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Summary. We analyse decisions to reopen in the aftermath of Hurricane Katrina made by busi-
ness establishments on major business thoroughfares in New Orleans by using a spatial probit
methodology. Our approach allows for interdependence between decisions to reopen by one
establishment and those of its neighbours. There is a large literature on the role that is played
by spatial dependence in firm location decisions, and we find evidence of strong dependence
in decisions by firms to reopen in the aftermath of a natural disaster such as Hurricane Kat-
rina. This interdependence has important statistical implications for how we analyse business
recovery after disasters, as well as government aid programmes.
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1. Introduction

Empirical observations on how businesses respond after a major catastrophe are rare, especially
for a catastrophe as great as Hurricane Katrina, which hit New Orleans, Louisiana, on August
29th, 2005. We analyse the reopened status of all firms on three major business thoroughfares
in New Orleans (Carrollton Avenue, St Claude Avenue and Magazine Street) during the periods
from 0 to 3 months, 0 to 6 months and 0 to 12 months after the hurricane. In the aftermath of
a disaster individual firms must make decisions about investing in repairs that are necessary to
restore business operations. The outcome of the decision is likely to depend on decisions that
are made by neighbouring firms. The conventional probit model that is used to analyse binary
decision outcomes attempts to explain (cross-sectional) variation in the set of firms’ decisions
to reopen as a function of a set of explanatory variables pertaining to each firm, but it ignores
decisions that are made by neighbouring firms.
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This seems unrealistic in that an individual firm’s decision to reopen is likely to be influenced
by the decisions of neighbouring establishments. In the case of retail firms traffic generated by
neighbouring establishments may be an important factor in generating spatial spillover business,
i.e. customer traffic on a street may depend on the number of neighbouring establishments in
operation. Patrons of a restaurant may also patronize neighbouring entertainment venues, art
galleries or retail shopping establishments. Spatial spillover business can arise from neighbour-
ing establishments that offer competing or complementary products and services. For example,
neighbouring restaurants (competing businesses) on the same street may generate spatial spill-
over business since this attracts diners to the area, and neighbouring retail shops (complementary
businesses) may also serve to attract potential spatial spillover patrons for restaurants.

This raises the question—would a single firm on a street decide to reopen knowing that all
neighbouring firms on the street had decided not to reopen? Such an extreme case makes it
clear that a role is played by the reopening decisions of neighbouring establishments when we
consider a single firm’s decision to reopen. The specific economic mechanism at work here is
that some part of the unobserved net profitability associated with the decision to reopen derives
from spatial spillover business reflected by the traffic that is generated from products and services
offered by neighbouring establishments.

It seems reasonable that many of the motivations for firm location decisions set forth in loca-
tion theories still hold in the aftermath of a disaster. For that reason, we enumerate some of the
theoretical underpinnings in the firm location literature below.

Literature on street level retail location (in non-disaster situations) has long emphasized the
importance of spatial interaction in firm level decisions. For example, Hotelling (1929) showed
how location decisions as well as those of rival firms play an important role in maximization
of profit and can lead to firms locating to near each other. Reilly (1931) set forth a ‘law of
retail gravitation’, drawing on an analogy with Newton’s gravitational law as it related to retail
shopping behaviour and store location decisions. More recently, Fujita and Smith (1990) and
Hinloopena and van Marrewijk (1999), as well as Brown (1989, 1994), focused on explaining
clustering behaviour that is often observed in retail outlets within shopping districts. Of course,
spatial clustering is consistent with the statistical concept of spatial dependence. Lee and Pace
(2005) fitted a retail gravity model using a chain of stores and found spatial dependence among
consumers as well as among stores.

There is also a demand side approach that focuses on street level consumer behaviours and
cognitions. It ranges from the analysis of consumer interchanges between retail outlets (Nel-
son, 1958), to the analysis of Reilly (1931), gravity or frictional effects of distance (McGoldrick
and Thompson, 1992) and to mental mapping of retail locations (Golledge and Timmermans,
1990). These analyses rely on several generalizations of consumer behaviours that can be used
to motivate spatial interactions between retail outlets from another perspective. Nelson’s ‘rule
of retail compatibility’ (Nelson, 1958) states that compatible businesses that are close selling
related types of goods benefit from customer flows and interchanges drawn by each other. Sim-
ilarly, the ‘theory of cumulative attraction’ (Nelson, 1958; Hunt and Crompton, 2008) argues
that even competitive businesses (those selling the same products) would cluster in an effort to
cater to consumers’ desire for comparative shopping before making a purchase.

A supply side approach has empirically investigated retailers’ spatial strategies, finding that
microscale decisions on location often take into account the location of competitive or comple-
mentary establishments (Berman and Evans, 1991; Hernandez and Bennison, 2000).

In summary, all firm location theories and models arrive at the conclusion that choices of
consumers (or patrons) and decisions on location by retailers are influenced by extant patterns
of retail activity. The decision of a business establishment to reopen after a natural disaster such
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as Hurricane Katrina could be viewed as similar to the original location decision made by the
firm when it entered business. If the surrounding environment was important for the original
decision, it should be equally influential in the decision to reopen in the same or another location
after the disaster. This provides a strong motivation for adopting an empirical modelling method
that allows one firm’s decision to reopen to depend on similar decisions made by neighbouring
firms.

In Section 2 we set forth our spatial auto-regressive (SAR) variant of the conventional probit
regression model that allows for interdependence between firms’ decisions regarding reopening.
Interpreting the coefficient estimates from this type of regression model is also discussed. Sec-
tion 3 discusses our sample data and presents estimates from the SAR probit model applied to
this data set.

The data and the programs that were used to analyse them can be obtained from

http://www.blackwellpublishing.com/rss

2. Spatial auto-regressive probit model

We let the n×1 vector y be a 0–1 binary vector reflecting the closed–open status of the n firms
at some point in time (say 3 months after Hurricane Katrina). A conventional probit model
would attempt to explain variation in the binary vector y by using an n× k matrix of firm-spe-
cific explanatory variables X (where a single variable is represented by xv for v= 1, . . . , k) and
associated k × 1 vector of parameters β, under the assumption that each observed decision is
independent of all others.

