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Biological interpretation of large scale omics data, such as protein�protein interaction
data and microarray gene expression data, requires that the function of many genes in a
data set is annotated or predicted. Here the predicted function for a gene does not
necessarily have to be a detailed biochemical function; a broad class of function, or low-
resolution function, may be sufficient to understand why a set of genes shows the
observed expression pattern or interaction pattern. In this Highlight, we focus on two
recent approaches for function prediction which aim to provide large coverage in
function prediction, namely omics data driven approaches and a thorough data mining
approach on homology search results.

Introduction

Characterization of the function of genes

is a central question in biological study,

especially in molecular biology, genetics,

and biochemistry. Computationally, the

function of a gene can be inferred from

similarity to genes of known function

typically in terms of global/local se-

quence and the tertiary structure. The

most widely used method to predict the

function of a target gene is to use a

homology search tool, such as BLAST,1

PSI-BLAST2 or FASTA,3,4 where homo-

logous sequences are searched and their

annotated function is transferred to the

target gene.

A typical usage of BLAST is to em-

ploy a constant threshold value for the

statistical significance score, the E-value,

and only consider search hits with an

E-value of the threshold significance or

more. This strategy is effective in redu-

cing false positive function assignments

to genes, which is very important for

function annotation for entries in a pub-

lic database, e.g. UniProt,5 which will be

referred to by many people for a variety

of different purposes. Therefore, this

constant threshold approach is usually

used in genome sequence annotation in

genome projects. A drawback of this

approach is the small coverage in func-

tion annotation; typically only less than

half of the genes in a genome can be

annotated, and the rest remain un-

known.6

However, large-scale omics data which

have appeared around the beginning of

this century, such as protein–protein in-

teraction data and microarray gene

expression data, have raised a different

need in gene function prediction, that is,

large coverage in function annotation.

For biological interpretation of large-

scale omics data, detailed biochemical

function assignment to genes is not al-

ways necessary. Low-resolution func-

tions, such as pathway information or a

broad class of biological function, are

still very helpful if they are assigned to

a large number of genes in the data set in

order to speculate, for example, why a

given set of genes is up- or down-regu-

lated in the same fashion as a group in a

microarray data.

Numerous methods have been

proposed which aim to predict function

beyond a conventional BLAST approach

in terms of function assignment coverage.

Those methods include protein tertiary

structure-based methods,7,8 comparative

genomics-based methods,9–14 and path-

way-based methods.15,16 However be-

cause of the page limitation, here we
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focus on two recent new approaches:

omics data driven approaches and thor-

ough mining of homology search ap-

proaches, and leave the rest to recent

review articles.6,17

Omics data driven approaches

First, as typical omics data driven ap-

proaches, we overview ideas of pro-

tein–protein interaction (PPI) data-

based function prediction methods. PPI

data can be represented as a network

(graph) where proteins are represented

as nodes and interacting proteins are

connected by edges. PPI data are useful

for function prediction because it has

been shown that proteins of known func-

tion and cellular location tend to cluster

together in the PPI network.18 The meth-

ods introduced below range from simple

approaches which consider immediate

neighboring nodes to more advanced

approaches which take global network

topology into account. Actually the ideas

of function prediction applied to PPI

networks can also be applied to a more

generalized functional linkage network,

where an edge between two nodes (pro-

teins) is established if there is experimen-

tal (e.g.microarray gene expression data)

or computational evidence that suggests

that the two linked proteins are likely to

share the same function.

A basic idea is to consider a

local network and perform a majority

vote that involves assignment of the

most common functions present among

the neighboring proteins in the network

(Fig. 1A).18 Methods assigning functions

to proteins based on frequently

occurring annotations in the n-neighbor-

hood of the protein in the PPI network

are known as neighborhood counting

methods. Hishigaki et al.19 have devel-

oped an approach based on chi-square

statistics that uses the frequency of the

function of interest among the interact-

ing neighbors of an unknown protein.

Application of chi-square statistics has

issues because of the small number

of interacting neighbors present for a

number of un-annotated proteins in the

network.

Gao et al.20 assign the most specific

possible functional class to the unknown

protein using annotation information of

k neighbors that are within a specified

distance in the PPI network. The anno-

tation classes of k neighbors and their

ancestors in the Gene Ontology (GO)

hierarchy21 are used as candidate anno-

tation classes for the unknown protein.

