
175

New OpenMP directives for irregular data

access loops

J. Labartaa, E. Ayguadéa,∗, J. Olivera and

D.S. Hentyb

aEuropean Center for Parallelism of Barcelona,

Technical University of Catalunya, Barcelona 08034,

Spain
bEdinburgh Parallel Computing Center, The

University of Edinburgh, Edinburgh EH93JZ, UK

Many scientific applications involve array operations that are

sparse in nature, ie array elements depend on the values of rel-

atively few elements of the same or another array. When par-

allelised in the shared-memory model, there are often inter-

thread dependencies which require that the individual array

updates are protected in some way. Possible strategies include

protecting all the updates, or having each thread compute

local temporary results which are then combined globally

across threads. However, for the extremely common situa-

tion of sparse array access, neither of these approaches is par-

ticularly efficient. The key point is that data access patterns

usually remain constant for a long time, so it is possible to use

an inspector/executor approach. When the sparse operation

is first encountered, the access pattern is inspected to iden-

tify those updates which have potential inter-thread depen-

dencies. Whenever the code is actually executed, only these

selected updates are protected. We propose a new OpenMP

clause, indirect, for parallel loops that have irregular data

access patterns. This is trivial to implement in a conforming

way by protecting every array update, but also allows for an

inspector/executor compiler implementation which will be

more efficient in sparse cases. We describe efficient com-

piler implementation strategies for the new directive. We

also present timings from the kernels of a Discrete Element

Modelling application and a Finite Element code where the

inspector/executor approach is used. The results demonstrate

that the method can be extremely efficient in practice.

∗Corresponding author: E. Ayguade, CEPBA, Jordi Girona, 1-3.

Modul D6, 08034 Barcelona, Spain. Tel.: +34 934 01 5951; Fax:

+34 934 01 7055; E-mail: eduard@ac.upc.es.

1. Introduction

Many codes in science and engineering involve ar-

ray operations that are sparse in nature, i.e. array el-

ements are updated based on the values of relatively

few elements of the same or another array. Examples
include Molecular Dynamics (MD) simulations with

short-ranged interactions (the force depends on the po-

sitions of a few nearby particles) and Finite Element

(FE) calculations (eg the values of a node in an un-

structured mesh depending on those nodes directly con-

nected to it). As these array operations often comprise

the most computationally intensive part of the code it

is essential to parallelise them efficiently.
A typical example is computing the total force

force(i) on each particle i in an MD code where

the neighbouring particle pairs are stored in a list. Fig-

ure 1 illustrates the main loop for a code such as the

DEMONS application (see Section 5). Similar access

patterns occur in FE codes where the main loop is over

the edges, faces or elements of a mesh, but the actual
computation involves updating the nodes attached to

them. The unstructured nature of the mesh again means

that there are potential inter-thread dependencies, and

that it is difficult for the programmer to predict in ad-

vance where they will occur for an arbitrary number of

threads.

The inter-thread dependencies require that the indi-
vidual array updates are protected in some way to en-

sure program correctness. If the loop in Fig. 1 is split

across threads then, although threads will always have

distinct values of ipair, the values of i and jmay si-

multaneously have the same values on different threads.

As a result, there is a potential problem with updating

the force array. Simple solutions to this problem in-

clude making all the updates atomic, or having each
thread compute temporary results which are then com-

bined across threads (in cases like Fig. 1 this amounts

to an array reduction which is currently supported in

OpenMP 2.0 [6]). However, for the extremely com-

mon situation of sparse array access neither of these

approaches is particularly efficient.

Scientific Programming 9 (2001) 175–183

ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

176 J. Labarta et al. / New OpenMP directives for irregular data access loops

do ipair = 1, npair
i = pairlist(1,ipair)
j = pairlist(2,ipair)
fij = pairforce(x(i), x(j))
force(i) = force(i) + fij
force(j) = force(j) - fij

end do

Fig. 1. Irregular reduction in the main loop of the DEMONS program.

Due to the sparse access pattern, the majority of up-
dates can actually take place with no protection; mak-
ing every update atomic therefore incurs an unneces-
sary overhead. If temporary arrays are created for each
thread, there is a bottleneck when they are combined
across threads; even if this is implemented in parallel
(i.e. not using the naive approach of a critical section)
the heavy load on the memory system may produce
poor scaling. When using many threads there will also
be a very high memory requirement for the temporary
arrays, most of which will in practice be filled with
zeroes.