LeSage and Pace (2009) set forth an SAR variant of the conventional probit model that
takes the form shown in expression (1), where yÅ represents an n×1 vector reflecting the latent
unobservable utility or profit that is associated with the closed–open status of firms:

yÅ =ρWyÅ +Xβ + ", "∼N.0, In/: .1/

The spatial lag of the latent dependent variable WyÅ involves the n×n spatial weight matrix
W that contains elements consisting of either 1=m or 0, where m is some number of nearest
neighbours. If observation or firm j represents one of the m nearest neighbouring establish-
ments to firm i, then the .i, j/th element of W contains the value 1=m. All elements in the ith
row of the matrix W that are not associated with neighbouring observations take values of 0.
By construction, W is row stochastic (non-negative and each row sums to 1). This results in the
n× 1 vector WyÅ consisting of an average of the m neighbouring firms’ utility or profit, creat-
ing a mechanism for modelling interdependence in firms’ decisions to reopen in the aftermath
of a disaster. The scalar parameter ρ measures the strength of dependence, with a value of 0
indicating independence. Clearly, a conventional non-spatial probit model emerges when ρ=0.

The Bayesian approach to modelling binary limited dependent variables treats the binary 0–1
observations in y as indicators of latent, unobserved yÅ (net) profit in the closed–open states,
with the unobservable profit underlying the observed choice outcomes. For example, in our
case where the binary dependent variable reflects the closed–open state of the firm, the decision
to reopen would be made when the net profit from the open versus closed state is positive. As
already motivated, there are theoretical reasons why the profits of an establishment depend on
those of neighbours, especially in the street level retail environment that we are considering.
The Bayesian estimation approach to these models is to replace the unobserved latent profit
with parameters that are estimated. For the case of an SAR probit model, given estimates of the
n×1 vector of missing or unobserved (parameter) values that we denote as yÅ, we can proceed
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to estimate the remaining model parameters β and ρ by sampling from the same conditional
distributions that are used in the continuous dependent variable Bayesian SAR models (see
chapter 10 in LeSage and Pace (2009)).

More formally, the choice depends on the difference in profits: π1i −π0i, i = 1, . . . , n, asso-
ciated with observed 0–1 choice indicators, where π1i represents profits (of firm i) in the open
state and π0i in the closed state. The probit model assumes that this difference, yÅ

i =π1i −π0i,
follows a normal distribution. We do not observe yÅ

i , only the choices made, which are reflected
in

yi =
{

1, if yÅ
i �0,

0, if yÅ
i < 0.

If the vector of latent profits yÅ were known, we would also know y, which led Albert and
Chib (1993) to conclude that p.β, σ2

" |yÅ/ = p.β, σ2
" |yÅ, y/. The insight here is that, if we view

yÅ as an additional set of parameters to be estimated, then the (joint) conditional posterior
distribution for the model parameters β and σ2

" (conditioning on both yÅ and y) takes the same
form as a Bayesian regression problem involving a continuous dependent variable rather than
the problem involving the discrete-valued vector y. This approach was used by LeSage and Pace
(2009) to implement a Bayesian Markov chain Monte Carlo estimation procedure for the SAR
model (1).

2.1. Interpreting the model estimates
Interpreting the way in which changes in the explanatory variables in the matrix X impact the
probability of a firm’s reopening in the SAR probit model requires some care. Expressions (2)
make it clear that the probability (of a 0–1 event outcome) is a non-linear function F.·/ (the mul-
tivariate probability rule) of a function .In +ρW +ρ2W2 + . . . /Xβ of the explanatory variables
in the model X :

yÅ =ρWyÅ +Xβ + ",

yÅ =S.ρ/Xβ +S.ρ/",

Xβ =
k∑

v=1
xvβv,

S.ρ/= .In −ρW/−1 = In +ρW +ρ2W2 + . . .

Pr.y =1/=F{S.ρ/Xβ}:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.2/

Since the interpretation of the spatial probit model builds on the interpretation of changes
of independent variables on dependent observations over space as well as the well-known non-
linear transformations due to the probit model, to simplify the exposition we first consider the
simpler case of a non-probit SAR model shown in expression (3), where z denotes a continuous
n×1 dependent variable vector:

z=αιn +ρWz+Xβ + ",

@z=@x′
v = .In −ρW/−1Inβv, v=1, . . . , k,

=S.ρ/βv:

⎫⎪⎬
⎪⎭ .3/

LeSage and Pace (2009) proposed the use of an average of the diagonal elements from the
n×n matrix, @z=@x′

v, to produce a scalar summary of the direct effects, which are derived from
the own partial derivatives, @zi=@xv,i.
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They also used an average of the (cumulated) off-diagonal elements from the n × n matrix,
@z=@x′

v .i �=j/, to produce a scalar summary of the (cumulative) indirect effects that are associated
with the cross-partial derivatives, @zi=@xv,j. This scalar summary measure cumulates the spatial
spillovers falling on neighbouring establishments as well as neighbours to these neighbours, and
so on.

When we allow for dependence among observations or firms, changes in the explanatory
variables that are associated with one firm, say firm i, will influence the dependent variable
value of firm i as well as other firms, say j. The SAR model collapses to an independence model
when the scalar spatial dependence parameter ρ takes a value of 0. In this case, the cross-partial
derivatives are all 0.

For the case of spatial dependence, the (non-zero) cross-partials represent what are commonly
thought of as spatial spillover effects. Changes in the value of a single observation or firm i explan-
atory variable can (potentially) influence all n−1 other observations or firms. This is true for all
i=1, . . . , n values of the vth explanatory variable, leading to the n×n matrix of own- and cross-
partial derivatives. This motivates the need for scalar summary measures that average across the
sample of observations similar in spirit to the way that we interpret conventional least squares
regression estimates. An important point is that the scalar summary measure of indirect effects
cumulates the spatial spillovers falling on all other observations, but the magnitude of impact
will be greatest for nearby neighbours and will decline in magnitude for higher order neighbours.

The sum of the two effects (direct and indirect) represents the (cumulative) total effect that is
associated with a change in an observation for that explanatory variable.

Turning to the more complicated case of the SAR probit model, consider the effect on obser-
vation or firm i arising from a change in a variable xv (say the depth of the flood) at firm j
location, a single cross-derivative:

η =S.ρ/Xβ =E.yÅ/, .4/

@Pr.yi =1/

@xv,j
=

(
@F.η/

@η

∣∣∣ηi

)
Sij.ρ/βv,

@Pr.yi =1/

@xv,j
=pdf.ηi/ Sij.ρ/βv:

.5/

We note that, if ρ= 0 so that S.ρ/= In (and Sij.ρ/= 0), we arrive at the standard probit result
where changes in x-values of neighbouring firm j have no influence on firm i’s decisions.

