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.e role of integer and noninteger order partial differential equations (PDE) is essential in applied sciences and engineering. Exact
solutions of these equations are sometimes difficult to find. .erefore, it takes time to develop some numerical techniques to find
accurate numerical solutions of these types of differential equations. .is work aims to present a novel approach termed as
fractional iteration algorithm-I for finding the numerical solution of nonlinear noninteger order partial differential equations..e
proposed approach is developed and tested on nonlinear fractional-order Fornberg–Whitham equation and employed without
using any transformation, Adomian polynomials, small perturbation, discretization, or linearization..e fractional derivatives are
taken in the Caputo sense. To assess the efficiency and precision of the suggested method, the tabulated numerical results are
compared with the standard variational iteration method and the exact solution as well. In addition, numerical results for different
cases of the fractional-order α are presented graphically, which show the effectiveness of the proposed procedure and revealed that
the proposed scheme is very effective, suitable for fractional PDEs, and may be viewed as a generalization of the existing methods
for solving integer and noninteger order differential equations.

1. Introduction

.e nonlinear PDEs have become a hot topic in the field of
nonlinear science, which has been used to describe the
problems in many fields, such as quantummechanics, image
processing, ecology and economic system, and epidemiol-
ogy. PDEs are broadly emerging in different physical ap-
plications like dispersing and propagation of waves,
magnetic resonance imaging, computational fluid dynamics,
magnetohydrodynamic move through pipes, phenomena of
supersonic and turbulence flow, acoustic transmission, and
traffic. More details can be found in [1] and the references
therein. PDEs are used in population models, medical im-
aging, proper distribution of oxygen to the healing tissues,

electrical signalling of nerves, etc. [2]. .e popularity of PDE
has been confirmed in a very actual prediction of the number
of COVID cases [3, 4]. Using PDE, it is possible to make a
model of the shape of COVID-19 [5]. However, for some
complex problems in these fields, the fractional PDE is more
accurate than integer-order partial differential equation. So,
generating numerical solutions of fractional PDEs has be-
come extremely important.

.e noninteger order Calculus was created immediately
after the integer order Calculus, which means that it dates
back to the 17th century. .e notation (dif(ψ)/dψi) was
originated around 1675 by Leibniz to represent the ith
derivative of a functionf(ψ), assuming integer values of i. In
1695, L′ Hospital stated the problem: “What if i is (1/2)?”
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Later, Leibniz used fractional derivatives (FD) symbols in his
research. Accordingly, the concept of an FD appeared almost
at the same time as the integer order derivative. Many fa-
mous researchers in the 18th and 19th century, for example
Euler, Lagrange, Laplace, Fourier, and many others, con-
tributed to the development of the fractional calculus (FC).
.e first problem modeled in terms of FC was the known
problem of the tautochrone curve. In 1823, Abel found a
solution in terms of an integral equation, which is based on
the Riemann-Liouville definition of the fractional integra-
tion. However, the popularity of fractional partial differ-
ential equations (FPDE) was slowed down by some
incomplete and conflicting definitions and difficulties in
establishing consistent regulations for inverse operations.
Satisfactory definitions for the integration and differentia-
tion with fractional power were developed in the middle of
the 19th century. FC is still an active of research in engi-
neering and sciences [6–10].

Due to the importance of numerical solution of frac-
tional PDEs (FPDEs) in science and engineering, some
powerful numerical techniques are developed in the liter-
ature, and many prominent researchers have made contri-
butions in this area. .ese include finite element methods
[11], mixed finite element (MFE) methods [12], (local)
discontinuous Galerkin methods [13], finite volume
methods [14], Jacobi collocation [15], variational iteration
method [16], generalized Kudryashov method [17], finite
Hankel transform procedure [18], modified Khater method
[19], residual power series method [20], modified auxiliary
equation method [21], local meshless method [22], RBF
collocation method [23], operational matrix of B-spline
functions [24], and some other advanced numerical methods
as well. Zhang and Xu [25], Lin et al. [26] considered some
spectral approximations for the time-fractional water wave
model, time-fractional diffusion equation. Most nonlinear
TFPDEs do not have accurate exact solutions. .erefore,
direct and iterative approaches are applied. Most of the
methods for nonlinear TFPDEs give infinite series solutions
or mesh-based method. .ese methods are time-consuming
due to repeated calculation in series solution and mesh
creation in mesh-based methods.

