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New Paradoxes of Risky Decision Making

Michael H. Birnbaum
California State University, Fullerton and Decision Research Center, Fullerton

During the last 25 years, prospect theory and its successor, cumulative prospect theory, replaced expected

utility as the dominant descriptive theories of risky decision making. Although these models account for

the original Allais paradoxes, 11 new paradoxes show where prospect theories lead to self-contradiction

or systematic false predictions. The new findings are consistent with and, in several cases, were predicted

in advance by simple “configural weight” models in which probability-consequence branches are

weighted by a function that depends on branch probability and ranks of consequences on discrete

branches. Although they have some similarities to later models called “rank-dependent utility,” config-

ural weight models do not satisfy coalescing, the assumption that branches leading to the same

consequence can be combined by adding their probabilities. Nor do they satisfy cancellation, the

“independence” assumption that branches common to both alternatives can be removed. The transfer of

attention exchange model, with parameters estimated from previous data, correctly predicts results with

all 11 new paradoxes. Apparently, people do not frame choices as prospects but, instead, as trees with

branches.

Keywords: cumulative prospect theory, decision making, expected utility, rank-dependent utility, para-

dox

Following a period in which expected utility (EU) theory (Ber-

noulli, 1738/1954; Savage, 1954; von Neumann & Morgenstern,

1947) dominated the study of risky decision making, original

prospect theory (OPT) became the focus of empirical studies of

decision making (Kahneman & Tversky, 1979). OPT was later

modified (Tversky & Kahneman, 1992) to assimilate rank- and

sign-dependent utility (RSDU). The newer form, cumulative pros-

pect theory (CPT), was able to describe the classic Allais para-

doxes (Allais, 1953, 1979) that were inconsistent with EU without

violating stochastic dominance. CPT simplified and extended OPT

to a wider domain.

CPT describes the “four-fold pattern” of risk seeking and risk

aversion in the same person. When a person prefers the expected

value of a gamble to the gamble itself, that person is exhibiting

“risk aversion.” For example, most people prefer $50 for sure

rather than the risky gamble with a 50% chance to win $100 and

otherwise receive nothing. When a person prefers the gamble over

its expected value, the person is described as “risk seeking.” In the

“four-fold pattern,” the typical participant shows risk seeking for

binary gambles with small probabilities to win large prizes and risk

aversion for gambles with medium to high probability to win. For

gambles with strictly nonpositive consequences, this pattern is

reversed. Such reversal is known as the reflection effect. Finally,

CPT describes risk aversion in mixed gambles, also known as loss

aversion, a tendency to prefer sure gains over mixed gambles with

the same or higher expected values.

Many important articles contributed to the theoretical and em-

pirical development of these theories (Abdellaoui, 2000, 2002;

Battalio, Kagel, & Jiranyakul, 1990; Bleichrodt & Luis, 2000;

Camerer, 1989, 1992, 1998; Diecidue & Wakker, 2001; Gonzalez

& Wu, 1999; Karni & Safra, 1987; Luce, 2000, 2001; Luce &

Fishburn, 1991, 1995; Luce & Narens, 1985; Machina, 1982;

Prelec, 1998; Quiggin, 1982, 1985, 1993; Schmeidler, 1989;

Starmer & Sugden, 1989; Tversky & Wakker, 1995; von Winter-

feldt, 1997; Wakker, 1994, 1996, 2001; Wakker, Erev, & Weber,

1994; Wu & Gonzalez, 1996, 1998, 1999; Yaari, 1987). Because

of these successes, CPT has been recommended as the new stan-

dard for economic analysis (Camerer, 1998; Starmer, 2000), and it

was recognized in the Nobel Prize in Economics in 2002.

However, evidence has been accumulating in recent years that

systematically violates both versions of prospect theory. Some

authors have criticized CPT (Baltussen, Post, & van Vliet, 2006;

Barron & Erev, 2003; Blavatskyy, 2005; Brandstätter, Gigerenzer,

& Hertwig, 2006; Gonzalez & Wu, 2003; González-Vallejo, 2002;

Hertwig, Barron, Weber, & Erev, 2004; Humphrey, 1995; Levy &

Levy, 2002; Lopes & Oden, 1999; Luce, 2000; Marley & Luce,

2005; Neilson & Stowe, 2002; Payne, 2005; Starmer, 1999, 2000;

Starmer & Sugden, 1993; Weber & Kirsner, 1997; Wu, 1994; Wu

& Gonzalez, 1999; Wu & Markle, 2005; Wu, Zhang, & Abdelloui,

2005). Not all criticisms of CPT have been received without

controversy (Baucells & Heukamp, 2006; Fox & Hadar, 2006;

Rieger & Wang, 2008; Wakker, 2003), however, and some con-

clude that CPT is the “best,” if imperfect, description of decision

making under risk and uncertainty (Camerer, 1998; Harless &

Camerer, 1994; Starmer, 2000; Wu, Zhang, & Gonzalez, 2004).

My students and I have been testing prospect theories against an

older class of models known as “configural weight” models (Birn-

baum, 1974a; Birnbaum & Stegner, 1979). In these models, the

weight of a stimulus (branch) depends on relationships between
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that stimulus and others in the same set. A generic class of

configural weight models includes CPT as a special case, as well

as other special cases that are compared against CPT in the present

article. In this article, I summarize the case against both versions

of prospect theory and show that simple configural weight models

provide more accurate descriptions of risky decision making.

In configural weight models, weights of probability-

consequence branches depend on the probability or event leading

to a consequence and the relationships between that consequence

and consequences of other branches in the gamble. These models

led me to reexamine old results and to deduce new properties that

can be used to test among classes of models (Birnbaum, 1997).

The “new paradoxes” are behavioral properties that create system-

atic self-contradictions in prospect theories. The properties tested

are also implied by EU theory; therefore, systematic violations of

these properties also contradict EU. I refer to these properties as

paradoxes because, like the Allais paradoxes (Allais, 1953, 1979),

they are stronger than simple violations of the predictions of a

model; they are phenomena that lead to self-contradiction when

analyzed by widely accepted theory with any functions and any

choice of parameters. However, the paradoxes can be resolved by

rival theory.

The mass of evidence has now reached the point where I

conclude that neither version of prospect theory can be retained as

a descriptive model of decision making. The violations of CPT are

largely consistent with a model that is a special case of a configural

weight model (Birnbaum, 1974a; Birnbaum & Stegner, 1979)

known as the special transfer of attention exchange (TAX) model

(Birnbaum & Chavez, 1997). Also more accurate than CPT is

another type of configural model known as the rank-affected

multiplicative weights (RAM) model. The violations of CPT also

rule out other related models, such as rank-dependent utility

(RDU) of Quiggin (1993) as well as certain other models that share

some of its properties.

On the basis of the growing case against CPT, RDU, and RSDU,

Luce (2000) and Marley and Luce (2001, 2005) have recently

developed a new subclass of configural models, gains decompo-

sition utility (GDU), which they have shown has similar properties

to the TAX model but is distinct from it. These three models

(TAX, RAM, and GDU) share the following idea: People treat

gambles as trees with branches rather than as prospects or proba-

bility distributions.

There are two cases made in this article. The easier case to make

is the negative one, which is to show that empirical data strongly

refute both versions of prospect theory as accurate descriptions.

The positive case is necessarily more tentative; namely, that the

special TAX model, which correctly predicted some of the viola-

tions of CPT in advance of experiments, gives a better description

of both old and new data.

Because a model correctly predicted results in a series of new

tests, it does not follow that it will succeed in every new test that

might be devised. Therefore, the reader may decide to accept the

negative case (CPT and its relatives are false) and dismiss the

positive case, favoring TAX, as a series of lucky coincidences. In

this case, a better theory supported by diagnostic evidence is

required.

Some introductory examples help distinguish characteristics of

prospect theories from the configural weight models reviewed

here. Consider the following choice:

A: .01 probability to win $100 B: .01 probability to win $100
.01 probability to win $100 .02 probability to win $45
.98 probability to win $0 .97 probability to win $0

Each gamble is represented by an urn containing 100 marbles

that are otherwise identical, except for color. The urn for Gamble

A contains one red marble and one blue marble, either of which

pays $100, and it has 98 white marbles that pay $0 (nothing). Urn

B contains one red marble paying $100, two green marbles that pay

$45, and it has 97 white marbles that pay $0. A marble will be

drawn blindly, at random, from the chosen urn, and the prize will

depend on the color of marble drawn. Would you rather draw a ball

from A or from B?

In OPT, people are assumed to simplify such choices by

editing (Kahneman & Tversky, 1979). Gamble A has two

branches with probability .01 to win $100. In prospect theory,

these two branches are combined to form a two-branch gamble,

A�, with one branch of .02 to win $100 and a second branch of

.98 to win $0. If a person were to combine the two branches

leading to the same consequence, then A and A� would be the

same, so the choice between A and B would be the same as that

between A� and B, as follows:

A�: .02 probability to win $100 B: .01 probability to win $100
.98 probability to win $0 .02 probability to win $45

.97 probability to win $0

In CPT, the equivalence of these choices is guaranteed by its

most general representation, with or without any additional steps

of editing (proof in Birnbaum & Navarrete, 1998, pp. 57–58). As

is clear in this study, this equivalence, common to both original

and cumulative prospect theories, is empirically false.

In OPT, it was also assumed that people cancel common

branches. In the example, A and B share a common branch of .01

to win $100, so this branch might be cancelled before a choice is

made. If so, then the choice between A and B should be the same

as the following:

A�: .01 probability to win $100 B�: .02 probability to win $45
.99 probability to win $0 .98 probability to win $0

In CPT, the representation does not, however, satisfy cancella-

tion in general. But if people were assumed to use cancellation as

an editing rule before evaluating the gambles, then they might

satisfy this property as well. As we see in this article, this property

can also be rejected when it is tested empirically.

These two principles, combination and cancellation, are violated

by branch-weighting theories such as TAX, RAM, and GDU.

Thus, the three-branch gamble, A, and the two-branch gamble A�,

which are equivalent in prospect theory, are different in RAM and

TAX, except in special cases. Furthermore, these models do not

assume that people “trim trees” by canceling branches common to

both alternatives in a choice.

It will be helpful to preview three other issues that distin-

guish descriptive decision theories: the source of risk aversion,

the effects of splitting of branches, and the origins of loss

aversion.
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Two Theories of Risk Aversion

The term risk aversion refers to the empirical finding that people

often prefer a sure thing over a gamble with the same or even

higher expected value (EV). Consider the following choice:

F: $45 for sure G: .50 probability to win $0

.50 probability to win $100

This represents a choice between F, a “sure thing” to win $45,

and a two-branch gamble, G, with equal chances of winning $0 or

$100. The lower branch of G is .5 to win $0, and the higher branch

is .5 to win $100. Most people prefer $45 for sure rather than

gamble G, even though G has a higher expected value of $50;

therefore, they are said to exhibit risk averse preferences.

Two distinct ways of explaining such risk aversion are illus-

trated in Figures 1 and 2. In this example, a person prefers any cash

value greater than $33.3 to the gamble with equal chances of

winning $100 or $0, and this same person prefers the gamble to

any cash value less than $33.3. In EU theory, it is assumed that

people choose F over G (denoted F � G) if and only if EU(F) �

EU(G), where

EU�F� � � piu�xi�, (1)

and u(x) is the utility (subjective value) of the cash prize, x. In

Figure 1, there is a nonlinear transformation from objective money

to utility (subjective value). If this utility function, u(x), is a

concave downward function of money, x, then the expected utility

of G (fifty-fifty to win $100 or $0) can be less than that of F($45

for sure). For example, if u(x) � x.63, then u(F) � 11.0, and

EU(G) � .5u(0) � .5u(100) � 9.1.

Because EU(F) � EU(G), EU can imply preference for F over

G. Figure 1 shows that on the utility continuum, the balance point

on the transformed scale (the expectation) corresponds to the

utility of $33.3. Thus, this person should be indifferent between a

sure gain of $33.3 and gamble G (denoted $33.3 � G). The cash

value with the same utility as a gamble is known as the gamble’s

certainty equivalent, CE(G) � u	1[EU(G)]. In this case, CE(G) �

$33.3. Similarly, EU can accommodate risk seeking by means of

a positively accelerated u(x) function and risk neutrality with a

linear utility function.

A second way to explain risk aversion is shown in Figure 2. In

the TAX model illustrated, one third of the weight of the higher

branch is taken from the branch to win $100 and assigned to the

lower valued branch to win $0. The weights of the lower and

higher branches are thus 2/3 and 1/3, respectively, so the balance

point corresponds to a CE of $33.3. In this example, the transfor-

mation from money to utility is linear, and it is weighting rather

than utility that produces risk aversion. Intuitively, the extra

weight applied to the lowest consequence represents a transfer of

attention from the highest to lowest consequence of the gamble.

Although the difference between the utility and weight theories

(Figure 1 vs. Figure 2) might seem merely two equivalent math-

ematical tricks to account for the same thing, these two models

lead to very different implications that can be tested empirically, as

shown in the Violations of Gain–Loss Separability section.

Whereas EU (see Figure 1) attributes risk aversion to the utility

function, the configural weight TAX model (see Figure 2) at-

tributes risk aversion to a transfer of attention from the higher to

the lower valued branch. When people give more attention (place

more weight) on the branch leading to lower consequence, they

will be risk averse, all other factors being the same.

Why might people place more weight on lower valued conse-

quences? Birnbaum and Stegner (1979) theorized that judges who

evaluate risky or uncertain objects have asymmetric costs for over-

as opposed to underestimation of value. Participants in the 1979

study were asked to judge the value of used cars on the basis of

blue book value and advice from people who examined the cars.

Birnbaum and Stegner theorized that the configural weights could

be manipulated by instructions to identify with the buyer, seller, or

a neutral judge who was asked to evaluate the “fair” price of the

cars. Birnbaum and Stegner found that when people are asked to

Figure 1. Utility theory of risk aversion. Expected utility is the center of

gravity. The gamble, G � ($100, .5; $0), is represented as a probability

distribution, with half of its weight at 0 and half at 100. The expected value

is 50, the balance point in the upper portion of the figure. In the lower

portion of the figure, distance along the scale corresponds to utility,

illustrated with the function u(x) � x.63. Marginal differences in utility

between $20 increments decrease as one goes up the scale. The balance

point on the utility axis corresponds to $33.3, which is the certainty

equivalent of this gamble.

Figure 2. A configural weight theory, illustrated here with u(x) � x.

Suppose one third of the weight of the higher branch (win $100) is

transferred to the lower branch (win $0), then the certainty equivalent

(balance point) would be $33.3, same as in Figure 1. Expected utility (see

Figure 1) and configural weighting (as illustrated in this figure) can both

describe risk aversion, but they make different predictions that can be

tested.
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advise buyers, they place greater weight on the lower estimates of

value, and when advising sellers, they place more weight on the

higher estimates.

According to the theory, people place more weight on lower

estimates because the more costly error for a buyer is paying too

much for a car, whereas the more costly error for the seller is to

accept too low a value. Birnbaum, Coffey, Mellers, and Weiss

(1992) presented a derivation showing that configural weighting

models can be deduced from asymmetric cost functions (see also

Birnbaum & McIntosh, 1996). Weber (1994) reviewed this intui-

tive basis for configural weighting and contrasted it with other

intuitions that lead to different predictions. Diecidue and Wakker

(2001) presented the intuitive ideas behind the rank-dependent

models. As shown in The Case Against Prospect Theories in

Choice section below, these alternate intuitions that might seem

similar when described in words lead to very different predictions

that can be tested empirically.

Quiggin’s (1993) RDU, Luce and Fishburn’s (1991, 1995)

RSDU, Tversky and Kahneman’s (1992) CPT, Marley and Luce’s

(2001) idempotent, lower GDU, Birnbaum’s (1974a) range model,

his (1997) RAM, and TAX models are all members of a generic

class of configural weight models in that they can account for risk

aversion by the assumption that branches with lower consequences

receive greater weight. In these models, configural weighting

describes risk aversion apart from the nonlinear transformation

from money to utility (Lopes, 1990).

These two ways to represent risk aversion are not mutually

exclusive; therefore, both mechanisms might combine to produce

risk aversion or risk seeking in a given person. The next issue

subdivides these models into three groups that can also be com-

pared by experiment with each other.

Two Theories of Branch Splitting

Let G � (x, p; y, q; z, r) represent a three-branch gamble that

yields monetary consequences of x with probability p, y with

probability q, and z otherwise (r � 1 – p – q). A branch of a

gamble is a probability (event)–consequence pair that is distinct in

the display to the decision maker.

Consider the two-branch gamble G � ($100, .5; $0, .5). Suppose

we split the branch of .5 to win $100 into two branches of .25 to

win $100. That creates a three-branch gamble, G� � ($100, .25;

$100, .25; $0, .5), which is a “split” form of G, which is called the

coalesced form. It should be clear that there are many ways to split

G but only one way to coalesce branches from G� to G. According

to upper coalescing, G � G�. Similarly, suppose we split the lower

branch of G, G� � ($100, .5; $0, .25; $0, .25), which is another

split version of G with two lower branches of .25 to win $0. By

lower coalescing, it is assumed that G � G�.

We can divide theories in three classes: First, some models

satisfy all types of coalescing (including RDU, RSDU, CPT, EU,

and OPT with the editing principle of combination). Second, there

are models that violate both upper and lower coalescing (including

RAM, TAX, and subjectively weighted utility [SWU] also called

“stripped” prospect theory, without the editing rules). Third, some

models satisfy some but not all forms of coalescing; for example,

idempotent, lower GDU satisfies upper coalescing and violates

lower coalescing, except in a special case in which it reduces to

RDU. According to the RDU/RSDU/CPT models, a gamble has

the same value (utility) whether branches are split or coalesced.

According to models that violate coalescing, however, the sum

of the weights of the two splinters need not equal the weight of the

coalesced branch. In particular, these models (as fit to data) imply

that the total weight of the splinters typically exceeds the weight of

the coalesced branch.

Theories that violate coalescing can also be further subdivided

into those that satisfy idempotence (e.g., RAM and TAX) and

those that do not satisfy this property (e.g., OPT without its editing

rules). Idempotence is the assumption that x � (x, p1; x, p2; . . .; x,

pn) for all n and {pi} such that ¥i�1
n pi � 1.

Two Theories of Loss Aversion

The term loss aversion has been used to refer both to a behav-

ioral phenomenon and to a class of theories that might account for

the phenomenon (Tversky & Kahneman, 1992). This circular

terminology creates confusion if one believes that the phenomena

can be replicated but that the theory is not correct. As Schmidt and

Zank (2005) noted, empirical phenomena of “risk aversion” and

“loss aversion” should be distinguished from theories of those

phenomena. When the same terms are used for both the phenom-

enon to be explained and for a particular account of that phenom-

enon, it can lead to theoretical confusion. I use the term loss

aversion to refer to the behavioral finding that people show risk

aversion for mixed gambles. Although the data for loss aversion

are less numerous and less consistent than the evidence for risk

aversion (Birnbaum, 2006; Birnbaum & Bahra, 2007; Ert & Erev,

in press), researchers have reported that undergraduates will only

accept gambles to win x or lose y with equal probability if the

amount to win exceeds twice the amount to lose (Tversky &

Kahneman, 1992). Two ideas have been proposed to account for

this finding.

In CPT, loss aversion is represented by the utility function, as

defined on gains and losses. The utility account of loss aversion

assumes that �u(	x)� � u(x) for x � 0; that is, that “losses loom

larger than gains.” Tversky and Kahneman (1992) theorized that

the utility for losses is a multiple of the utility for equal gains:

u�	x� � 	
u�x�,

x � 0, (2)

where 
 is the loss-aversion coefficient. Suppose 
 � 2. If so, then

it follows from this model of CPT that a fifty-fifty gamble to either

win or lose $100 will have a negative utility, assuming the weight-

ings of .5 to win and .5 to lose are equal. A number of other

expressions have been suggested to describe how utilities of gains

relate to losses of equal absolute value; these are reviewed and

compared in Abdellaoui, Bleichrodt, and Paraschiv (2007). These

variations all attribute loss aversion to the utility function.

A second way to represent loss aversion, in contrast, is the idea

that loss aversion is another consequence of configural weighting.

As in Figure 2, suppose the weights of two equally likely branches

to lose $100 or win $100 are 2/3 and 1/3, respectively. Even with

u(x) � x for both positive and negative values of x (e.g., u(	100)

� 	u(100) � –100), this model implies that this mixed gamble

has a value of –$33, so people would avoid such mixed gambles.
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These two theories of loss aversion—utility versus weight—

make different predictions for a testable property known as gain–

loss separability, as is shown in the Violations of Gain–Loss

Separability section. These theories also give different accounts of

buying and selling prices (sometimes called the “endowment”

effect) that can be tested. The configural weighting theory of

buying and selling prices (Birnbaum & Stegner, 1979) assumes

that buyers place more weight on lower estimates, and sellers place

relatively more weight on higher estimates of value. According to

the model of Tversky and Kahneman (1991), however, the differ-

ence between willingness to pay (buyer’s prices) and willingness

to accept (seller’s) prices is due to a kink in the utility function, as

in Equation 2 (Birnbaum & Zimmermann, 1998). As is the case

with risk aversion, these two factors are not mutually exclusive;

both factors could contribute to the phenomenon.

Notation and Terminology

There are a few other terms that should be defined here. Pref-

erences are said to be transitive if for all A, B, and C, A � B and

B � C implies A � C. All of the models considered in this article

are transitive; intransitive models are considered in detail else-

where (Birnbaum, 2008a, 2008b; Birnbaum & Gutierrez, 2007;

Birnbaum & LaCroix, 2008).

Consequence monotonicity is the assumption that if one conse-

quence in a gamble is improved, holding everything else constant,

then the gamble with the better consequence should be preferred.

For example, if a person prefers $100 to $50, then the gamble G �

($100, 0.5; $0) should be preferred to F � ($50, 0.5; $0).

Branch independence is weaker than Savage’s (1954) “sure

thing” axiom. It holds that if two gambles have an identical

probability-consequence branch, then the value of the consequence

on that branch can be changed without altering the order of the

gambles induced by the other branches. For example, for three-

branch gambles, branch independence requires

S � �x, p; y, q; z, r� � R � �x�, p�; y�, q�; z, r�

if and only if

S� � �x, p; y, q; z�, r� � R� � �x�, p�; y�, q�; z�, r�, (3)

where the consequences (x, y, z, x�, y�, z�) are all distinct, all

probabilities are greater than zero and sum to 1 in each gamble, so

p � q � p� � q�. The branch (z, r) is known as the common branch

in the first choice, and (z�, r) is the common branch in the second

choice. This principle is weaker than Savage’s independence ax-

iom because it holds for gambles with equal numbers of branches

of known probability and also because it does not presume coa-

lescing.

When the distributions and number of consequences in the

gambles are restricted to be the same in all four gambles (p � p�;

q � q�), then this property is termed restricted branch indepen-

dence (RBI). The special case of restricted branch independence,

in which corresponding consequences retain the same ranks, is

termed comonotonic restricted branch independence, also known

as comonotonic independence (Wakker et al., 1994). Cases of

(unrestricted) branch independence in which only the probability

distribution is systematically varied are termed distribution inde-

pendence.