We now set up a matrix version of these own- and cross-partial derivatives. Let d.·/ represent
the n × 1 vector on the diagonal of a diagonal matrix D.·/ where the non-diagonal elements
are 0s. By construction, D.·/ is symmetric. The n × 1 vector d{f.η/} contains the probability
density function evaluated at the predictions for each observation and associated n×n diagonal
matrix D{f.η/} which has d{f.η/} on the diagonal:

f.η/=pdf.η/,

@Pr.y =1/

@x′
v

=D{f.η/}S.ρ/Inβv:

We can now expand the expression into component matrices:

S.ρ/= In +ρW +ρ2W2 + . . . ,

@Pr.y =1/

@x′
v

= [D{f.η/}+ρ D{f.η/}W +ρ2 D{f.η/}W2 + . . . ]βv:
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From these expressions, the n×1 vector of (cumulative) total effects can be written as(
@Pr.y =1/

@x′
v

)
ιn = [D{f.η/}ιn +ρ D{f.η/}Wιn +ρ2 D{f.η/}W2ιn + . . . ]βv

= [D{f.η/}ιn +ρ D{f.η/}ιn +ρ2 D{f.η/}ιn + . . . ]βv

= .D{f.η/}ιn/.1−ρ/−1βv

= .d{f.η/}/.1−ρ/−1βv:

As a scalar summary measure of average total effect, we can use an average of the vector of
(cumulative) total effects, specifically

n−1.d{f.η}/′ιn.1−ρ/−1βv: .6/

To summarize the average direct effect we use

1
n

tr
{

@Pr.y =1/

@x′
v

}
= .tr[D{f.η/}]+ρ tr[D{f.η/}W ]+ρ2 tr[D{f.η/}W2]+ . . . /

βv

n

and for the (cumulative) average indirect effect we use the difference: average total effect −
average direct effect. We note that there are several approaches to computing tr[D{f.η/}Wj]
efficiently (LeSage and Pace (2009), chapter 4).

2.2. Simple illustration
To provide a concrete illustration, we consider the case of seven firms located in a line along
(one side of) a street, and we use a simple spatial weight matrix that identifies a single left and
right neighbour to each observation. Let y be a 0–1 binary vector, and

Pr.y =1/=F{S.ρ/Xβ},

S.ρ/= .In −ρW/−1:

We generated the vectors of flood depth and firm size. Subsequently, we calculated the prob-
ability of reopening by using a model based on two explanatory variables, flood depth and firm
size, using a value of the spatial dependence parameter ρ equal to 0:8, and assumed that the
parameters that are associated with flood depth and size equalled −0:25 and 0:5:

Pr.reopening/=F{S.ρ=0:8/.−0:25 flood depth+0:5 firm size/}: .7/

The resulting values shown in Table 1 illustrate that, using the conventional practice of inter-
preting predicted probabilities less than 0.5 as implying that y =0 and greater than 0:5 as y =1,
the model perfectly predicts the pattern of observed 0–1 values.

To illustrate the effect of changing a single observation on the probabilities we increased the
flood depth at the location of firm 3 from 20 to 60, ceteris paribus. Table 2 shows the original
predicted probabilities Pr.y=1/, the new probabilities Pr.y′ =1/ and the change in probabilities
or predictions that is implied by the SAR probit model Pr.y′ =1/−Pr.y′ =1/.

The first point to note is that the change in flood depth at the location of firm 3 leads to a
decrease in the probability that this firm will reopen by 14.14%. However, neighbouring firms 4
and 5 are also impacted by the higher level of flooding at firm 3, leading to a lower probability
that these firms will reopen. Specifically, the probability that the immediately neighbouring firm
4 will reopen decreases by 9.28%, and that for the neighbour to this neighbouring firm number
5 by 1.9%. These represent an illustration of spatial spillover effects that arise when we allow
for interdependence of other firms’ decisions on firm 3’s decision to open or to close.
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Table 1. Illustration based on nD7 firms

Firm y-value Pr(y=1) Flood depth Firm size

Observation 1 0 0.0036 40 1
Observation 2 0 0.0231 30 2
Observation 3 0 0.1964 20 3
Observation 4 1 0.5131 25 4
Observation 5 1 0.8569 20 4
Observation 6 1 0.9907 20 8
Observation 7 1 0.9968 20 8

Table 2. Effect of changing a single observation

Firm y-value Pr(y=1) Pr(y′ =1) Pr(y′ =1)− Flood
Pr(y′ =1) depth

Observation 1 0 0.0036 0.0098 0.0061 40
Observation 2 0 0.0231 0.0241 0.0010 30
Observation 3 0 0.1964 0.0550 −0.1414 60
Observation 4 1 0.5131 0.4203 −0.0928 25
Observation 5 1 0.8569 0.8375 −0.0194 20
Observation 6 1 0.9907 0.9904 −0.0003 20
Observation 7 1 0.9968 0.9968 0.0000 20

The direct effect arising from the change in observation 3’s flood depth is −0:1414, whereas
the cumulative indirect effect is −0:1054, with the (cumulative) total effect being −0:2468, the
sum of all non-zero changes.

We also note that the change in flood depth at firm 3’s location leads the model to predict
that firm 4 would not reopen, since the probability of reopening has fallen from 0.51 to 0.42
as a result of increased flooding at the neighbouring location. This directly lowers the chances
that firm 3 will reopen by 14% and indirectly influences the reopening decision of firm 4, its
neighbour (as well as firm 5, the neighbour to its neighbour).

Interdependence in this model means that increasing flood depth for observation 3 reduced its
own chance of opening and those of most other observations. However, the chance of opening
for observations 1 and 2 actually rose (very slightly). This occurs because increasing the flood
depth for observation 3 which has closed status means that observations 1 and 2 which share
the same closed status have relatively less flooding compared with observation 3 in the original
scenario. Therefore, the new estimated probabilities rise slightly for observations 1 and 2.

The effects that are presented in Table 2 represent the effect of changing only a single obser-
vation, number 3, whereas the scalar summary measures based on the expressions for own-
and cross-partial derivatives (which were described earlier) would average over changes in all
observations (for each explanatory variable in the model).

2.3. Considerations in interpreting spatial probit models
We discuss some points regarding interpretation of the scalar summary measures for direct,
indirect and total effects estimates that are associated with the SAR probit model.
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A minor issue is that there is a need to determine measures of dispersion for the mean scalar
summary magnitudes described, since these are required for inference regarding the statistical
significance of the various effects. Because estimation of the model is implemented by using
Markov chain Monte Carlo methods, it is possible to evaluate the own- and cross-partial deriv-
ative expressions on each pass through the Markov chain Monte Carlo sampler. This allows us
to construct a sample of draws from the posterior distribution of the various effects parame-
ters, which can be used for inference. Gelfand et al. (1990) showed that one can perform valid
inference regarding non-linear parameter relationships by using non-linear combinations of the
Markov chain Monte Carlo draws.