For each candidate class they sum the

taxonomy similarity score with each of

the annotations from the k neighbors.

The larger the score for a particular

candidate class the higher is its possibi-

lity of being the annotation of the un-

known protein.

Brun et al. partition interaction

networks into clusters (Fig. 1B) of

proteins that are part of the same protein

complex or take part in the same cellular

function.22 Their method is based on

the principle that two proteins are more

likely to be functionally related if

they share a number of common

interacting proteins. The results showed

that clustering done based on functional

distance, which is based on the

number of shared interacting proteins,

separates proteins involved in

different biological process. The majority

of proteins in a cluster do not share

sequence similarity or molecular

function. Unlike sequence-based

methods that point towards proteins

having the same molecular function, the

clustering methods establish groups

of proteins belonging to the same

functional class representing some biolo-

gical process.

Many approaches concentrate on

using just the annotation information

of level 1 neighbors of un-annotated

proteins in the network for predicting

their function; this is known as direct

functional association. Chua et al.23

make use of the fact that in many cases

proteins share functional similarity with

level 2 neighbors, which is indirect func-

tional association. They show that level 2

and 3 neighbors have an above average

likelihood of sharing functional similar-

ity. A weighted averaging method based

on functional similarity weight between

the proteins is defined to predict the

function using level 1 and level 2 neigh-

bors. It has been shown to outperform

some of the existing methods that use

interconnection network information in

the three main categories of GO:

Fig. 1 Function prediction using protein–protein interaction network. A: Local network-based

majority vote method:18 each protein in the functional linkage network is represented by a node

and an edge between two proteins indicates functional similarity based on evidence from some

data source. Grey colored proteins have known functions indicated in brackets against them and

white nodes represent un-annotated proteins. The arrows indicate the direction of transfer of the

highest frequency annotation of neighbors to the un-annotated protein. The annotations

transferred have been underlined. B: Clustering method:22 proteins in the functional linkage

network with each cellular function are indicated in different colors. The identified clusters of

proteins in the network show dominance of a single cellular function that is achieved by the

interactions between the proteins in that cluster. Arrows indicate the influence of cluster

membership to determine the annotation for an un-annotated protein. C: Global network

topology based method using functional flow:27 each edge width connecting proteins represents

the reliability associated with the evidence source. Nodes (proteins) colored in blue and red have

annotation labels and act as a source of infinite functional flow for the annotation label

represented by their color. A white node representing an un-annotated protein receives

functional flow for each annotation over the course of the simulation by using each edge in

the network as a conduit. In the example the white node which is close to three blue nodes

connected with thick edges will receive maximum flow for the blue annotation selecting it over

the red annotation.
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molecular function, biological process,

and cellular component.

Some current approaches for predict-

ing functional assignment are based on

deriving the marginal probability of a

protein taking a particular function gi-

ven the functional label of other proteins

in the functional linkage network. Le-

tovsky and Kasif24 use a Markov Ran-

dom Field (MRF) framework subject to

a conditional independence assumption

that the probability distribution for any

node is conditionally independent of all

other nodes given its neighbors. The

algorithm starts with initializing the label

(function) probabilities for unlabeled

nodes to the frequency of the label and

propagates frequencies iteratively. In the

second iteration unlabeled nodes adjust

the probabilities based on their neigh-

bors using Bayes’ rule. The algorithm

stops after the second iteration to avoid

self-reinforcement, and classifies the un-

labeled nodes whose probability exceeds

a threshold by assigning them the current

label. Deng et al.25 further explore this

idea by considering the frequency of

proteins having the function of interest

with less weight placed on far away

neighbors in the network than on the

close neighbors. Their approach consid-

ers each function separately and globally

takes into account the annotations of all

proteins in the interaction network. Con-

ditioned on the functional annotation of

each annotated protein in the network,

the posterior probability for each protein

to have a particular functional annota-

tion is computed using the MRF frame-

work.