Opposite to great popularity and applicability, the
shortcoming is obvious in the available numerical tech-
niques of reasonably high orders for finding approximate
solutions of FPDEs. Such a need for a general method, which
is usable in solving linear, nonlinear, homogenous, non-
homogeneous, and multivariable FPDEs problems without
major changes, is the inspiration for the current research.
Recently, many scholars have investigated the numerical
solutions of the fractional PDEs, which has effectively
promoted the advancement of the field of nonlinear PDEs.
However, in general, numerical techniques have some
limitations such as low accuracy, mesh generation, trans-
formations, stability, convergence, and difficulty of imple-
menting in complex geometries. In recent years, the
variational iterationmethods (VIM) have become popular in
the field of numerical approximations. In this technique, the
discretization of the domain and linearization of given
differential equations is not required. We simply need to

calculate the Lagrange multiplier of the given differential
equation by restricting the nonlinear terms and in series
form analytical solution of the given differential equations
can be obtained. VIM can be implemented in the easiest way
and is more flexible than other techniques available in the
literature. It was applied for the first time to FPDEs by He in
[27], and later on by Odibat and Momani in [28]. Inc [29]
employed it for the numerical approximation of fractional
Burgers equations. Yulita et al. [30] applied VIM for the
analytical treatment of fractional Zakharov-Kuznetsov
equations, while Safari et al. [31] utilized it for fractional
KdV Burger’s Kuramoto equation. Das in [32] investigated
fractional diffusion equations by using VIM and obtained
the exact solution.

In this study, we present a novel approach, termed as
fractional iteration algorithm-I, for solving noninteger order
differential equations. .e proposed approach is developed
and tested on nonlinear fractional-order Fornberg–
Whitham equation. .is equation is defined as
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subject to the beneath initial condition

U(ψ, 0) �
4

3
e(ψ/2). (2)

.e constant α in 1 lies in the interval (0, 1], U(ψ, t) is
the fluid velocity, ψ is the spatial, and t is the time
coordinate.

.e numerical solution of the Fornberg–Whitham type
equations (1) is numerically challenging. To solve these
equations numerically, several methods were proposed in
the literature. Lu in [33] solved Fornberg–Whitham type
equations by He’s variational iteration method. .e ap-
proximate analytical solutions to this type of equations were
presented by Abidi and Omrani in [34] employing homo-
topy analysis technique. Zhou and Tian [35] obtained a
special type of travelling wave solution of the Fornberg–
Whitham type equations by applying the bifurcation
method. Yin et al. [36] classified all the travelling solutions
obtained by an improved qualitative method of For-
nberg–Whitham equation. Feng and Wu [37] reduced this
equation to simple ODE and solved it by factorization
technique successfully. Jiang and Bi [38] presented the bi-
furcation method and smooth travelling wave solutions are
obtained. Reduced differential transform method has been
utilized by Hesam [39] for this type of equations and in
convergent power series, the results are obtained. Biazar and
Eslami [40] used He’s HPM for the analytical solution of
equation (1). .ree different types of Fornberg–Whitham
equation were investigated by Boutarfa et al. [41] who used
the reproducing kernel Hilbert space method. A novel an-
alytical approach for solving fractional Fornberg-Whitham
equation was proposed in [42]. An iterative method for
finding approximate analytical solutions to the fractional
Fornberg-Whitham equation was proposed in [43]. An
analytical solution of Fornberg-Whitham type equations in
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view of the fractional Caputo operator was considered in
[44]. Our aim in this work is to apply the MVIA-I for these
two types of Fornberg–Whitham type equations.

.e remaining sections of the paper are organized on the
basis of the following organization. In Section 2, some
special and basic functions of fractional Calculus are defined.
In Section 3, the fractional iteration algorithm-I is explained.
Its convergence analysis is discussed in Section 4, and its
implementation is illustrated for nonlinear Fornberg–
Whitham type equations in Section 5. In Section 6, the
results are discussed, and some utilizations of the proposed
scheme are given. Conclusion is explained in the last Section
7.

2. Basic Functions and Properties of
Fractional Calculus

.is section aims to present some basic definitions and
notions, which have significant importance in the FC. First
of all, we discuss some basic special functions. Basic defi-
nitions of fractional derivatives were introduced thereafter.

2.1. Special Functions. In fractional/fractal calculus, the
gamma, Beta, and Mittag–Leffler functions are the funda-
mental and key tools to understand the origin of its com-
putational challenges.