A more important set of issues relates to the non-linearity of the probability response in
the dependent variable to changes in the explanatory variables of the model. In non-spatial
probit regressions a common way to explore the non-linearity in this relationship is to calculate
‘marginal effects’ estimates by using particular values of the explanatory variables (e.g. mean
values or quintile intervals). The motivation for this practice is consideration of how the effect
of changing explanatory variable values varies across the range of values that are encompassed
by the sample data. Given the non-linear nature of the normal cumulative density function
transform on which the (non-spatial) probit model relies, we know that changes in explanatory
variable values near the mean may have a very different influence on decision probabilities than
changes in very low or high values.

As an example related to our focus on flooding and the probability that a firm will reopen,
consider that increasing flood depth from a high value such as 8 ft to a higher value such as
9 ft should have a comparatively small effect on the probability that a firm reopens. This may
be quite different for cases where flood depths change from 1 to 2 ft, so variation in the effects
that are associated with changes in explanatory variables may differ depending on values taken
by these variables.

Unlike the case of non-spatial probit models, our SAR probit model involves a different
location for each x-variable observation. This is true for spatial regression models where obser-
vations are associated with individuals or points or regions, each of which is located in space.
An implication of this is that considering different values of the explanatory variables implies
a change in location each time that the x-variable changes value. Ideally, a spatial regression
model would allow us to assess appropriately the effect of changes in location separately from
that associated with changes in values of the explanatory variables on the dependent variable.

At one level the two are inextricably linked since values of the explanatory variable change
with spatial location. However, the interpretation of effects arising from infinitesimally small
changes in an explanatory variable on the dependent variable represents a partial derivative.
These measures should hold other factors fixed across the spatial sample of dependent variable
values, and one of the other factors that we wish to fix is location. A related consideration is
that variable values are not likely to be distributed independently of values taken by the same
variable at neighbouring locations, i.e. explanatory variables are likely to exhibit spatial depen-
dence (in addition to the dependent variable, or decision outcomes that have been the focus of
our motivation for use of the SAR probit model).

Another contrast with the non-spatial probit model pertains to the degree of non-linearity
that is involved. Our spatial probit regression contains an expected value of a latent variable
that already involves a non-linear transformation of the dependence parameter ρ, specifically
.In − ρ̂W/−1Xβ̂ = .In + ρ̂W + ρ̂2W2 + . . . /Xβ̂. In the case of the spatial (auto-regressive) probit
model, the expected value of the latent variable undergoes further transformation by the non-
linear normal cumulative density function. Of course, the contrast with the non-spatial probit
situation is that only the single non-linear transformation involving the normal cumulative
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density function takes place. This suggests that we need to consider changes in the dependent
variable probability (‘marginal effects’) relative to values of .In − ρ̂W/−1xv, where xv denotes
the vth explanatory variable vector. This should produce a set of outcomes that is much closer
to that encountered in non-spatial probit regression models than consideration of the marginal
effects relative to values of the explanatory variable xv.

Another important difference that arises in the spatial versus non-spatial probit model is the
fact that the partial derivatives take the form of a matrix rather than a scalar expression. It is
relatively easy to calculate a vector containing the row sums of the matrix of partial derivatives
(for each variable v = 1, . . . , k) that reflects the (cumulative) total effects for each observation
in our sample. (An average of this vector is used to construct our proposed scalar summary
expression for the variable v total effects estimates.) This vector can be used to examine how the
total effects vary by location, or values of the variable xv, or expected values of .In − ρ̂W/−1xv.
This should provide a useful means for investigating how representative inferences based on
the global scalar summary total effects estimates are with respect to location, variable levels or
expected values levels. We illustrate this in the next section with our application of the SAR
probit model to a sample of 673 firms in New Orleans.

3. Reopening decisions in the aftermath of Hurricane Katrina

We are interested in exploring factors that influenced the decision of establishments to reopen in
the aftermath of Hurricane Katrina. One focus is on the role that is played by spatial dependence.
Our SAR probit model produces estimates for the spatial dependence parameter ρ, allowing us
to draw an inference regarding the presence or absence of spatial interdependence in firms’ deci-
sions. A second issue relates to the relative magnitude of direct versus indirect effects, i.e.—how
important were spatial spillovers in influencing business recovery in New Orleans? The presence
of significant spillovers may mean that cost–benefit analyses of the role that is played by disaster
assistance systematically underestimates the benefits that are associated with such aid.

As already noted, there is a large literature that emphasizes the importance of interdepen-
dence for the case of firm location decisions. Since there are relatively few cases where empirical
observations exist regarding business response after a major catastrophe such as Hurricane
Katrina, our empirical application allows us to fill this gap in the literature.

3.1. Sample data
The data set that was used for this exploration entails 673 establishments tracked weekly by
Richard Campanella during the year following Hurricane Katrina, and then seasonally and
annually in subsequent years. Three major New Orleans commercial corridors were selected: St
Claude Avenue, from Poland Avenue to Faubourg Tremé, the entire length of Magazine Street,
and all of both South and North Carrollton Avenues. These three corridors transect a wide
range of socio-economic, historical, topographic and flood damage conditions in the city. St
Claude Avenue, which experienced light flooding after Hurricane Katrina, traverses a strug-
gling, working-class downtown neighbourhood; Magazine Street serves middle- to upper-class
uptown neighbourhoods and suffered zero flooding; Carrollton Avenue traverses both middle-
class and working-class neighbourhoods and suffered extreme flooding in some areas, some
flooding in most areas and none in others. The Lower Ninth Ward portion of St Claude Avenue
could not be included because it was closed at the time that this study began.

All 16 miles of the three corridors were surveyed by bicycle weekly starting on October 9th,
2005, 6 weeks after Hurricane Katrina and about 2 weeks after unflooded neighbourhoods
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began to repopulate. Businesses of all types (retail, wholesale, services, etc.) that were visible
from the street were recorded by

(a) address,
(b) name,
(c) description and category (food retail, restaurant, spa salon, florist nursery, etc.),
(d) ownership (locally owned independent, regional chain or national chain),
(e) general economic status (‘functional’, ‘mid-range’ or ‘high end’) and
(f) size (1, sole proprietorship with five or fewer employees; 2, about 6–15 employees, such

as a typical restaurant; 3, scores of employees, such as a large grocery store; data from
the Louisiana Department of Labor were consulted to aid in this judgement).

