New Physics / Resonances in Vector Boson Scattering at the LHC

Jürgen R. Reuter, DESY

based on work with A. Alboteanu, W. Kilian, T. Ohl, M. Sekulla

PRD93(16),3.036004 [1511.00022], PRD91(15),096007 [1408.6207], US Snowmass Summer Study 1310.6708,1309.7890,1307.8180, JHEP 0811.010 [0806.4145], EPJC48(06)353 [hep-ph/0604048]

New Physics in VBS at the LHC

- Discovery of a light Higgs boson leaves still open questions:
 - I. Nature of Electroweak Symmetry Breaking
 - 2. Higgs boson potential, all the way like the Standard Model!?
 - 3. Does it fulfill the US-fermion/Europe-boson rule?
 - 4. Is the I25 GeV state the only resonance in the system of EW vector bosons?
 - 5. How do EW vector bosons scatter? (true heart of weak interactions)
 - 6. Is there something related to the Little Hierarchy problem (strong or weak)

- Discovery of a light Higgs boson leaves still open questions:
 - I. Nature of Electroweak Symmetry Breaking
 - 2. Higgs boson potential, all the way like the Standard Model!?
 - 3. Does it fulfill the US-fermion/Europe-boson rule?
 - 4. Is the I25 GeV state the only resonance in the system of EW vector bosons?
 - 5. How do EW vector bosons scatter? (true heart of weak interactions)
 - 6. Is there something related to the Little Hierarchy problem (strong or weak)

ATLAS-CONF-2015-081

CMS-PAS-EXO-15-004

New Physics in VBS at the LHC

- Evidence for W⁺W⁺jj (electroweak production) Talk by Brigitte Vachon
 ATLAS PRL 113(2014)14, 141803 [1405.6241]; CMS PRL 114(2015), 051801 [1410.6315]
- First limits on New Physics in pure electroweak gauge/Goldstone sector

New Physics in VBS at the LHC

- Evidence for W⁺W⁺jj (electroweak production) Talk by Brigitte Vachon
 ATLAS PRL 113(2014)14, 141803 [1405.6241]; CMS PRL 114(2015), 051801 [1410.6315]
- First limits on New Physics in pure electroweak gauge/Goldstone sector

New Physics in VBS at the LHC

- Evidence for W⁺W⁺jj (electroweak production) Talk by Brigitte Vachon ATLAS PRL 113(2014)14, 141803 [1405.6241]; CMS PRL 114(2015), 051801 [1410.6315]
- First limits on New Physics in pure electroweak gauge/Goldstone sector

New Physics in VBS at the LHC

- Evidence for W⁺W⁺jj (electroweak production) Talk by Brigitte Vachon
 ATLAS PRL 113(2014)14, 141803 [1405.6241]; CMS PRL 114(2015), 051801 [1410.6315]
- First limits on New Physics in pure electroweak gauge/Goldstone sector

New Physics in VBS at the LHC

Anatomy of Vector Boson Scattering (VBS)

Fiducial phase space volume:

- Iljj tag
- *m_{jj}* > 500 GeV ("jet recoil")
- $y_{j,1} \cdot y_{j,2} < 0$ ("collinear beams")
- $|\Delta y_{jj}| > 2.4$ ("rapidity distance")
- Cuts on E_j , p_T^j
- No mini jet vetoes

 $pp \to WWjj \to \ell\ell\nu\nu jj$

Backgrounds [+ V_TV_T bkgd.]:

- $tt \rightarrow WbWb$
- W + jets
- single top, misreconstructed jet
- WWjj QCD production
- *II* + X + Emiss ("prompt")

New Physics in VBS at the LHC

EFTs: Higher-dimensional operators

Must include all dim 6 operators from SM fields

Buchmüller/Wyler, 1986

- ★ Redundancy of operators ⇒ minimal set of operators (in principle)
 - I. Equations of motion: $D_{\mu}\mathbf{W}^{\mu\nu} = \Phi^{\dagger}(D^{\nu}\Phi) (D^{\nu}\Phi)^{\dagger}\Phi + \dots$
 - 2. Gauge symmetry: $[D_{\mu}, D_{\nu}] \Phi \propto \mathbf{W}_{\mu\nu} \Phi$
 - 3. Integration by parts: $(\Phi^{\dagger}\Phi) \Box (\Phi^{\dagger}\Phi) \longrightarrow \partial_{\mu} (\Phi^{\dagger}\Phi) \partial^{\mu} (\Phi^{\dagger}\Phi)$
- Further reduction by use of discrete / horizontal symmetries
 - I. B and L conservation (excludes 5 operators per generation)
 - 2. Flavor symmetries (assumption: Minimal Flavor Violation)
 - 3. CP symmetry
- + Assuming B and L conservation: number of operators (without ν_R)