Vazquez et al.26 use a global approach

where instead of taking just the locally

optimum function based on annotations

of interacting neighbors, they determine

a globally optimal functional assignment

to all un-annotated proteins in the net-

work so as to minimize the number of

protein–protein interactions among dif-

ferent functional categories in the net-

work. The functional flow algorithm

described by Nabieva et al.27 applies

the concept of functional flow

(Fig. 1C). Each protein of known func-

tional annotation is treated as a source of

functional flow, which is then propa-

gated to annotated nodes using the edges

in the interaction graph as a conduit. The

effect of each annotated protein on any

other protein decreases with an increase

in distance between them. The scores

correspond to the amount of flow for

the function the protein has received over

the course of the simulation. In contrast

to the majority vote algorithm,18 func-

tional flow considers functional annota-

tions from proteins that are not

immediate neighbors, and thus can an-

notate proteins that have no neighbors

with known annotations. To take into

account the reliability of different data

sources the functional linkages between

proteins can be weighed independently

for different data sources.

Combining heterogeneous
data sources with functional
linkage networks

It has become increasingly popular

to explore the idea of integrative func-

tional genomics, which combines infor-

mation from multiple sources to assist

the process of functional annotation of

unknown proteins. Combining heteroge-

neous data is effective for dealing with

errors and the uncertainty of each data

point by weighing the evidence based on

the reliability of the sources used for

prediction. Most commonly, PPI data

and gene expression data are com-

bined.28,29 Transcription pattern similar-

ity measured by microarray techniques

may indicate the presence of a functional

relationship between two proteins within

the context of some biological process.

These two data can be unified in the form

of a functional linkage network. In a

gene expression data set, if the Pearson

correlation coefficient of a co-expressed

gene pair is above a threshold, then that

gene pair is linked in the functional

linkage network, which is integrated as

part of the network data along with the

PPI network.28,30

Probabilistic models, especially Baye-

sian frameworks, are frequently used to

compute the posterior probability that a

protein has a particular function given

the heterogeneous network data from

different sources. Nariai et al.28 combine

knowledge obtained from functional

linkage graphs constructed from PPI

data and microarray gene expression

data as well as protein motif informa-

tion, mutant phenotype data, and pro-

tein localization data by Bayesian

networks. They use ‘‘biological process’’

terms from the Gene Ontology as the

basis for functional annotation. The

method shows an 18% increase in cor-

rectly recovered annotations when using

heterogeneous data as compared to using

PPI data alone. The Eisenberg group has

developed the ProKnow server, which

combines PPI data and protein global/

local sequence structure-based function

predictions using Bayesian networks.31

Troyanskaya et al.32 have developed a

system based on Bayesian networks that

incorporates knowledge from different

data sources taking into account their

relative accuracies to predict if two pro-

teins are functionally related. Each pre-

dicted functional relationship between

proteins indicates the posterior belief

that the two proteins can be involved in

the same biological function. The meth-

od takes input from various data sources

indicating the strength of each method’s

belief in the existence of a relationship

between two genes. The Bayesian net-

work has been constructed based on

probabilities provided by experts in the

field of yeast molecular biology. They

have shown that the accuracy of group-

ing has been improved using the evidence

from heterogeneous data sources as com-

pared to using the microarray analysis

alone.

Alternative choices of computational

techniques to integrate heterogeneous

data include Boltzmann machines, neur-

al networks and Support Vector Ma-

chines (SVMs). Chen and Xu30 use PPI

data, protein complex data and micro-

array gene expression data together to

predict protein function. In the global

prediction of protein function they do

not rely only on the functional annota-

tions of the interacting neighbors, but

also base the prediction on the global

structure of the interaction network

using a Boltzmann machine to character-

ize the global stochastic behaviors of the

network. The Global Mapping of Un-

known Proteins (GMUP) method con-

structs an abstract layer of evidence by

combining heterogeneous sources like

PPI data, gene expression data and pro-

tein complex data by extracting common

terminology from different datasets.33

Each piece of evidence is converted into

a pair of proteins with corresponding

associated GO terms and a source of

information in the form of an input

vector and it is used for training the

This journal is �c The Royal Society of Chemistry 2008 Mol. BioSyst., 2008, 4, 223–231 | 225



neural network for prediction of un-

known function. Here information from

heterogeneous data sources is unified in

the form of linkage between pairs of

proteins.

Methods using functional linkage net-

works provide computational determina-

tion of the biological process in which

the unknown proteins are likely to be

involved whereas the sequence based

methods provide important clues about

the molecular function of the protein.

Thus these two complimentary ap-

proaches can be combined to computa-

tionally predict different Gene Ontology

categories with increased accuracy.