Stochastic dominance (first-order stochastic dominance) is the

relation between nonidentical gambles, F and G, such that for all

values of x, the probability of winning x or more in gamble G is

greater than or equal to the probability of winning x or more in

gamble F. If so, then G is said to stochastically dominate gamble

F. The statement that preferences satisfy stochastic dominance

means that if G dominates F, then F will not be preferred to G.

Subjectively Weighted Utility and Prospect Theories

Subjectively Weighted Utility Theory

Let G � (x1, p1; x2, p2; . . .; xi, pi; . . .; xn, pn) represent a gamble

to win xi with probability pi, where the n outcomes are mutually

exclusive and exhaustive. Edwards (1954, 1962) considered sub-

jectively weighted utility (SWU) models of the form,

SWU�G� � �
i�1

n

w� pi�u�xi�. (4)

Edwards (1954) discussed both S-shaped and inverse-S-shaped

functions as candidates for the weighting function, w(p). When

w(p) � p, this model reduces to EU. Karmarkar (1978, 1979) also

worked with this type of model as a description of risky decision

making. Edwards (1962) theorized that weighting functions might

differ for different configurations of consequences. He made ref-

erence to a “book of weights” with different pages for different

cases, each of which would describe a weighting function, wC( p).

Edwards (1962) wrote:

The data now available suggest the speculation that there may be

exactly five pages in that book, each page defined by a class of

possible payoff arrangements. In Class 1, all possible outcomes have

utilities greater than zero. In Class 2, the worst possible outcome (or

outcomes, if there are several possible outcomes all with equal utility),

has a utility of zero. In Class 3, at least one possible outcome has a

positive utility and at least one possible outcome has a negative utility.

In Class 4, the best possible outcome or outcomes has a utility of zero.

And in Class 5, all possible outcomes have negative utilities. (p. 128)

Prospect Theory

Kahneman and Tversky’s (1979) prospect theory is similar to

that of Edwards (1962), except it was restricted to gambles with no

more than two nonzero consequences, and it reduced the number

of pages in the book of weights to two—prospects (gambles) with

and without the consequence of zero. This means that the 1979

theory is silent on many of the tests and properties that are

described in this article unless assumptions are made about how to

extend it to gambles with more than two nonzero consequences.

One way to extend OPT is to treat the theory as the special case of

the Edwards (1962) model.

Another way to generalize it is to use Equation 4 as “stripped”

prospect theory (Starmer & Sugden, 1993). The term stripped was

used to indicate that the editing principles and the use of differ-

ential weighting for the consequence of $0 have been removed,

though different weighting functions would be allowed for positive

and negative consequences. A third way to extend it is to use CPT

(Tversky & Kahneman, 1992), defined in the RDU and CPT

section. Each of these approaches leads to a different theory, so it
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is best to consider “prospect theory” as a large family of different,

contradictory theories.

Besides the restriction in OPT to prospects with no more than

two nonzero consequences, the other new feature of OPT was the

idea that an editing phase precedes the evaluation phase. Kahne-

man (2003) described the development of the editing rules in an

article reviewing his collaboration with Amos Tversky that led to

his winning a share of the 2002 Nobel Prize. He described how,

when they were completing their 1979 article, they worried that

their model could be easily falsified. For example, Equation 4

predicts that people can violate stochastic dominance when every

consequence of one gamble is less than every consequence of the

other gamble (Birnbaum, 1999b; Fishburn, 1978). To rescue the

model from such implications they thought were false, they added

editing rules that provided preemptive excuses for potential refut-

ing evidence. The editing rules also provided ways to generalize

OPT to gambles with more than two nonzero branches.

Editing Rules in Prospect Theory

The six principles of editing are as follows:

A. Combination: Probabilities associated with identical out-

comes are combined. This principle implies coalescing.

B. Segregation: A riskless component is segregated from risky

components. “The prospect (300, .8; 200, .2) is naturally decom-

posed into a sure gain of 200 and the risky prospect (100, .8)”

(Kahneman & Tversky, 1979, p. 274).

C. Cancellation: Components shared by both alternatives are

discarded from the choice. “For example, the choice between (200,

.2; 100, .5; –50, .3) and (200, .2; 150, .5; –100, .3) can be reduced

by cancellation to a choice between (100, .5; –50, .3) and (150, .5;

–100, .3).” (Kahneman & Tversky, 1979, pp. 274–275). If subjects

cancel common components, then they will satisfy branch inde-

pendence, as described in the Decomposition of the Allais Common

Consequence Paradox section. Note that this example shows how

to handle three-branch gambles that are otherwise excluded from

the model and that it implies RBI.

D. Dominance: Transparently dominated alternatives are recog-

nized and eliminated. Without this principle, Equation 4 violates

dominance in cases in which people do not.

E. Simplification: Probabilities and consequences are rounded

off. This principle, combined with cancellation, could produce

violations of transitivity.

F. Priority of editing: Editing precedes and takes priority over

evaluation. Kahneman and Tversky (1979) remarked, “Because

the editing operations facilitate the task of decision, it is assumed

that they are performed whenever possible” (p. 275). The editing

rules are unfortunately imprecise, contradictory, and conflict with

the equations of prospect theory. This means that OPT often has

the misfortune (or luxury) of predicting opposite results, depend-

ing on what principles are invoked or the order in which they are

applied (Stevenson, Busemeyer, & Naylor, 1991). This makes the

theory easy to use post hoc but makes it difficult to use as a

predictive scientific model.

In Kahneman and Tversky’s (1979) article, there were 14 choice

problems, none of which involved gambles with more than two

nonzero consequences. To fit these 14 problems, there were two

functions (value and probability), a status quo point, and six

editing principles. In addition, special biases were postulated, such

as consequence “framing,” which contradicts the editing principle

of segregation. For example, when a participant is asked to choose

between $45 for sure and a 50-50 gamble to win $100 or $0, most

people take the sure $45. But if the person is given $100 contingent

on their taking one of two losing gambles, then he or she prefers

a 50-50 gamble to lose nothing or lose the $100 rather than take a

sure loss of $55. But if people can integrate the $100 endowment

into the losing gambles, then they would see that the two choices

are objectively the same. Similarly, if they could segregate the

“sure thing” in both cases, then they would also see that both

choices are objectively the same. Because of these complexities

and self-contradictions, it might seem that the editing rules make

prospect theory untestable. Nevertheless, if each editing rule is

taken as a separate scientific theory, it can be isolated and tested

one by one. So far, none of the editing rules has been found to be

consistent with results of such direct tests.

RDU and CPT

RDU theory was proposed as a way to explain the Allais

paradoxes without violating transparent dominance (Quiggin,

1982, 1985, 1993). CPT (Tversky & Kahneman, 1992) was con-

sidered an advance over OPT because it applied to gambles with

more than two nonzero consequences, and because it removed the

need for the editing rules of combination and dominance detection,

which are automatically guaranteed by the representation. CPT

uses the same representation as RSDU (Luce & Fishburn, 1991,

1995), though the two theories were derived from different as-

sumptions (Luce, 2000; Wakker & Tversky, 1993). CPT is also

more general than OPT in that it allows different weighting func-

tions for positive and negative consequences.

For gambles with strictly nonnegative consequences, RDU,

RSDU, and CPT all reduce to the same representation. With x1 �

x2 � . . . � xi � . . . � xn � 0, the representation is:

RDU�G� � �
i�1

n �W� ��
j�1

i

pj� � W���
j�1

i	1

pj��u�xi�, (5)

where RDU(G) is the rank-dependent expected utility of gamble

G; W�(P) is the weighting function of decumulative probability, Pi

� ¥j�1
i pj, which monotonically transforms decumulative proba-

bility to decumulative weight and assigns W�(0) � 0 and W�(1)

� 1.

For gambles of strictly negative consequences, a similar expres-

sion to that in Expression 5 is used, except W–(P) replaces W�(P),

where W–(P) is a function that assigns cumulative weight to

cumulative probability of negative consequences. For gambles

with mixed gains and losses, with consequences ranked such that:

x1 � x2 � . . . � xn � 0 � xm � . . . xn�2 � xn�1, CPT utility is

the sum of two terms, as follows:

CPT�G� � �
i�1

n �W���
j�1

i

pj� � W���
j�1

i	1

pj��u�xi�

� �
i�n�1

m �W	� �
j�n�1

i

pj� � W	� �
j�n�1

i	1

pj��u�xi�. (6)

This is the same as the representation in RSDU. Note that the

overall utility of a mixed gamble is just the sum of the evaluations
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of the “good” and “bad” parts of the gamble. This additive repre-

sentation implies gain–loss separability, as is shown in the Viola-

tions of Gain–Loss Separability section.

The parameterized model of CPT further specifies the functions

as follows: The utility (“value”) function is represented by u(x) �

x�, for x � 0. Tversky and Kahneman (1992) reported a best-fit

value of �̂ � 0.88. They fit negative consequences with the

assumption that u(	x) � 	
u(x), where 
, which represents “loss

aversion,” was estimated to be 2.25. The cumulative weighting

function for losses, W	(P), and the decumulative weighting func-

tion for gains, W�(P) were estimated to be nearly identical and

were both fit as inverse-S functions. Tversky and Kahneman

(1992) fit W�(P) � P�/[P� � (1 	 P)�]1/�, where �̂ � 0.61. This

function was also fit by the equation, W�(P) � cP�/[cP� � (1 	

P)�], where ĉ � 0.724 and �̂ � 0.61 (Tversky & Fox, 1995;

Tversky & Wakker, 1995). Throughout the remainder of the

present article, predictions are calculated using these parameter

values. For a review of functional forms and best-fit parameter

estimates in CPT, see Stott (2006).

RAM, TAX, and GDU Models

Six preliminary comments are in order. First, the approach

described here, like that of OPT or CPT, is purely descriptive. The

models are intended to describe and predict humans’ decisions and

judgments rather than to prescribe how people should decide.

Second, as in OPT and CPT, utility (or value) functions are defined

on changes from the status quo rather than total wealth states. See

also Edwards (1954, 1962) and Markowitz (1952).

Third, the approach is psychological; how stimuli are described,

presented, or framed is part of the theory (Edwards, 1954, 1962).

Indeed, these models were originally developed as models of

social judgment, perceptual psychophysics, and buying and selling

prices (Birnbaum, 1974a; Birnbaum, Parducci, & Gifford, 1971;

Birnbaum & Stegner, 1979). Two situations that are objectively

equivalent but described differently must be kept distinct in theory

if people respond differently to them. For example, the objective

probability of “heads” in a coin toss equals the probability of

drawing a black card from a standard deck, but people might have

different subjective probabilities for these events.

Fourth, RAM, TAX, and GDU models, like SWU, OPT, and

CPT, emphasize the role of weighting of probability; it is in the

details of this weighting that these theories differ. Whereas CPT

works with decumulative probabilities, RAM, TAX, and GDU

work with branch probabilities.

Fifth, although I use the terms utility and value interchangeably and

use the notation u(x) to represent utility (value), rather than v(x) as in

OPT and CPT, the u(x) functions of configural weight models are

treated as psychophysical functions and should not be confused with

“utility,” as defined by EU, nor should these functions be imbued with

other excess meaning. The estimated utility functions in different

models of risky decision making will in fact be quite different.

The psychophysical functions that convert objective probabili-

ties to decision weights will reflect principles of psychophysics

and judgment, including contextual effects (Birnbaum, 1974c,

1982, 1992a, 1992b; Mellers & Birnbaum, 19982; Rose & Birn-

baum, 1975). Subjective scales of utility of money and probability

will also show individual differences. In addition, configural

weighting will be affected by individual differences and by ma-

nipulations that affect the judge’s point of view, such as instruc-

tions to identify with a buyer or seller (Birnbaum et al., 1992;

Birnbaum & Stegner, 1979).

Despite these sources of variation, models preserving scale

convergence (the assumption that two ways to measure utility for

the same person in the same context should be the same) are

preferred over those that require a new scale of utility in each new

situation (Birnbaum, 1974a, 1982; Birnbaum & Sutton, 1992;

Mellers, Ordóñez, & Birnbaum, 1992).

Sixth, in my description of configural weight models, I pointed out

that “the weight of an item depends in part on its rank within the set”

(Birnbaum, 1974a, p. 559). Thus, the configural weight models have

some similarities to the models that later became known as “rank-

dependent” weighting models. However, in the RAM or TAX mod-

els, the weight of each branch depends on the ranks of discrete branch

consequences, whereas in the RDU models, decumulative weight is a

monotonic function of decumulative probability. In other words, the

definition of rank differs in the two approaches. For example, there

are exactly two ranks (lower and higher) in two-branch gambles, and

there are exactly three ranks (lowest, middle, highest) in three-branch

gambles, no matter what their probabilities are.

The RAM Model

In RAM, the weight of each branch of a gamble is the product

of a function of the branch’s probability multiplied by a constant

that depends on the rank and augmented sign of the branch’s

consequence (Birnbaum, 1997). Augmented sign takes on three

levels, –, �, and 0. Rank refers to the rank of the branch’s

consequence relative to other branches in the gamble, ranked such

that x1 � x2 � . . . � xn.

RAMU�G� �

�
i�1

n

a�i, n, si�t� pi�u�xi�

�
i�1

n

a�i, n, si�t� pi�

, (7)

where RAMU(G) is the utility of gamble G in the RAM model,

t( p) is a strictly monotonic function of probability, i and si are the

rank and augmented sign of the branch’s consequence, and a(i, n,

si) are the rank and augmented sign-affected branch weights. Rank

takes on levels of i � 1 or 2 in two-branch gambles; i � 1, 2, or

3 in three-branch gambles, and so on. The function t( p) describes

how a branch’s weight depends on its probability, apart from these

configural effects.

For choices between two-, three-, and four-branch gambles on

strictly positive consequences, it has been found that rank weights

are approximately equal to their branch ranks. In other words, the

rank weights in a three-branch gamble are 3 for the lowest branch,

2 for the middle branch, and 1 for the branch with the highest

consequence. In two-branch gambles, lower and upper branches

have weights of 2 and 1, respectively. In practice, t( p) is approx-

imated by a power function, t( p) � p� (typically, 0  �  1), and

u(x) is also approximated by a power function, u(x) � x�, where

typically 0  �  1. For gambles with small stakes (pocket

money), u(x) � x for $1  x  $150 provides a good enough

approximation to illustrate the model. These parameters roughly
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approximate the data of Tversky and Kahneman (1992). The

model with these parameters are called the “prior” RAM model.

The term prior is used to indicate that parameters were taken to

approximate previous data and used to predict new phenomena of

choice that had not been previously tested.

For two-branch gambles on positive consequences, this model

implies that cash equivalents (CEs) are an inverse-S function of

probability to win the higher consequence. For example, with u(x)

� x, CEs of gambles, G � ($100, p; $0), are given by CE�G�

�
1 � p�

� 100

1 � p�
� 2 � �1 � p�� , which gives a good approximation of

empirical data of Tversky and Kahneman (1992), as shown in

Figure 9 of Birnbaum (1997). It is important to keep in mind that

the probability weighting function, t( p) � p�, is a negatively

accelerated function, not an inverse S, even though CEs are an

inverse-S function of probability in binary gambles.

Equation 7 allows for different weighting of positive, negative,

and zero branches with the same rank (Birnbaum, 1997). However,

one might simplify further by assuming that in mixed gambles

(with positive and negative consequences), consequences are

weighted in the same fashion as for strictly positive gambles. This

means that negative consequences get greater weight than equally

probable positive consequences in mixed gambles. This approach

contrasts with CPT, in which the utilities of negative consequences

are changed by a “loss aversion” parameter, but the decumulative

and cumulative weighting functions for positive and negative

consequences are approximately the same.

Another simplification can be added that will imply reflection.

To describe gambles with consequences that are all less than or

equal to zero, one can use the same equations with absolute values

of consequences and then multiply the result by –1. This is

probably an oversimplification, because reflection is not perfect

(Birnbaum, 2006). This simplification implies that the order for

strictly nonnegative gambles �A, B, �� and for strictly nonpositive

gambles �	A, 	B, �� will show “reflection”; that is, A � BN	A

� 	B, where –A is the same as A, except that each positive

consequence has been converted from a gain to a loss.

When the judge’s point of view is manipulated (e.g., buyer’s vs.

seller’s prices), it is assumed that the only parameters affected are

the rank weights (Birnbaum, 1997; Birnbaum & Beeghley, 1997;

Birnbaum et al., 1992; Birnbaum & Stegner, 1979; Birnbaum &

Sutton, 1992; Birnbaum & Zimmermann, 1998). The rank weights

for the buyer’s point of view are similar to those that reproduce

choices but are typically more risk averse. The rank weights for the

seller’s point of view show greater weight of branches leading to

the better consequences.

Intuitively, the RAM model says that people evaluate each

gamble as a weighted average in which the weight of a probability-

consequence branch is a function of probability and rank of the

branch. If branch weights are independent of rank, and if � � 1,

then this model reduces to EU. However, when � � 1 and branch

weights are unequal, this model violates coalescing.

The TAX Model

Like the RAM model, the TAX model represents the utility of

a gamble as a weighted average of the utilities of the conse-

quences. Weights also depend on probability and rank of the

branches; however, in TAX, the branch weights result from trans-

fers of attention from branch to branch. Intuitively, a decision

maker deliberates by attending to the possible consequences of an

action. Those branches that are more probable deserve more at-

tention, but branches leading to lower valued consequences also

deserve greater attention if a person is risk averse. In the TAX

model, these shifts in attention are represented by weights trans-

ferred from branch to branch. If there were no configural effects,

then each branch would have weights purely as a function of

probability, t( p). However, depending on the participant’s point of

view (“risk attitude”), weight is transferred from branch to branch.

Let �( pi, pk, n) represents the weight transferred from branch k to

branch i (k � i, so xk � xi, hence transferred from branches with

higher consequences to branches with lower consequences). The

TAX model can then be written as:

TAXU�G� �

�
i�1

n

t� pi�u�xi� � �
i�1

n

�
k�1

i

�u�xi� � u�xk���� pi, pk, n�

�
i�1

n

t� pi�

.

(8)

This model is fairly general. Note that if the weight transfers are all

zero, then this model reduces to a subjectively weighted average

utility model (Birnbaum, 1999a); unlike SWU and OPT, this

model satisfies idempotence. Several other interesting special

cases of Equation 8 have been studied by Marley and Luce (2001,

2005).

The “special” TAX model (Birnbaum, 1999b; Birnbaum &

Stegner, 1979) assumes that all weight transfers are the same fixed

proportion of the weight of the branch giving up weight, as

follows:

�� pi, pk, n� �

� � t� pk�

n � 1
, � � 0

� � t� pi�

n � 1
, � � 0

. (8a)

In this TAX model, the amount of weight transferred between any

two branches is a fixed proportion of the (transformed) probability

of the branch losing weight. If lower ranked branches have more

importance (as they would do in a “risk-averse” person), then it is

theorized that weight is transferred from branches with higher

consequences to those with lower valued consequences, that is, �

� 0. Intuitively, this model assumes that the total amount of

attention available is fixed, and when attention is shifted from one

branch to another, what is taken from one branch is given to the

others.1

In a binary gamble with two equiprobable, positive branches

(assuming � � 0 and �  1), splitting the upper branch tends to

make a gamble better, and splitting the lower branch tends to make

1 Three calculators are freely available from http://psych.fullerton.edu/

mbirnbaum/calculators/

These calculators also allow calculations of RAM, TAX, the CPT model

of Tversky and Kahneman (1992), as well as the revised model in Tversky

and Wakker (1995). A CPT calculator by Veronika Köbberling is also

linked from the same URL.
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it worse. Splitting both upper and lower branches tends to make

such a gamble worse. Variations of this model in which the

denominator in Expression 8a is n or n 	 1 instead of n � 1 have

also been considered to represent cases in which splitting both

upper and lower branches will have no effect or improve the

gamble, respectively (Birnbaum, 2007b).

This model is equivalent to that of Birnbaum and Chavez

(1997), who based it on the “revised” configural weight model in

Birnbaum and Stegner (1979). This model was also illustrated in

Birnbaum and McIntosh (1996, Figure 3). However, the notational

conventions have been changed from earlier presentations, so that

� � 0 in the present article corresponds to a weight transfer from

higher ranked to lower ranked consequences, which was repre-

sented by �  0 in previous articles.

When lower valued branches receive greater weight (� � 0), this

special TAX model can be written for three-branch gambles, G �

(x1, p1; x2, p2; x3, p3), where x1 � x2 � x3 � 0 as follows:

TAXU�G� �
Au�x1� � Bu�x2� � Cu�x3�

A � B � C
. (9)

where

A � t� p1� � 2�t� p1�/4

B � t� p2� � �t� p2�/4 � �t� p1�/4

C � t� p3� � �t� p1�/4 � �t� p2�/4

In three-branch gambles with positive consequences, when � �

1, one fourth of the probability weight of any higher valued branch

is transferred to each lower valued branch.

In two-branch gambles, with � � 1, one third of the weight of

the higher branch is given to the lower branch (as in Figure 2).

The special TAX model has three parameters, � represents the

psychophysical function for probability, t( p) � p�, � represents

the utility (value) function of monetary consequences, u(x) � x�,

and � represents the configural transfer of weight (which affects

risk aversion or risk seeking).

One can roughly approximate the data of Tversky and Kahne-

man (1992) with � � 1, � � 0.7, and � � 1 for nonnegative

consequences less than $150. I use the term prior TAX model in

reference to these parameter values. Although best-fit estimates of

�̂ are typically less than 1 (Birnbaum & Chavez, 1997; Birnbaum

& Navarrete, 1998), the linear approximation is used here to

simplify the presentation and because it suffices to reproduce most

of the phenomena reviewed here. This simplification also shows

that most of the major phenomena can be explained in terms of

weights rather than by nonlinear utility. However, it should also be

noted that 71% of individuals tested by Birnbaum and Navarrete

(1998) had best-fit estimates of �̂ less than 1.

For gambles composed of strictly positive, strictly negative, or

mixed consequences, different values of � are allowed in TAX.

But a simpler model appears to give a decent first approximation;

namely, suppose the same � can be used for gambles with non-

negative and mixed consequences. For gambles with strictly non-

positive consequences, the same value of � can be used with

absolute values of the consequences, except using reflection to

generate the predictions. With these simplifying assumptions (one

value of � instead of three), the model implies the fourfold pattern

of risk seeking and risk aversion, the Allais paradoxes, loss aver-

sion, reflection, and it also describes all 11 new paradoxes re-

viewed here. Similarly, the model does not require a kink in the

utility function for positive and negative consequences to account

for these phenomena. Results with mixed gambles (with positive

and negative consequences) show that the simplifying assumption,

u(x) � x, for both positive and negative consequences is not

completely accurate (Birnbaum, 2006, 2007b). Nevertheless, these

assumptions do give a reasonable first approximation to the results

of Birnbaum and Bahra (2007), which refute both versions of

prospect theory.

For binary gambles of the form, G � (x, p; 0, 1 	 p), with the

prior parameters, certainty equivalents in the TAX model are also

an inverse-S function of probability to win the larger prize:

CE�x, p; 0� � u	1
�1 � �/3�p�

p�
� �1 � p�� u�x�

Figure 3 shows predicted certainty equivalents for binary gambles

of the form G � ($100, p; $0, 1 	 p) as a function of the

parameters � and �, with � � 0. When �  1, the curves have an

inverse-S shape, and when � � 1, the curves have an S shape. The

value of � shifts the curves up or down, influencing risk aversion.