New Physics in VBS at the LHC

EFTs: Higher-dimensional operators

Must include all dim 6 operators from SM fields

Buchmüller/Wyler, 1986

- ★ Redundancy of operators ⇒ minimal set of operators (in principle)
 - I. Equations of motion: $D_{\mu}\mathbf{W}^{\mu\nu} = \Phi^{\dagger}(D^{\nu}\Phi) (D^{\nu}\Phi)^{\dagger}\Phi + \dots$
 - 2. Gauge symmetry: $[D_{\mu}, D_{\nu}] \Phi \propto \mathbf{W}_{\mu\nu} \Phi$
 - 3. Integration by parts: $(\Phi^{\dagger}\Phi) \Box (\Phi^{\dagger}\Phi) \longrightarrow \partial_{\mu} (\Phi^{\dagger}\Phi) \partial^{\mu} (\Phi^{\dagger}\Phi)$
- Further reduction by use of discrete / horizontal symmetries
 - I. B and L conservation (excludes 5 operators per generation)
 - 2. Flavor symmetries (assumption: Minimal Flavor Violation)
 - 3. CP symmetry
- + Assuming B and L conservation: number of operators (without ν_R)
 - I dim-2 operator + 15 dim-4 operators
 - 59 dim-6 operators for I generation
 - 2499 dim-6 operators for 3 generations

Alonso/Jenkins/Manohar/Trott, 2013

New Physics in VBS at the LHC

EFTs: Higher-dimensional operators

Must include all dim 6 operators from SM fields

Buchmüller/Wyler, 1986

- + Redundancy of operators \implies minimal set of operators (in principle)
 - I. Equations of motion: $D_{\mu}\mathbf{W}^{\mu\nu} = \Phi^{\dagger}(D^{\nu}\Phi) (D^{\nu}\Phi)^{\dagger}\Phi + \dots$
 - 2. Gauge symmetry: $[D_{\mu}, D_{\nu}] \Phi \propto \mathbf{W}_{\mu\nu} \Phi$
 - 3. Integration by parts: $(\Phi^{\dagger}\Phi) \Box (\Phi^{\dagger}\Phi) \longrightarrow \partial_{\mu} (\Phi^{\dagger}\Phi) \partial^{\mu} (\Phi^{\dagger}\Phi)$
- Further reduction by use of discrete / horizontal symmetries
 - I. B and L conservation (excludes 5 operators per generation)
 - 2. Flavor symmetries (assumption: Minimal Flavor Violation)
 - 3. *CP* symmetry

R.Reuter

- + Assuming B and L conservation: number of operators (without ν_R)
 - I dim-2 operator + 15 dim-4 operators
 - 59 dim-6 operators for I generation
 - 2499 dim-6 operators for 3 generations
 - Alonso/Jenkins/Manohar/Trott, 2013

- No unique basis exists (more in a second)
- Well-known in B physics: different experimental measurements constrain different operators

New Physics in VBS at the LHC

Effective Field Theories: Operator Bases

No unique basis exists

- "HISZ" basis: no fermionic operators
- Hagiwara/Ishihara/Szalapski/Zeppenfeld, 1993
- "GIMR" basis: first minimal complete basis Grzadkowski/Iskrzyński/Misiak/Rosiek, 2010
- "SILH" basis: complete basis
- Dim. 8 operators:

Giudice/Grojean/Pomarol/Ratazzi, 2007; Elias-Miró et al, 2013

Eboli et al., 2006; Kilian/JRR/Ohl/Sekulla, 2014+2015

New Physics in VBS at the LHC

Effective Field Theories: Operator Bases

No unique basis exists

"HISZ" basis: no fermionic operators Hagiwara/Ishihara/Szalapski/Zeppenfeld, 1993
 "GIMR" basis: first minimal complete basis Grzadkowski/Iskrzyński/Misiak/Rosiek, 2010
 "SILH" basis: complete basis Giudice/Grojean/Pomarol/Ratazzi, 2007; Elias-Miró et al, 2013
 Dim. 8 operators: Eboli et al., 2006; Kilian/JRR/Ohl/Sekulla, 2014+2015