The key point is that the irregular access patterns
usually remain constant for a long time (sometimes
the whole simulation) so it is possible to use a two-
pass or inspector/executor approach. In the first pass,
the data access pattern is inspected to identify those
updates which have potential inter-thread dependencies
and their locations are stored in a lookup table. When
the calculation is actually executed, only these selected
updates are protected (e.g. by an atomic update).

Unfortunately, the only way to do this in OpenMP
is to write the code by hand. Even if the array reduc-
tion features of OpenMP 2.0 could be used, a compiler
would be forced to use an inefficient method as there is
no way of knowing at compile time that the data access
patterns are constant (there is little benefit in using the
inspector/executor approach if the lookup tables cannot
be reused). We therefore propose a new OpenMP di-
rective, indirect, for loops that have irregular data
access patterns. This is trivial to implement in a con-
forming way (e.g. by making every update in the MD
loop atomic) but also allows for a two-pass compiler
implementation which will be more efficient in sparse
cases. The directive will provide an efficient alternative
to array reduction (as in the above MD example), as
well as being of use in other situations such as the use
of ordered sections.

2. Related work

Similar problems have previously been been ad-
dressed in the context of High Performance Fortran.

The simplest constructs, eg specific cases of irregu-
lar array reductions, are dealt with by special rou-
tines in the HPF library such as SUM SCATTER and
MAXVAL SCATTER. Directives for the specification of
more general irregular data access loops have been used
previously in some versions of HPF [1]. These direc-
tives have influenced the one proposed in this paper.
The main difference is, however, that in the context
of HPF this directive is used to compute long-lived
communication patterns, while our proposal focuses on
iteration scheduling in the context of shared-memory
multiprocessors.

3. OpenMP extensions

This section presents the two proposed extensions to
OpenMP: the indirect clause and the schedule
directive.

3.1. The indirect clause

The problem of irregular data access patterns situa-
tions in loops can be described in simple words: they
are access patterns in which, given a loop, two different
iterations of the loop modify the same data. This sit-
uation prevents the loop from being parallel, and thus
serializes its execution. OpenMP provides two mech-
anisms that help in the parallelization of such loops:
atomic and critical directives. These mecha-
nisms, however, are excessively expensive in codes
where not all the accesses need to be done in mutual
exclusion. This situation arises also in two other sit-
uations, which are irregular reductions with low level
of shared updates, and loops in which only some iter-
ations need to be executed in sequential ordered (and
thus, the ordered clause is too restrictive). Such
codes can benefit from the use of the new proposed
clause (indirect). The indirect clause can be
applied to the parallel do directive in one of the
three following situations:

1. In the presence of the reduction clause in the
directive: this tells the compiler that the reduction
that is being computed in the body of the loop
has an irregular data access pattern, and that some
different iterations can modify the same data.

2. In the presence of the ordered clause in the di-
rective: this tells the compiler that the loop is par-
tially ordered; that is: some iterations access the
same data, and need to be executed sequentially
in order to guarantee sequential consistency, but
some other iterations access completely different
data, and thus can be executed in parallel.

J. Labarta et al. / New OpenMP directives for irregular data access loops 177

3. In the presence of some critical or atomic
directive in the body of the loop: this is quite

similar to the case in the ordered clause: not

all the elements need to be computed in mutual

exclusion; only those being accessed by different

iterations (in this case, order is not important).

The indirect clause accepts a list of expressions

as parameters. These expressions are those causing the

irregular data access pattern:

!$omp parallel do [reduction|
ordered]
!$omp& indirect([expr1,. . .exprN])

3.2. Irregular reductions

Reduction operations are frequently found in the core

of scientific applications. Simplest reductions are those

in which the final result can be computed as a combi-

nation of partial results (ie an associative/commutative

operation). As result, these computations can be com-

puted in parallel, since each thread can compute its own

partial result which will be combined later (this can be

also done in parallel) with the partial results from the

other threads.

Some scientific applications, however, need to per-

form reduction operations which are not directly par-

allelizable. These kind of reductions are what we call

irregular reductions. The point that makes these reduc-

tions non-parallelizable is that the update index for the

element is not the induction variable of the loop, but

a function (f) of it, having the property that for two

given values of the induction variable (i,j, i �= j), it

can happen that f(i) = f(j).
The code in Fig. 3 shows an example of such a case.