These predictions are quite similar to those of CPT, so it should be

clear that researchers cannot test very well between TAX and CPT

by studying binary gambles.

It is also important to keep in mind that this figure does not

represent the probability weighting function in the TAX model,

which is t( p) � p�. As is shown in several sections below, this

distinction is crucial to understanding how TAX predicts choices

between three-branch gambles. I show that the interpretation in

CPT that this curve represents the decumulative weighting func-

tion leads it to wrong predictions. In CPT, this curve is interpreted

to mean that people give less weight to consequences near the
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Figure 3. Predicted certainty equivalents in the transfer of attention

exchange model for gambles of the form, G � ($100, p; $0), as a function

of probability to win $100, with separate curves for different values of the

utility parameter, �, and the probability weighting parameter, �. The

configural weight transfer parameter, �, is fixed to 0. As in cumulative

prospect theory, these curves have an inverse-S shape when �  1.
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median of the probability distribution than they do to conse-

quences ranked at either extreme of the probability distribution. As

is shown in several sections below, when this implication of CPT

is tested directly, it is shown to be empirically false.

Figure 4 shows the effects of the configural weight transfer

parameter, � (with the other parameters fixed: � � 1 and � � 1).

When � � 0, weight is transferred from the higher consequence to

the lower one, and there is an upper limit on the value of the

certainty equivalent as p3 1, creating a discontinuity. When � 

0, weight is transferred from the branch with the lower conse-

quence to the branch with the higher consequence, and there is a

lower limit on the certainty equivalent as 0 4 p. Such a discon-

tinuity was postulated by Birnbaum and Stegner (1979) to account

for buying and selling prices as well as earlier results with eval-

uative and moral judgments (Birnbaum, 1973b; Riskey & Birn-

baum, 1974).

For example, a person who has done one very bad deed is rated

low in morality, despite doing a large number of good deeds. It

appears that the worst deed a person has done sets an upper limit

on the highest moral evaluation that person can achieve (Birn-

baum, 1973b; Riskey & Birnbaum, 1974). Similarly, for buying

prices, any chance that the merchandise is defective sets an upper

limit on the price a person is willing to pay. For sellers, any chance

that the merchandise is valuable tends to set a lower limit on the

amount they will accept. For gambles, it means that as long as it is

possible the gamble pays $0, there is an upper limit on the

evaluation of that gamble that falls below the value of the highest

consequence. A similar discontinuity was assumed in the weight-

ing function of Kahneman and Tversky (1979) to account for the

“certainty effect” of Allais.

In practice, the parameters of TAX for the typical undergraduate

produce an inverse-S curve with a gap at the upper end. The

median estimates reported by Birnbaum and Navarrete (1998)

were �̂ � 0.41, �̂ � 0.79, and �̂ � 0.95. (Because the authors used

the previous notation convention in their article, the value of �̂ in

that article was reported as –0.95).

Another way to understand the intuitions of the special TAX

model is to see that it can be interpreted as a model in which

people respond to both a gamble’s expectation and also to its

spread. For example in binary, gambles, G � (x, p; y, 1 	 p), x �

y � 0, � � 0, special TAX simplifies to the following:

TAX�G� �
t� p�

t� p� � t�1 � p�
u�x� �

t�1 � p�

t� p� � t�1 � p�
u�y�

�
��/3�t� p�

t� p� � t�1 � p�
�u�x� � u�y��.

Note that this is the sum of a weighted average of utilities (first two

terms) and a third term that depends on the spread of the utilities.

When � � 0, people are averse to the spread of consequences

(analogous to risk or variance) in the gambles. When p � 1/2, this

equation further reduces to:

TAX�G� �
u�x� � u�y�

2
�

�

6
�u�x� � u�y��.

Connections between rank-affected configural weighting and this

range form of the model are further discussed in Birnbaum (1974a,

1982); Birnbaum and Stegner (1979); Birnbaum et al. (1992); and

Birnbaum et al. (1971). It can be seen that when � � 0, the special

TAX model reduces to a subjectively weighted average utility

model. (The subjectively weighted average utility model satisfies

idempotence and therefore does not violate stochastic dominance

in the same way as does stripped prospect theory; Birnbaum,

1999b.)

Viscusi’s (1989) prospective reference theory (PRT) is also a

special case of the TAX model in which � � 0 and t( p) � �p �

(1 	 �)/n, 0 � � � 1. EU theory is also a special case of TAX in

which � � 0 and t( p) � p. As is shown in the Violations of RBI

section, the TAX model produces violations of RBI only when �

� 0, but in CPT, these violations are produced when � � 1. PRT

implies no violations of RBI.

The GDU Model

Luce (2000, p. 200) proposed a “less restrictive theory” that

satisfies a property known as (lower) gains decomposition but that

does not necessarily satisfy coalescing. Marley and Luce (2001)

presented a representation theorem for GDU, and Marley and Luce

(2005) showed that this model is similar to TAX with respect to

many of the new paradoxes. The key idea is that a multibranch

gamble can be decomposed into a series of two-branch gambles.

The decomposition can be viewed as a tree in which a three-branch

gamble is resolved in two stages: first, the chance to win the lowest

consequence, and otherwise to win a binary gamble to win one of

the two higher prizes. Binary gambles are represented by RDU, as

follows:

GDU�x, p; y� � W� p�u�x� � �1 � W� p��u�y�, (10)

where GDU(G) is the utility of G according to this model.

For a three-branch gamble, G � (x, p; y, q; z, 1 	 p 	 q), where

x � y � z � 0, the lower gains decomposition rule (Luce, 2000,

pp. 200–202) can be written as follows:
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Figure 4. Predicted certainty equivalents in the transfer of attention

exchange model for gambles of the form, G � ($100, p; $0), as a function

of probability to win $100, with a separate curve for each value of �

(labeled as “delta”), with � � � � 1.
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GDU�G� � W� p � q��GDU�x, p/� p � q�; y�

� �1 � W� p � q��u�z�. (11)

Note that this utility is decomposed into a gamble either to win the

worst outcome, z, or to win a binary gamble between x and y

otherwise. Marley and Luce (2001) have shown that RDU is a

special case of GDU in which the weights take on a special form.

To illustrate this model, let u(x) � x�, and let the weighting

function be approximated by the expression developed by Prelec

(1998) and by Luce (2000):

W� p� � exp�	��	ln p���. (12)

With these assumptions, this model has a total of three parameters

for nonnegative gambles, two for the weighting function and one

for the utility function. Luce (2000, pp. 200–202) showed how this

model could account for certain phenomena that refute CPT.

Marley and Luce (2001, 2005) showed that lower GDU is

similar to TAX in that it violates coalescing and properties derived

from coalescing, but it is distinct from TAX. Birnbaum (2005b,

2007b) noted that this model satisfies upper coalescing. Luce, Ng,

Marley, and Aczél (in press) have recently developed models that

violate both coalescing and idempotence. Such models satisfy

gains decomposition but do not necessarily satisfy binary RDU.

Such models allow a utility for gambling, apart from winning.

The Case Against Prospect Theories in Choice

Violations of Coalescing: Splitting Effects

Because RDU, RSDU, and CPT models satisfy coalescing and

transitivity, they cannot explain “event-splitting” effects. Starmer

and Sugden (1993) and Humphrey (1995) found that preferences

depend on how branches are split or coalesced. Luce (2000)

expressed reservations concerning these tests because they were

conducted between groups of participants. Results that are ob-

served between subjects do not always replicate within subjects

(Birnbaum, 1999a). In this case, however, subsequent research has

determined that event-splitting effects (violations of coalescing

combined with transitivity) are robust and can be demonstrated

within subjects (Birnbaum, 1999c, 2004a, 2007b; Humphrey,

1998, 2000, 2001a, 2001b).

Consider the Choices 1.1 and 1.2 of Table 1. Each row of

Table 1 represents a different choice, which has been embedded

among many other choices and presented to a number of par-

ticipants.

In each choice, a marble will be drawn from an urn, and the color

of marble drawn blindly and randomly will determine your prize. You

can choose the urn from which the marble will be drawn. Which urn

would you choose in Problem 1.1, shown below?

A: 85 red marbles to win $100 B: 85 black marbles to win $100
10 white marbles to win $50 10 yellow marbles to win $100
05 blue marbles to win $50 05 purple marbles to win $7

On a different trial, mixed among other choices, participants are

asked, “Which urn would you choose in Problem 1.2?”

A�: 85 black marbles to win $100 B�: 95 red marbles to win $100
15 yellow marbles to win $50 05 white marbles to win $7

Note that A� is the same as A, except for coalescing, and B� is

also the same prospect as B. So if a person obeys coalescing, then

that person should make the same choice between A and B as

between A� and B�, apart from random “error.” Birnbaum (2004a)

presented these two choices included among other choices to 200

participants, finding that 63% (significantly more than half) chose

B over A, and 80% (significantly more than half) chose A� over B�.

Of 200 participants, 96 switched from B to A�, but only 13

switched from A to B� (z � 7.95).

According to OPT, if people used the editing rule of combina-

tion, then they would edit Problem 1.1 into Problem 1.2 before

making a choice, so both forms of this choice should yield the

same decisions. According to CPT, no one should switch, except

by chance, because even without the editing rule of combination,

the representation satisfies coalescing.

However, both RAM and TAX, with parameters estimated from

previous data, predicted this reversal correctly. In those models,

splitting the branch to win $100 makes B better than B�, and

splitting the lower branch (to win $50) makes A worse than A�.

Table 1 shows calculated CEs for both TAX and CPT; both models

predict the choice correctly in Choice Problem 1.2, but there is no

version of CPT (no functions and parameters) that can predict the

reversal in Problem 1.1.

The certainty equivalents (TAX) for A� and B� are $75.7 and

$62.0, respectively; however, the certainty equivalents of A and B

are $68.4 and $69.7, respectively. So prior TAX predicted this

reversal correctly and others like it in Birnbaum (2004a).

According to prior CPT, A � B and A� � B�; however, any CPT

model implies A � B N A� � B�. These findings and other data

showing violations of coalescing (Birnbaum, 2004a, 2007b) refute

CPT and all theories that satisfy coalescing, including those of

Lopes and Oden (1999); Becker and Sarin (1987); Chew (1983);

and Chew, Epstein, and Segal (1991), among others (see Luce,

1998, 2000).

Violations of First-Order Stochastic Dominance

Birnbaum (1997) deduced that RAM and TAX would violate

stochastic dominance when choices were constructed from a spe-

cial recipe, illustrated in Choice Problem 2 of Table 1. The

calculated certainty equivalents of the gambles according to TAX

are shown in the right portion of Table 1. According to TAX, the

dominant gamble (I, shown on the left) has a certainty equivalent

of only $45.8, and the dominated gamble (J) has a value of $63.1,

violating dominance. Any RDU, RSDU, or CPT theory (with any

functions and parameters) must satisfy stochastic dominance.

After this prediction had been set in print in Birnbaum (1997,

pp. 93–94), Birnbaum and Navarrete (1998) tested it empirically,

finding 73% violations in Problem 2; about 70% of 100 under-

graduates violated first-order stochastic dominance in four varia-

tions of choices like Problem 2. Birnbaum, Patton, and Lott (1999)

found 73% violations with five new variations of this recipe and a

new sample of 110 undergraduates. In these studies, significantly

more than half the participants violated stochastic dominance.

The development of this example is illustrated in Figure 5. Start

with a root gamble, G0 � ($96, .9; $12, .1). Split the lower branch

(.1 to win $12) into two splinters, one of which has a slightly better

consequence (.05 to win $14, and .05 to win $12), yielding G� �

($96, .9; $14, .05; $12, .05). G� dominates G0. However, accord-

473CASE AGAINST PROSPECT THEORIES



ing to both TAX and RAM models, G� should seem worse than

G0 because the increase in total weight of the lower branches

outweighs the increase in the .05 sliver’s consequence from $12

to $14.

Starting again with G0, split the higher valued branch of G0,

constructing G	 � ($96, .85; $90, .05; $12, .10), which is domi-

nated by G0. According to the configural weight models, this split

increases the total weight of the higher branches, which improves

the gamble despite the decrease in the .05 sliver’s consequence

from $96 to $90. Both RAM and TAX models, with their prior

parameters, predict that people will prefer G	 over G�, in viola-

tion of stochastic dominance.

Transitivity, coalescing, and consequence monotonicity imply

satisfaction of stochastic dominance in this recipe: G0 � ($96, .9;

$12, .1)� ($96, .9; $12, .05; $12, .05), by coalescing. By conse-

quence monotonicity, G� � ($96, .9; $14, .05; $12, .05).� ($96,

.9; $12, .05; $12, .05); G0 � ($96, .9; $12, .1) � ($96, .85; $96,

.05; $12, .10), by coalescing; and ($96, .85; $96, .05; $12, .10) �

($96, .85; $90, .05; $12, .10) � G	, by consequence monotonicity.

By transitivity, G� � ($96, .90; $14, .05; $12, .05) � G0 � ($96,

.85; $90, .05; $12, .10) � G	, so G�
� G	. This derivation shows

that if these three principles hold, then people would not show this

violation, except by chance. Systematic violations imply that these

assumptions are not descriptive. In general, the recipe is as fol-

lows: G� � (x, p; y�, q; y, 1 	 p 	 q) versus G	 � (x, p 	 s; x	,

s; y, 1 	 p), where x � x	 � y� � y � 0, and all of the

probabilities are positive. In the case of Choice Problem 2 in Table

1, p � 0.9 and r � s � 0.05.

Violations of stochastic dominance in judged buying and selling

prices. Perhaps violations are due to some comparative process,

such as cancellation, that depends on contrasts between features of

the gambles rather than on the evaluation of each separate gamble

(cf. González-Vallejo, 2002; Leland, 1994). For example, suppose

people cancel the branches to win $96 and $12, which have nearly

equal probabilities, and choose on the basis of the remainder. To

test this notion, Birnbaum and Yeary (2001) obtained judgments of

Table 1

Choice Problems, Percentages Choosing Gamble on the Right, TAX and CPT Cash Equivalents in Tests of Coalescing (Problems 1.1

and 1.2), Stochastic Dominance (Problems 2, 3.1, 3.2, 3.3, 4), and Upper Tail Independence (Problems 5.1, 5.2, 6.1, 6.2)

Choice
problem

Choice
% Choosing

second gamble

Prior TAX Prior CPT

First gamble Second gamble First Second First Second

1.1 A: 85 to win $100 B: 85 to win $100 62 68.4 69.7 82.2 79.0
10 to win $50 10 to win $100
05 to win $50 05 to win $7

1.2 A�: 85 to win $100 B�: 95 to win $100 26 75.7 62.0 82.2 79.0
15 to win $50 05 to win $7

2, 3.1 I: 90 to win $96 J: 85 to win $96 73 45.8 63.1 70.3 69.7
05 to win $14 05 to win $90
05 to win $12 10 to win $12

3.2 M: 85 to win $96 N: 85 to win $96 06 53.1 51.4 70.3 69.7
05 to win $96 05 to win $90
05 to win $14 05 to win $12
05 to win $12 05 to win $12

3.3 I�: 90 to win $97 J�: 85 to win $90 57 46.8 57.6 73.3 66.6
05 to win $15 05 to win $80
05 to win $13 10 to win $10

4 K: 90 to win $96 L: 25 to win $96 35 45.8 35.8 72.3 35.0
05 to win $14 05 to win $90
05 to win $12 70 to win $12

5.1 s: 43 to win $92 t: 48 to win $92 34 32.3 29.8 33.4 33.2
07 to win $68 52 to win $0
50 to win $0

5.2 u: 43 to win $97 v: 43 to win $97 62 33.4 36.7 35.1 34.9
07 to win $68 05 to win $92
50 to win $0 52 to win $0

6.1 w: 80 to win $110 x: 80 to win $110 67 65.0 69.0 83.5 79.9
10 to win $44 10 to win $96
10 to win $40 10 to win $10

6.2 y: 80 to win $96 z: 90 to win $96 33 60.3 57.2 75.0 71.4
10 to win $44 10 to win $10
10 to win $40

Note. All choice percentages differ significantly from 50%. Entries in bold show significant errors. TAX � transfer of attention exchange; CPT � cumu-
lative prospect theory.
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the “highest buying price” for each of 166 gambles and judgments

of the “lowest selling prices” of the same gambles, including eight

used by Birnbaum and Navarrete (1998), presented separately.

Mixed in among 166 trials in each task were eight gambles in four

tests of stochastic dominance in this recipe. Both buying prices and

selling prices were significantly higher for dominated gambles like

J than for dominant ones like I. For buying prices, people offered

an average of $53.52 to buy G	 � ($96, .85; $90, .05; $12, .10),

but they offered an average of only $34.52 for the dominant

gamble, G� � ($96, .9; $14, .05; $12, .05). Similarly, from the

seller’s viewpoint, people asked for $71.29 to sell the dominated

gamble and for $65.49 for the dominant gamble. Violations of

stochastic dominance are found in judged values of single gam-

bles, in which a person has no opportunity to cancel nearly equal

branches. Therefore, it seems most likely that violations of sto-

chastic dominance are produced in the evaluations of individual

gambles, rather than produced by some comparative processes like

cancellation that is unique to choice.

Are the violations due to random “error?” In choice studies

with replications, it is possible to estimate “random error” rates for

each choice. Models of error allow one to estimate the percentage

that “truly” violates stochastic dominance and the percentage that

does so by “error” alone. In Birnbaum (2004b, Study 3), for

example, each of 156 participants completed four choices that

were variations of Choice Problem 2 in Table 1, testing stochastic

dominance recipe. These four choices were intermixed among a

number of other choices. Of the 156 participants, there were 79

who had four violations, 31 with three violations, 21 with two, 13

with one, and 12 with zero violations.

Suppose there are two types of participants: those who truly

violate stochastic dominance in this recipe and those who truly

satisfy it, apart from error. Then the probability that a person

satisfies stochastic dominance on the first three presentations of

the choice and violates it on the fourth (SSSV) is given by the

following:

P�SSSV� � a�1 � e�3e � �1 � a�e3�1 � e�,

where a is the probability that a person “truly” satisfies stochastic

dominance, and e is the probability of making an “error” in

reporting one’s “true” preference. In this case, the person who

truly satisfies stochastic dominance has correctly reported her or

his preference three times and made one error ((1 	 e)3e), whereas

the person who truly violates it has made three “errors” and one

correct report. Similar expressions can be written for each of the 15

other response patterns.

When this “true and error” model was fit to observed frequen-

cies of the 16 response combinations in Birnbaum (2004b), it

indicated that 83% of participants “truly” violated stochastic dom-

inance (on all four choices, because a � .17), except that people

made “errors” on 15% of their choices. Thus, these results cannot

be attributed to random error. Analyses with other error models

(Carbone & Hey, 2000) lead to the same conclusions.

Choices formatted with decumulative probability. (Birnbaum,

2004b, Study 4) presented choices using decumulative probabili-

ties, a procedure that should help people “see” dominance. Exam-

ine the following variation of Problem 2:

I: .90 to win $96 or more J: .85 to win $96 or more

.95 to win $14 or more .90 to win $90 or more

1.00 to win $12 or more 1.00 to win $12 or more

Because the definition of stochastic dominance can be given in

decumulative form, it was thought that this format might reduce

violations. It is easy to see that the probability of getting $96 or

more is higher in I than in J; the probability of getting $90 or more

is the same; the probability of getting $14 or more is higher in I

than in J; and the probability of getting $12 or more is the same.

Despite the theory that this display format should make it easier

to see dominance, with this decumulative probability format, the

true-and-error model estimated that 92% of 445 participants

“truly” violated stochastic dominance and that the error rate was

12%. The finding of a higher rate of true violation is surprising

because this condition was thought to be one in which detection of

stochastic dominance and use of RDU or CPT might be facilitated.

Stochastic dominance in dependent gambles. The displays

above represent choices between independent gambles. It seems

reasonable that the ticket or marble drawn from one urn would be

independent of what would be randomly drawn from a different

urn. Perhaps the rate of violation would be different in dependent

gambles, in which the state space is the same for both gambles, as

in the arrangement used by Savage (1954) and illustrated in Figure

6. Consider a single urn containing 100 tickets numbered from 1 to

100. A ticket drawn from this urn will determine the prize accord-

ing to a schedule that depends on one’s decision, as displayed in

Figure 6. Birnbaum (2006) explored this situation with three

variations of such dependent gambles, in which the ticket number

drawn from a single urn determined the prizes for both gambles.

Despite the fact that people should find it easy to perceive domi-

Figure 5. Cultivating and weeding out violations of stochastic domi-

nance. Starting at the root, G0 � ($96, 0.9; $12, 0.1), split the upper branch

to create G	 � ($96, .85; $90, .05; $12, .10), which is dominated by G0.

Split the lower branch of G0, creates G� � ($96, 0.9; $14, .05; $12, .05),

which dominates G0. According to configural weight models, G	 is pre-

ferred to G� because splitting increases the relative weight of the higher or

lower branches, respectively. A second round of splitting weeds out vio-

lations to low levels in the choice between GS� and GS	.
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nance in such displays, 72% violations of stochastic dominance

were observed in Choice Problem 3.1 in this format. Rates of

violation of stochastic dominance with two other formats for

display of such dependent gambles were the same or even higher.

Summary. By 2006, my students and I had completed 41

studies with a total of 11,405 participants testing first-order sto-

chastic dominance in choice using 15 different formats for dis-

playing gambles and choices (Birnbaum, 2004b, 2006). Violation

of stochastic dominance with this recipe has been a very robust

finding.

These studies confirm that violations of stochastic dominance

are observed with or without branch juxtaposition, and when

branches are listed in increasing or decreasing order of their

consequences. They are observed when probabilities are presented

as decimals, as pie charts, as percentages, as natural frequencies, or

as lists of equally likely consequences (Birnbaum, 2004b). They

are observed with or without the event framing used by Tversky

and Kahneman (1986).

Systematic violations of stochastic dominance have been ob-

served among men, women, undergraduates, college graduates,

and holders of doctoral degrees (Birnbaum, 1999c). Although the

rate of violation declines with increased education, the rate of

violation among undergraduates is about 70%, among college

graduates it is about 60%, and among doctorates who have studied

decision making, the rate is still quite high: about 50%. Majority

violations have been observed when undergraduates are tested in

class, in the lab, or via the World Wide Web, with consequences

that are purely hypothetical or when real chances for prizes are

possible (Birnbaum & Martin, 2003).

The same type of violation has been found in three-branch

gambles and in five-branch gambles (Birnbaum, 2005a). It has

been found with hypothetical prizes in the millions and with

chances for real prizes less than $100 (Birnbaum, 2005b, 2007b).

It has been found with gambles on gains, loses, and with mixed

consequences (Birnbaum, 2006). I conclude that any theory that

proposes to be descriptive must reproduce these violations and

should account for manipulations that increase or decrease their

incidence. Besides RDU, RSDU, and CPT, other descriptive the-

ories that assume or imply stochastic dominance are also refuted

by such evidence (e.g., Becker & Sarin, 1987; Lopes & Oden,

1999).