2.1.1. Gamma Function. .e gamma function Γ(z) is de-
fined by the Euler integral of the second kind [45]:

Γ(z) � ∫∞
0
e− ttz− 1dt. (3)

.is integral is convergent in the right half of the complex
plane re(z)> 0.

2.1.2. Beta Function. .e Beta function β(z, w) is defined by
the Euler integral of the first kind [45]:

β(z, w) � ∫∞
0
(1 − t)w− 1tz− 1dt, re(z)> 0, re(w)> 0.

(4)

.e relationship between Beta function and Gamma
function can be established as

β(z, w) �
Γ(w)Γ(z)
Γ(w + z) . (5)

2.1.3. Mittag–Leffler Function. We describe the one-pa-
rameter and two-parameter Mittag–Leffler function, re-
spectively, as [46]

Eα(z) � ∑∞
k�0

zk

Γ(αk + 1)
,

Eα,β(z) � ∑∞
k�0

zk

Γ(αk + β)
.

(6)

2.2. Different Definitions of Fractional Derivatives. We
present somemain definitions of the fractional derivatives as
follows:

Definition 1. .e right-modified Riemann–Liouville deriv-
ative is defined as [47]
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(7)

Definition 2. .e Caputo fractional derivative is defined as
[48]
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(8)

Definition 3. .e ABC derivative is introduced as [49]
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a

z
α
U(ψ, t)

ztα
�
AB(α)

1 − α
∫t
a
U(ψ, x)Eα −
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1 − α
( )dx, 0< α< 1, (9)

where AB(α) is the normalization function.

Definition 4. .e Ji-Huan He’s fractional derivative is de-
fined by the rule [50]
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d
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∫t
t0

(t − ϑ)− α U0(ϑ) − U(ϑ)[ ], 0< α< 1.

(10)

Definition 5. .e Ji-Huan He’s fractal derivative is defined
as [50]

zU

zψα � Γ(1 − α) lim
Δψ�ψ1− ψ2⟶ L

U ψ1( ) − U ψ2( )
ψ1 − ψ2( )α . (11)

Definition 6. .e Grünwald–Letnikov fractional derivative
is presented as [45]
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Dα
tf(t) � lim
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k

 f(t − kh), ψ − 1< α<ψ.

(12)

3. Fractional Iteration Algorithm-I

In this section, the main idea of the fractional iteration
algorithm-I is illustrated by considering a nonlinear dif-
ferential equation of the generic form

L[U(ψ)] +N[U(ψ)] � g(ψ), (13)

where L[U(ψ)] and N[U(ψ)] denote linear and nonlinear
operators, respectively, whereas g(ψ) is a nonhomogeneous
term. For an appropriate given initial condition U0(ψ),
seriesUk+1(ψ), which approximates the solution of equation
(13), can be obtained as

Uk+1(ψ) � Uk(ψ) + ρ∫ψ

0
λ(ϑ) L Uk(ϑ){ } +N Uk(ϑ){ }︷����︸︸����︷

− g(ϑ)[ ]dϑ, (14)

where Uk(ϑ)
︷��︸︸��︷

is a restricted term, which gives δUk(ϑ)
︷��︸︸��︷

� 0
with respect to the variation δ, and ρ and λ(ϑ) are an
auxiliary parameter and Lagrange multiplier, respectively,
which can be optimally determined. .e first one is used to
accelerate the convergence to the exact solution [51–55],

while the second one is used to construct the correction
function [56].

A suitable value of λ(ϑ) can be achieved applying δ on
both sides of recurrent relation (14) with respect to Uk(ψ),
which leads to

δUn+1(ψ) � δUn(ψ) + ρδ∫ψ

0
λ(ϑ) L Uk(ϑ){ } +N Uk(ϑ){ }︷����︸︸����︷

− g(ϑ)[ ]dϑ. (15)

For nonlinear problems, the nonlinear terms have to be
considered as restricted variations for obtaining the value of
Lagrange multiplier, and a correction functional can be
easily constructed after determining the identified value of
corresponding nonlinear terms. .e beneath Lagrange
multipliers can be obtained in the following way:

λ � − 1, for i � 1,

λ � ψ − t, for i � 2.
(16)

Also, the following general formula for the Lagrange
multiplier in the cases i≥ 1 is available:

λ �
(− 1)i(ϑ − t)i− 1

(i − 1)!
. (17)