As can be observed, the updated elements of force
depend on the lookup table pairlist, which can

give the same values for i or j for different values of

ipair. The only way to parallelize this code using

OpenMP is to protect the update of the force vec-

tor either with atomic or with critical directives.

These solutions, however, are excessively expensive in

codes where not all the accesses need to be done in

mutual exclusion. The inclusion of the indirect
clause in the parallel do directive in the presence

of a reduction clause tells the compiler that the

reduction being performed in the parallel loop has an

irregular data access pattern, but some parts of it can

be executed in parallel, thus enabling the compiler to

generate code to deal with this situation. The naive

implementation of this this indirect clause is to sur-

!$omp parallel do
!$omp& private(i,nn1,nn2,nn3,nn4)
!$omp& reduction (+:f)
!$omp& indirect(nn1,nn2,nn3,nn4)
do iel = ieli, ielf

nn1 = ix(1,iel)
nn2 = ix(2,iel)
nn3 = ix(3,iel)
nn4 = ix(4,iel)
do i=1,3

xn(i,1) = x(i,nn1)
xn(i,2) = x(i,nn2)
xn(i,3) = x(i,nn3)
xn(i,4) = x(i,nn4)

end do
call mforce(force,xn)
do i=1,6

f(i,nn1) = f(i,nn1) + force(i,1)
f(i,nn2) = f(i,nn2) + force(i,2)
f(i,nn3) = f(i,nn3) + force(i,3)
f(i,nn4) = f(i,nn4) + force(i,4)

end do
end do
!$omp end parallel do

Fig. 2. Irregular reduction in the main loop of the crash kernel.

!$omp parallel do
!$omp& reduction (+:force)
!$omp& indirect(i,j)
do ipair = 1, npair

i = pairlist(1,ipair)
j = pairlist(2,ipair)
fij = pairforce(x(i),x(j))
force(i) = force(i) + fij
force(j) = force(j) - fij

end do
!$omp end parallel do

Fig. 3. Extended OpenMP directives for the irregular reduction in

the main loop of the DEMONS application.

round the updates of force either with critical
or atomic directives, but more complex implementa-
tions can generate code for a two-pass implementation
of the reduction.

Another example taken for a crash kernel is shown
in Fig. 2. In this code, the computation of the forces
is done from the displacements using an indirect ad-
dressing to an structure that setups a highly complex
structured mesh. Again, the only way to parallelize
this loop using OpenMP is to protect the update of the
force vector either withatomic or withcritical
directives. The inclusion of the indirect clause
in the parallel do directive in the presence of a

reduction clause tells the compiler that the reduc-
tion being performed in the parallel loop has an ir-

178 J. Labarta et al. / New OpenMP directives for irregular data access loops

!$omp do indirect(j)
do i = 1,n

j = jindex(i)
!$omp critical

a(j) = compute(a(j), ...)
!$omp end critical
end do
!$omp end do

(a)

!$omp do ordered indirect(j)
do i = 1,n

j = jindex(i)
!$omp ordered

a(j) = b(i) op expression_1
!$omp end ordered
end do
!$omp end do

(b)

Fig. 4. Two synthetic examples in which the INDIRECT clause can

be applied to relax the synchronization imposed by CRITICAL or
ORDERED in OpenMP.

regular data access pattern which enables some some

iterations to be executed in parallel.

3.3. Relaxed Mutual Exclusion

As said in the previous subsection, a naive imple-

mentation of the indirect clause for irregular re-

ductions can be done with the use of the critical sec-

tions (achieved using the critical directive). This

also implies that the use of the indirect clause can

also help in the code generation for cases in which

the critical directive has been used to parallelize a

loop without a reduction, but with some shared updates

between iterations executed by diffferent processors.

An example of this case is shown in Fig. 4(a).

3.4. Partially ordered loops

A special case of the previous example occurs when

the shared updates need not only to be performed in

mutual exclusion, but also in an ordered way. The use

of the indirect clause in this case tells the compiler

that the only iterations that actually need to be executed

in an ordered way are those which are updating the

same data. An example of code using the indirect
clause in this manner is shown in Fig. 4(b).