It is important to distinguish first-order stochastic dominance,

which must be satisfied by RDU/RSDU/CPT, from other types of

“stochastic dominance,” such as that discussed by Levy and Levy

(2002), Wakker (2003), and Baucells and Heukamp (2006). Al-

though CPT can use its nonlinear weighting function to account for

results of Levy and Levy (2002), CPT cannot handle violations of

first-order stochastic dominance.

It is also important to distinguish the kinds of violations of

stochastic dominance predicted by TAX from those predicted by

OPT without its editing principle of dominance detection and other

restrictions. The “stripped” version of OPT predicts violations of

stochastic dominance of a type that is not predicted by TAX and

that has not been observed empirically. For example, with plausi-

ble parameters, this version of OPT predicts that people should

prefer H � ($103, 0.01; $102, 0.01; $100, 0.98) over G � ($110,

0.5; $105, 0.5), even though the worst consequence of G is better

than the best consequence of H (Birnbaum, 1999b). Unlike OPT,

TAX does not violate stochastic dominance in this way. Because

the TAX utility is a weighted average of the utilities of the

consequences, the cash equivalent value of a gamble in TAX must

fall in the interval between the lowest consequence and highest

consequence of the gamble. For the same reason, TAX satisfies

idempotence, whereas OPT does not; that is, TAX implies that x �

G � (x, p1; x, p2; x, p3; . . .; x, pn), where ¥i�1
n pi � 1, for any

splitting of the same consequence. In stripped OPT, however, x �

(x, 0.01; x, 0.99) � (x, 0.5; x, 0.5) for x � 0. The purpose of the

editing rules in OPT was to avoid such implausible predictions

(Kahneman, 2003).

Event Splitting and Stochastic Dominance

RAM and TAX models imply that splitting can be used not only

to cultivate violations of stochastic dominance but also to weed

them out (Birnbaum, 1999c). As shown in the upper portion of

Figure 5, one can split the lowest branch of G	, which makes the

split version, GS	, seem worse, and split the highest branch of G�,

which makes its split version, GS�, seem better, so in these split

forms, GS� seems better than GS	. As predicted by RAM and

TAX models, most people prefer GS� over GS	 and G	 over G�

(Birnbaum, 1999c, 2000, 2001; Birnbaum & Martin, 2003). The

choice between GS� and GS	 is the same (objectively) as the

choice between G� and G	, except the choice is presented in

canonical split form. By canonical split form of a choice, I mean

that both gambles of a choice are split so that the probabilities on

Figure 6. Aligned matrix format showing test of stochastic dominance in coalesced form. About 70% of

participants violated stochastic dominance on this problem presented in this format (Birnbaum, 2006).
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corresponding ranked branches are equal in the two gambles, and

the number of branches is minimal.

Consider Problems 3.1 and 3.2 in Table 1. In Birnbaum (2004b),

342 participants were asked to choose between I and J and be-

tween M and N, which were intermixed among other choices.

There were 71% violations of stochastic dominance in the coa-

lesced form (Problem 3.1) and only 5.6% violations in the canon-

ical split form of the same choice (Problem 3.2). It was found that

224 participants (65.5%, significantly more than half) preferred J

to I and M to N, violating stochastic dominance in Problem 3.1 and

satisfying it in Problem 3.2 (choice between GS	 and GS�). Only

3 participants had the opposite reversal of preferences (z � 14.3).

Similar reversals refuting any model implying coalescing (includ-

ing RSDU/RDU/CPT) have been obtained in 25 studies with 7,809

participants (Birnbaum, 1999c, 2000, 2001, 2004a, 2004b, 2006,

2007b; Birnbaum & Martin, 2003).

The variable of form of a choice (coalesced as in Problem 3.1 or

canonical split as in Problem 3.2) is therefore an extremely pow-

erful device to markedly reduce and nearly eliminate violations of

stochastic dominance. It is interesting that coalescing appears

different, perceptually, in different types of formats for displaying

choices, but it has (in every case tested) had the same effect. For

example, in the matrix display of dependent gambles, the split

version of Figure 6 differs only in having vertical lines placed to

identify consequences for the four branches in each alternative of

the split form. Despite the different ways that this variable appears,

this variable (form) has had the same type of effect in all of the

display formats tested so far, reversing majority violations to small

minorities.

Predicting choice proportions and satisfactions of stochastic

dominance. A descriptive model should be able to predict when

stochastic dominance will or will not be violated. As noted above,

branch splitting can be used to reduce 70% violations to 6%

violations. This result is consistent with five models: RAM, TAX,

GDU, PRT, and a branch-counting heuristic. These models make

different predictions for other manipulations. Birnbaum (2005a)

conducted a series of five studies manipulating features of the

recipe illustrated in Figure 5 to compare the accuracy of these

models in predicting satisfaction and violation. These studies also

tested heuristic models that (a) people just average the values of

the consequences or (b) they count the number of branches with

consequences favoring one gamble or the other.

Birnbaum (2005a) tested the counting heuristic, in which people

choose the gamble with the greater number of branches with

higher consequences. According to this heuristic, violations would

be minimal in Choice Problem 3.3 in Table 1.

I�: 90 black to win $97 J�: 85 red to win $90
05 yellow to win $15 05 blue to win $80
05 purple to win $13 10 white to win $10

Here, the dominant gamble (I�) has higher consequences on two

of three branches, yet 57% of 394 participants (significantly more

than half) still choose the dominated gamble, J�, instead of the

dominant gamble I�, as predicted by prior TAX, which has CEs of

$57.6 and $46.8, respectively. For CPT, the CEs of I� and J� satisfy

dominance, for any parameters.

Both consequence averaging and contrast counting imply that

the majority should violate stochastic dominance in Choice Prob-

lem 4 of Table 1. If TAX and its parameters are correct, however,

then the majority should satisfy stochastic dominance in Choice 4.

In order to predict the new choice percentage for Problem 4, the

following probabilistic model was used:

P�G	, G�� �
1

1 � exp���TAX�G�� � TAX�G	���
, (13)

where P(G	, G�) is the predicted choice probability for violating

stochastic dominance in this choice, and � is the logistic spread

parameter that maps the difference in utility into a predicted choice

probability. This choice model is similar to models of Thurstone

(1927) and Luce (1959, 1994). In order to estimate �, Birnbaum

(2005a) simply took the value that makes the predicted choice

probability for Problem 2 (same as Problem 3.1) in the “prior”

TAX model to be 0.70 to match the approximate 70% violations

observed in previous research; this value is �̂ � 0.049. According

to the prior TAX model and Equation 13, Problem 4 should

produce 38% violations. Birnbaum (2005a, Study 2) tested a new

group of 232 undergraduates in the same context of filler choices

to check this new choice and other new predictions.

Of 232 participants, 72% (significantly more than half) violated

stochastic dominance in the comparison of I and J (replicating

Problem 3.1), but only 35% of the same people (significantly less

than half) violated stochastic dominance in Problem 4. There were

103 who violated stochastic dominance in the choice between I

and J and satisfied it in the choice between K and L, compared

with only 18 who had the opposite reversal (z � 7.7), refuting both

heuristic models. These obtained rates of violation (72% and 35%)

are not far from the predictions made by the TAX model combined

with Equation 13 (70% and 38%).

Thus, the majority does not always violate stochastic domi-

nance. People largely satisfy it when the canonical split form is

used, as in Problem 3.2, and 65% satisfy it when probability of the

highest consequence is reduced sufficiently (Problem 4). The

hypothesis that people ignore probability can therefore be rejected.

Intermediate probabilities yielded intermediate results, suggesting

that people are attending to probability and responding to it as

predicted by a quantitative model. Five studies found that TAX

gave the best predictions to new data, followed by Viscusi’s (1989)

prospective reference theory, which is a special case of TAX,

followed by RAM. RAM implies a violation of probability mono-

tonicity. Transferring probability from the highest branch to the

middle branch in gamble J should have made that gamble better

according to RAM, a prediction that was not confirmed.

Analysis in TAX. Figure 7 shows an analysis of Choice Prob-

lems 3.1(same as Problem 2) and 4 with respect to two parameters

of the TAX model, � and �. (The exponent of the utility function,

�, has very little influence on these predictions; � � 1 in this

analysis.) The region above and to the left of the upper curve in

Figure 7 shows where stochastic dominance will be satisfied in

both Choice Problems 3.1 and 4, according to TAX. The open

circle at the intersection of � � 0 and � � 1 represents EU theory,

which is a special case of TAX that satisfies stochastic dominance.

The region below the upper curve and above the lower dashed

curve shows combinations of parameters for which people should

violate stochastic dominance in Choice Problem 3.1 and satisfy it

in Choice Problem 4. The solid circle at the intersection of � � 1

and � � 0.7 shows the prediction of the “prior” parameters of
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TAX. One interpretation of the 35% who violated stochastic dom-

inance in Choice Problem 4 is that these violations are produced by

individuals whose TAX parameters fall below the dashed curve in

Figure 7.

For this manipulation (Problem 4) and others studied in Birn-

baum (2005a), heuristics and CPT were failures because the heu-

ristics continued to predict violations, and CPT predicts no viola-

tions.

Priority heuristic fails. The priority heuristic of Brandstätter et

al. (2006) predicts that the majority should satisfy stochastic dom-

inance in Choice Problems 2, 3.1, and 3.3, in which most people

violate it, and it fails to predict satisfaction of stochastic domi-

nance in Choice Problem 3.2, in which most people satisfy it. By

adding an editing rule of dominance detection, the priority heuris-

tic could be modified to satisfy stochastic dominance in Problem

3.2, but that would still not account for violations of stochastic

dominance. Birnbaum (2008a, 2008b) devised a new variation,

F � ($89, 0.7; $88, 0.1; $11, 0.2) versus G � ($90, 0.8; $13, 0.1;

$12, 0.1). This example was constructed so that G is better than F

on all four of the variables used by the priority heuristic. Despite

the fact that G stochastically dominates F and despite the fact that

G is predicted by the priority heuristic to be chosen (because of the

smaller probability of the lowest consequence), 71% of 408 un-

dergraduates chose F over G. Even with its use of EV ratio as the

first step, the priority heuristic with any order of considering the

four dimensions fails to predict systematic violations of this prop-

erty in this new variation.

Domain of violation of stochastic dominance in TAX. Figure 7

shows that the prediction of violation of stochastic dominance in

Problem 3.1 is “robust” in that many combinations of plausible

parameters in TAX imply the violations in this special recipe.

However, Figure 7 does not imply that people will often violate

stochastic dominance. To understand how “often” the TAX model

implies violations of stochastic dominance, Birnbaum (2004a)

simulated choices between three-branch gambles. Three “random”

numbers, uniformly distributed between 0 and 1, were sampled by

computer and divided by their sum to produce three probabilities

summing to 1. Next, three consequences were independently

drawn from a uniform distribution between $0 and $100. Pairs of

such gambles were drawn independently to form choices. In

1,000,000 choices thus simulated, TAX and CPT with their prior

parameters made the same predictions in 94% of these cases.

Among these million cases, one third of the choices had a stochas-

tic dominance relation, but only 1.8 per 10,000 were predicted

violations of stochastic dominance by TAX. This means that TAX

rarely violates stochastic dominance in such an environment. An

experimenter sampling choices by such a random algorithm would

be unlikely to find a choice containing this predicted violation.

One might ask: Is TAX just so flexible that it can account for

anything? The answer is no. Given the following two properties,

both present in many sets of data (e.g, Gonzalez & Wu, 1999;

Tversky & Kahneman, 1992), TAX is forced to violate stochastic

dominance in Birnbaum’s (1997) original recipe: Assuming u(x) �

x, if people are (a) risk averse for 50-50 gambles, then � � 0, and

if people are simultaneously (b) risk seeking for positive conse-

quences with small p, then �  1. With � � 0 and �  1, TAX

violates stochastic dominance in Problem 3.1 (same as in Problem

2), as shown in Figure 7. So, TAX had to violate stochastic

dominance in this special recipe in order to simultaneously account

for typical results with two-branch gambles. As is shown in the

Violations of RBI section, violations of RBI imply that � � 0 and

the Allais paradoxes rule out the assumptions that � � 1 and � �

0. So, findings of Allais paradoxes and violations of RBI also

compel TAX to violate stochastic dominance in this recipe.

Equation 13 was fairly accurate in predicting variations of the

recipe that produces stochastic dominance in three-branch gambles

(Problems like 3.1, 3.3, and 4). TAX and RAM combined with

Equation 13 correctly predict that the majority should satisfy

dominance in Problem 3.2 with four-branch gambles in canonical

split form. However, the difference in utility is small relative to the

extremity of the choice proportion. To account for the 6% rate of

violations in canonical split form, Equation 13 would require a

different value of � to fit this choice proportion. Diederich and

Busemeyer (1999) used an analogous interpretation to explain why

the rate of violation of stochastic dominance in choices between

dependent gambles varies inversely with the correlation between

consequences.

Upper Tail Independence

Wu (1994) reported systematic violations of “ordinal” indepen-

dence. These were not full tests of ordinal independence, as

defined in Green and Jullien (1988); however, the property tested

by Wu is implied by RDU/RSDU/CPT. It has been called “upper

tail independence” because it tests whether the upper tail of a

distribution can be manipulated to reverse preferences induced by

other aspects of the choice. The property follows from transitivity,

upper coalescing, and comonotonic RBI, so it should be satisfied

by CPT. Wu found systematic violations, which he reasoned,

might be due either to violations of CPT or to editing rules that

contradict CPT.
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Figure 7. Analysis of violations of stochastic dominance (Stoch Dom) in

Choice Problems 3.1 (same as Problem 2) and 4 according to the transfer

of attention exchange (TAX) model. Expected utility is a special case of

TAX with � � 0 and � � 1 (open circle); it satisfies stochastic dominance.

The solid circle shows parameters of TAX used in previous studies (� � 1

and � � 0.7); with these parameters, TAX violates stochastic dominance in

Choice Problem 3.1 but satisfies it in Choice Problem 4.
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Birnbaum (2001) constructed Problems 5.1 and 5.2 in Table 1

from a similar problem in Wu (1994). Any RDU, RSDU, or CPT

model implies that people should prefer t � ($92, 0.48; $0, 0.52)

� s � ($92, 0.43; $68, 0.07; $0, 0.5) in Problem 5.1 if and only

if they prefer v � ($97, 0.43; $92, .05; $0, 0.52) � u � ($97, 0.43;

$68, 0.07; $0, 0.5) in Problem 5.2. There were n � 1,438 people

tested via the Web who had chances to win cash prizes. Signifi-

cantly more than half (66%) preferred s to t, and significantly more

than half (62%) preferred v to u, contradicting this property. These

results contradict RDU, RSDU, or CPT with any parameters and

are predicted by TAX.

Because this implication rests on upper coalescing, violations

refute lower GDU as well as CPT. There was a computational

rounding error in Luce (2000, pp. 201–202) that made it appear

that the lower GDU model could account for violations of upper

tail independence.

A new test of upper tail independence (Birnbaum, 2005b,

Experiment 2) is displayed in Choice Problems 6.1 and 6.2.

Unlike earlier examples, the lowest consequences are not zero

in all four gambles. The second choice is created from the first

by reducing the consequence on the common branch of 80

marbles from $110 to $96 on both sides, and then coalescing it

with the branch of 10 marbles to win $96 on the right side.

There were 503 participants. As predicted by TAX, the majority

was significantly reversed (67% chose the risky gamble in

Problem 6.1, but only 33% chose it in Problem 6.2), contra-

dicting both CPT and GDU.

Upper Cumulative Independence

Violations of RBI found by Birnbaum and McIntosh (1996)

contradict the inverse-S-weighting function of CPT needed to

account for CEs of binary gambles and for Allais paradoxes

(Gonzalez & Wu, 1999; Wu & Gonzalez, 1998). Birnbaum (1997)

restated this apparent contradiction between experiments in differ-

ent labs more precisely in the form of two new, within-person

paradoxes that are to the class of RDU/RSDU/CPT models as the

Allais paradoxes are to EU. Just as the Allais paradoxes show that

there is no utility scale in EU that can reproduce the paradoxical

choices, there are no functions and parameters in RDU/RSDU/

CPT that allow these models to reproduce violations of upper or of

lower cumulative independence.

Lower and upper cumulative independence can be deduced from

transitivity, consequence monotonicity, coalescing, and comono-

tonic RBI. Thus, violations of these properties are paradoxical to

any theory that implies these properties, including EU, RDU,

RSDU, and CPT, among others. These predictions were set in print

(Birnbaum, 1997) before experiments were done. Proofs for the

general class of models satisfying coalescing are given in Birn-

baum (1997).

Upper cumulative independence can be written as (z� � x� � x

� y � y� � z � 0):

S� � �z�, 1 � p � q; x, p; y, q�

� R� � �z�, 1 � p � q; x�, p; y�, q�

f S� � �x�, 1 � p � q; y, p � q� � R� � �x�, 1 � q; y�, q�

This property is implied by CPT/RSDU/RDU. Consider Choice

Problems 7.1 and 7.2 in Table 2. In the pies* condition of Birn-

baum (2004b), probability was displayed using pie charts in which

slices of the pie had areas proportional to probabilities. Signifi-

cantly more than half (70% of 305 participants) chose R� � ($110,

0.8; $98, 0.1; $10, 0.1) � S� � ($110, 0.8; $44, 0.1; $40, 0.1) and

significantly more than half (58% of the same 305 participants)

chose S� � ($98, 0.8; $40, 0.2) � R� � ($98, 0.9; $10, 0.1),

contrary to RDU/RSDU/CPT: 112 changed preferences in the

direction violating the property, and only 28 switched in a manner

consistent with the property( z � 7.10). (In Table 2, these results

correspond to N � M and O � P.)

Such violations of upper cumulative independence can be inter-

preted as a self-contradiction in the CPT weighting function for

these models (Birnbaum et al., 1999, Appendix). For example, for

the RDU/RSDU/CPT models, R� � S� N

W�.8�u�110� � �W�.9� � W�.8��u�98� � �1 � W�.9��u�10� �

W�.8�u�110� � �W�.9� � W�.8��u�44� � �1 � W�.9��u�40�

N �W�.9� � W�.8���u�98� � u�44�� �

�1 � W�.9���u�40� � u�10��

N
u�98� � u�44�

u�40� � u�10�
�

1 � W�.9�

W�.9� � W�.8�
.

Similarly, in this class of models, R� � S� N

W�.8�u�98� � �W�.9� � W�.8��u�98� � �1 � W�.9��u�10� �

W(.8)u�98� � �W�.9� � W�.8��u�40� � �1 � W�.9��u�10�

N
u�98� � u�44�

u�40� � u(10)


u�98� � u�40�

u�40� � u�10�
�

1 � W(.9)

W�.9� � W�.8�
.

Thus, this family of CPT models leads to self-contradiction when

it attempts to analyze this result because the same ratio of weights

cannot be both smaller and larger than the same ratio of differences

in utility.

Birnbaum and Navarrete (1998) investigated 27 different tests

of this property with 100 participants. Summing across these tests

within each person, there were 67 people who showed more

reversals of preference in violation of upper cumulative indepen-

dence than in agreement with it. Only 22 people had more rever-

sals consistent with this property; the remaining 11 people either

showed the same number of each type or showed no reversals.

Birnbaum et al. (1999) tested six different variations with 110 new

participants. Birnbaum (1999c) compared results from 1,224 peo-

ple recruited from the Web (including highly educated ones)

against 124 undergraduates tested in the lab. Birnbaum (2004b)

investigated this property with 3,440 participants using a dozen

different procedures for displaying gambles. Birnbaum (2006)

tested another 663 participants with three different presentation

formats involving dependent gambles, with strictly positive,

strictly negative, and with mixed consequences. These results were

also replicated among “filler trials” in five studies of stochastic

dominance (Birnbaum, 2005a) with 1,467 participants. As of this

writing, there have been 26 studies with 33 variations of the test

and 7,186 participants. Results consistently violate upper cumula-

tive independence: More people reverse preferences in the direc-

tion contradicting the property (but consistent with the predictions

of prior TAX) than make reversals consistent with the property.
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Lower Cumulative Independence

Lower cumulative independence, also deduced by Birnbaum

(1997) from coalescing, consequence monotonicity, comonotonic

RBI, and transitivity (implications of the class of RSDU/RDU/

CPT models), is the following:

S � �x, p; y, q; z, 1 � p � q� � R � �x�, p; y�, q; z, 1 � p � q�

f S� � �x, p � q; y�, 1 � p � q� � R� � �x�, p; y�, 1 � p�.

Choice Problems 8.1 and 8.2 in Table 2 show a test of this

property. In Birnbaum (2004b, pies*), it was found that 62%

(significantly more than half) chose S � ($96, 0.05; $12, 0.05; $3,

0.9) over R � ($52, 0.05; $48, 0.05; $3, 0.9), but only 26%

(significantly less than half) chose S� � ($96, 0.05; $12, 0.95) over

R� � ($52, 0.1; $12, 0.9); in addition, significantly more partici-

pants switched in the direction violating the property than in the

direction consistent with it. As in the case of upper cumulative

independence, violations of lower cumulative independence create

self-contradiction if one assumes any RSDU, RDU, or CPT model.

There have been 26 studies with 33 problems and 7,186 partici-

pants in a variety of display formats, creating a very strong case

against this property and models that imply it. Summing the 27

tests of this property in Birnbaum and Navarrete (1998) for each

person, there were 64 people (significantly more than half) who

had more reversals of the type refuting lower cumulative indepen-

dence than consistent with it. Only 7 showed no reversals or had

an equal split.

The “Classic” Allais Paradoxes

The chief arguments against EU in Kahneman and Tversky

(1979) were variations of “classic” Allais paradoxes (Allais &

Hagen, 1979). The constant ratio paradox can be illustrated by the

choice between F � $3000 for sure and G � ($4000, 0.8; $0, 0.2)

and the choice between F� � ($3000, 0.25; $0, 0.75) and G� �

Table 2

Choice Problems Testing Upper (Problems 7.1 and 7.2) and Lower Cumulative Independence (Problems 8.1 and 8.2) and Dissection

of Allais Paradox (Problems 10.1–10.5)

Choice problem

Choice % choosing
second
gamble

Prior TAX Prior CPT

First gamble Second gamble First Second First Second

7.1 M: 80 to win $110 N: 80 to win $110 70 65.0 69.6 83.5 80.1
10 to win $44 10 to win $98
10 to win $40 10 to win $10

7.2 O: 80 to win $98 P: 90 to win $98 42 68.0 58.3 75.7 72.8
20 to win $40 10 to win $10

8.1 Q: 05 to win $96 R: 05 to win $52 62 8.8 10.3 11.6 9.5
05 to win $12 05 to win $48
90 to win $3 90 to win $3

8.2 S: 05 to win $96 T: 10 to win $52 26 18.3 16.7 19.9 17.9
95 to win $12 90 to win $12

9.1 A: $1M for sure B: 10 to win $2M 42 1,000 K 810 K 1,000 K 1065 K

89 to win $1M 1,000 K 742 K

01 to win $2

9.2 C: 11 to win $1M D: 10 to win $2M 76 125 K 236 K 132 K 248 K
89 to win $2 90 to win $2 75 K 138 K

9.3 X: 10 to win $1M Y: 10 to win $2M 37 154 K 172 K 132 K 248 K

01 to win $1M 01 to win $2 97 K 93 K

89 to win $2 89 to win $2

10.1 E: 10 to win $98 F: 20 to win $40 38 13.3 9.0 16.9 10.7
90 to win $2 80 to win $2

10.2 G: 10 to win $98 H: 10 to win $40 64 9.6 11.1 16.9 10.7
10 to win $2 10 to win $40
80 to win $2 80 to win $2

10.3 I: 10 to win $98 J: 10 to win $40 54 30.6 40.0 38.0 40.0
80 to win $40 80 to win $40
10 to win $2 10 to win $40

10.4 K: 80 to win $98 L: 80 to win $98 43 62.6 59.8 67.6 74.5

10 to win $98 10 to win $40
10 to win $2 10 to win $40

10.5 M: 90 to win $98 N: 80 to win $98 78 54.7 68.0 67.6 74.5
10 to win $2 20 to win $40

Note. Entries in bold show significant errors. TAX � transfer of attention exchange; CPT � cumulative prospect theory; M � million; K � thousand;
italics indicate predictions for previous weighting parameters, u(x) � x0.8.
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($4000, 0.2; $0, 0.8). According to EU, F � G N F� � G�;

however, Kahneman and Tversky (1979) reported that 80% of 95

people chose the sure F � $3000 over G, and only 35% chose F�

� G�. Both CPT and TAX reproduce this phenomenon; for CPT,

the CEs are $3,000, $2,357, $678, and $779 for F, G, F�, G�,

respectively; whereas, for TAX, they are $3,000, $1,934, $633,

and $733, respectively. In this case, and for other properties

defined on binary gambles and sure things, TAX and CPT make

virtually identical predictions.