Finally, and most importantly, the business’s status as ‘still closed’, ‘open’, ‘partially open’ (lim-
ited hours, by appointment only, etc.), ‘new’ (a new post-hurricane business) or ‘moved’ was
recorded and re-recorded with each weekly visit. Follow-up phone calls or local inquiries were
made when business status proved difficult to discern visually. Data from the Census Bureau,
Federal Emergency Management Agency, State of Louisiana and Army Corps of Engineers
were then used to record the median household income of the surrounding neighbourhood, the
area’s topographic elevation and depths of flood after Hurricane Katrina.

The weekly pace of surveys was reduced to biweekly in autumn 2006, because the number of
reopenings or new businesses did not warrant a weekly revisit. By 2007–2008, conditions had
stabilized to the point that only seasonal or annual visits were made.

Models based on three different dependent variable vectors were estimated, each having the
same explanatory variables. One dependent variable vector was constructed to represent the very
short period of 0–3 months after Hurricane Katrina, another reflecting the 0–6-month horizon
and a final model for the 0–12-month time period. For each period, firms that had reopened
were assigned a dependent variable value of 1 and those not reopened a value of 0. During the
0–3-month time horizon we had 300 of the 673 firms opened, during the 0–6-month period 425
firms were open and in the 0–12-month interval 478 firms. The last number reflects a reopening
rate of 71% at the 12-month horizon, which matches well to the 66% reopening rate that was
derived from larger samples taken of firms that reopened (see Lam et al. (2009)).

Although the three different types of dependent variables acknowledge an interaction with
time and space, we elected to model this as a spatial problem rather than as a formal spatio-
temporal problem. Given the frequency of observations, it would seem ideal to use a spatio-
temporal model where each retailer conditioned on nearby observations from previous periods.
However, the actual opening is foretold much earlier by rebuilding activity, discussions between
store owners and their employees, and other activities that act to smear the temporal nature
of the reopening. This introduces a simultaneous nature to the decisions. Spatiotemporal pro-
cesses with and without a simultaneous spatial component and simultaneous spatial processes
have equivalent equilibria (given various assumptions) as discussed in LeSage and Pace (2009)
and Pace and LeSage (2010). In particular, LeSage and Pace (2009), chapter 7, considered a
spatiotemporal model where the explanatory variables change slowly or deterministically over
time as would be the case here. They showed that the steady-state equilibrium for this scenario
is a cross-sectional model of the type that is used here.

Explanatory variables used were the flood depth (measured in feet) at the location of the indi-
vidual establishments, (logged) median income for the census block group in which the store
was located, two dummy variables reflecting small and large size firms, with medium size firms
representing the omitted class, two dummy variables reflecting low and high socio-economic
class of the store clientèle (with the middle socio-economic class excluded) and two dummy vari-
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Table 3. SAR probit model estimates for three time horizons

Variable Posterior Standard p-level
mean deviation

(a) 0–3 months time horizon
constant −7.6163 2.5950 0.0020†
flood depth −0.1680 0.0443 0.0000†
log(median income) 0.7330 0.2520 0.0015†
small size −0.2765 0.1397 0.0270†
large size −0.3286 0.3212 0.1535
low status customers −0.3293 0.1662 0.0150†
high status customers 0.0855 0.1313 0.2690
sole proprietorship 0.5512 0.1957 0.0025†
national chain 0.0684 0.3785 0.4205
Wy 0.3820 0.0938 0.0000†

(b) 0–6 months time horizon
constant −2.9778 2.7300 0.1425
flood depth −0.1103 0.0349 0.0005†
log(median income) 0.3110 0.2685 0.1270
small size −0.1087 0.1488 0.2330
large size −0.3723 0.3316 0.1340
low status customers −0.3423 0.1613 0.0175†
high status customers 0.0407 0.1528 0.3920
sole proprietorship 0.3588 0.1813 0.0210†
national chain 0.2948 0.3806 0.2195
Wy 0.5783 0.0842 0.0000†

(c) 0–12 months time horizon
constant −4.3361 2.7227 0.0600
flood depth −0.0894 0.0343 0.0070†
log(median income) 0.4844 0.2683 0.0395†
small size −0.2142 0.1542 0.0845
large size −0.3572 0.2981 0.1170
low status customers −0.3209 0.1620 0.0200†
high status customers −0.1015 0.1654 0.2665
sole proprietorship 0.1459 0.1886 0.2175
national chain −0.1205 0.3893 0.3640
Wy 0.5846 0.0929 0.0000†

†Significance at the 95% level.

ables for type of store ownership, one reflecting sole proprietorships and the other representing
national chains (with regional chains representing the excluded class).

3.2. Model estimates
Given our sample of stores arranged along streets, we wish to determine the appropriate num-
ber of neighbours to use when forming the spatial weight matrix W that is used in our model.
This was done by using the deviance information criterion (DIC), which is a common approach
taken in Bayesian analysis of competing models (Spiegelhalter et al., 2002; Gelman et al., 2004).
Models based on varying numbers of nearest neighbours were estimated and the DIC values
were calculated, which reflect a measure of fit adjusted for model complexity, similar to other
such model comparison measures such as the Akaike information criterion and Bayesian infor-
mation criterion. Lower values reflect superior models and differences in DIC values of more
than 7–10 units between two models are regarded as strong evidence in favour of the model
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Table 4. SAR probit model effects estimates for the 0–3-month
time horizon

Variable Lower Posterior Upper
0.05 mean 0.95

(a) Direct effects
flood depth −0.0728 −0:0485† −0.0255
log(median income) 0.0677 0.2116† 0.3404
small size −0.1596 −0:0802† −0.0016
large size −0.2777 −0.0948 0.0854
low status customers −0.1916 −0:0950† −0.0064
high status customers −0.0492 0.0247 0.1022
sole proprietorship 0.0500 0.1596† 0.2651
national chain −0.1937 0.0199 0.2371

(b) Indirect effects
flood depth −0.0566 −0:0296† −0.0110
log(median income) 0.0318 0.1284† 0.2602
small size −0.1240 −0:0499† −0.0008
large size −0.2113 −0.0609 0.0473
low status customers −0.1437 −0:0583† −0.0038
high status customers −0.0334 0.0152 0.0742
sole proprietorship 0.0225 0.0994† 0.2188
national chain −0.1374 0.0122 0.1595

(c) Total effects
flood depth −0.1199 −0:0782† −0.0421
log(median income) 0.1069 0.3401† 0.5569
small size −0.2685 −0:1302† −0.0029
large size −0.4680 −0.1558 0.1284
low status customers −0.3210 −0:1534† −0.0118
high status customers −0.0823 0.0399 0.1647
sole proprietorship 0.0768 0.2591† 0.4546
national chain −0.3229 0.0321 0.3951

†Significance at the 95% level.

with the smaller DIC. To calculate the DIC values we used the continuous dependent variable
log-likelihood in conjunction with the latent draws for yÅ. The results point to a model with 11
nearest neighbours at the 3-month horizon and 15 neighbours for the 6- and 12-month horizons.
Theory suggests that longer time horizons will via diffusion lead to spatial dependence over a
larger area (LeSage and Pace, 2009).