After finding the value of Uk(ϑ)
︷��︸︸��︷

, an iteration formula is
constructed by using this value in the corrective function
(14) as follows:

Un+1(ψ) � Un(ψ) + ρ∫ψ

0

(− 1)i(ϑ − t)i− 1

(i − 1)!
L Uk(ϑ){ } +N Uk(ϑ){ } − g(ϑ)[ ]dϑ. (18)

.e iterative sequence Uk can be obtained starting from a
proper initial approximation and using the iterative formula
(18). It is convenient to repeat iterationsmany times to arrive at
the given accuracy for the advanced computer technique. An
exact solution U(ψ) is obtained as the limiting value

U(ψ) � lim
k⟶∞

Uk(ψ). (19)

It is worth mentioning that the proposed algorithm may
be considered as a nice refinement in existing analytical and
numerical methods, where the discretization, transforma-
tions, and linearization are not required, and the numerical
solution of the given differential equations can be obtained
in series form as

U0(ψ) is an appropriate initial approximation,

U1(ψ, ρ) � U0(ψ) + ρ∫ψ

0
λ(ϑ) L U0(ϑ){ } +N U0(ϑ){ } − g(ϑ)[ ]dϑ,

Uk+1(ψ, ρ) � U0(ψ, ρ) + ρ∫ψ

0
λ(ϑ) N Uk(ϑ, ρ){ } − g(ϑ, ρ)[ ]dϑ,

k � 1, 2, . . . .


(20)

We employ this procedure for finding the analytical/
numerical solution of nonlinear fractional-order For-
nberg–Whitham equations. When ρ � 1, this procedure
given in equation (20) becomes the standard variational
iteration algorithm-I. Equation (20) has two obvious ad-
vantages; one is the limited step, which is needed for better
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accuracy, while the other is an auxiliary parameter (ρ),
which ensures the convergence, and a more accurate so-
lution can be gained after a higher iteration process.

4. Convergence Analysis

.e convergence of the algorithm proposed in Section 3 for
solving nonlinear fractional partial differential equations will
be examined in this section. .is algorithm can be per-
formed in an effective and trustworthy way and can handle
fractional differential equation (13) as well. When the
fractional iteration algorithm is implemented for the nu-
merical investigation of the fractional-order Fornberg–
Whitham equation, the linear operator L is defined as
L � (zα/ztα). First, in (21), we define the operator R for
solving problems of such type:

RU(ψ, t, ρ) ≔ ρ∫t
0
λ(ϑ)[LU(ψ, ϑ, ρ) +NU(ψ, ϑ, ρ)

︷�����︸︸�����︷
− g(ϑ)]dϑ,

(21)
where k≥ 0 and wk and vk are defined by

w0(ψ, t) � U0(ψ, t),

v0(ψ, t) � w0(ψ, t),
{
w1(ψ, t, ρ) � Rv0(ψ, t),

v1(ψ, t, ρ) � v0(ψ, t) + Rv0(ψ, t),
{
U1(ψ, t, ρ) � Rv0(ψ, t),

v1(ψ, t, ρ) � v0(ψ, t) + w1(ψ, t, ρ),
{
Wk+1(ψ, t, ρ) � Rvn(ψ, t, ρ),

vn+1(ψ, t, ρ) � vn(ψ, t, ρ) + Rvn(ψ, t, ρ).
{

(22)

In general, for k≥ 1, it can be written as

Uk+1(ψ, t, ρ) � Rvk(ψ, t, ρ),

vk+1(ψ, t, ρ) � vk(ψ, t, ρ) +Wk+1(ψ, t, ρ).
{ (23)

Accordingly,

U(ψ, t, ρ) ≔ lim
k⟶∞

vk(ψ, t, ρ) � w0(ψ, t) +∑∞
k�1

wk(ψ, t, ρ).

(24)
.e initial iteration U0(ψ, t) can be chosen uninhibit-

edly, but it needs to fulfil the corresponding initial-boundary
conditions. .e determination of appropriate initial ap-
proximation will give productive and accurate results. .e
nth-order truncated series Un(ψ, t, ρ) ≔ w0(ψ, t) +∑nk�1 wk(ψ, t, ρ) can be used to approximate the solution.
.e unknown parameter ρ in Un(ψ, t, ρ) ensures that the
hypothesis is fulfilled by utilizing 2-norm error of the re-
sidual function. .e error analysis and convergence criteria
of VIA-I with an auxiliary parameter are revealed using the
following theorems [57, 58].