!$omp schedule(S)
...
C outer sequential loop
do step = 1,nsteps
...
!$omp parallel do
!$omp& reduction (+:a)
!$omp& indirect(j:S)

do ipair = 1, npair
j = table(i)
...
a(j) = a(j) - update

end do
!$omp end parallel do
...
!$omp parallel do
!$omp& reduction (+:a)
!$omp& indirect(j:S)

do ipair = 1, npair
j = table(i)
...
a(j) = a(j) * another_update

end do
!$omp end parallel do

...
if (some_condition(x)) then

recalculate(table)
!$omp reset(S)

end if
...

end do

Fig. 5. Definition of a user–level schedule and its initialization, reuse

and reinitialization in a sequence of loops with indirect clauses.

3.5. Scheduling re-use

The typical structure of most scientific applications

follows an iterative outer loop which implies a number

of parallel computations, most of them over the same

data. In that scenario, it could be useful to communi-

cate scheduling information from one parallel region to

others. This idea has been applied previously to data

communication in HPF [1], with the use of the schedule

clause, and can be also applied to OpenMP.

The following mechanisms are provided to name/de-

fine/undefine user-level schedules originated from the

use of the indirect clause:

– Schedule naming:

!$omp schedule(schedule name)

This simply defines a symbolic nameschedule
name for a user-defined schedule.

– Schedule definition:

!$omp& indirect([expr1,. . .exprN]
!$omp& [:schedule name])

J. Labarta et al. / New OpenMP directives for irregular data access loops 179

! v(1:20)=(1,2,3,10,20,4,2,5,6,8,9,
! 3,10,3,11,12,13,14,15,16)
!$omp parallel do schedule (static)
!$omp& reduction(*:a) indirect (v(i))
do i = 1, 20

a(v(i)) = a(v(i)) * 2
end do

(a)

nintervals(1:4) = (3,3,3,1)
shared(1) = (false,true,false)
shared(2) = (false,true,false)
shared(3) = (false,true,false)
shared(4) = (false)
lower(1) = (1,2,4)
lower(2) = (6,7,8)
lower(3) = (11,12,15)
lower(4) = (16)
upper(1) = (1,3,5)
upper(2) = (6,7,10)
upper(3) = (11,14,15)
upper(4) = (20)

(b)

Fig. 6. a) Synthetic example with irregular reduction. b) Internal

data structures initialized during the inspector phase.

The symbolic name schedule name included

in the indirect clause informs the com-

piler that the parallel loop uses the a user-

level scheduling identified by the symbolic name

schedule name. When such a definition is

found, the code generated by the compiler first

checks if the schedule has already been computed;

if not, then the inspector is invoked. The re-use

of an already defined schedule amortizes the over-

head associated with the inspector phase over a

large number of loops or instantiations of the same

one.

– Schedule invalidation:

!$omp reset(schedule name)

This directive tells the compiler that the schedule

associated to the symbolic nameschedule name
is not valid any more.

Figure 5 shows an example of the use of the

schedule directive combined with the indirect
clause and reset directive. In this case, the sched-

ule is defined once and re-used while condition

some condition(x) evaluates to false. At this

point, the original algorithm modifies the contents of

table and, as a consequence, the schedule reset.

4. Compiler implementations

This section outlines some implementations for the

indirect clause in the context of an irregular reduc-

tion or non-complete mutual exclusion (using intervals)

and reviews some proposed implementations that can

be applied in the context of a partially ordered loop.

4.1. Intervals

The proposed implementation is based on the inspec-

tor/executor model. The first time that a parallel loop

marked with an indirect clause is reached, the pro-

gram starts the execution of the inspector code, which

has been generated by the compiler. This code basically

contains the same loop header, all those statements in

the original loop body that lead to the evaluation of the

expressions included in the indirect clause, and the

additional code that builds the schedule data structure.

Later executions of the same parallel loop (or other

loops with the same named schedule) make use of that

data structure.

The code in Fig. 6(a) presents a simple example

of parallel loop with an irregular reduction operation

that has been parallelized using the indirect clause.

Notice that there are some iterations of the loop that

modify the same data (positions 2, 3 and 10 of the

vector v). But most of the iterations do not modify the

same data, and thus they can be executed in parallel.