We also examined effects estimates based on models constructed by using 8–14 neighbours
for the 3-month horizon model to see how sensitive our estimates and inferences were to the
choice of 11 neighbours. A plot with these estimates on the vertical axis versus the number
of neighbours on the horizontal axis resulted in a nearly horizontal line, and all estimates
were within the lower 0.05 and upper 0.95 credible intervals reported for our 11-neighbour
model.

The coefficient estimates (posterior means, standard deviations and Bayesian p-levels) for the
model parameters β and ρ are shown in Table 3 for the three different time horizons. As already
noted, the coefficient estimates β from the SAR probit model cannot be interpreted as repre-
senting how changes in the explanatory variables affect the probability that stores will reopen.
One point to note is that the coefficient ρ that is associated with the spatial lag of the dependent
variable Wy is more than 4 standard deviations away from 0 in all three sets of results. The
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Table 5. SAR probit model effects estimates for the 0–6-month time
horizon

Variable Lower 0.05 Posterior mean Upper 0.95

(a) Direct effects
flood depth −0.0445 −0:0276† −0.0110
log(median income) −0.0551 0.0776 0.2104
small size −0.1092 −0.0278 0.0449
large size −0.2787 −0.0943 0.0639
low status customers −0.1679 −0:0857† −0.0062
high status customers −0.0663 0.0105 0.0857
sole proprietorship 0.0054 0.0906† 0.1905
national chain −0.1102 0.0745 0.2746

(b) Indirect effects
flood depth −0.0562 −0:0343† −0.0160
log(median income) −0.0773 0.0966 0.2836
small size −0.1428 −0.0349 0.0568
large size −0.3939 −0.1209 0.0839
low status customers −0.2319 −0:1098† −0.0077
high status customers −0.0956 0.0120 0.1201
sole proprietorship 0.0055 0.1183† 0.2937
national chain −0.1436 0.0999 0.4202

(c) Total effects
flood depth −0.0913 −0:0619† −0.0294
log(median income) −0.1303 0.1743 0.4633
small size −0.2385 −0.0628 0.1018
large size −0.6412 −0.2152 0.1471
low status customers −0.3809 −0:1955† −0.0134
high status customers −0.1581 0.0226 0.2028
sole proprietorship 0.0108 0.2089† 0.4638
national chain −0.2474 0.1745 0.6666

†Significance at the 95% level.

magnitudes ranging between 0.38 and 0.58 point to a significant positive spatial dependence in
firms’ decisions regarding open–closed status so firms nearby exhibit similar decision outcomes
regarding reopening. A theoretical upper bound on ρ is strictly less than 1.

The signs (negative or positive) of the estimates reported in Table 3 reflect the signs of the
direct effects estimates as well as the indirect and total effects which have the same signs in our
SAR probit model. Using the reported signs we see that some variables exhibited consistent
signs for all three time horizons. Specifically, flood depth has a negative influence on the proba-
bility that firms will reopen, (logged) median household income has a positive influence, small
and large firms relative to medium sized firms have a negative influence, low socio-economic
status of customers has a negative effect (relative to middle socio-economic status) and sole
proprietorships exhibited a positive effect on the probability that stores will reopen.

Two variables exhibited a change in sign between the first two time horizons and the last time
horizon. Specifically, high socio-economic status and ownership by national chains, which both
had a positive influence on reopening at the first two time horizons, showed a negative effect in
the last time horizon.

The effects estimates for models covering the three time horizons are shown in Tables 4–6.
These are the basis for inference regarding the effect of changes in the various explanatory
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Table 6. SAR probit model effects estimates for the 0–12-month time
horizon

Variable Lower 0.01 Posterior mean Upper 0.99

(a) Direct effects
flood depth −0.0353 −0:0203† −0.0047
log(median income) −0.0132 0.1113 0.2348
small size −0.1282 −0.0499 0.0205
large size −0.2336 −0.0824 0.0546
low status customers −0.1522 −0:0736† −0.0024
high status customers −0.0975 −0.0232 0.0534
sole proprietorship −0.0560 0.0332 0.1249
national chain −0.2135 −0.0290 0.1465

(b) Indirect effects
flood depth −0.0472 −0:0274† −0.0088
log(median income) −0.0196 0.1541 0.3769
small size −0.2105 −0.0719 0.0276
large size −0.3497 −0.1165 0.0689
low status customers −0.2347 −0:1022† −0.0040
high status customers −0.1613 −0.0337 0.0807
sole proprietorship −0.0757 0.0498 0.2096
national chain −0.2995 −0.0373 0.2368

(c) Total effects
flood depth −0.0756 −0:0478† −0.0140
log(median income) −0.0310 0.2655 0.5783
small size −0.3231 −0.1219 0.0483
large size −0.5640 −0.1990 0.1192
low status customers −0.3660 −0:1758† −0.0063
high status customers −0.2598 −0.0569 0.1343
sole proprietorship −0.1321 0.0830 0.3243
national chain −0.4961 −0.0664 0.3790

†Significance at the 95% level.

variables on the probability that stores will reopen as well as the (cumulative) spatial spillover
effcts on neighbouring stores.

In the 0–3-month horizon, the flood depth variable exerts a negative direct and (cumula-
tive) indirect effect on the probability that stores will reopen, implying a direct effect of a 4.8%
decrease in probability of reopening for every 1 ft of flood depth, and an indirect effect around
3%, combining for a total effect around 7.8%. Over time, the direct effects of flooding decrease
to 2% by the 0–12-month horizon, whereas the indirect or spillover effects decline by a smaller
amount to 2.7% by the 0–12-month horizon. Total effects decline from 7.8% to around 4.8%
over time. This seems consistent with the notion that disaster assistance as well as market forces
work over time to produce a move back towards equilibrium, ameliorating the effect of flooding
with the passage of time.