Theorem 1. Be operator R defined in (21) maps a Hilbert
space H to H. Be solution given in (24) can be given in the
following form of series:

U(ψ, t) ≔ lim
k⟶∞

vk(ψ, t, ρ) � w0(ψ, t) +∑∞
k�1

wk(ψ, t, ρ).

(25)

It converges if ∃ρ≠ 0, 0< β< 1, such that

Rv0(ψ, t)
 ≤ β v0(ψ, t) ,
Rv1(ψ, t, ρ)
 ≤ β Rv0(ψ, t) ,
Rvk(ψ, t, ρ)
 ≤ β Rvk− 1(ψ, t, ρ) , k � 2, 3, 4, . . . .


(26)

Lemma 1. Let Q be a function from a Hilbert space H to H,
and the operator L required in (13) be defined as
L � (zi/zti), i � 1, 2 and the Lagrange multiplier be defined
optimally by the variation theory, then

L∫t
0
λ(ϑ)Q(ψ, ϑ, ρ)dϑ{ } � − Q(ψ, ϑ, ρ). (27)

Theorem 2. Let the operator L needed in 14 be defined as
L � (zi/zti), i � 1, 2. If we have the series solution (24) de-
fined by

U(ψ, t) ≔ w0(ψ, t) +∑∞
k�1

wk(ψ, t, ρ), (28)

then U(ψ, t) is an exact solution to the nonlinear partial
differential equation (13).

Theorem 3. Let us suppose that the solution
U(ψ, t) ≔ w0(ψ, t) +∑∞n�1 wn(ψ, t, ρ), given in (24), con-
verges to the exact solution of the model equation (1). Also,
assume that if the approximate solution is the truncated series
UN(ψ, t) ≔ w0(ψ, t) + ∑Nk�1 wk(ψ, t, ρ) then the maximum
error norm can be assessed as

U(ψ, t) − UN(ψ, t)
 ≤ 1

1 − β
βN+1


 w0

 . (29)

5. Implementation of the Algorithm
and Examples

In this section, to clarify step by step solution procedure of
the fractional iteration algorithm-I, the following time-
fractional Fornberg–Whitham equation (1) is considered:

zU
α

ztα
+
zU

zψ
−

zU
3

zψ2
zt
+U

zU

zψ
� 3

zU

zψ

z
2
U

zψ2 +U
z
3
U

zψ3 , t> 0, 0< α≤ 1.

(30)
.e initial condition is

U(ψ, 0) �
4

3
e(x/2), (31)

and the exact solution taken from [41] is equal to
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U(ψ, t) �
4

3
e(x/2)− (2t/3). (32) Numerical solution Uk+1(ψ) of equation (13) for the

provided initial condition U0(ψ) can be achieved by means
of

Uk+1(ψ, t, ρ) � Uk(ψ, t, ρ) + ρ∫t
0
λ(ϑ)

zU
α
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z(ϑ)α
−
z
3
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z(ψ)2z(ϑ)

︷�����︸︸�����︷
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z(ψ)
+Uk(ψ, ϑ, ρ)

zUk(ψ, ϑ, ρ)

z(ψ)

︷����������︸︸����������︷

− 3
zUk(ψ, ϑ, ρ)

z(ψ)

z
2
Uk(ψ, ϑ, ρ)

z(ψ)2
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− Uk(ψ, ϑ, ρ)

z
3
Uk(ψ, ϑ, ρ)

z(ψ)3

︷����������︸︸����������︷ dϑ.
(33)

.e Lagrange multiplier ρ can be obtained using the
variation theory. Multiplying both the sides of the equation
(33) by δ, one obtains

δUk+1(ψ, t, ρ) � δUk(ψ, t, ρ) + ρδ∫t
0
λ(ϑ)

zU
α
k(ψ, ϑ, ρ)

z(ϑ)α
−
z
3
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z(ψ)2z(ϑ)
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+
zUk(ψ, ϑ, ρ)

z(ψ)
+Uk(ψ, ϑ, ρ)

zUk(ψ, ϑ, ρ)
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zUk(ψ, ϑ, ρ)

z(ψ)

z
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Uk(ψ, ϑ, ρ)
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z
3
Uk(ψ, ϑ, ρ)

z(ψ)3

︷����������︸︸����������︷dϑ.
(34)