Figure 7 shows an example of a data structure gen-

erated by the compiler during the inspector phase. For

each processor, there is a bitmap that shows which ele-

ments it is accessing in the v vector. After that, the in-

spector computes the shared elements vector, which

is a bitmap that tells, for each element in the v vector

whether it is shared or not (a position of v is shared if

the bitmap count for the column is more than one; that

is: it is being modified by more than one processor).

Once this bitmap is computed, the inspector can build

the final data structure that will be used by the executor

phase: the intervals for each processor. The iteration

space of each processor is split up into intervals. An

interval is a range of consecutive iterations that are all

either completely shared or not shared. The data struc-

tures for the previous example result in the initializa-

tion shown in Fig. 6(b). Vector nintervals is used

to indicate the number of intervals that each processor

will execute. Three additional vectors are used to de-

fine the lower and upper bound for each interval and a

boolean indicating if the interval is shared or not.

180 J. Labarta et al. / New OpenMP directives for irregular data access loops

P0

P1

P2

P3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P0 P1 P2 P3

P2: 11,12-14(shared),15

P0: 1,2-3(shared),4-5

P1: 6,7(shared),8-10

P3: 16-20

x x x

Data(i)

P
ro

ce
ss

o
r

Iteration

Fig. 7. Construction of the intervals during the inspector phase using a bitmap for the example in Fig. 6.

!$omp parallel do schedule (static)
do p = 1, numprocs
my_proc = omp_get_threadnum()+1
do interval = 1,nintervals(my_proc)
if (shared(my_proc,interval)) then
do i = lower(my_proc,interval),&

upper(my_proc,interval)
!$omp critical

a(v(i)) = a(v(i)) * 2
!$omp end critical

end do
else
do i = lower(my_proc,interval),&

upper(my_proc,interval)
a(v(i)) = a(v(i)) * 2
end do
end if
end do

end do

Fig. 8. Executor for the loop in Fig. 6.

Subsequent executions of the parallel loop will use

the compiler’s generated executor code, which makes

use of the previous data structures to execute the par-

allel loop. This code executes in mutual exclusion (or

with atomic access) only those iterations (actually in-

tervals) that conflict with some other processor. Those

intervals that are accessed only by one processor are

executed without protection. The executor’s code for

the previous example is shown in Fig. 8.

It is important to point out that this method can be

further optimised by improving the executor phase in

order to classify the shared segments depending on the

processors that are accessing them (shared sets), and

utilizing different locks to access each one of the sets, in

order to reduce contention when hot spots are detected.

4.2. Partially ordered loops

Partially ordered loops have been a case of study in

many previous works. One possible approach to the

parallelization of non-completely parallel loops is to

detect data dependencies at runtime, again using an

inspector/executor model. The basic idea is to move

data dependence detection from compile-time (where

data available for analysis is restricted) to runtime. In

most of the reviewed implementations, at runtime, the

inspector builds data dependence graphs based on the

addresses accessed by the loop and, based on those

graphs, schedules interations in wavefronts (sets of iter-

ations which are dependence-free among them) [2,7].

Many of these implementations can be applied by the

compiler to implement the semantics of theindirect
clause applied to an ordered directive.

5. Experiments

In this section we present experimental results for

two codes whose whose major computational loop is

of the same form as the ones shown in Figs 2 and 3.

The first application, named DEMONS – Discrete Ele-

ment Modelling on SMP clusters –, is a Fortran 90 test

code used to evaluate the efficiency of hybrid message-

passing and shared-memory parallelism on clusters of

shared-memory machines [4]. Here we do not utilise

the MPI capabilities of the code, and run on a single pro-

J. Labarta et al. / New OpenMP directives for irregular data access loops 181

cess to investigate the performance of the pure OpenMP

implementation with varying numbers of threads T .

The second one is a kernel extracted from an industrial

crash simulator.

5.1. DEMONS application

Discrete Element Models (DEMs) simulate the be-

haviour of systems of particles which interact via pair-

wise forces. The particle positions are evolved in time

using an iterative loop comprising many small, discrete

time-steps. A typical DEM might study the formation

of “sand piles” as grains of sand are dropped onto a solid

surface. The general properties of a DEM are: there

are many particles; particles remain relatively static;

the inter-particle force is very short-ranged; the time

taken to compute the forces dominates the simulation.

It is therefore very important to parallelise the force

calculation efficiently.