In the 0–3-month horizon, (logged) median household income of the census block group
in which the store was located had a positive and significant direct effect that would raise the
probability that stores would reopen by 2.11% for every 10% increase in income and an indirect
effect of 1.28% for a total effect around 3.4%. Over the next two time horizons the direct, indirect
and total effects of income remained positive but diminished to produce a total effect that was
insignificant (using the 0.05 and 0.95 credible intervals).

In the 0–3-month period, small size stores (measured by employment) had a negative direct
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effect, reducing the probability of reopening. For categorical variables such as the store size,
we interpret the magnitude of effects estimates as reflecting how a change in category from the
omitted category (in this case medium sized or medium employment stores) would influence the
probability of opening. The direct effect of small store size was to decrease the probability of
opening by around −8% and the indirect or spillover effect was around −5% for a total effect
of −13%. As in the case of the income variable, this variable became insignificant at the 0–6- and
0–12-month horizons.

Low socio-economic status of the store clientèle had a negative and significant influence for
all three time horizons. During the 0–3-month period, the direct effects were equal to −0:095,
with indirect effects of −0:058 for a total effect of −0:15 suggesting a decrease in probability
of reopening relative to the omitted class of middle socio-economic status. Over time the direct
effects remained about the same during the next two periods, whereas the indirect effects
increased to −0:11 and −0:10 in these latter two periods. We note that high socio-economic
status clientèle had a positive but insignificant effect (relative to the omitted class of middle
socio-economic status) for all three time horizons.

The other variable exhibiting significant effects was the ownership dummy variable represent-
ing sole proprietorships (relative to the excluded class of regionally owned chains). This variable
had a positive direct effect of 0.16 and indirect effects of 0.10, suggesting a positive total effect
around 0.26 on the probability of reopening in the 0–3-month horizon relative to the excluded
class of regionally owned chains. Sole proprietorships have several features which could account
for their faster pace in reopening. First, many of these are businesses that employ multiple mem-
bers of the same family, which may confer a non-pecuniary benefit to reopening. Second, sole
proprietorships may be the main means of support for the owner and family members who have
relatively poorer prospects on the open job market due to their firm-specific human capital.
Third, sole proprietorships may be able to react faster when making such decisions than larger
firms.

Over time, the direct effect declined to 0.09 and 0.03, becoming insignificant during the
0–12-month period. The indirect effect remained high during the 0–6-month period, having a
magnitude of 0.12, but it declined to 0.05 and became insignificant in the 0–12-month period.
This pattern of relationships led to a total effect in the 0–3-month period of 0.26, declining to
0.21 at the 0–6-month horizon and an insignificant 0.08 in the 0–12-month period. Again, the
notion that as time passes the influence of this type of ownership might diminish as recovery
leads back to an equilibrium situation seems intuitively plausible.

3.3. Investigation of the variability in the effects over space
As indicated in Section 2.3, we need to consider whether the global scalar summary measures
on which we based our inferences in the previous section exhibit large variation over locations.
Use of the scalar summary measures might produce inferences that are unrepresentative of the
distribution of effects as they vary over our sample space.

As an investigative tool, we produced (cumulative) total effects estimates for each of the 673
store locations in our sample. Since the observations that were used in this application are stores
along three different streets, it is relatively easy to examine the total effects estimates visually as
we move along each street. In more typical applications where the observations represent regions
in space, it should be possible to produce a choropleth map to explore variability over space.

A set of three-dimensional figures was used to plot the total effects estimates for each store
location on the vertical axis and the longitude–latitude co-ordinates as the horizontal axes.
Fig. 1 shows flood depths for each store on Carrollton and St Claude Avenues, and we note that
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Fig. 1. Flood depths (�) and stores ( ): (a) Carrollton Avenue; (b) St Claude Avenue

Magazine Street experienced no flooding. Intuitively, we might expect the effects from changes
in the various explanatory variables on the probability that stores will reopen would vary by
flood depth.

We illustrate variability over space for two of our explanatory variables, one being the national
chain ownership type where variation does not result in an unrepresentative inference arising
from use of the scalar summary measures of the effects estimates. For the other variable, logged
median income, we have a situation where there is substantial variation in the effects estimates
for stores on Carrollton Avenue.

Both the 0–3-month and 0–12-month estimates are shown in the figures, which allows us
to see whether the changes in magnitude of influence for the various variables over time are
consistent with our global inferences based on the scalar summary measures.

Fig. 2 shows total effects for the national chain dummy variable (relative to the omitted
regional chain ownership dummy variable). Here we see a reversal in sign when moving from
the 0–3-month to 0–12-month models, which is consistent with the scalar summary measures of
0.032 and −0.066 for the two periods respectively. In the short term, this type of ownership had
a small positive (but not significant) effect on the probability of reopening, whereas the longer-
term effect was negative (and not significant). Since the scalar summary measure indicated a
lack of significance for the total effects from this variable in both time periods, we should be



Business Recovery in the Aftermath of Hurricane Katrina 1023

90.14

90.12

90.1

90.08

90.06 29.92

29.93

29.94

29.95

29.96

–0.2

0

0.2

Longitude

Latitude

To
ta

l e
ff

ec
ts

90.14

90.12

90.1

90.08

90.06 29.94

29.95

29.96

29.97

29.98

29.99

30

–0.2

0

0.2

Longitude

Latitude

To
ta

l e
ff

ec
ts

90.07
90.06

90.05
90.04

90.03
90.02

29.964

29.966

29.968

29.97

29.972

–0.2

0

0.2

Latitude

Longitude

To
ta

l e
ff

ec
ts

(a)

(b)

(c)

Fig. 2. National chains, store level total effects (+, 0–3 months; �, 0–12 months; , stores): (a) Magazine
Street; (b) Carrollton Avenue; (c) St Claude Avenue

reluctant to place much emphasis on this set of results. Variation in the magnitude of effects
over locations along the three streets is fairly limited, causing no problems for our global scalar
summary measures.