For nonlinear problems, the nonlinear terms are con-
sidered to be restricted variations for obtaining the value of
Lagrange multiplier; i.e., ︷Uk(ψ, ϑ, ρ) is a restricted term.
.is implies δ︷Uk(ψ, ϑ, ρ) � 0 and gives the beneath value

of the Lagrange multiplier λ � − 1. After using the value of
λ(ϑ) in the recurrence relation (34), the beneath recurrent
dependence is obtained:

Uk+1(ψ, t, ρ) � Uk(ψ, t, ρ) − ρ∫t
0

zU
α
k(ψ, ϑ, ρ)

z(ϑ)α
−
z
3
Uk(ψ, ϑ, ρ)

z(ψ)2z(ϑ)
+
zUk(ψ, ϑ, ρ)

z(ψ)
+Uk(ψ, ϑ, ρ)

zUk(ψ, ϑ, ρ)

z(ψ)
[

− 3
zUk(ψ, ϑ, ρ)

z(ψ)

z
2
Uk(ψ, ϑ, ρ)

z(ψ)2
− Uk(ψ, ϑ, ρ)

z
3
Uk(ψ, ϑ, ρ)

z(ψ)3
]dϑ.

(35)

Starting with a proper initial approximation and using
the iterative formula (35), values in other iterations can be
obtained. We stop the process at the third iteration. A

residual function used before for variational iteration al-
gorithm-II in [59] can be defined here for approximated
solution to get optimal value of unknown parameter:

r3(ψ, t, ρ) �
zU

α
3(ψ, t, ρ)

z(t)α
−
z
3
U3(ψ, t, ρ)

z(ψ)2z(t)
+
zU3(ψ, t, ρ)

z(ψ)
+U3(ψ, t, ρ)

zU3(ψ, t, ρ)

z(ψ)

− 3
zU3(ψ, t, ρ)

z(ψ)

z
2
U3(ψ, t, ρ)

z(ψ)2
− U3(ψ, t, ρ)

z
3
U3(ψ, t, ρ)

z(ψ)3
.

(36)

And error of norm 2 of the above residual function with
respect to the parameter ρ for (ψ, t) ∈ [a, b] × [a, b] can be
defined as

e3(ρ) � ∫1

0
∫1

0
r3(ψ, t, ρ)
∣∣∣∣ ∣∣∣∣2dtdx( )(1/2). (37)
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.e value of e3(ρ) is approximated using a numerical
integration. .e minimal value of the function (37) is the
value of the auxiliary term ρ. Here, for different values of α,
we get different values of auxiliary parameters using Maple
software. For α � 1, α � 0.9, α � 0.8, α � 0.7, α � 0.6, the
corresponding values of the auxiliary parameter ρ are
1.21413823669280, 0.461366433098273, 1.29274273230225,
1.33274646640909, and 1.36918865275675, respectively.

It is convenient to iterate many times to arrive at the
given accuracy for the advanced computer technique, and
the exact solution U(ψ) is obtained by the limit

U(ψ) � lim
k⟶∞

Uk(ψ). (38)

.e numerical solutions generated using the proposed
technique with an optimal value of the auxiliary parameter
h � 1.12170161455440 are reported in Table 1. To show the
applicability and efficiency of the proposed technique, the
comparisons are carried out with the exact solutions as well
as the standard variational iteration method from [60], in
terms of absolute errors reported in Table 2 for different
values of t and x.

A full agreement between the results of fractional var-
iational iteration algorithm and exact solution can be ob-
served, which confirms applicability and accuracy of the
proposed algorithm. One can observe that the proposed
algorithm is very rapid, effective, and accurate, and this is
proved by comparing the solutions obtained through the
proposed method with the results in [60] as well as with the
exact solution. Results are also shown graphically by
assigning different values of α with ψ � 1 under the given
condition in each case, which can be seen in Figure 1.

.e space and time surface graphs of approximate and
exact solutions are observable in Figures 2–7.

6. Discussion

.e nonlinear PDEs have become a hot topic in the field of
nonlinear science and have been used in modeling mis-
cellaneous problems in many fields of science and engi-
neering, including plasma physics, fluid mechanics,
quantum mechanics, fluid dynamics, image processing and
economic system. However, for some complex problems in

Table 1: Comparison of exact and approximate solutions and absolute errors for equation (1).