The common consequence paradox of Allais (1953, 1979) is

illustrated with Choices Problems 9.1 and 9.2 in Table 2. From

EU, one can deduce that A � BN C � D. However, many people

choose A over B and prefer D over C. This pattern of empirical

choices violates EU. However, SWU, PRT, RDU, CPT, RAM,

TAX, and GDU can all account for this finding, as can many other

models.

A great deal of research on risky decision making has been

based on the study of choices that can be represented by means of

line segments connecting points inside a triangle, as in Figure 8.

The upper left, lower right, and lower left corners of the triangle

represent “sure things” to win x, y, or z, respectively. Each point

inside the triangle corresponds to a three-branch gamble. Points on

the line segments connecting corners represent two-branch gam-

bles. For example, in Choice Problems 9.1 and 9.2, (x, y, z) �

($2M, $1M, $2).

The panels in the left and right of Figure 8 show iso-utility

contours according to CPT and TAX with their prior parameters.

The similarity of these figures should be obvious. Clearly, research

confined to this paradigm is not the way to compare TAX and

CPT. Although it might be useful for testing EU theory (Machina,

1987), this restricted paradigm is not useful for testing among

nonexpected utility theories such as TAX and CPT.

To understand the effects of the triangle restriction, consider a

random experimenter who studies choices between three-branch

gambles. This experimenter also restricts attention to gambles

yielding consequences uniformly distributed between $0 and $100,

with probabilities constructed by drawing three random numbers

uniformly distributed between 0 and 1 and dividing each by their

sum. Birnbaum (2004a) simulated results for random choices in

which this experimenter chose three-branch gambles in which all

six consequences were free to vary. In that case, TAX and CPT

(using their previously estimated parameters) agreed in 94% of

these choices. However, when three-branch gambles are con-

strained to use only three distinct consequences in a choice, CPT

and TAX agree in 99% of such restricted choices. Unless the

experiment is quite large, this experimenter is unlikely to find a

single test in which the models make different predictions. The

amount of agreement also depends on the spacing of the conse-

quences; for example, with (x, y, z) fixed to ($100, $20, $0), prior

TAX and CPT agree in 99.5% of such “random” choices.

Therefore, studies of classic paradoxes “trapped inside the tri-

angle” (e.g., as analyzed by Machina, 1982, 1987; Harless &

Camerer, 1994; Hey, 2005; Hey & Orme, 1994; Wakker, 2001;

Wu & Gonzalez, 1998) cannot be used to strongly test among

nonexpected utility theories like TAX and CPT. Such tests of the

“sure thing” principle confound their tests of independence with

the property of coalescing.

Instead, researchers need to think outside the triangle and tease

apart variables that are typically confounded in this research

(Humphrey, 2001a). Birnbaum’s (1997) recipe for violations of

stochastic dominance in three-branch gambles cannot be found

inside the triangle, for example, because it requires at least four

distinct levels of the consequences. Nor can the general statement

of RBI be found inside the triangle because it is defined on six

distinct consequences. Nor does the triangle provide a good way to

represent coalescing and splitting; instead, this needlessly re-

stricted space invites experimenters to study manipulations of

probability that do not distinguish the theories.

Figure 8 may be a useful device for conceptualizing violations

of EU, but one needs to break out of this paradigm to compare

theories like CPT and TAX. To unconfound the Allais paradox,

researchers can test RBI with six distinct consequences (as in

Expression 3) and can separate those tests of coalescing from the

tests of independence.

Decomposition of the Allais Common Consequence

Paradox

In order to test among the models, dissect the Allais paradox

into transitivity, coalescing, and RBI, as illustrated below:

A � �$1M, 1� � B � �$2M, 0.1; $1M, 0.89; $2, 0.01�

N (coalescing & transitivity)

A� � �$1M, 0.1; $1M, 0.89; $1M, 0.01� �

B � �$2M, 0.1; $1M, 0.89; $2, 0.01�

N (restricted branch independence)

A� � �$1M, 0.1; $2, 0.89; $1M, 0.01� �

B� � �$2M, 0.1; $2, 0.89; $2, 0.01�

N (coalescing & transitivity)

Figure 8. Analysis of studies that limit the number of distinct conse-

quences within a choice to three. For x � y � z � 0, the ordinate represents

the probability to win x, the abscissa represents the probability to win z;

otherwise, y is won. Experiments in this representation allow choices

between up to three-branch gambles but restrict the number of distinct

consequences from six to only three. Curves show iso-utility contours for

cumulative prospect theory (CPT; left) and transfer of attention exchange

(TAX; right), given their parameters estimated from previous data. Al-

though studies designed in this paradigm test expected utility, they do not

allow diagnostic tests among nonexpected utility models such as CPT and

TAX.
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C � �$1M, 0.11; $2, 0.89� � D � �$2M, 0.1; $2, 0.90�

The first step converts A to its split form, A�; A � A� by coalescing;

by transitivity, A� � B. In the third step, the consequence on the

common branch (.89 to win $1,000,000) has been changed to $0 on

both sides, so by RBI, A� � B�. By coalescing branches with

identical consequences, we see that C � D. So if people obeyed

these three principles (coalescing, transitivity, and RBI), then there

would be no paradox, except by chance. Instead, in Choice Prob-

lem 9.1, most people choose A � B, in Choice Problem 9.2, most

people choose D � C. Such violations show that at least one of

these three principles is not descriptive.

Different theories attribute Allais paradoxes to different

causes (Birnbaum, 1999b), as listed in Table 3. SWU and

“stripped” OPT, RAM, TAX, and GDU attribute them to vio-

lations of coalescing. In contrast, the class of RDU, RSDU, and

CPT attribute the paradox to violations of RBI. OPT uses an

additive representation that violates coalescing and implies

branch independence, and it uses the editing principle of can-

cellation, which also implies branch independence; however,

OPT is difficult to place in the table because it also has the

editing principle of combination, which implies coalescing. But

if OPT assumes both editing principles, then it cannot show the

Allais paradox, whereas Kahneman and Tversky (1979) pre-

sented the theory as a theory of Allais paradoxes. To handle

these contradictory multiple predictions, OPT (with or without

combination) is permitted to occupy two of the four cells in

Table 3. Similarly, the equations of CPT imply coalescing and

violations of RBI, but the editing principle of cancellation

would imply RBI, so CPT (with or without cancellation) is also

allowed to occupy two of the four cells in Table 3.

Birnbaum (2004a) tested among the theories in Table 3 by using

tests like those in Choice Problems 10.1–10.5 in Table 2, which teases

out branch independence from coalescing. According to EU, people

should make the same choice in all five choices because all of the

choices are the same, except for a common branch (80 marbles to win

$2 in Choice Problems 10.1 and 10.2, 80 marbles to win $40 in

Choice Problem 10.3, or 80 marbles to win $98 in Choice Problems

10.4 and 10.5). These five choices were presented, intermixed among

other choices, to 349 participants whose data are summarized in Table

2. Each percentage, except for that in Choice Problem 10.3, is signif-

icantly different from 50%. By tests of correlated proportions, each

successive contrast between rows is also significant, as is the differ-

ence between Choice Problem 10.2 and 10.4.

CPT, RSDU, SWU, GDU, TAX, and RAM models, as fit to

previous data, predict the empirical modal choices in Choice

Problems 10.1, 10.3, and 10.5 of Table 2 correctly. That is, all

models (except EU and prospect theories with both cancellation

and combination) predict the classic versions of Allais para-

doxes in these three problems. However, RDU, RSDU, or CPT

imply that Choice Problems 10.1 and 10.2 should be the same,

except for error, and that Choice Problems 10.4 and 10.5 should

agree as well because these differ only by coalescing. SWU

(including stripped OPT and PRT) implies that the choices can

differ in Choice Problem 10.1 and 10.2, but people should make

the same choices in Choice Problem 10.2 and 10.4 because

these differ only by RBI. RAM, TAX, and GDU models predict

reversals from Choice Problem 10.1 to 10.2, from Choice

Problem 10.2 to 10.4, and from Choice Problem 10.4 to 10.5.

Indeed, results show that all reversals predicted by these models

are significant.

Suppose people used the editing rule of combination. If so, then

they would make the same decision in both Choice Problem 10.1 and

10.2 and the same decision in Choice Problem 10.4 and Choice 10.5.

So, the editing principle of combination can be refuted.

Suppose people used the editing rule of cancellation. If so, then

they would make the same decisions in Choice Problems 10.2,

10.3, and 10.4. But these differ, so the editing rule of cancellation

and the assumption of RBI can be refuted.

Now suppose that people only cancelled on some proportion of

the trials, with CPT governing the rest; if so, then there would be

(weaker) violations of branch independence in the same direction

between Choice Problems 10.2 and 10.4 as between Choice Prob-

lems 10.1 and 10.5. Instead, observed violations are substantial

and opposite the direction needed by CPT to account for Allais

paradoxes. So, these results (and others in Birnbaum, 2004a,

2007b) refute both OPT and CPT, with or without their editing

rules of cancellation and combination. Put another way, the results

fall in the lower right cell in Table 3, the one cell in which neither

version of prospect theory can lay a claim.

TAX and RAM correctly predicted (before the experiments

were begun) all of the modal choices in which the choice propor-

tions significantly differed from 0.5 in Birnbaum (2004a). Accord-

ing to TAX or RAM, the Allais constant consequence paradoxes

are due to violation of coalescing, and violations of branch inde-

pendence actually reduce their magnitude. Note that all splitting

and coalescing operations make the “risky” gamble (left side)

worse and the “safe” gamble (on the right side) better as we

proceed from Choice Problem 10.1 to 10.5 in Table 2. Splitting the

lower branch on the left side from Choice Problem 10.1 to 10.2

makes the risky gamble worse, and coalescing the upper branches

on the left side from Choice Problem 10.4 to 10.5 makes the risky

gamble worse again. Similarly, splitting the higher branch in the

safe gamble (right side) from Choice Problem 10.1 to 10.2 im-

proves this safe gamble as does coalescing the lower branches on

the right side from Choice Problem 10.4 to 10.5.

Birnbaum (2007b) further refined the experiment to investigate

upper and lower coalescing in safe and risky gambles separately.

There were significant violations of upper coalescing, which vio-

Table 3

Comparison of Decision Theories by Two Properties

Coalescing

Branch independence

Satisfied Violated

Satisfied EU (CPT*/OPT*) RDU/RSDU/CPT*/SPA
Violated SWU/PRT/OPT* RAM/TAX/GDU

Note. Prospect theories make different predictions with and without their
editing rules. The editing rule of combination implies coalescing, and
cancellation implies branch independence. With or without the editing rule
of combination, cumulative prospect theory (CPT) satisfies coalescing. The
rank-affected multiplicative (RAM) and transfer of attention exchange
(TAX) models violate both branch independence and coalescing. EU �
expected utility theory; OPT � original prospect theory; PRT � prospec-
tive reference theory; RDU � rank-dependent utility; RSDU � rank- and
sign-dependent utility theory. SPA � security potential, aspiration level;
SWU � subjectively weighted utility; GDU � gains decomposition utility.
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late the idempotent, lower GDU model. Violations of lower coa-

lescing in nonnegative gambles were smaller but statistically sig-

nificant. Birnbaum (2007b) found violations of both upper and

lower coalescing in mixed gambles.

Analysis of Coalescing in Allais Paradox

To fit group data with large consequences (Birnbaum, 2007b,

including Choice Problems 9.2 and 9.3), TAX required a nonlinear

utility function, u(x) � x0.8, along with its previous weighting

parameters (predictions shown in italics in Table 2).

Table 4 shows the number of participants (out of 200) who

showed each preference pattern on two replications of Allais

paradox (Choice Problems 9.2 and 9.3), which differ only by

coalescing (Birnbaum, 2007b). In Table 4, S indicates preference

for the “safe” gamble (11 marbles to win $1,000,000 and 89 to win

$2) rather than the “risky” (R) gamble (10 marbles to win

$2,000,000 and 89 to win $2). Here SRSS, for example, refers to

the pattern choosing S on the first replicate of Choice Problem 9.2,

in which branches were coalesced, R on Choice Problem 9.3, in

which branches were split, and S on both of these choices in the

second replicate.

A five-parameter “true and error” model was fit to these 16

response frequencies (as in Birnbaum, 2004b). The parameters are

the “true” probabilities that a person has the preference patterns

RR�, RS�, SR�, and SS� in Choice Problems 9.1 and 9.2, and the

probabilities of making a random “error” on Choice Problems 9.2

and 9.3, respectively. For these problems (Series A; see Table 4),

estimates are 0.27, 0.60, 0.02, and 0.11, respectively; ê9.1 � 0.14,

and ê9.2 � 0.20. � 0.20. This model provides an acceptable fit to

the observed data, �2(10, N � 200) � 10.2, shown by the simi-

larity of the observed and fitted frequencies in Table 4.

Put another way, this model indicates that 60% of the partici-

pants truly switched from R in Choice Problem 9.2 to S� in Choice

Problem 9.3 and that 2% switched in the other direction. Table 4

shows that 56 people (28%) switched in this fashion on both

replicates, compared with 4 who made the opposite switch both

times. A three-parameter model assuming no reversals fit much

worse, �2(2, N � 200) � 141.1, so these data refute coalescing.

These results (and others, as in Series B, which showed that 62%

had the RS� pattern) contradict any theory that assumes coalescing,

including CPT/RSDU/RDU. These results agree with RAM, TAX,

and GDU.

In summary, although many models can account for the basic

Allais paradoxes, neither OPT nor CPT with or without their

editing principles of cancellation and combination can account for

the dissection of the Allais paradoxes. Similarly, the next test also

shows evidence against both versions of prospect theory.

Violations of Gain–Loss Separability

According to CPT/RSDU or OPT, the overall utility of a mixed

gamble is the sum of two terms, one for the gain part and another

for the loss part of the gamble. These models therefore imply

gain–loss separability, which can be expressed for three-branch

gambles as follows:

If B� � (y, p; x, q; 0, 1 	 p 	 q) �

A� � (y�, p�; x�, q�; 0, 1 	 p� 	 q�)

and if B	 � (0, 1 	 r 	 s; z, r; v, s) �

A	 � (0, 1 	 r� 	 s�; z�, r�; v�, s�),

then B � (y, p; x, q; z, r; v, s) �

A � (y�, p�; x�, q�; z�, r�; v�, s�),

where x, y, x�, y� are gains and z, v, z�, v� are losses; r � s � 1 	

p 	 q and r� � s� � 1 	 p� 	 q�. Intuitively, if you prefer the good

part of B to the good part of A, and if you prefer the bad part of B

to the bad part of A, then you should prefer B to A.

Wu and Markle (2005) devised a test from a choice in Levy and

Levy (2002, Experiment 2), shown in Choice Problems 12.1, 12.2,

and 12.3 in Table 5.

Wu and Markle (2005) found that the majority prefers B�
� A�

and B	
� A	; however, the majority does not prefer B � A,

contrary to CPT/RSDU and any model that satisfies gain–loss

separability, including OPT. This example is consistent with the

TAX model, with the simplifications listed in the note of Table 5,

including the use of just one � and u(x) � x. This point deserves

emphasis: This model describes “loss aversion” by greater weight

assigned to branches with negative consequences, and it can fit

these violations of gain–loss separability without assuming that

“loss aversion” has any effect on utility.

In the model of Birnbaum (1997), branch weights depend not

only on probability and rank but also on the augmented sign of the

consequences. That is, a branch’s weight in that model depends on

whether the branch leads to a positive, zero, or negative conse-

quence, and it also depends on the rank. That model uses more

parameters than the simple version of TAX used here to fit the Wu

Table 4

Numbers of Participants (out of 200) Showing Each Choice

Combination in Tests of Coalescing in Problems 9.2 and 9.3 of

Table 2

Choice pattern

Series A Series B

Observed Fitted Observed Fitted

RR� RR� 31 29.0 19 19.4
RR� RS� 17 20.7 11 13.6
RR� SR� 4 5.1 5 4.2
RR� SS� 7 3.9 6 3.5
RS� RR� 25 20.7 18 13.6
RS� RS� 56 58.4 62 63.7
RS� SR� 3 3.9 7 3.5
RS� SS� 9 11.2 17 17.4
SR� RR� 3 5.1 3 4.2
SR� RS� 3 3.9 2 3.5
SR� SR� 4 3.1 1 1.4
SR� SS� 1 3.6 1 4.0
SS� RR� 5 3.9 3 3.5
SS� RS� 14 11.2 15 17.4
SS� SR� 3 3.6 2 4.0
SS� SS� 14 11.9 28 23.1

Note. R � chose “risky” gamble in Problem 9.2; S � chose “safe”
gamble in Problem 9.2; R� � chose “risky” gamble in Problem 9.3; S� �
chose “safe” gamble in Problem 9.3. The pattern RR� RS�, for example,
represents choice of the “risky” gamble (listed as second gamble in Table
2) on the first replicate of 9.2 and 9.3, and choice of “risky” gamble in the
second replicate of 9.2, but choice of the “safe” gamble (first in Table 2)
on the second replicate of Problem 9.3. Series B used different gambles
(Birnbaum, 2007b). The true-and-error model has been fit to the observed
frequencies, the “fitted” values are predictions of that model.
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and Markle (2005) result; however, the more complicated model

was not needed for this result.

A new series of tests of gain–loss separability by Birnbaum and

Bahra (2007) found data compatible with this (probably oversim-

plified) TAX model in a direct test, shown in Choice Problems

12.4–12.8. According to the TAX model, with simplifying as-

sumptions in Table 5, people should be indifferent in Choice

Problem 12.6. The observed choice proportion was 0.52, not

significantly different from the predicted value of 0.5.

Wu and Markle (2005) also reported violations of gain–loss

separability in binary gambles, which (if they can be replicated)

refute OPT as well as CPT. They noted that the case of mixed

gambles has been investigated in only a few empirical studies, yet

the topic of “loss aversion” has been treated in many theoretical

articles on the basis of the assumption of gain–loss separability.

In both versions of prospect theory, the utility function shows a

kink at zero, consistent with the idea that “losses loom larger than

gains.” This is represented in CPT by the equation, u(	x) �

	
u(x), x � 0, where 
, estimated to be about 2.25, is the “loss

looming” factor. This utility function depends on gain–loss sepa-

rability. If these separable theories are false, then utility curves

derived from those theories become meaningless.

To account for the data, Birnbaum and Bahra (2007) did not

need to postulate a kinked utility function. Do their findings

disprove the kinked utility curve of prospect theory? No, because

that conclusion would require a proof of the null hypothesis. What

Wu and Markle (2005) and Birnbaum and Bahra showed is that

gain–loss separability can be rejected, which shows that the argu-

ment given for the kinked utility function is false. Birnbaum and

Bahra showed that configural weighting can account for the be-

havioral phenomena of loss aversion and violation of gain–loss

separability without assuming a kinked utility function. However,

it should also be kept in mind that TAX does not rule out nonlinear

or kinked utility functions.

Violations of RBI

Restricted branch independence should be satisfied by EU,

SWU, PRT, OPT, and by any other theory that includes the editing

principle of cancellation. However, this property should be vio-

lated according to RDU/RSDU/CPT (aside from the editing rule of

cancellation) and by RAM, TAX, and GDU. The direction of

violations, however, is opposite in the two groups of models.

Wakker et al. (1994) failed to find systematic violations predicted

by CPT, but their study was not designed to test RAM or TAX. As

shown by Birnbaum and McIntosh (1996), violations of this prop-

erty are not easy to find unless researchers know the parameters in

Table 5

Tests of Gain–Loss Separability

Choice problem

Choice
% Choosing

second gamble

Prior TAX Prior CPT

First gamble Second gamble First Second First Second

12.1 A�: 25 to win $2,000 B�: 25 to win $1,600 72 497 552 601 551
25 to win $800 25 to win $1,200
50 to win $0 50 to win $0

12.2 A	: 50 to win $0 B	: 50 to lose $0 72 	358 	276 	379 	437
25 to lose $800 25 to lose $200
25 to lose $1,000 25 to lose $1,600

12.3 A: 25 to win $2,000 B: 25 to win $1,600 38 	280 	300 	107 	179
25 to win $800 25 to win $1,200
25 to lose $800 25 to lose $200
25 to lose $1,000 25 to lose $1,600

12.4 F�: 25 to win $100 G�: 25 to win $50 71 14 21 25 19
25 to win $0 25 to win $50
50 to win $0 50 to win $0

12.5 F	: 50 to lose $0 G	: 50 to lose $0 65 	21 	14 	20 	25
25 to lose $50 25 to lose $0
25 to lose $50 25 to lose $100

12.6 F: 25 to win $100 G: 25 to win $50 52 	25 	25 	9 	15
25 to win $0 25 to win $50
25 to lose $50 25 to lose $0
25 to lose $50 25 to lose $100

12.7 F�: 25 to win $100 G�: 50 to win $50 24 	16 	34 	9 	15
25 to win $0 25 to lose $0
50 to lose $50 25 to lose $100

12.8 H: 25 to win $100 I: 25 to win $50 57 	30 	20 	13 	11
25 to win $0 25 to win $50
25 to lose $0 25 to lose $50
25 to lose $100 25 to lose $50

Note. Prior transfer of attention exchange (TAX) here assumes u(x) � x, 	$100 � x �$100, �� � �	 � �� � 0.7; �� � �	 � �� � 1. This model
is undoubtedly oversimplified, but it correctly predicts all eight modal choices, including the case of indifference in Problem 12.6. CPT � cumulative
prospect theory. Bold entries show incorrect predictions of the modal choice.
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advance or use special experimental designs that allow for indi-

vidual differences.