Sequence-based approaches

Although there is a significant body of

work utilizing PPI and expression data

to predict function, it remains true that

sequence data are far more abundant

and easy to retrieve. Genome sequencing

projects have been completed for over

600 organisms with at least 3000 more

underway,34,35 and large metagenomics

projects36–45 are producing new se-

quences at an extraordinary pace. It

should be also noted that most of the

gene function information is available

through sequence databases, e.g. Uni-

Prot and PROSITE.46

Consensus functional
similarity from database
searches

As stated at the beginning of this review,

the default method characterizing a new

gene sequence, using BLAST with a con-

stant E-value threshold value, has small

coverage in function annotation in a

genome. Recently, there have been sig-

nificant efforts dedicated to extending

the capabilities of the still powerful da-

tabase searching tools BLAST and PSI-

BLAST. The common feature between

all of these approaches is the combina-

tion of functional information from mul-

tiple sequences retrieved by BLAST. The

consensus approach of identifying fre-

quently occurring functional characteris-

tics among similar sequences to a query

mimics the natural human approach to

interpretation of BLAST results. Auto-

mation of this process allows it to be

used both on a large scale, i.e. for ana-

lysis of sequences on a genome scale or

larger, and also by individuals who do

not otherwise have expert intuitive

knowledge sufficient to interpret data-

base search results effectively.

The GOblet method47,48 identifies GO

functional terms associated to sequence

hits in a BLAST search and maps their

occurrences onto the GO tree. This map-

ping effectually identifies enriched

groups of common functions among

BLAST hits. OntoBlast49 takes this a

step further by scoring each GO term

using E-values of each sequence hit. The

E-values for all sequence hits associated

with a single term are multiplied together

to produce a weighted list of predictions.

Enzyme Commission (E.C.) numbers for

enzyme function78 and GO have the

advantage of being structured hierarchi-

cally, so consensus functions among

BLAST results can be described in

broader terms. For example, if a query

sequence hits both tyrosine kinases and

serine kinases, the consensus function

can be predicted as a general protein

kinase. GOFigure50 utilizes the hierarch-

ical nature of the GO to apply scores for

any retrieved functional terms to their

parents, providing an output graph with

probability scores for each term leading

back to the root of the GO tree (Fig. 2A).

Gotcha51 applies an E-value based

weighting scheme to the GO structure

in a similar way. The score for each GO

term found in BLAST hits is propagated

onto all ancestor terms in the tree and

then normalized to the total score of the

root term to provide a measure of con-

fidence.

An extension of the direction of data

mining on database search results can be

naturally achieved by applying machine

learning techniques. GOPET52 applies a

SVM to a list of BLAST results with

inputs including alignment length and

E-value of sequence hits, GO term fre-

quency among hits, GO term relation-

ships between homologs, annotation

quality of homologs, and the level of

annotation within the GO hierarchy to

predict GO terms for a query sequence.

ProtFun53 uses a series of sequence-re-

lated features as input into an SVM.

Rather than using BLAST as a base, this

method uses the amino acid composition

of the query sequence, predicted post-

translational modifications, presence of

signal peptides, sequence length, isoelec-

tric point, and disordered region predic-

tion. Finally the query sequence is scored

with probabilities as enzyme/non-en-

zyme and also into both GO and E.C.

classes.

PFP: considering functional
association

We have recently developed the PFP

algorithm54 which uses PSI-BLAST in a

similar consensus approach to those de-

scribed above. GO terms associated to

sequence hits are combined using an

Fig. 2 Use of Gene Ontology hierarchical structure in function prediction. A: Propagation of

scores through GO. Several methods apply scores for GO terms to ancestors according to the

structure of the GO. Here, scores for GO terms D and E combine to give their common parent

term B a medium-high score, which combines with the low score for GO term C to give the root

term A a medium-low score. B: Function Association Matrix: visual representation of FAM

used in the PFP method. This represents association between 475 GO terms within UniProt

sequences, or p(GO term Y|GO term X). Both axes are ordered by Gene Ontology ID number

and category (CC = cellular component; MF = molecular function; BP = biological process).