ψ t Exact solution

α � 1

Approximate solutions Absolute errors

Present [60] Present [60]

0.5
0.5 1.22672588 1.226773083 1.22606593 4.7203 × 10− 5 7.0715 × 10− 4

1.0 0.87898750 0.8793454867 0.87385063 3.5798 × 10− 4 5.1368 × 10− 3

1.0
0.5 1.57514721 1.57520781827 1.57429982 6.0608 × 10− 5 8.4739 × 10− 4

1.0 1.12864229 1.12910195442 1.12204642 4.5966 × 10− 4 6.5958 × 10− 3

1.5
0.5 2.02252906 2.022606876 2.02144098 7.7816 × 10− 5 1.0880 × 10− 3

1.0 1.44920539 1.449795608 1.44073612 5.9021 × 10− 4 8.4692 × 10− 3

Table 2: Approximate solutions for different values of α for equation (1).

ψ t
α � 0.9 α � 0.8 α � 0.7

Present [60] Present [60] Present [60]

0.5
0.5 1.168447201 1.16963576 1.104821658 1.10867258 1.024679713 1.04366140
1.0 0.882003595 0.85834430 0.913371082 0.83877324 0.937152668 0.81199739

1.0
0.5 1.500315905 1.50184204 1.418619090 1.42356378 1.315714795 1.34008777
1.0 1.132515035 1.10213589 1.172791685 1.07700616 1.203327846 1.04262528

1.5
0.5 1.926443755 1.92840335 1.821542968 1.82789208 1.689411238 1.72070676
1.0 1.454178089 1.41517050 1.505894331 1.38290328 1.545103502 1.33875737

t

U
 (
ψ

, 
t)

0.5

1

1.5

2

2.5

Exact

α = 1.0

α = 0.9

α = 0.8

α = 0.7

α = 0.6

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 1: Plots of the approximate solution at ψ � 1 for different
values of α.
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Figure 2: .e surface graph of the approximated solution
U3(ψ, t, ρ) for α � 0.6.
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these fields, the fractional partial differential equation is
more accurate than integer partial differential equation. So,
finding the numerical solutions of PDEs, as well as of

fractional PDEs, has emerged as an extremely important
strategy.

(1) Many engineering problems and other physical
phenomena are modeled by nonlinear PDEs. On the
other hand, the proposed iteration algorithms can be
applied to various nonlinear PDEs. As a conse-
quence, the proposed iterative scheme can be used in
solving various problems.

(2) .e fractional-order operator plays an important
role not only in mathematics but also in other fields
such as mechanics, physics, biomedical engineering,
and finance. .ere are many nonlinear problems in
real life. .erefore, there is a need to study the
fractional PDEs.

(3) .e numerical approaches are used for deeper un-
derstanding to predict the anomalies, which are not
possible in the analytical methods because the an-
alytical method can solve only two or three unknown
variables, while numerical methods are applicable to
much more variables very accurately.

(4) Analytical methods, if available, are always the best.
However, these are impossible to achieve in some
cases. If the analytical approaches are unable to
generate the exact solution, numerical methods give
the possibility to obtain an approximate numerical
solution.

(5) .e extreme benefit of the proposed algorithm is
based on its straightforward applicability and con-
ciseness. Furthermore, it can handle all types of
nonlinear fractional PDEs.

7. Conclusion

In this work, a novel approach named as fractional iteration
algorithm-I is introduced for various types of nonlinear
PDEs as well as fractional PDEs and has been discussed in
detail, including figures and tabulated numerical results..e
proposed method is able to implement without the use of
any transformation, linearization, discretization, or re-
strictive assumptions and thus is particularly perfect with the
flexible and expanded nature of the physical problems. .e
coupling of Caputo fractional derivative and variational
iteration algorithm-I to tackle both time and space deriv-
atives accurately makes the solution process easiest, and the
evaluation of fractional term becomes simpler, and FPDEs
can be solved in a tremendous way. .e proposed technique
is able to solve all kinds of linear and nonlinear problems of
physical nature arising in applied sciences and engineering.
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Figure 3: .e surface graph of the approximated solution
U3(ψ, t, ρ) for α � 0.7.
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Figure 4: .e surface graph of the approximated solution
U3(ψ, t, ρ) for α � 0.8.
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Figure 5: .e surface graph of the approximated solution
U3(ψ, t, ρ) for α � 0.9.
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Figure 6: .e surface graph of the approximated solution
U3(ψ, t, ρ) for α � 1.0.
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Figure 7: .e behavior of the exact solution U(ψ, t, ρ).
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