A number of experiments using the Birnbaum and McIntosh

(1996) design subsequently reported systematic violations of a

special case of RBI (Birnbaum & Chavez, 1997; Birnbaum &

Navarrete, 1998; Birnbaum & Veira, 1998). This special case can

be written as follows: (0  z  y�  y  x  x�  z�):

S � �x, p; y, p; z, 1 � 2p� � R � �x�, p; y�, p; z, 1 � 2p�

N

S� � �z�, 1 � 2p; x, p; y, p� � R� � �z�, 1 � 2p; x�, p; y�, p�.

In this special case, two branches have equal probabilities, and

only the value and rank of the common branch, (z, 1 	 2p) or (z�,

1 	 2p), changes (from z smallest in the first choice to z� highest

in the second).

In this paradigm, RSDU, RDU, CPT, RAM, TAX, and GDU

models reduce to what Birnbaum and McIntosh (1996) called the

“generic rank-dependent configural weight” (p. 92) model, also

known as the rank-weighted utility model (Luce, 2000; Marley &

Luce, 2001, 2005). This generic model can be written for the

choice between S and R as follows:

S � R

N

w1u�x� � w2u�y� � w3u�z� � w1u�x�� � w2u�y�� � w3u�z�,

where w1, w2 and w3 are the weights of the highest, middle, and

lowest ranked branches, respectively, which depend on the value

of p (differently in different models). The generic model allows the

subtraction of the common term w3u(z) from both sides, which

yields,

S � RN
w2

w1

�
u�x�� � u�x�

u�y� � u�y��
.

There will be an SR� violation of RBI (i.e., S � R and R� � S�) if

and only if the following:

w2

w1

�
u�x�� � u�x�

u�y� � u�y��
�

w�3

w�2
,

where w1 and w2 are the weights of the highest and middle

branches, respectively (when both have probability p in S and R),

and w�2 and w�3 are the weights of the middle and lowest branches

(with probability p) in S� and R�, respectively. RAM, TAX, and

GDU models imply this type of violation, that is, SR�. With prior

parameters, the weight ratios are 2/1 � 3/2 in both RAM and TAX.

CPT also systematically violates RBI; however, CPT with its

inverse-S-weighting function violates it in the opposite way from

that of RAM and TAX. The W(P) function estimated by Tversky

and Kahneman (1992) is shown as the solid curve in Figure 9. Note

that this function has an inverse-S shape (steeper near 0 and 1 than

in the middle) and that it crosses the identity line. Define a weakly

inverse-S function as any strictly increasing monotonic function

from zero to one satisfying the following, for all p  p*: W(2p) 	

W( p)  W( p) 	 W(0) and W(1 	 p) 	 W(1 	 2p)  W(1) 	 W(1

	 p). A strongly inverse-S function is one that is weakly inverse

S and also crosses the identity line (i.e., for all p  p�, W( p) � p,

and for all p � p�, W( p)  p). If the weakly inverse S is rejected,

then the stronger version is also rejected. Such functions are

illustrated by the dashed and solid curves in Figure 9, respectively.

In any inverse-S function, therefore, w2  w1 and w�2  w�3. It

follows that:

w2

w1

� 1 �
w�3

w�2
.

Therefore, CPT with such a function (weakly or strongly inverse

S) implies that violations of RBI, if they are observed, should have

the opposite ordering from that predicted by RAM and TAX; that

is, CPT implies R � S and R� � S�, called the RS� pattern.

Consider Choice Problems 13.1 and 13.2 in Table 6 (from

Birnbaum & Chavez, 1997). Intuitively, CPT predicts R � S in

Choice Problem 13.1 because the lowest branches are the same and

the highest branch gets more weight than the middle branch. In

Choice Problem 13.2, however, CPT implies R� � S� because the

upper branches are the same and the lowest branch gets more

weight than the middle branch. Contrary to this prediction, how-

ever, significantly more than half the participants chose S � R in

Choice Problem 13.1, and significantly more than half chose R� �

S� in Choice Problem 13.2. These violations are significant and

opposite of the predictions of CPT with its inverse-S-weighting

function, which is required by CPT to handle the standard Allais

Figure 9. The solid curve is strongly inverse S, and the dashed curve is

weakly inverse S. In cumulative prospect theory, the weight of the highest

branch in (x, p; y, p; z, 1 – 2p) is greater than the weight of the middle

branch; w1 � w2; that is, 1 � w2/w1. Similarly, the weight of the middle

branch in (z�, 1 – 2p; x, p; y, p) is less than that of the lowest branch;

therefore, w�2  w�3f 1  w�3/w�2. Together, these two conditions imply that

violations of branch independence can only be of the form S � R and S� �

R�; that is, the RS� pattern of violations follows from either type of

inverse-S function.
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paradoxes (Wu & Gonzalez, 1998). In all 12 tests in Birnbaum and

Chavez (1997), more people showed the SR� pattern of reversals

than showed the RS� pattern.

Figure 10 shows an analysis of Choice Problems 13.2 and 13.3

according to the parameterized CPT model. CPT is flexible enough

to handle any combination of preferences, including either pattern

of violation, depending on the value of �. When �  1, the

decumulative weighting function has the inverse-S shape, and

CPT implies the RS� pattern, and when � � 1, it has an S shape,

in which case CPT implies the SR� pattern. When � � 1, CPT

implies no violations of RBI: Depending on the utility function,

people should either prefer the “safe” gamble in both cases (see

SS� in Figure 10) or prefer the risky gamble in both cases (RR�).

Figure 11 shows an analysis of Choice Problems 13.1 and 13.2

in the special TAX model. With the configural weight transfer

parameter, � � 0, there can be no violations of RBI. However,

when � is either positive or negative, special TAX implies the SR�

pattern of violation of RBI. This pattern is opposite that predicted

by CPT with the inverse-S-weighting function.

Empirically, there are significantly more reversals of the type

SR� than of the opposite (Birnbaum & McIntosh, 1996; Birnbaum

& Navarrete, 1998; Weber & Kirsner, 1997). This same pattern of

Table 6

Tests of Restricted Branch Independence (Choice Problems 13.1 and 13.2) and 4-Distribution Independence (Problems 14.1 and 14.2)

Choice problem

Choice
% Choosing
risky gamble

Prior TAX Prior CPT

Safe Risky Safe Risky Safe Risky

13.1 S: 25 to win $44 R: 25 to win $98 40 20.0 19.2 19.7 28.1

25 to win $40 25 to win $10
50 to win $5 50 to win $5

13.2 S�: 50 to win $111 R�: 50 to win $111 62 57.2 60.7 69.5 64.3
25 to win $44 25 to win $98
25 to win $40 25 to win $10

14.1 S: 01 to win $110 R: 01 to win $110 34 21.7 20.6 20.9 25.1

20 to win $49 20 to win $97
20 to win $45 20 to win $11
59 to win $4 59 to win $4

14.2 S�: 59 to win $110 R�: 59 to win $110 51 49.8 50.0 71.9 67.2
20 to win $49 20 to win $97
20 to win $45 20 to win $11
01 to win $4 01 to win $4

Note. Data from Birnbaum and Chavez (1997, n � 100). Entries in bold designate cases in which a model fails to predict the modal choice. TAX �
transfer of attention exchange; CPT � cumulative prospect theory. Entries in bold show incorrect predictions of modal choices.
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Weighting Function Parameter,  γ  

S = R

S' = R'

RR'

SS'

RS'
SR'

Figure 10. Analysis of Choice Problems 13.1 and 13.2 (from Table 6)

according to parameterized cumulative prospect theory (CPT) model.

When �  1, the decumulative weighting function is inverse S, and the

only type of violation possible is RS�; that is, R � S and S� � R�. Instead,

data show that the opposite pattern, SR�, is significantly more frequent,

which contradicts the inverse-S-weighting function required by CPT to

account for Allais paradoxes.

TAX Model 
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Configural Weight Parameter,   δ   

S = R
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RR'
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Figure 11. Analysis of Choice Problems 13.1 and 13.2 according to the

special transfer of attention exchange (TAX) model. This model allows

only one type of violation of RBI, SR�, which can occur only when the

configural weight parameter, �, is not zero. The “prior” parameters (� � 1

and � � 1) predict this pattern for Problems 13.1 and 13.2, as do many

other combinations of parameters (e.g., � � 0.6 and � � 0.3).
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violations has been prevalent when p � 1/3 (Birnbaum & McIn-

tosh, 1996), p � .25 (Birnbaum & Chavez, 1997; Birnbaum &

Navarrete, 1998), p � .2 (Birnbaum et al., 1999), p � .1 (Birn-

baum, 1999c, 2004b, 2005a, 2006, 2007b; Birnbaum & Navarrete,

1998), and p � .05 (Birnbaum, 1999c, 2004b).

If people used the editing principle of cancellation, then they

would not violate RBI. In research on this property, it has been

assumed that if many choices in a study would allow such a

cancellation, then participants might learn to use this editing prin-

ciple in order to simplify the decisions. For that reason, research on

this topic used many other filler trials in which probabilities and

consequences differed. The crucial tests were then interspersed

among these other trials (Birnbaum & Chavez, 1997; Birnbaum &

McIntosh, 1996). Is it possible, however, that some people use

cancellation some of the time? If so, then the observed rate of

violation is smaller than it would be without the partial use of this

editing rule.

There have been 36 studies with 10,240 participants testing RBI

in choice. These show that violations of RBI are significantly more

frequent in opposition to predictions of CPT (or any RDU or

RSDU model with an inverse-S-weighting function) than in agree-

ment with them. Birnbaum and Navarrete (1998) included 27 tests

of this property for each participant, with different probability

distributions and different levels of the consequences. Of 100

participants, 65 (significantly more than half) had more violations

of the SR� type than of the opposite. Evidence has shown similar

results despite a variety of procedural manipulations (Birnbaum,

2004b, 2005a, 2006, 2007b). Birnbaum (2004b) fit the “true and

error” model to replicated choices; this analysis indicated that the

SR� violations cannot be attributed to random “error,” but viola-

tions of the opposite pattern (RS�, predicted by CPT) can be set to

zero with no reduction in fit. In addition, the same pattern has been

found to be frequent and substantial in judged buying and selling

prices of gambles and investments (Birnbaum & Beeghley, 1997;

Birnbaum & Veira, 1998; Birnbaum & Zimmermann, 1998). Be-

cause the same pattern of results occurs in both judgment and

choice, it seems likely that they are produced by the evaluation of

the gambles rather than by the choice between gambles.

Wakker (2001) summarized evidence from studies in which the

“sure thing” principle is tested as a confounded combination of

both RBI and coalescing. Although he acknowledged contrary

evidence, Wakker concluded that evidence supporting the inverse-

S-weighting function is “overwhelming.” But this conclusion de-

pends on the assumption of a family of models, including CPT,

that assume coalescing, and experiments were not designed to test

that model. Pure tests of RBI provide stronger evidence against the

inverse-S-weighting function than the evidence summarized by

Wakker, so it can be said that evidence against Wakker’s conclu-

sion is more than overwhelming. How can these apparently con-

tradictory results be resolved? According to the rank-dependent

models, there is a serious contradiction; however, TAX and RAM

models reconcile both sets of results. The TAX model fits both the

confounded tests cited by Wakker as well as the pure tests of RBI.

It also fits studies of distribution independence, which also test the

inverse-S-weighting function; these are taken up in the next four

sections.

The priority heuristic of Brandstätter et al. (2006) also predicts

violations of RBI; however, like CPT, it predicts the opposite

pattern from what has been observed. According to this model,

people should choose R � S because the lowest branches are the

same but the highest consequence on the risky gamble is better;

and they should choose S� � R� because the highest consequences

are the same, and S� has the better lowest consequence.

From the calculations for CEs of binary gambles as a function of

probability (e.g., as in Figure 3), it might be thought that the

configural weight, TAX and RAM models use the “same” weight-

ing function as is used in CPT. However, that inference would be

wrong because in RAM and TAX, that figure does not represent

the probability weighting function, which is approximated with a

power function, t( p) � p�. Results for tests of RBI and distribution

independence, described in sections on RBI and distribution inde-

pendence, show that no inverse-S decumulative weighting func-

tion (whether strongly or weakly inverse S) is compatible with

empirical choices. Thus, despite their agreement with CPT for

binary gambles, TAX and RAM do not use the same weighting

function as in CPT. Instead, their weighting functions can repro-

duce the violations of RBI, which the RDU, RSDU, and CPT

models with the inverse S cannot do. Nor should the weighting

function in TAX be confused with that of OPT because OPT

implies no violations of RBI.

4-Distribution Independence

4-distribution independence (4-DI) is an interesting property

because RDU/RSDU/CPT models imply systematic violations, but

the property must be satisfied, according to RAM.

S � �z�, r; x, p; y, p; z, 1 � r � 2p� �

R � �z�, r; x�, p; y�, p; z, 1 � r � 2p�

N

S� � �z�, r�; x, p; y, p; z, 1 � r� � 2p� �

R� � �z�, r�; x�, p; y�, p; z, 1 � r� � 2p�,

where z� � x� � x � y � y� � z � 0. According to TAX, this

property can be violated, but in the opposite way from that pre-

dicted by any inverse-S-weighting function in RSDU/RDU/CPT.

Choice Problems 14.1 and 14.2 in Table 6 illustrate a test of

4-DI. Note that two branches of equal probability (p � 0.2 in this

example) are nested within a probability distribution in which they

are either near the low end of decumulative probability or near the

upper end of decumulative probability. According to RDU/RSDU/

CPT, this change in the distribution should change the relative

weights of these common branches, producing violations of 4-DI.

If the weights of the four ranked branches are w1, w2, w3, and w4,

w2/w3 should be greater than 1 at the low end of decumulative

probability, and w�2/w�3 should be less than 1 when these two

branches are at the upper end of decumulative probability.

According to CPT/RDU/RSDU model with any inverse-S-

weighting function, R � S and S� � R�, that is, the RS� pattern of

violations. RAM allows no systematic violations of this property

(proof in Birnbaum & Chavez, 1997, pp. 176–177). According to

SWU, OPT, or any theory with prospect theory’s cancellation

principle, there should be no violations. According to TAX model

with its previous parameters, however, people should show the SR�

pattern of violations. In a study with 100 participants and 12 tests

of 4-DI interspersed among 130 choices, Birnbaum and Chavez
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(1997) found that the pattern predicted by TAX was more frequent

than the pattern consistent with any inverse-S decumulative

weighting function in all 12 tests. In Choice Problems 14.1 and

14.2, for example, there were 23 participants who had the SR�

pattern against only 6 who showed the opposite reversal of pref-

erences. These results also favor TAX over models that imply no

violations, which includes RAM, SWU, PRT, OPT, and any other

theory that assumes cancellation.

3-Lower Distribution Independence

Define 3-lower distribution independence (3-LDI) as follows:

S � �x, p; y, p; z, 1 � 2p� � R � �x�, p; y�, p; z, 1 � 2p�

N S2 � �x, p�; y, p�; z, 1 � 2p�� �

R2 � �x�, p�; y�, p�; z, 1 � 2p��,

where x� � x � y � y� � z � 0. The name “lower” distribution

independence is used to indicate that the lower branch, (z, 1 	 2p),

is common to both choices, and it is the probability of this branch

(rather than its value) that is changed. Note that the first compar-

ison involves a distribution with probability p to win x or y,

whereas the second choice involves a different probability, p�.

According to 3-LDI, people should choose S over R in Choice

Problem 15.1 of Table 7 if and only if they choose S2 over R2 in

Choice Problem 15.2, except for error. The CPT model as fit to

previous data predicts that people should violate this property by

choosing R over S and S2 over R2, whereas special TAX and RAM

predict that people should choose both S and S2.

We can again apply the generic model to the choice between S

and R as follows:

S � RN

w1u�x� � w2u�y� � w3u�z� � w1u�x�� � w2u�y�� � w3u�z�,

where w1, w2 and w3 are the weights of the highest, middle, and

lowest ranked branches, respectively, which depend on the value

of p (differently in different models). Subtracting the term w3u(z)

from both sides, the following can be derived:

S � RN
w2

w1

�
u�x�� � u�x�

u�y� � u�y��
.

Suppose there is a violation of 3-LDI, in which R2 S2. By a similar

derivation,

S2 � R2 N
u�x�� � u�x�

u�y� � u�y��
�

w�2

w�1
,

where the (primed) weights now depend on the new level of

probability, p�. Therefore, there can be a preference reversal from

S � R to S2 � R2 if and only if the ratio of weights changes as a

function of probability and “straddles” the ratio of differences in

utility, as follows:

w2

w1

�
u�x�� � u�x�

u�y� � u�y��
�

w�2

w�1
.

A reversal from S � R to S2 � R2 can occur with the opposite

ordering. But if the ratio of weights is independent of p (e.g., as in

EU), then there can be no violations of this property.

According to RAM, this ratio of weights is as follows:

w2

w1

�
a�2, 3�s� p�

a�1, 3�s� p�
�

a�2, 3�s� p��

a�1, 3�s� p��
�

w�2

w�1
.

Table 7

Tests of 3-Lower Distribution Independence (Choice Problems 15.1 and 15.2), 3-2 Lower Distribution Independence (Choice

Problems 16.1 and 16.2), and 3-Upper Distribution Independence (Choice Problems 17.1 and 17.2)

Choice
problem

Choice
% choosing
risky gamble

Prior TAX Prior CPT

Safe Risky Safe Risky Safe Risky

15.1 S: 20 to win $58 R: 20 to win $96 24 21.7 13.8 19.9 21.3

20 to win $56 20 to win $4
60 to win $2 60 to win $2

15.2 S2: 45 to win $58 R2: 45 to win $96 19 36.9 22.9 41.0 35.8
45 to win $56 45 to win $4
10 to win $2 10 to win $2

16.1 S0: 50 to win $44 R0: 50 to win $96 31 41.3 34.7 41.7 39.3
50 to win $40 50 to win $4

16.2 S: 48 to win $44 R: 48 to win $96 34 29.1 24.5 34.7 37.7

48 to win $40 48 to win $4
04 to win $2 04 to win $2

17.1 S�: 80 to win $100 R�: 80 to win $100 56 61.6 63.4 77.4 71.7
10 to win $44 10 to win $96
10 to win $40 10 to win $4

17.2 S2�: 10 to win $100 R2�: 10 to win $100 33 45.9 43.9 50.3 42.6
45 to win $44 45 to win $96
45 to win $40 45 to win $4

Note. Entries in bold show incorrect predictions of modal choice. All entries are significantly different from 50%. TAX � transfer of attention exchange;
CPT � cumulative prospect theory.
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Therefore, RAM satisfies 3-LDI. With the further assumption that

branch rank weights equal their objective ranks, this ratio will be

2/1, independent of the value of p (or p’).

According to the special TAX model, this ratio of weights can

be written as follows:

w2

w1

�
t� p� � ��t� p�/4�) � ��t� p�/4�)

t� p� � �2⁄4��t� p�
�

t� p�

t� p��1 � �/ 2�
�

w�2

w�1
.

In addition, if � � 1, as in the prior model, then this ratio will be

2/1. Therefore, special TAX, like RAM, implies 3-LDI.

According to CPT or any RDU/RSDU model, however, there

should be violations of 3-LDI if the weighting function is nonlin-

ear. The relation among the weights will be as follows:

w2

w1

�
W�2p� � W� p�

W� p�
�

W�2p�� � W� p��

W� p��
�

w�2

w�1
.

The inverse-S-weighting function of CPT implies that these ratios

differ by a factor of almost 2 in Table 7. Thus, CPT predicts

violations of 3-LDI, and both RAM and TAX predict no viola-

tions.

In tests like Choice Problems 15 (and 16) in Table 7, CPT goes

on offense by predicting violations, leaving TAX and RAM to

defend the null hypothesis. Birnbaum (2005b) conducted three

studies with 1,578 participants testing these predictions. Results

showed that TAX and RAM were more accurate than CPT with its

inverse-S-weighting function, which predicted reversals that failed

to materialize. Of course, failure to find a predicted effect does not

disprove a model, but merely adds to the list of failed predictions

by CPT with its prior parameters.

3-2 Lower Distribution Independence

The property of 3-2 lower distribution independence (3-2 LDI)

requires:

S0 � �x, 1⁄2; y, 1⁄2� � R0 � �x�, 1⁄2; y�, 1⁄2�

N S � �x, p; y, p; z, 1 � 2p� � R � �x�, p; y�, p; z, 1 � 2p�.

By a similar derivation (to that in 3-LDI), RAM predicts the same

choices between S0 and R0 as between S and R, when a(2, 2)/a(1,

2) � a(2, 3)/a(1, 3), as in the prior RAM model, in which both

ratios are 2/1.

Prior TAX also implies that people should make the same choices

in S0 and R0 as between S and R, because the weight ratio in a 50-50

two-branch gamble is
w2

w1

�
t�1⁄2� � ��⁄3�t�1⁄2�

t�1⁄2� � ��⁄3�t�1⁄2�
�

1 � ��/3�

1 � ��/3�, which
also equals 2/1 when � � 1, so this TAX model also satisfies 3-2

LDI.

In contrast, CPT, with its prior parameters, predicts that people

should prefer S0 � R0 and choose R � S in Choice Problems 16.1

and 16.2 in Table 7, violating 3-2 LDI. Results shown are from

Birnbaum (2005b, Experiment 1), with n � 1,075. Predicted

violations by CPT failed again to materialize.

3-Upper Distribution Independence

The property 3-upper distribution independence (3-UDI) is de-

fined as follows:

S� � �z�, 1 � 2p; x, p; y, p� � R� � �z�, 1 � 2p; x�, p; y�, p�

N S�2 � �z�, 1 � 2p�; x, p�; y, p�� �

R�2 � �z�, 1 � 2p�; x�, p�; y�, p��,

where z� � x� � x � y � y� � 0. This property will be violated,

with S� � R� and S2� � R2� if and only if:

w3

w2

�
u�x�� � u�x�

u�y� � u�y��
�

w�3

w�2
.

The opposite reversal of preference would occur when the order

above is reversed.

The RAM model implies that:

w3

w2

�
a�3, 3�s� p�

a�2, 3�s� p�
�

a�3, 3�s� p��

a�2, 3�s� p��
�

w�3

w�2
.

Therefore, the RAM model implies no violations of 3-UDI.

In the special TAX model, however, this ratio of weights is as

follows:

w3

w2

�
t� p� � ��/4�t� p� � ��/4�t�1 � 2p�

t� p� � ��/4�t� p� � ��/4�t�1 � 2p�
�

w�3

w�2
,

which shows that this weight ratio is not independent of p. For

prior TAX, this weight ratio increases from 1.27 to 1.60, which

straddles the ratio of differences (96-44)/(40-4) � 1.44; therefore,

TAX predicts that S� � R� and S2� � R2�, the R�S2� pattern of

violation in Choice Problems 17.1 and 17.2.

CPT implies violations of 3-UDI because the ratios of weights

are as follows:

w3

w2

�
1 � W�1 � p�

W�1 � p� � W�1 � 2p�

�
1 � W�1 � p��

W�1 � p�� � W�1 � 2p��
�

w�3

w�2
.

In particular, for the inverse-S-weighting function of Tversky and

Kahneman (1992), this ratio of weights increases and then de-

creases, with a net decrease from 1.99 to 1.71. Therefore, CPT

implies violations of the opposite pattern from that predicted by

TAX, but CPT predicts no violation in Choice Problem 17, given

its prior parameters.

