult(s) could induce TDP-
43 phosphorylation and misfolding. Numerous studies indi-
cate that TDP-43 pathology does not appear to arise following

FIGURE 6. The disease we have referred to as hippocampal sclerosis of aging (HS-Aging) is a complex phenotype that includes
hippocampal sclerosis (A-C), TDP-43 pathology (D-F), and brain arteriolosclerosis (G-I). Features of pathologically unaffected
compartments are shown (A, hippocampus; D, neurons; and G, arterioles) in contrast to the compartments (B, E, H) and brain
areas (C, F, I) affected in this disease. Because the extant classification is suboptimal, we propose a new terminology to classify
this disease: cerebral age-related TDP-43 and sclerosis, CARTS.
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acute hypoxic/ischemic neuronal injury (116, 117, 140, 142).
This would be directly analogous to brain trauma, where a sin-
gle traumatic event is not associated with TDP-43 pathology
(276), yet approximately 80% of brains with chronic traumatic
encephalopathy are positive for TDP-43 pathology (127). If
chronic vascular dysfunction can lead to TDP[þ] disease phe-
notype, then that disease may constitute a novel targetable
cause of dementia. An intriguing possibility is that epidemio-
logic phenomena previously attributed to AD (65, 66) are re-
lated instead to this common, high-morbidity, but hitherto
largely ignored disease.

Revised Terminology: A Recommendation
Whatever the pathogenetic mechanisms are, new terminol-

ogy is required. Neither “HS-Aging,” nor any other extant term,
is truly applicable. A terminology that focuses on FTLD, TDP-
43, or HS in isolation would not be accurate based on the experi-
mental data. Because the disease preferentially affects the
“oldest-old,” often includes TDP-43 pathology and arterioloscle-
rosis well beyond the hippocampus, and may evolve to HS, we
recommend the term “cerebral age-related TDP-43 and sclerosis”
(CARTS). Features seen in CARTS are illustrated in Figure 6.

A diagnosis of CARTS indicates robust TDP-43 pathol-
ogy in the hippocampus of persons aged>85 years at death and
would otherwise incorporate the current TDP[þ] cases termed
HS-Aging, HpScl, and HS dementia. As stated above, it is rele-
vant that both HS and arteriolosclerosis are often parts of the
phenotype. We recommend that HS is not necessary for the di-
agnosis of CARTS because HS is ill-defined, nonspecific, and
often segmental and, therefore, sampling bias would be consid-
erable. Although B-ASC may well play a role in pathogenesis,

the current diagnosis of B-ASC is too inconsistent to be practical
as part of the diagnostic rubric at this time. The TDP-43 pathol-
ogy frequently extends outside the hippocampus, but CARTS
should not have the extremely dense subcortical TDP-43 pathol-
ogy that occurs in FTLD-TDP. A hypothetical staging schema is
presented in Table 4. Some older FTLD-TDP cases may be chal-
lenging to discriminate fromCARTS in the absence of other bio-
markers, but CARTS affects a virtually nonoverlapping age
group in comparison with FTLD-TDP. AD and CARTS pathol-
ogies are both common pathologies and thus are expected to be
comorbid frequently, although distinct ‘boundary zones’ will re-
quire further research.

CONCLUSION
High-quality, large autopsy cohorts and collaborative ef-

forts among neuropathologists have enabled recent advances
in the field of disease classification relevant to dementia.
There are diagnostic “border zones” that need to be clarified
and a better understanding of the “mixed” pathologies that are
typical in advanced old age is needed. As these challenges are

FIGURE 7. Pathogenesis helps guide classification of neuro-
degenerative diseases. This schematic depicts hypotheses
about the multiple genetic and environmental factors that
promote tau and TDP-43 pathologies. These may include
comorbid pathologies such as amyloid plaques (associated
with APOE e4 allele) or brain arteriolosclerosis (B-ASC, associated
with ABCC9 gene variant). There also are “downstream” genetic
risk modifiers, such as GRN (rs5848), TMEM106B (rs1990662),
and MAPT H1 haplotype, which appear to influence many
different disease phenotypes each. Ultimately, protein misfolding
contributes to symptomatic manifestations. While there are large
number of rarer conditions, the common tau and TDP-43
diseases linked to cognitive impairment in advanced old age
are AD, PART, and HS-Aging/CARTS.

TABLE 4. Proposed Staging of Disease Referred to as HS-Aging
or “CARTS”

Genetic risk

factors

Disease

Stage
Pathology

Preclinical ABCC9 Brain arteriolosclerosis (B-ASC) 

+ 

Early clinical 

GRN/TMEM106B 

Amygdala/limbic TDP-43 

pathology 

+ 

Late clinical 

TDP-43 outside the amygdala 

Hippocampal sclerosis 

Cerebral atrophy 

Inclusion:

o>85 years of age at death.

o TDP-43 pathology in limbic structures, preferably in more than one region.

Amygdala, subiculum, hippocampus proper, parahippocampal gyrus.

o Hippocampal sclerosis and arteriolosclerosis should be evaluated but are not

required for diagnosis.

Exclusion:

o Exclude cases with frontotemporal dementia (FTD)-spectrum, including behav-

ioral variant FTD, semantic dementia, progressive nonfluent aphasia, and logopenic

aphasia (on clinical grounds and optimally on neuropsychological testing).

o Exclude cases with predominantly amygdala TDP-43 in the context of advanced

Alzheimer disease pathology (Braak NFT stages V/VI).
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addressed, the diagnoses increasingly reflect the biologic com-
plexity and should help in efforts to identify appropriate pa-
tient groups for clinical trials. Particular diagnostic categories
are in different stages of scientific “maturity,” with some hav-
ing been studied in thousands of published papers, whereas
others will require substantial additional work to achieve an
accurate nosology. TDP-43 pathologies appear to be analo-
gous to tau tangles, “upstream” factors and comorbid patholo-
gies can disturb protein homeostasis, especially with the added
influence of gene variants that increase risk across different
diseases (Fig. 7). Categorizing the “downstream” pathology is
complex because of the overlapping pathologic phenotypes.
This is particularly true for CARTS because TDP-43, HS, and
B-ASC pathologies all occur in multiple conditions. The re-
cently revised pathologic concepts are not all truly novel. On
the contrary, investigators had previously reported many of
the manifestations of the brain diseases but lacked adequate
contextual data. It is safe to assert that for all prior advances,
current data are imperfect and skepticism should be sustained
in considering the current diagnostic terms and criteria. Cate-
gorization of brain diseases of aging is still a work in progress.
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