To avoid having to loop through all pairs of particles,

the DEMONS code maintains a list of pairs of all those

particles which are close together and therefore likely

to interact. As the force is short-ranged, this simple

and commonly used technique reduces the complexity

of the calculation from O(N 2) to O(N). As particles

remain relatively stationary, this list only requires to

be recalculated fairly infrequently; in a real simulation,

the same list can typically be used for many hundreds

of iterations. Calculating the forces involves looping

over this list of pairs, computing the inter-particle force

for each pair, and updating the force on the two parti-

cles accordingly. Since the loop is over particle pairs

(not the particles themselves), and each particle be-

longs to many pairs, care must be taken when updating

the forces on each particle due to potential inter-thread

dependencies.

5.1.1. Implementation of force calculation

Three basic approaches were investigated for resolv-

ing the inter-thread dependencies in the force calcula-

tion

– making every force update atomic

– using array reduction

– using a two-pass inspector / executor approach

Since array reduction is not part of the OpenMP 1.0

standard we implemented it by hand in several ways

– first accumulating into private temporary arrays

and performing the final global array sum across

threads in a critical region

– accumulating into private arrays and performing

the global sum in T sections, striped across threads

and separated by barriers, so that there are no inter-

thread dependencies

– accumulating into different rows of a shared matrix

of dimension T × N , then performing the global

sum in parallel over the transpose column direction

These are common approaches for performing irreg-

ular reducutions in OpenMP [5]. The use of critical sec-

tions gave very poor performance; the other two meth-

ods gave very similar timings. Here we quote results

from the third “transpose” approach. We implement

the inspector / executor approach in a very straightfor-

ward manner. Whenever a new list of pairs is created,

we identify particles receiving force updates from more

than one thread. When calculating the force, only these

updates are protected by an ATOMIC directive.

5.1.2. Timings

The code for computing the force is almost identical

to that in Fig. 3 except that the calculation is done in

three dimensions so there are three position coordinates

x rather than just one. For the tests we use a million

particles, with the force law requiring one floating-point

inverse and one square root per call. All calculations

were performed in double precision.

The benchmark platforms used to run this application

were a Sun HPC 3500 (eight× 400 MHz UltraSPARC-

II CPUs) and a Compaq ES40 (four × 500 MHz Alpha

EV6 CPUs). For compilation on the Sun we used the

Kuck and Associates (KAI) Guide system version 3.7,

which uses source-to-source translation with calls to a

parallel runtime library; on the Compaq, OpenMP is

part of the standard f90 compiler. Sun’s own native

OpenMP compiler, part of the recently-released Work-

shop Forte 6.0 environment, was not available in time

for this paper.

We plot the parallel efficiencies of the three imple-

mentations of the force calculation on the Sun and Com-

paq in Figs 9 and 10. The timings for the serial code,

t(T = 1), were 4.16 and 1.89 seconds respectively.

Using the KAI compiler on the Sun, the atomic up-

dates are done using software locks which are rather

expensive. Contention for these locks makes using

atomic updates for all force calculations completely

infeasible. However, using the two-pass approach is

more effective than using array reduction despite the

high cost associated with atomic locks.

On the Compaq, atomic updates are much more ef-

ficient but they still incur a significant overhead. For

182 J. Labarta et al. / New OpenMP directives for irregular data access loops

Fig. 9. Parallel efficiency against threads T on Sun for the DEMONS

code.

Fig. 10. Parallel efficiency against T on Compaq for the DEMONS

code.

T < 4 the cost is such that array reduction is more ef-

ficient, although the atomic approach is slightly better

for T = 4. However, using the two-pass approach is

always the most efficient method.

5.2. Crash Kernel

This kernel has been extracted from an industrial

crash simulator. It is basically composed of a loop nest

that iterates over 1000 times. At each iteration of the

sequential loop, the computation of the forces is per-

formed from the displacements. The kernel uses in-

direct addressing to setup a highly complex structured

Fig. 11. Parallel efficiency against threads T on SGI Origin 2000 for

the Crash Kernel.

mesh and performs memory accesses in a highly irreg-

ular way. The code for computing the force is similar to

the one shown in Fig. 2. For the tests we use a synthetic

case with a mesh composed of 40 × 640 points. All

calculations were performed in double precision.