Birnbaum (2005b) found that significantly more than half the

1,075 participants chose R� � S�, and significantly more than half

chose S2� � R2�. This result violates RAM, was not predicted by

CPT, and was predicted correctly by TAX. Other cases in which

prior CPT predicted violations of 3-LDI and 3-UDI were tested by

Birnbaum (2005b), who reported that the predicted violations of

CPT failed to materialize.

Properties Involving Judgments

One can ask whether the same models that are used to represent

the values of the alternatives in choice would also apply in judg-

ment, where people are asked to judge each alternative separately.

The next sections concern cases in which the rank order of judg-

ments can be changed by manipulating the judge’s point of view
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and in which the rank order of judgments is compared with the

order inferred from choice (preference reversals).

Buying and Selling Prices: Viewpoint or Endowment?

Birnbaum, Wong, and Wong (1976) reported an interaction

between estimates from different sources in judged buying prices

of used cars. This interaction was consistent with the idea that

people assign greater configural weight to lower than to higher

estimates of value. Birnbaum and Stegner (1979, Experiment 5)

reasoned that such configural weighting was the result of asym-

metric payoffs to the judge. That is, a buyer makes a worse error

by overestimating value than by underestimating value. They

conjectured that the configural weight parameter could be manip-

ulated by changing the judge’s point of view from buyer to that of

seller. Experiments confirmed this hypothesis: The rank order of

judgments changed systematically between buying and selling

prices.

Birnbaum and Stegner (1979) concluded that whereas buyers

assign greater weight to lower estimates of value, sellers assign

greater weight to higher estimates of value. Birnbaum and Sutton

(1992), Birnbaum and Beeghley (1997), and Birnbaum and Veira

(1998) showed that this same pattern of changing configural

weight is found in judgments of buying and selling prices of

gambles as well as with so-called sure things like used cars.

Birnbaum and Zimmermann (1998) showed the same pattern of

changing configural weighting for buying and selling prices of

investments.

Following Birnbaum and Stegner’s (1979) work, the difference

between buying and selling prices was later renamed the “endow-

ment” effect (Thaler, 1980). Kahneman, Knetsch, and Thaler

(1990) and Tversky and Kahneman (1991) tried to account for the

difference between willingness to pay (buying price) and willing-

ness to accept (selling price) by means of a utility function with

different slopes for gains and losses of the same absolute size, what

they call “loss aversion.” However, the theory of Tversky and

Kahneman (1991) implies that the ratio of selling to buying prices

should be a constant, and therefore, buying prices should be

monotonically related to selling prices of the same objects (Birn-

baum & Zimmermann, 1998). In order to avoid the wrong predic-

tion that the buying and selling prices of a $5 bill should differ by

a factor of two or more, a special exception was made for money

or goods held for trade. Even with this special exemption, the “loss

aversion” theory had already been refuted by the experiments of

Birnbaum and Stegner (1979), who showed that buying and selling

prices are not monotonically related to each other (see also Birn-

baum, 1982). Nor did the configural weight model of Birnbaum

and Stegner (1979) predict that buying and selling prices of a $5

bill should differ.

Thus, the “loss aversion” account of the “endowment” effect is

not consistent with judgments of buying and selling prices of either

“sure things” of uncertain value (like used cars or stocks) or

standard risky gambles. The term endowment effect has also cre-

ated some confusion because it is not necessary to actually endow

anyone with anything to observe the effect; one need only instruct

the participants to identify with or to advise a buyer, seller, or a

neutral judge to observe the effect.

Birnbaum and Zimmermann (1998) combined the theory of

Tversky and Kahneman (1991) with CPT of Tversky and Kahne-

man (1992) by assuming that people integrate prices with the

prizes of a gamble and that they apply CPT with its assumption of

“loss aversion” to the integrated mixed gambles. These assump-

tions lead to the implication of a property called complementary

symmetry. Let B(x, p; y, 1 	 p) represent the judged “highest

buying price” for gamble G � (x, p; y, 1 	 p), where x � y � 0.

Let S(x, 1 	 p; y, p) represent the “lowest selling price” of the

complementary gamble. Complementary symmetry is the assump-

tion that B(x, p; y, 1 	 p) � S(x, 1 	 p; y, p) is a constant,

independent of �x 	 y� and of p. This property was systematically

violated by the data of Birnbaum and Sutton (1992) and refuted in

a wider test by Birnbaum and Yeary (2001). Thus, the combination of

CPT and “loss aversion” fails to provide a consistent account of

buying and selling prices of gambles (Birnbaum & Zimmermann,

1998).

Luce’s (2000) still more general approach to integrating prices

with prizes by his theory of joint receipts in RSDU was fit to

judgments of binary gambles by Birnbaum, Yeary, Luce, and Zhou

(2001). Birnbaum et al. also concluded that RAM and TAX

models are more accurate descriptions of judged buying and sell-

ing prices than any of the models stemming from this representa-

tion. In summary, theories in which the relation between buying

and selling prices is attributed to “loss aversion” in the utility

function have not yet been successful in describing the difference

between buying and selling prices. Instead, judgments of buying

and selling prices of both sure things and gambles can be better

described by the theory that configural weights change in the

different points of view.

Birnbaum and Beeghley (1997) collected judgments of the highest

buying price and lowest selling prices of three-branch gambles, for

which each of three consequences were equally likely. That study

included many tests of RBI. The authors found that there were strong

violations of RBI in both buying and selling prices. They also found

that these violations were different in different viewpoints, which

again contradicts the loss aversion theory of buying and selling prices.

Violations of RBI were of the SR� type in both viewpoints, which

shows that the inverse-S decumulative weighting function of RDU or

CPT cannot account for judgments of value. Birnbaum and Beeghley

were able to use configural weight models to reproduce these “pref-

erence reversals” between buying and selling prices, and also prefer-

ence reversals between price judgments and choices between gam-

bles. The model assumes that the utility function for money is the

same for buying prices, selling prices, and choices, and only the

configural weights differ in these three situations. Their estimated

weights are displayed in Table 8. The fact that violations of RBI are

of the same type in judgment and choice (i.e., of the SR� type)

suggests that it is in the evaluation stage rather than in the choice stage

that these violations are generated. A similar pattern of violations was

found in four-branch gambles by Birnbaum and Veira (1998).

Preference Reversals in Ratings and Price Judgments

Tversky, Sattath, and Slovic (1988) proposed a contingent

weight model to account for preference reversals between attrac-

tiveness ratings and judged prices of binary gambles of the form (x,

p; 0), where x � 0. According to this contingent weight model

(which should not be confused with Birnbaum’s, 1974a, configural

weighting model), the relative weights of probability and prize

values depend on the task; presumably, probability has greater
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weight in the attractiveness rating task, and prizes have greater

weight in the price judgment task. Mellers et al. (1992) found that

the empirical changes in rank ordering were not consistent with the

contingent weight model. Instead, the data were consistent with the

theory that people combined probability and prizes by an additive

model in the ratings task and by a multiplicative one in the price

judgment task. This theory preserved scale convergence; that is,

the utility function was the same in both the additive and multi-

plicative models. In addition, the authors found a contextual effect;

this change of process occurs only when the gambles are of the

form (x, p; 0), where all x � 0 or all x  0 and few values were

at or near zero.

Choice Response Times and Configural Weighting

Birnbaum and Jou (1990) presented a model of choice response

times to describe three major phenomena of choice response times:

the distance effect, the end effect, and the semantic congruity

effect. The distance effect refers to the fact that it takes less time

to choose between two stimuli that are farther apart in subjective

value. The end effect refers to the fact that choices are faster for

stimuli at or near the ends of the series of stimuli used in a study.

The semantic congruity effect refers to the facts that one can decide

faster which of two good stimuli is “better” than to decide which

of two bad stimuli is better, and it is faster to decide which of two

bad stimuli is “worse” than to decide which of two good stimuli is

worse. The Birnbaum and Jou (1990) model can be viewed as an

extension of random walk models of choice, such as studied by

Link (1975, 1992, Busemeyer and Townsend (1993), and others.

There were two new ideas in Birnbaum and Jou (1990): The first

was a model of the bias parameters for the semantic congruity

effect that enabled a common scale to represent “difference”

judgments as well as “more” and “less” choice response times.

This model thus accounted not only for the three main phenomena

of choice response time but also for direct ratings of subjective

“differences.” The second new idea was to implement this model

of choice response times within Birnbaum’s (1974a, Experiment 4)

“scale free” test of additive or constant weight averaging models of

impression formation. Violations of the additive model in the

scale-free tests are taken as evidence of configural weighting. The

results showed converging evidence from both choice response

times and direct judgments against the additive models in favor of

an interaction that was represented by greater configural weighting

for stimuli of lower evaluation.

Whereas Busemeyer and Townsend (1993) had used a model

without configural weights, Johnson and Busemeyer (2005) pre-

sented a random walk model to account for the data of Birnbaum

and Beeghley (1997), in which there is configural weighting in

evaluation of gambles, but bias parameters for buying and selling

prices differ, and configural weighting is the same in both view-

points. Johnson and Busemeyer concluded that this model fit the

data of Birnbaum and Beeghley (1997) about as well as the purely

configural weight model with the same number of parameters.

Both models correctly imply changes of rank order between buy-

ing and selling prices. As noted by Leth-Steensen and Marley

(2000) in reference to Birnbaum and Jou (1990), it can be difficult

to distinguish effects of bias parameter from those attributed to the

evaluation process. A critical test between these interpretations has

not yet been conducted.

Discussion

The list of paradoxes and properties are summarized in Tables 9

and 10. Table 9 contains six properties that must be satisfied by

any version of RDU/RSDU/CPT and whose violations were pre-

dicted correctly by prior RAM and TAX. Violations of coalescing,

stochastic dominance, upper tail independence, and lower and

upper cumulative independence create contradictions within any of

these theories. Because there are no functions and parameters

within those theories that can explain these violations, they can be

called “new paradoxes” of choice. Violations of the properties in

Table 9 also add to the list of paradoxes of EU theory because EU

is a special case of RDU/RSDU/CPT and must also satisfy these

properties.

Violations of coalescing are probably at the root of the first five

new paradoxes in Table 9. Violations of coalescing disprove the

editing principle of combination that was included as an editing

principle in OPT. Researchers cannot reject the idea that some

participants might use such an editing rule on some occasions, but

researchers can reject this editing rule if it is treated as a scientific

theory. Any theory that represents the gambles as prospects or

probability distributions is refuted by systematic violation of co-

alescing. Violations of stochastic dominance also refute RDU,

RSDU, CPT, and other theories that have assumed stochastic

dominance, including security potential aspiration level theory

(Lopes & Oden, 1999) and lottery-dependent utility (Becker &

Sarin, 1987), among others.

Gain–loss separability is satisfied by OPT, CPT, and RSDU, so

violations of this property (Birnbaum & Bahra, 2007; Wu &

Markle, 2005) refute both versions of prospect theory as well as

other models that share this property. Violations of gain–loss

separability also bring into question the theory of loss aversion as

attributed to the utility function in CPT. This is not to say that a

kinked utility function has been disproved; rather, it is the assump-

tions that lead to the kinked utility function that have been dis-

proved. Wu and Markle (in press) have recently completed new

tests confirming and extending their previous findings. Violations

of gain–loss separability in two-branch gambles violate both ver-

sions of prospect theory.

It might seem that the issue of whether loss aversion is produced

by greater weight (attention) being given to losses or greater

disutility to losses than to gains of equal absolute value is merely

a semantic or mathematical issue. Both theories can imply the

Table 8

Estimated Weights of Equally Likely Consequences as a

Function of Rank in Three-Branch Gambles (From Birnbaum &

Beeghley, 1997)

Experiment Lowest Middle Highest

Buyer’s prices .56 .36 .08
Seller’s prices .27 .52 .21
Choices .51 .33 .16

Note. Relative weights are normalized to sum to one by dividing by the
sum of weights in each case. Values for choices are from Birnbaum and
McIntosh (1996). All three experiments are fit with the same utility
function, u(x) � x, for 0  x � $148.
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behavioral properties that people would rather win than lose and

that they tend to avoid fair mixed bets. However, the utility

interpretation (“losses loom larger”) assumes gain–loss separabil-

ity, whereas the configural weight theory (losses get greater

weight) of this phenomenon implies violations of this property.

Given the sparse data on mixed gambles and gain–loss separabil-

ity, it cannot yet be determined whether both factors (utility and

weight) contribute to this effect, but the violations of gain–loss

Table 9

Summary of Six New Paradoxes That Refute Cumulative Prospect Theory, Rank-Dependent Utility, and Rank-and Sign-Dependent

Utility Theories

Property name Expression Implications References

Event-splitting effect
(coalescing & transitivity)

A � (x, p; z, 1 	 p) � B � (y, q; z, 1 	 q)
N A� � (x, p 	 r; x, r; z, 1 	 p) �

B�� (y, q; z, s; z, 1 	 q 	 s)

Violations refute RDU,
RSDU, CPT

SS93, H95, B99c, B00, B01, BM03,
B04a; B04b; B05a; B05b; B06,
TK86; BN98; B99c; BPL99; B00;
B01; B07b; BB07

Stochastic dominance P(x � t�G�) � P(x � t � G	)@t

f G�
� G	

Violations refute RDU,
RSDU, CPT

B04a; B04b; B05a; B05b; B06;
B07b; BM03

Upper tail independence S � (x, p; y, q; z, 1 	 p 	 q) �

R � (x, p; y�, q�; z,� 1 	 p 	 q�)
N S1 � (y�, p; y, q; z, 1 	 p 	 q �

R1 � (y�, p � q�; z�, 1 	 p 	 q�)

Violations refute GDU,
RDU, RSDU, CPT

W94, B01, B05b

Lower cumulative independence S � (x, p; y, q; z, 1 	 p 	 q) �

R � (x�, p; y�, q; z, 1 	 p 	 q)
f S�� � (x, p � q; y�, 1 	 p 	 q) �

R�� � (x�, p; y�; 1 	 p)

Violations refute RDU,
RSDU, CPT

BN98, B99c, BPL99; B04b; B05a;
B06

Upper cumulative independence S� � (z�, 1 	 p 	 q; x, p; y, q) �

R� � (z�, 1 	 p 	 q; x�, p; y�, q)
f S��� � (x�, 1 	 p 	 q; y, p � q) �

R��� � (x�, 1 	 q; y�, q)

Violations refute RDU,
RSDU, CPT

BN98, B99c, BPL99; B04b; B05a;
B06

Gain–loss separability A�
� B� and A	

� B	 f A � B Violations refute
RSDU, CPT, OPT

WM05, BB07

Note. B99c, B00, B01, B04a, B04b; B05a, B05b; B06, B07b � Birnbaum (1999c, 2000, 2001, 2004a, 2004b; 2005a; 2005b, 2006, 2007b); BB07 �
Birnbaum and Bahra (2007). BM03 � Birnbaum and Martin (2003); BN98 � Birnbaum and Navarrete (1998); BPL99 � Birnbaum et al. (1999); H95 �
Humphrey (1995); SS93 � Starmer and Sugden (1993); TK86 � Tversky and Kahneman (1986); W94 � Wu (1994); WM05 � Wu and Markle (2005).
RDU � rank-dependent utility; RSDU � rank-and sign-dependent utility; CPT � cumulative prospect theory; GDU � gains decomposition utility; OPT �
original prospect theory. z� � x� � x � y � y� � z � 0.

Table 10

Summary of Five Properties Implied by SWU and OPT Whose Violations Contradict or Fail to Confirm Predictions of CPT

Property name Expression Empirical results References

RBI S � (x, p; y, q; z, 1 	 p 	 q) �

R � (x�, p; y�, q; z, 1 	 p 	 q)
N S� � (z�, 1 	 p 	 q; x, p; y, q) �

R� � (z�, 1 	 p 	 q; x�, p; y�, q)

Pattern of violations refutes CPT with
inverse-S.

BMc196, BC97,
BN98, B99c,
BPL99, B04a,
B04b; B05a,
B05b; B06,
B07b

4-DI S � (z�, r; x, p; y, p; z, 1 	 r 	 2p) �

R � (z�, r; x�, p; y�, p; z, 1 	 r 	 2p)
N S� � (z�, r�; x, p; y, p; z, 1 	 r� 	 2p) �

R� � (z�, r�; x�, p; y�, p; z, 1 	 r� 	 2p)

Violations refute RAM; pattern
violates CPT with inverse-S.

BC97

3-LDI S � (x, p; y, p; z, 1 	 2p) �

R � (x�, p; y�, p; z, 1 	 2p)
N S2 � (x, p�; y, p�; z, 1 	 2p�) �

R2 � (x�, p�; y�, p�; z, 1 	 2p�)

Failed to confirm predictions of CPT. B05b

3-2 LDI S0 � (x, 1/2; y, 1/2) � R0 � (x�, 1/2; y�, 1/2)
N S � (x, p; y, p; z, 1 	 2p) �

R � (x�, p; y�, p; z, 1 	 2p)

Failed to confirm predictions of CPT. B05b

3-UDI S� � (z�, 1 	 2p; x, p; y, p) � R� � (z�, 1 	 2p; x�, p; y�,
p) N S�2 � (z�, 1 	 2p�; x, p�; y, p�) �

R�2 � (z�, 1 	 2p�; x�, p�; y�, p�)

Violations refute RAM; pattern
refutes CPT with inverse-S.

B05b

Note. Consequences are ordered such that z� � x� � x � y � y� � z � 0. B99c, B04a, B04b, B05a, B05b; B06, B07b � Birnbaum (1999c, 2004a, 2004b,
2005a, 2005b, 2006, 2007b); BB97 � Birnbaum and Beeghley (1997); BC97 � Birnbaum and Chavez (1997); BMc196 � Birnbaum and McIntosh (1996);
BN98 � Birnbaum and Navarrete (1998); BPL99 � Birnbaum et al. (1999). SWU � subjectively weighted utility; OPT � original prospect theory; CPT �
cumulative prospect theory; RBI � restricted branch independence; 4-DI � 4-distribution independence; RAM � rank-affected multiplicative weights;
3-LDI � 3-lower distribution independence; 3-2 LDI � 3-2 lower distribution independence; 3-UDI � 3-upper distribution independence.
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separability show that the utility function approach by itself does

not work.

The Marley and Luce (2001) version of GDU satisfies upper tail

independence, so violations of this property (Wu, 1994) are evi-

dence against the lower GDU model as well as of the RDU/RSDU/

CPT family. See also Birnbaum (2007b).

Table 10 lists five independence properties that are systemati-

cally violated by RDU, RSDU, and CPT if the weighting function

is nonlinear. These properties must be satisfied by PRT, SWU,

“stripped” prospect theory (including EU), OPT, and any other

theory assuming the editing rule of cancellation. If people can-

celled common branches, then they would satisfy all five of these

properties. In these tests, data either fail to confirm predicted

violations of CPT or show the opposite pattern of violations from

what is predicted by CPT with its inverse-S-weighting function.

Empirical violations of RBI, 4-DI, and 3-UDI are of the opposite

type from what is predicted by CPT with its inverse-S-weighting

function. These phenomena also refute PRT, SWU, OPT, and any

other theory that assumes cancellation, but they are compatible

with predictions of TAX.

Summing up, prior CPT predicts only 17 of the 40 modal

choices (42%) analyzed in Tables 1, 2, 5, 6, and 7 (it is correct for

Choice Problems 1.2, 3.2, 4, 5.1, 6.2, 7.2, 8.2, 9.2, 10.1, 10.3, 10.5,

12.3, 12.7, 12.8, 15.2, 16.1, and 17.2).

According to OPT with or without the editing principle of

cancellation, there should be no violations of either branch inde-

pendence or distribution independence (see Tables 6 and 7). Sys-

tematic violations of the properties of Table 10 refute SWU, PRT,

and OPT, with or without cancellation. According to OPT with the

editing principle of combination, there should be no violations of

coalescing and no violations of the tests of Tables 1 and 2,

summarized in Table 9. OPT satisfies gain–loss separability, so

violations of that property in two-branch gambles, as reported by

Wu and Markle (2005), refute OPT. In summary, no version of

OPT, with or without its editing principles, has been found that is

compatible with the data summarized here.

An important property not listed in Tables 9 or 10 is branch-

splitting independence (Birnbaum, 2007b; Birnbaum & Navarrete,

1998). This is the assumption that splitting the same probability-

consequence branch in the same way should have the same effect

on any gamble containing that branch. For example, splitting a

branch of .2 to win $50 into two branches of .1 to win $50 should

either improve the gamble or diminish it whether $50 is the highest

outcome in the gamble or the lowest. Because CPT cannot violate

coalescing, this property is moot under CPT as well as in any other

model that satisfies coalescing. TAX and RAM imply violations of

both coalescing and of branch-splitting independence: Splitting the

higher branch should improve a gamble, and splitting the lower

branch should make it worse. Idempotent, SWU, including PRT,

will also violate both coalescing and branch-splitting indepen-

dence. Lower GDU implies upper coalescing but violates lower

coalescing. Additive SWU and stripped OPT imply violations of

both upper and lower coalescing, but they satisfy branch-splitting

independence. Birnbaum (2007b) found large violations of upper

coalescing, which refute lower GDU, and he found small, but

significant violations of branch-splitting independence. Combined

with evidence of violations of branch and distribution indepen-

dence, those data contribute to the case against additive SWU, and

stripped PT.

The three “classic” variations of the Allais paradox, which can

be viewed as cases inside the probability simplex, confound RBI

with coalescing. When these two properties are teased apart, it is

found that the data refute both OPT and CPT with or without the

editing principles of cancellation and combination. The data fall in

the one cell of Table 3 in which neither version of prospect theory

can lay claim. Namely, data show that the Allais paradoxes are

produced by violations of coalescing and that violations of branch

independence actually work in the opposite direction to these

Allais paradoxes (Birnbaum, 2004a, 2007b).

Considering all of the evidence, there is a strong case against

both versions of prospect theory with or without the editing prin-

ciples of cancellation, combination, and dominance detection. If

people satisfied combination, then there would be no violation of

the first five properties in Table 9, and if cancellation held, then

there would be no violation of the five properties in Table 10.

If there is a dominance detector, then it fails to work effectively for

cases such as Choice Problem 2 in Table 1, which are predicted to fail

according to RAM and TAX, but the detector “works” in Choice

Problems 3.2 and 4 in which TAX and RAM predict dominance to be

satisfied by the majority. One might assert that the dominance detec-

tor only works when dominance is “transparent” and otherwise does

not work, but one would still need to define transparent in some

noncircular way (Birnbaum et al., 1999).

An economist might suggest the following defense of CPT: It

should not be required that CPT predict the results of manipulating the

form of a choice (split vs. coalesced) because form of a choice is not

an economic variable. No rational economic person would knowingly

violate stochastic dominance, so CPT should not be required to

predict such violations, even though people exhibit them. From this

viewpoint, the “correct” way to present a choice is in the canonical

split form, in which very few people violate stochastic dominance

(e.g., Choice Problem 3.2). If we adopt this position, then it follows

that the inverse-S-weighting function is false because when Allais

paradoxes are dissected, the canonical split form produces violations

of RBI that rule out the inverse-S-weighting function. Because the

Allais paradoxes confound coalescing and branch independence, this

economic position rules out CPT as a theory of the Allais paradox.