Darker spots indicate a higher degree of association between two terms.
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E-value-based scoring scheme that takes

into account even high E-value sequence

hits. Additionally, PFP also uses a novel

data mining tool to predict additional

GO terms which are highly associated

to those terms associated to sequence hits

from PSI-BLAST. This tool, the Func-

tion Association Matrix (FAM), de-

scribes the probability that two GO

terms are associated to the same se-

quence based on the frequency at which

they co-occur in UniProt sequences

(Fig. 2B). This allows the FAM to as-

sociate function annotations from differ-

ent GO categories, e.g. the biological

process ‘‘positive regulation of transcrip-

tion, DNA-dependent’’ is strongly asso-

ciated with the molecular function

‘‘DNA binding activity’’ and the cellular

component ‘‘nucleus’’. Associations can

describe parallel functions that may be

defined in multiple categories or comple-

mentary functions that are defined in one

or more categories.

Significant associations, those with

high confidence scores, are used to con-

tribute additional functional term predic-

tions to those that can be directly mined

from PSI-BLAST results (eqn (1)

and (2)):

sðfaÞ ¼
XN
i¼1

XNfuncðiÞ

j¼1

ðð� logðE valueðiÞÞ þ bÞPðfajfjÞÞ;
ð1Þ

PðfajfjÞ ¼
cðfa; fjÞ þ e
cðfjÞ þ m � e ; ð2Þ

where where s(fa) is the final score

assigned to the GO term, fa, N is the

number of similar sequences retrieved by

PSI-BLAST, Nfunc(i) is the number of

GO terms assigned to sequence j,

E_value(i) is the E-value given to the

sequence i, fj is a GO term assigned to

the sequence i, P(fa|fj) is the conditional

probability that fa is associated with fj,

c(fa, fj) is the number of times fa and fj
are assigned simultaneously to each se-

quence in UniProt, c(fj) is the total num-

ber of times fj appears in UniProt, m is

the size of one dimension of the FAM

(i.e. the total number of unique GO

terms), and e is the pseudo-count.

PFP also uses the structured nature of

the GO to predict broad function in the

case where no specific functional terms

can be found from the PSI-BLAST re-

sults or the additional data mining com-

ponent. Scores from each GO term in the

results are propagated to ancestor or

parent terms in the ontology according

to the number of genes associated to the

predicted term relative to the ancestor

term (eqn (3)):

sðfpÞ ¼
XNc

i¼1
sðfciÞ

cðfciÞ
cðfpÞ

� �� �
: ð3Þ

The advantage of considering consensus

GO terms among PSI-BLAST hits

(eqn (1)), FAM (eqn (2)) and GO hier-

archical structure (eqn (3)) is that a

low-resolution function will often show

up with a high score when there is no

strong hit in a PSI-BLAST result.

As a result, annotation coverage of a

genome increases dramatically: for

example, PFP assigns function to

approximately 49.1% more genes than

the original annotation in Plasmodium

falciparum (malaria) genome and 34.3%

more in C. elegans genome (manuscript

in preparation). PFP has already been

used in some genome sequencing pro-

jects.55,56 The PFP server is available at

http://dragon.bio.purdue.edu/pfp/.

Function prediction
competitions

The biennial Critical Assessment

of Techniques for Protein Structure

Prediction has included a function

prediction category in CASP6 and

CASP7 (the previous two rounds).

For each target protein, sequence data

were provided to groups predicting

both E.C. number and GO terms and

binding site residues. In CASP7, 22

groups (and two consensus methods)

submitted function predictions for 66

target protein sequences. Remarkably,

PFP had the highest overall average

score and the most wins in a head-

to-head comparison between methods

predicting terms for the same targets.57

PFP was also ranked at the top in the

Automated Function Prediction meeting

(AFP-SIG 05) held at the 13th Annual

International Conference on Intelligent

Systems for Molecular Biology (ISMB)

in summer 2005. These competitions are

viewed as an important fixture to main-

tain a vibrant community of predictors

who are consistently working to improve

prediction methods and results. Interest

is rapidly growing in the field of auto-

mated function prediction, so we can

expect that in the future many more

groups will be participating in such ac-

tivities, with a much greater diversity in

the information used to make predic-

tions.