Logged median household income is shown in Fig. 3, where we see a positive total effect of
this variable on stores reopening. The effects of heavy flooding in the middle portions of Car-
rollton Avenue are evident as these lead to the 0–3-month estimates falling towards 0. Of course,



1024 J. P. LeSage, R. K. Pace, N. Lam, R. Campanella and X. Liu

90.14

90.12

90.1

90.08

90.06 29.92

29.93

29.94

29.95

29.96

0

0.5

1

Longitude

Latitude

T
ot

al
 e

ff
ec

ts

90.14

90.12

90.1

90.08

90.06 29.94

29.95

29.96

29.97

29.98

29.99

30

0

0.5

1

Longitude

Latitude

T
ot

al
 e

ff
ec

ts

90.07
90.06

90.05
90.04

90.03
90.02

29.964

29.966

29.968

29.97

29.972

0

0.5

1

Latitude

Longitude

T
ot

al
 e

ff
ec

ts

(a)

(b)

(c)

Fig. 3. Median income, store level total effects (+, 0–3 months; �, 0–12 months; , stores): (a) Magazine
Street; (b) Carrollton Avenue; (c) St Claude Avenue

it seems intuitive that customers’ incomes would have less short-term effect in the face of large
flood damage to stores. The long-term effect on St Claude Avenue differs from that on the other
two streets, becoming larger whereas the longer-term importance of household income dimin-
ishes on Magazine Street. For Carrollton Avenue we see patterns for the 0–12-month period
that reflect both a decrease and an increase in magnitude relative to the 0–3-month estimates,
depending on flood depths associated with store locations. Of course, the mix of stores should
have an influence on the role that is played by household income as well as the obvious influ-
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ence of the flood depth variable. The short-run effect of this variable was positive (0.34) and
significant at the 99% level. Long-term total effects were positive (0.265) and different from 0 by
using 95% intervals, but not the 99% intervals that are reported in Table 4. The scalar summary
measures seem most consistent with the total effects shown for Magazine Street and St Claude
Avenue, and least representative for Carrollton Avenue.

By way of summary, it should be possible to use maps to diagnose cases where the scalar
summary effects estimates produce a valid global inference regarding the direction and relative
magnitude of influence for the model variables on the probability estimates. We found a high
degree of variability over the street level locations for the flood depth, median household income
and low social status of store customer variables. For all other variables the scalar summary
measures of the effects estimates would provide a representative global inference.

An important point is that spatial regression models produce direct and indirect or spa-
tial spillover estimates that vary over space. This seems not to be widely recognized, and in
fact there is much confusion regarding the global character of model parameters such as β, ρ
and σ2 versus the varying nature of the partial derivative effects arising from changes in the
explanatory variables of these models. This confusion is often used to justify spatially variable
parameter methods such as geographically weighted regression in place of spatial regression
models (Fotheringham et al., 2002).

Our analysis shows that the effects (correctly interpreted) arising from changes in explana-
tory variables vary over spatial locations. This is true of non-probit SAR models as well as the
probit variant of this model considered here. Additional non-linearity enters the relationship
in the case of a probit model due to the non-linearity of the cumulative density function for
the normal distribution. This places some burden on practitioners to examine whether simple
scalar summary measures will produce representative global inferences or whether inferences
require qualification for some parts of the sample space (locations).

4. Conclusions

This study focused on interpretation of estimates arising from use of an SAR probit model, where
spatial lags of the dependent variable allow for interdependence in choices. Spatial dependence
of household or firm decisions when these economic agents are nearby is likely to be a fre-
quently encountered situation in applied spatial modelling. For example, nearby commuters
are likely to make similar commuting choices because of their common location, which leads
to similar options regarding access to roadway and public transport systems. Owners of retail
establishments near each other share neighbourhood consumers with the same socio-economic
and demographic characteristics. Local governments operating in nearby locations confront
similar regional economic conditions and common state laws.

Our theoretical development of the way in which changes in the explanatory variables of SAR
probit regression models impact choices demonstrated a potential for direct as well as indirect
or spatial spillover effects. These are formally represented by an n×n matrix of potential effects,
where n represents the sample size. Constructing useful summary measures of the large number
of effects arising from the spatial dependence structure poses a challenge to using these models.

We proposed scalar summary measures of the direct and indirect effects that coincide with
the mathematical definition of own- and cross-partial derivatives for the SAR probit model.
Successful use of these summary measures for inference requires that practitioners understand
the nature of the partial derivative effects that arise in these models. Past focus on the coefficient
estimates that are associated with explanatory variables and the scalar parameter measuring the
strength of spatial dependence has led to the impression that SAR models produce only a global
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summary of the regression relationship that is involved. LeSage and Pace (2009) pointed to the
numerous influences on neighbouring observations that are associated with a change made in a
single observation or location of an explanatory variable. In essence, these models can be viewed
as spatially varying effects models, despite the fact that the model relationship is expressed by
using a single set of estimated (global) parameters. This aspect of the models becomes more
pronounced in the case of the probit variant of SAR models because of the additional (normal)
probability transformation.

An examination of scalar summaries for the total effects that are associated with changing
the explanatory variables as they vary over spatial locations was illustrated in our application.
This is analogous to (but more complicated than) the situation arising in non-spatial probit
models where ‘marginal effects’ are calculated in an effort to consider the non-linearity of
response in decision probabilities with respect to changes in the magnitude of the explanatory
variables. In the case of SAR probit models, it is more meaningful to consider the non-linearity of
response in decision probabilities over spatial locations, since changing location in these models
implies a change in variable magnitude because observations and locations are equivalent.

Our findings with regard to factors influencing the return of business in New Orleans after
Hurricane Katrina showed that these vary with location as well as passage of time after the
disaster. For example, we found that in the short term (0–3 months) the sole proprietorship
ownership category had a positive influence on the probability that these firms would reopen,
as well as a positive influence on the probability that neighbouring establishments reopened.
With the passage of time (0–6 months), the direct effect of this type of ownership (relative to
regional chains) diminished whereas the spatial spillover effects on neighbouring firms grew,
with both remaining positive and significant. As we might expect, very high levels of flooding at
store locations tended to mitigate the positive effects that are associated with this type of own-
ership. In the longer term (0–12 months) as the effect of disaster aid and other forces bring the
economic climate back towards pre-disaster conditions, factors that influenced the probability
of reopening in the short term diminished to the point of insignificance in many cases.

A consistent pattern that arises when viewing variation in the effects estimates by location is
that decisions to reopen became less dependent on the level of flooding over time, i.e. business
responses became more constant (for all factors) over locations that experienced high or low
levels of flooding. This might provide a fruitful metric for assessing the status of business recov-
ery from disasters that involve flooding. Formal measures of variation in business response in
locations with no flooding versus various levels of flooding could be developed in an effort to
assess the time horizon when flood depths become unimportant.
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