The “overwhelming” evidence of inverse-S-weighting function, cited

by Wakker (2001), is then rendered irrelevant by this position because

such evidence comes from choices in which coalescing is used, and is

therefore outside the new, restricted domain of the economic theory.

Finally, this theory requires different weighting functions in CPT for

two-branch and three-branch gambles. This modified theory does not

seem particularly attractive as a descriptive model, and it is unclear

why it should be preferred to EU as an economic model.

Two models are partially consistent with the data, RAM and

idempotent, lower GDU. Despite success in predicting violations

of properties that rest on coalescing and the pattern of RBI, prior

RAM cannot describe violations of 4-DI and 3-UDI. Therefore,

TAX is more accurate than RAM because it predicts these results

correctly. TAX has also been found to be more accurate than RAM

in predicting tests of stochastic dominance (Birnbaum, 2005a).

GDU also gives a good fit, except for tests that rest on upper

coalescing. GDU cannot account for violations of upper tail inde-

pendence, nor can it account for direct tests of upper coalescing by

Birnbaum (2007b). GDU can, however, account for violations of

stochastic dominance, lower and upper cumulative independence,

and the pattern of violations of branch independence and distribu-
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tion independence. Luce, Ng, Marley, and Aczél (in press) are

presently exploring gains decomposition without the assumption

of idempotence, which may yield a more accurate model.

The model that best describes all of these new paradoxes is

TAX. With prior parameters, it correctly predicted all 10 of the

modal choices in Table 1, 11 of the 12 choices in Table 2, all eight

choices in Table 5, all four in Table 6, and all six in Table 7. The

only case in which prior TAX was wrong was in Choice Problem

9.3, in which consequences were in the millions of dollars. It is

worth repeating that predictions for TAX had been calculated from

simplified parameters and used to predict tests of lower cumulative

independence, upper cumulative independence, stochastic domi-

nance, 3-LDI, 3-2 LDI, and 3-UDI. These parameters were used to

design tests that differentiate CPT and TAX, and the new tests

confirmed the predicted results by prior TAX. It is also worth

repeating that although the simplifying assumption that u(x) � x

was used here to illustrate the predictions, this assumption is not

part of the model, and it is not optimal. Furthermore, the finding

that u(x) � x works does not imply that only u(x) � x works.

TAX requires a nonlinear utility function to fit the data in

Choice Problems 9.1–9.3 of Table 2, in which large consequences

(millions of dollars) were used (Birnbaum, 2007b). Aside from

cases involving large consequences, its success in predicting new

results, including the recipe for violations of stochastic dominance

(Birnbaum, 1997) and the breakdown of the Allais paradoxes (Birn-

baum, 2004a), cannot be dismissed as post hoc model fitting. Those

predictions were used to design new choices and were successful in

predicting new results without fitting anything to those data.

The TAX model describes all 11 of the new paradoxes reviewed

here that refute CPT, and it also accounts for those classic phe-

nomena involving two-branch gambles and three-branch gambles

in the probability simplex triangle that were successfully described

by CPT, using no more parameters than CPT. Because this model

was successful in predicting new as well as old phenomena, its

success might be due to more than luck.

There is no claim that the success of the linear utility function

used here to simplify the presentation refutes other utility func-

tions. This simplifying assumption was used to make it clear that

the properties reviewed here can all be understood by assumptions

concerning configural weighting. Similarly, whereas the violations

of gain–loss separability can be described by a very simple version

of TAX without any loss aversion attributed to the utility function,

no claim is made that the findings reviewed here refute a kinked or

nonlinear utility function.

Brandstätter et al. (2006) argued that CPT is more accurate than

TAX when TAX is restricted by the assumptions that u(x) � x�

with � � 1, and CPT is allowed to use up to three best-fit values

of �  1. But this conclusion dissolves if researchers allow both

TAX and CPT to use best-fit parameters. For example, the TAX

model with � � 1, � � 0.7, and � � 1 predicted only 73 of the 100

modal choices correctly between random binary gambles in Erev,

Roth, Slonim, and Barron (2002). However, if researchers use the

median best-fit estimates reported by Birnbaum and Navarrete

(1998), �̂ � 0.41, �̂ � 0.79, and �̂ � 0.95, then these parameters

reproduce all but 4 of the 100 modal choices correctly in the same

data. And when � is estimated from those data, TAX fits 99 of 100

modal choices correctly, the same as the optimal fit of CPT to the

same data. The conclusion has already been stated that binary

gambles are not going to allow researchers to compare TAX and

CPT because these models are virtually identical for binary gam-

bles: When both models are allowed the same number of free

parameters, they achieve virtually equal fit to those data. Similarly,

both TAX and CPT can reproduce the modal choices in Kahneman

and Tversky (1979) perfectly, if they are allowed to estimate their

parameters from those data. Those choices all fall inside the

probability simplex in which these models cannot be distinguished

very well. When comparing predictions of models, one should not

force assumptions on the values of parameters, as that procedure

can easily lead to wrong conclusions (Birnbaum, 1973a; 1974b).

Priority Heuristic

Although the properties reviewed here were not designed to test

the priority heuristic (Brandstätter et al., 2006), every one of these

“new paradoxes” violates predictions of that model systematically.

According to the priority heuristic, people compare two nonnega-

tive gambles by examining their worst consequences. If these

differ by more than 10% of the maximal prize in either gamble,

then people supposedly choose the gamble with the higher lowest

consequence. However, if the difference is less than this threshold,

then they next compare the probabilities to receive the lowest conse-

quences and choose on the basis of this factor if the difference exceeds

0.1. Only if this difference is less than 0.1 do they go on to compare

highest consequences, which is decisive in the case of two-branch

gambles. With three or more branches, people are supposed to use the

probability to win the highest consequence as their final comparison.

The priority heuristic fails to account for any of the new paradoxes.

Of the 40 choices in Tables 1, 2, 5, 6, and 7, this heuristic is correct

in only 16 cases (40% correct: Choice Problems 1.2, 4, 6.2, 7.2, 8.2,

9.1, 9.2, 10.3, 10.5, 12.3, 12.6, 12.7, 12.8, 14.2, 16.1, 17.2). This

heuristic not only failed to predict even half of the modal choices in

Birnbaum and Navarrete (1998) but also failed to predict even half of

the choices used in a partial replication of that study by Brandstätter,

Gigerenzer, and Hertwig (2008). See Birnbaum (2007a; 2008a,

2008b) and Bimbaum and LaCroix (2007) for further discussion of

the priority heuristic.

Replication Study

It might be argued that the examples described here have been

selected from previous research, and therefore the selection might

have capitalized on chance. To check the stability of the results,

the choices listed in Table 11 were presented to a new sample of

223 undergraduates, each of whom made each choice twice; the

two presentations were separated by intervening tasks requiring

about 10 min. The first two columns in Table 11 show the table

number and choice number of the item replicated, the third and

fourth columns show the choice percentage in the review (Rev)

and in the new replication (Rep), respectively. Choice percentages

in the replication are quite similar to previous results (r � .92).

Except for three choices (8.1, 10.3, and 14.2), all of the choice

proportions in the replication are significantly different from 0.5,

by the z test of correlated proportions (this test compares the

number who made two choices of one type with the number who

made two choices of the opposite type).

Because there were two presentations of each choice, one can

estimate the “true” probabilities of preferring the second gamble

(p̂) and the “error” rates (ê) for each choice, which are displayed
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in the fifth and sixth columns of Table 11. The next four columns

in the table show the estimated probabilities of each combination

of choices, with the second choice of each pair listed in the last

column. For example, the first row in Table 1 shows that for

Choice Problems 1.1 and 1.2, which tested coalescing, p̂11 � 0.26,

which means that 26% of participants preferred the first gamble on

both choices (A over B and A� over B�, AA�). However, p̂21 � 0.49

and p̂12 � 0.02, which indicate that 49% had the BA� preference

pattern predicted by TAX, and only 2% had the opposite reversal.

Choices 2 (3.1) and 3.2 test stochastic dominance and coalesc-

ing. The replication data indicate that 76% have the “true” pref-

erence pattern of violating stochastic dominance in the coalesced

form and satisfying it in the canonical split form.

The replication used a new version of Choice 3.3, I� � ($90, 0.8;

$13, 0.1; $12, 0.1) and J� � ($89, 0.7; $88, 0.1; $11, 0.2) in order

to provide a test of priority heuristic as well as of the contrast

counting and similarity heuristics. In this case, the probabilities of

the lowest and highest consequences are 0.1 lower and 0.1 higher

in I� than in J�, respectively, so the priority heuristic and similarity

heuristics imply that people should choose I�, as does CPT. In

addition, both lowest and highest consequences are higher in I�, so

the contrast counting heuristic also predicts that people should

choose I�. Despite these changes, the observed percentage of

violations of stochastic dominance is 67% in this new choice, with

an estimated “true” probability of 0.78.

The replication of Choice 4 of Table 1 yielded 34% violations,

very close to the previous value of 35% in Table 1. Comparing

Choices 2 (3.1) and 4, the “true and error” model estimates that

47% violated dominance in Choice 2 and satisfied it in Choice 4,

with an additional 29% who violated it in both problems. No one

was estimated to satisfy dominance in Choice 2 and violate it in

Choice 4 (see Figure 7).

In tests of upper tail independence (Choices 6.1 and 6.2), upper

cumulative independence (Choices 7.1 and 7.2), and lower cumu-

lative independence, the replication study again confirmed previ-

ous results. The model estimated that 40%, 52%, and 34% showed

the preference reversals predicted by TAX against only 2%, 1%,

and 0% who showed the opposite pattern of reversal in these three

properties.

In Choices 10.1 through 10.5, the replication results agreed well

with previous results dissecting the Allais paradox. In this case,

73% of participants are estimated to show the predicted Allais

paradox, reversing preferences between Choices 10.1 and 10.5,

with no one having the opposite pattern. The replication study

shows that coalescing is violated by 54% and 50%, as predicted by

TAX (10.1 vs. 10.2 and 10.4 vs. 10.5, respectively), with no one

having the opposite pattern. In Choices 10.2 versus 10.4, 36% are

estimated to have the pattern of violation of RBI predicted by

TAX, with only 1% estimated to show the pattern of reversal

predicted by CPT with its inverse-S-weighting function.

Table 11

Choice Percentages in Review (Rev) and in Replication (Rep) Study, With Estimates of “True” Choice Probabilities and “Error”

Rates, as Well as Choice Patterns

Table
no. Choice no. Rev Rep p̂ ê p̂11 p̂12 p̂21 p̂22 Choice 2

1 1.1 62 66 0.73 0.15 0.26 0.02 0.49 0.23 1.2
1 1.2 26 33 0.24 0.17
1 2,3.1 73 69 0.77 0.16 0.22 0.00 0.76 0.01 3.2
1 3.2 6 9 0.01 0.08
1 3.3 57 67 0.78 0.20 0.24 0.00 0.47 0.29 4
1 4 35 34 0.29 0.12
1 6.1 67 55 0.59 0.19 0.40 0.02 0.40 0.18 6.2
1 6.2 33 29 0.20 0.15
2 7.1 70 57 0.61 0.19 0.39 0.01 0.52 0.08 7.2
2 7.2 42 19 0.09 0.11
2 8.1 62 52* 0.54 0.19 0.47 0.00 0.34 0.19 8.2
2 8.2 26 32 0.19 0.21
2 10.1 38 29 0.16 0.19 0.27 0.54 0.00 0.19 10.2
2 10.2 64 65 0.74 0.19 0.26 0.01 0.36 0.37 10.4
2 10.3 54 51* 0.52 0.17
2 10.4 43 41 0.37 0.16 0.12 0.50 0.00 0.38 10.5
2 10.5 78 80 0.89 0.11 0.11 0.73 0.00 0.16 10.1
6 13.1 40 34 0.23 0.21 0.42 0.34 0.00 0.24 13.2
6 13.2 62 57 0.61 0.19
6 14.1 34 43 0.36 0.23 0.54 0.09 0.00 0.37 14.2
6 14.2 51 47* 0.45 0.19
7 15.1 24 16 0.10 0.08 0.88 0.01 0.02 0.09 15.2
7 15.2 19 15 0.09 0.08
7 16.1 31 32 0.28 0.11 0.73 0.00 0.12 0.15 16.2
7 16.2 34 20 0.12 0.10
7 17.1 56 55 0.59 0.19 0.45 0.00 0.23 0.32 17.2
7 17.2 33 35 0.29 0.15

Note. Asterisk indicates cases in which the choice percentage in the replication study was not significantly different from 50%. In the analysis of Choice
Problems 10.5 with 10.1 (of Table 2), 10.1 was treated as the first choice problem and 10.5 as the second, therefore, p̂12 � 0.73 means that 73% of
participants are estimated to truly prefer the first gamble in Problem 10.1 and prefer the second gamble in 10.5.
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Problems 13.1 and 13.2 used a revised test of RBI; S � ($44, 0.1;

$40, 0.1; $2, 0.8) � R � ($96, 0.1; $4, 0.1; $2, 0.8) on 66% of the

presentations, but S� � ($100, 0.8; $44, 0.1; $40, 0.1) � R� � ($100,

0.8; $96, 0.1; $4, 0.1) only 43% of the time. According to the

true-and-error model, 34% of the participants had the SR� pattern of

preference reversal and 0% showed the pattern predicted by CPT.

Choices 14.1 and 14.2 tested 4-DI. It was estimated that 9%

violated 4-DI in the manner predicted by TAX and that no one had

the opposite pattern. Although these trends agree in direction with

those reported by Birnbaum and Chavez (1997), the effects are

smaller than previously reported for the same choice.

Choices 15.1, 15.2, 16.1, and 16.2 tested 3-LDI and 3-2-LDI.

The observed choice percentages are similar to previous values.

The estimated percentage who reversed preferences as predicted in

Choices 15 by prior CPT was 2%, and 1% were estimated to have

the opposite reversal. In Problem 16, the true-and-error model

estimated that 12% had the reversal pattern opposite that predicted

by CPT, and no one showed the reversal predicted by that model

with its prior parameters.

In Choices 17.1 and 17.2, observed choice percentages again

replicated previous results. The true and error model estimated that

23% had the preference reversal opposite that predicted by CPT

and that no one had the reversal predicted by the inverse-S-

weighting function.

In summary, the replication study shows that the phenomena

reviewed here, collected from different articles with different

participants, can be largely replicated in a single study. The only

case where the modal choice in the replication study did not match

previous results was in Choice 14.2, where 47% chose R� over S�,

compared with 51% in the original study.

The findings summarized in this article are not equally strong

for all of the new paradoxes for two main reasons. First, some tests

are inherently more diagnostic than others. Violations of the prop-

erties in Table 9 refute CPT with any functions and parameters;

therefore, these paradoxes are most telling. In contrast, violations

of predicted patterns in Table 10 (e.g., pattern of violation of RBI)

rule out CPT with an inverse-S-weighting function, but they do not

rule out the general form of CPT; therefore, evidence of this type

is inherently less strong. Failure to find a predicted pattern of

violations on the basis of prior parameters (as in tests of 3-LDI,

Problems 15.1, and 15.2) is the weakest type of evidence. One can

always imagine that with some other choices, with other proce-

dures, other participants, or using other parameters, predicted

patterns of data might be observed.

Second, the weight of empirical evidence on these different

properties varies across the properties. The number of studies

testing each property, number of participants in each study, the

number and variety of choices used in each test, and proportions of

people who are estimated to show each type of violation differ

from property to property. I think the evidence is most powerful

for violations of coalescing, stochastic dominance, lower, and

upper cumulative independence, for which the logical case, the

amount of empirical evidence, and the magnitude of violations in

individual participants combine to provide the strongest refutations

of CPT. In contrast, the property of 4-DI had been tested in only

one previous study with a dozen choice problems prior to the

replication, and the replication data were not very impressive in the

test selected for this review. Because violations of 4-DI refute the

RAM model, the case against RAM is not strengthened much by

the replication study. In my opinion, however, the topic that

deserves the most empirical attention is gain–loss separability.

That property is crucial to both versions of prospect theory and to

the issue of loss aversion. I am aware of only two studies on this

topic, both finding evidence against the property.

Contextual Effects

The TAX model, as presented so far, is silent on certain phe-

nomena that refute the EU model. For example, Birnbaum (1992a)

examined choices between sure cash and binary gambles, while

varying the distribution of sure cash values. When the distribution

of sure cash values was positively skewed on the interval from $1

to $90 (many small values), the percentage who chose cash over a

gamble exceeded the corresponding choice percentages obtained

when this distribution was negatively skewed on the same interval.

For example, only 33% chose $20 over the gamble G � ($48, 0.05;

$0) in the negatively skewed context, whereas 65% chose $20 over

the same gamble in the positively skewed context. The resulting

cash-equivalent values for a gamble were higher in the negatively

skewed context than in the positively skewed context. Such find-

ings create problems for theories in which utility and probability

weighting functions are treated as “absolutes,” as they were in

early versions of EU theory (Stewart, Chater, Stott, & Reimers,

2003).

To account for contextual effects or effects of choice configu-

ration, the TAX model (or any model treated in this article) would

require additional features beyond those stated above. In order to

accommodate such effects within TAX, the utility and probability

functions, u(x) and t( p) might be assumed to follow range-

frequency theory (Birnbaum, 1974c, 1982, 1992a, 1992b; Par-

ducci, 1965, 1995). Contextual effects might also affect the trans-

formation from subjective differences to choice proportions

(Birnbaum et al., 1971; Mellers & Birnbaum, 1982). This means

that the functions should be subscripted for context.

Varey, Mellers, and Birnbaum (1990) asked people to examine

squares containing numbers of white and black dots and to judge

the proportions of each color. Varey et al. manipulated the actual

numbers of white and black dots as well as the frequency distri-

bution of actual proportions. They found that judgments of pro-

portions followed different inverse-S relationships with actual

proportions, consistent with the relative ratio, tk(w)/[tk(w) � sk(b)],

where sk(b) and tk(w) are contextually affected, subjective numbers

of black and white dots in context k, respectively. Figure 8 in

Varey et al. (1990) shows how the relationship between judged and

actual proportion depended on their contextual manipulations. It

seems likely that similar contextual effects would be observed if

people were asked to bet on a white or black ball drawn from urns

represented by their stimuli or to choose between gambles defined

by those stimuli and presented in those same contexts.

Roe, Busemeyer, and Townsend (2001) reviewed a number of

studies in which the choice between two multiattribute alternatives

A and B depends on the context provided by a third alternative, C,

added to the choice set. It is possible to find a third alternative, C,

such that the probability of choosing B from the set of three

alternatives {A, B, C} exceeds the probability of choosing B over

A from the set of two, {A, B}. This is done by introducing C that

is dominated by B on all dimensions and is not dominated by A

(Huber, Payne, & Puto, 1982). In the set of three alternatives, A is
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now third on the first dimension and first on the second dimension,

whereas B is now first on the first dimension and second on the

second dimension. Roe et al. (2001) developed a multialternative

choice model to account for this effect and other contextual effects

such as the similarity effect (Restle & Greeno, 1970).

The existence of contextual effects, however, need not rule out

the idea that there is a context-free psychophysical function un-

derlying judgments and choices. Birnbaum (1974c) showed that

one can use range-frequency theory to fit judgments of the “size”

of three-digit numbers in which the numbers were presented in

different distributions. Despite large contextual effects due to

manipulation of the frequency distribution, the range-frequency

model yields a context-free scale of numerical magnitude. Further-

more, this scale of numerical magnitude agreed well with subjec-

tive scales of the same range of numbers, derived from a simple

model of judged “ratios” and “differences” of numerical magni-

tude (Rose & Birnbaum, 1975). In this case, all three sets of data

could be fit by the approximation, v(x) � x�, where � � 0.6, where

v(x) represents the subjective magnitude of a number. Roe et al.

(2001) concurred with this view; they showed that their contextual

effects can also be described by a context-free psychophysical

function combined with a theory of choice that accounts for the

contextual effects.

Open Problems

The TAX model is an idempotent, rank-weighted utility model;

this generic model has been axiomatized and related to other

formulations by Marley and Luce (2001, 2005; see also Luce &

Marley, 2005). It is not yet known, however, what additional

assumptions force the special form of the TAX model, in which all

of the weight transfers are equal proportions of the branch losing

weight. This special model implies 3-LDI. When two upper

branches have equal probability, the middle branch will gain as

much from the highest branch as it gives up to the lowest branch,

which keeps the ratio of weights independent of the value of that

(common) probability. It has not yet been shown whether this

theorem could be used as an axiom in combination with the

idempotent, rank-weighted utility model to deduce the special

TAX model. If these premises are not sufficient, then what as-

sumptions would be required to imply this representation?

The properties reviewed here have been analyzed at both the

group and individual level. What is characteristic of group data has

been shown (in the original reports cited) to represent the behavior

of individuals (see, e.g., Birnbaum & Navarrete, 1998). However,

each study has involved a relatively small number of choices

(typically from 20 to 130) for each participant and has tested only

a small number of properties in each person tested. What has not

yet been done is the assessesment of the behavior of individuals

over a large number of replications with a larger number of

properties tested within the same person. With larger quantity of

data per person, it becomes possible to analyze the data at the level

of each individual and to ask, for example, whether there are some

participants who are best represented by CPT and others who are

best represented by TAX.

Until researchers have a clear reason to abandon it (as in Mellers

et al., 1992), I think we should retain the principle that every

individual is represented by the same model in which different

people can have different parameters in that model. Because EU is

a special case of TAX, it is compatible with TAX that some

individuals might satisfy EU, but there should not be any partic-

ipant who systematically violates EU and who satisfies CPT,

except by random error. How would such a participant be identi-

fied? That person should not show any of the paradoxes of Table

9, should show violations of the properties in Table 10, should

show Allais paradoxes, and these violations should all be consis-

tent with the same decumulative probability weighting function.

“Same” does not mean that all participants have the same weight-

ing function, but rather that all of the violations of properties in

Table 10 by a given person should agree with the same weighting

function for that individual.

During a long experiment, it seems possible that people might

learn to recognize stochastic dominance. Perhaps they might learn

or could be taught how to convert a choice into its canonical split

form, in which form stochastic dominance is largely satisfied. If

so, then would that same person also come to satisfy upper and

lower cumulative independence? That person might therefore still

violate EU because violations of branch independence are ob-

served in canonical split form. But would these people eventually

come to satisfy CPT? Are there any individuals who systematically

violate RBI with the RS� pattern of violations and show the

standard Allais paradoxes? If so, then such findings could be taken

as evidence against the special TAX model, and taken as evidence

favoring the CPT model if the same weighting function predicted

these results correctly as well as tests of distribution independence.

According to the TAX model, the pattern of violations of

different properties should be linked according to the person’s

parameters of TAX. By testing a larger number of properties for

each person, it would be possible to test whether the same param-

eters can explain all of that person’s data. If it can be shown that

different experimenters using different contexts and different par-

ticipants find different values of parameters, then it would not be

particularly surprising because neither TAX nor CPT assumes that

utility functions and probability weighting functions are “abso-

lutes.” The advantage of collecting rich data for the same person in

the same lab and in the same context is that researchers can test

whether there is or is not a common set of parameters that accounts

for multiple phenomena in the same person.
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