The benchmark platform used for this kernel was an

SGI Origin 2000 system with 64 R10k processors, run-

ning at 250 MHz with 4 Mb of secondary cache each.

For all compilations we use the native f77 compiler.

On this machine, atomic updates are also implemented

in hardware.

Two versions of the code are evaluated. The first one

protects all force updates by an ATOMIC directive. In

the second one only those updates identified during the

inspector phase are protected (i.e. updates from more

than one thread). For these two versions, Fig. 11 plots

the parallel efficiencies when using 8, 16, 24, 32 and 48

processors. The timing for the serial code, t(T = 1),
was 322.5 seconds. Notice that the two-pass approach

is always the most efficient method.

6. Conclusions

In this paper we have presented a set of extensions

to OpenMP and a possible efficient implementation in-

side the compiler that ease the parallelization of appli-

cations with irregular data accesses. Two examples are

used to prove the efficiency of the proposal, demon-

strating that the two-pass technique for irregular reduc-

tions outperforms the alternative methods in a real code

and a kernel extracted from an industrial application.

J. Labarta et al. / New OpenMP directives for irregular data access loops 183

For the DEMONS code, the calculation of the force is

relatively expensive; it was possible to use a very naive

approach to implement the two-pass method where the

decision as to whether or not to use atomic was

taken for each individual update. In other situations the

amount of work per update may be much smaller, for

example a single addition, and reducing the overhead of

the implementation will be important. Here, the tech-

nique of dividing the loop into intervals, as proposed in

Section 4, will be extremely beneficial to performance.

In a compiler implementation, the schedule direc-

tive could be used to re-run the inspector phase when-

ever the list of particle pairs was updated. For the crash

kernel, the parallelization using the proposed directives

and their translation using the inspector/executormodel

produce a speed-up up to 1.5 times better than using

ATOMIC for each individual update.

We conclude that our proposed new OpenMP direc-

tives would enable straightforward and efficient auto-

matic parallelisation of a wide range of scientific appli-

cations. The approach is currently being implemented

in the framework of the OpenMP NanosCompiler [3]

for Fortran77.

7. Acknowledgements

This research has been supported by the Ministry

of Education of Spain under contract TIC98-511,

by the CEPBA (European Center for Parallelism of

Barcelona), by EPCC (Edinburgh Parallel Computing

Center) and by the “Improving the Human Potential

Programme, Access to Research Infrastructures”, un-

der contract HPRI-1999-CT-00071 “Access to CESCA

and CEPBA Large Scale Facilities” established be-

tween The European Community and CESCA-CEPBA.

We acknowledge the use of the PPARC-funded Com-

paq MHD Cluster in St. Andrews.

References

[1] S. Benkner, K. Sanjari, V. Sipkova and B. Velkov, Parallelizing
irregular applications with the Vienna HPF+ Compiler VFC.

Proc. of HPCN’98, Amsterdam (The Netherlands), April 1998.

[2] D.K. Chen, P.C. Yew and J. Torrellas, An efficient algorithm for

the run-time parallelization of doacross loops, In proceedings

of Supercomputing ’94, Nov. 1994.

[3] M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta, N. Navarro

and J. Oliver, NanosCompiler: Supporting Flexible Multilevel

Parallelism in OpenMP. Concurrency: Practice and Experience.
12 (12), pp. 1205–1218, October 2000. (Extended version of

paper presented at the 1st European Workshop on OpenMP,

Lund (Sweeden)).

[4] D.S. Henty, Performance of Hybrid Message-Passing and

Shared-Memory Parallelism for Discrete Element Modeling, In

proceedings of Supercomputing 2000, Nov. 2000.

[5] D. Hisley, G. Agrawal, P. Satya-narayana and L. Pollock,
Porting and Performance Evaluation of Irregular Codes us-

ing OpenMP, Proceedings of the First European Workshop on

OpenMP, Lund, Sweden, Sep. 1999, pp. 47–59.

[6] OpenMP Organization, OpenMP Fortran Application Interface,

v. 2.0, www.openmp.org, November 2000.

[7] L. Rauchwerger, N.M. Amato and D.A. Padua, Run-time

methods for parallelizing partially parallel loops, In proceed-

ings of the 1995 International Conference on Supercomputing,
Barcelona, Spain, July 3–7, 1995.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