Sequence vs. interaction vs.
correlated expression for
yeast sequences

To illustrate the effectiveness of utilizing

different data sources for the prediction

of protein function, we compared

GO function prediction by PFP

(a sequence-based method) to omics data

driven approaches, which use PPI,

microarray, or synthetic lethality data

for sequences in the yeast genome

(Fig. 3). The results and the evaluation

method used for the omics data driven

approaches are described by Myers

et al.58 Note that because of the nature

of the prediction methods used, the eva-

luation methods used for predictions by

PFP (lower half of Fig. 3) and omics data

driven approaches (upper half of Fig. 3)

are different: protein interactions are

considered to be correct for a particular

GO term when associating partners as

identified by two hybrid analysis,

affinity precipitation, synthetic lethality,

or microarray have the function in com-

mon. PFP predictions are considered

correct for a particular GO term when

predictions are made for that function

above a set confidence threshold. In both

cases we measured precision (True

Positives/[True Positives + False Posi-

tives]) and recall (True Positives/

[True Positives + False Negatives]) at

several thresholds to determine an over-

all relevance of the method for that term

and its children in the ontology. (These

data for the experimental datasets were

obtained using the GRIFn server at

Princeton, http://avis.princeton.edu/

GRIFn/.) The intensity of each square

in Fig. 3 corresponds to the overall

accuracy of each method for each

term as measured by the area under the

precision-recall curve (AUPRC)

(the higher the AUPRC, the brighter

the square).

Two conclusions can be drawn from

the comparison here. First, it is
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somewhat obvious that sequence data

have more universal relevance to a

broader number of functional categories

than correlated expression, and both are

more appropriate for more functional

categories than physical protein–protein

interaction or synthetic lethality. PFP

shows strong performance on six GO

terms and moderate performance for 14

additional terms (of 32), while the inter-

action data only give a strong indication

of functional similarity for two GO terms

and a moderate indication for ten addi-

tional terms, although there is little con-

sistency between the physical interaction

datasets. Second, and more important, is

the apparent complementary nature of

the different data types in terms of their

relevance for different subsets of func-

tion. Most of the GO categories in which

our sequence-based approach gave

moderate to strong prediction perfor-

mance are covered poorly by physical

protein interactions and microarrays,

and all of the categories in which pro-

tein–protein interaction or correlated ex-

pression gave a strong indication of

function are covered poorly by our se-

quence-based approach. These results

are somewhat intuitive. The functional

categories for which protein–protein in-

teraction strongly indicates functional

similarity are known to involve signifi-

cant protein interactions, e.g. protein

complexes like the ribosome in the case

of ‘‘ribosome biogenesis’’ (GO:0007046)

and ‘‘protein synthesis’’ (GO:0006412)

and extensive and prolonged functional

dimerization in the case of ‘‘cell cycle’’

(GO:0007049). A general conclusion

could be that although sequence similar-

ity approaches work from a larger

pool of functional knowledge and can

thus provide high coverage and high

accuracy, other high throughput

omics data can provide additional clues

for protein function that sequence fails

to uncover.

Summary

The recent availability of both tremen-

dous amounts of genomic sequence data

and increasing numbers of high through-

put experimental datasets has made pos-

sible the creation of several techniques

that utilize these data for the prediction

of protein function. As we have discussed

here, these approaches go well beyond

the traditional use of BLAST or similar

tools for blind function annotation of

new proteins. The large volume of ex-

perimental omics data allows us to in-

vestigate relationships between genes, a

new perspective from which we can draw

clues toward function. And although

sequences have been investigated for al-

most 20 years by BLAST and FASTA,

new consensus and data mining ap-

proaches show that there is still rich

functional information that can be

drawn beyond what traditional tools

can find. For users’ convenience, soft-

ware resources of the methods men-

tioned in the text are listed in Table 1.

In the future we will see combinations of

these methods that will take advantage

of the complementarity of heterogeneous

data sources. These approaches to func-

tion prediction are becoming increas-

ingly important in the omics age of

biology and systems biology, where even

broad functional clues can assist in the

interpretation of new datasets.

Fig. 3 Comparison of predictions for yeast proteins: rows 1–4 are data from correlated expression as identified by microarray. Rows 5–13 are

data from protein–protein interaction as identified by two hybrid and affinity precipitation methods. Rows 14–17 are predictions from PFP using

different E-value thresholds for inclusion of BLAST results (i.e., ‘‘10’’ means only sequences with E-values above 10.0 (e.g., 15, 100) were used to

make predictions). Columns are Gene Ontology terms. The intensity of red at each square represents the area under a precision-recall curve

(AUPRC) or overall accuracy of the dataset for a GO term and its children.
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