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X^3
$\mathcal{O}_{\Phi} = (\Phi^{\dagger} \Phi)^3$	$\mathcal{O}_{\mathrm{e}\Phi} = (\Phi^{\dagger}\Phi)(\bar{1}\Gamma_{\mathrm{e}}e\Phi)$	$\mathcal{O}_G = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi\square} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$	$\mathcal{O}_{\mathrm{u}\Phi} = (\Phi^{\dagger}\Phi)(\bar{\mathrm{q}}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi D} = (\Phi^{\dagger} D^{\mu} \Phi)^* (\Phi^{\dagger} D_{\mu} \Phi)$	$\mathcal{O}_{\mathrm{d}\Phi} = (\Phi^\dagger \Phi) (\bar{\mathrm{q}} \Gamma_{\mathrm{d}} \mathrm{d} \Phi)$	$\mathcal{O}_{\mathrm{W}} = \epsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
		$\mathcal{O}_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 X \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\Phi G} = (\Phi^{\dagger} \Phi) G^{A}_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{u}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi 1}^{(1)} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\overline{\mathrm{l}} \gamma^{\mu} \mathrm{l})$
$\mathcal{O}_{\Phi \widetilde{G}} = (\Phi^{\dagger} \Phi) \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu u}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu u}$	$\mathcal{O}^{(3)}_{\Phi 1} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}^{I}_{\mu} \Phi) (\overline{\mathrm{l}} \gamma^{\mu} \tau^{I} \mathrm{l})$
$\mathcal{O}_{\Phi W} = (\Phi^{\dagger} \Phi) W^{I}_{\mu \nu} W^{I \mu \nu}$	$\mathcal{O}_{\rm eW} = (\bar{\mathbf{l}}\sigma^{\mu\nu}\Gamma_{\rm e}\mathbf{e}\tau^{I}\Phi)\mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{e}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}_\mu \Phi) (\bar{\mathrm{e}} \gamma^\mu \mathrm{e})$
$\mathcal{O}_{\Phi \widetilde{W}} = (\Phi^{\dagger} \Phi) \widetilde{W}^{I}_{\mu \nu} W^{I \mu \nu}$	$\mathcal{O}_{\mathrm{uW}} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}\mathrm{u}\tau^{I}\widetilde{\Phi})\mathrm{W}^{I}_{\mu\nu}$	$\mathcal{O}^{(1)}_{\Phi \mathrm{q}} = (\Phi^\dagger \mathrm{i} \overset{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{q}} \gamma^\mu \mathrm{q})$
$\mathcal{O}_{\Phi \mathrm{B}} = (\Phi^{\dagger} \Phi) \mathrm{B}_{\mu \nu} \mathrm{B}^{\mu \nu}$	$\mathcal{O}_{\rm dW} = (\bar{\rm q}\sigma^{\mu\nu}\Gamma_{\rm d}{\rm d}\tau^{I}\Phi)W^{I}_{\mu\nu}$	$\mathcal{O}^{(3)}_{\Phi \mathrm{q}} = (\Phi^{\dagger}\mathrm{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{\mathrm{q}} \gamma^{\mu} \tau^{I} \mathrm{q})$
$\mathcal{O}_{\Phi\widetilde{B}} = (\Phi^{\dagger}\Phi)\widetilde{B}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{eB} = (\overline{l}\sigma^{\mu u}\Gamma_{e}e\Phi)B_{\mu u}$	$\mathcal{O}_{\Phi \mathrm{u}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}_\mu \Phi) (\bar{\mathrm{u}} \gamma^\mu \mathrm{u})$
$\mathcal{O}_{\Phi WB} = (\Phi^{\dagger} \tau^{I} \Phi) W^{I}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{\mathrm{uB}} = (\bar{\mathrm{q}}\sigma^{\mu u}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})\mathrm{B}_{\mu u}$	$\mathcal{O}_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi \widetilde{W} B} = (\Phi^{\dagger} \tau^{I} \Phi) \widetilde{W}^{I}_{\mu \nu} B^{\mu \nu}$	$\mathcal{O}_{\rm dB} = (\bar{\rm q} \sigma^{\mu\nu} \Gamma_{\rm d} {\rm d} \Phi) B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi) (\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$

+ 25 four-fermion operators

Grzadkowski et al.

New Physics in VBS at the LHC

Effective Field Theories: Operator Bases

No unique basis exists

I.R.Reuter

- "HISZ" basis: no fermionic operators
 "GIMR" basis: first minimal complete basis
 Grzadkowski/Iskrzyński/Misiak/Rosiek, 2010
- "SILH" basis: complete basis
- Dim. 8 operators:

- Giudice/Grojean/Pomarol/Ratazzi, 2007; Elias-Miró et al, 2013 Eboli et al., 2006; Kilian/JRR/Ohl/Sekulla, 2014+2015
- Φ^6 and $\Phi^4 D^2$ $\psi^2 \Phi^3$ X^3 $\mathcal{O}_G' = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $\mathcal{O}_6' = (\Phi^{\dagger} \Phi)^3$ $\mathcal{O}_{e\Phi}' = (\Phi^{\dagger} \Phi) (\overline{l} \Gamma_e e \Phi)$ $\mathcal{O}_{\Phi}^{\prime} = \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi)$ $\mathcal{O}_{\widetilde{C}}' = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $\mathcal{O}'_{u\Phi} = (\Phi^{\dagger}\Phi)(\bar{q}\Gamma_{u}u\widetilde{\Phi})$ $\mathcal{O}'_{\mathrm{T}} = (\Phi^{\dagger} \overset{\leftrightarrow}{D_{\mu}} \Phi) (\Phi^{\dagger} \overset{\leftrightarrow}{D^{\mu}} \Phi)$ $\mathcal{O}_{d\Phi}' = (\Phi^{\dagger} \Phi) (\bar{q} \Gamma_d d\Phi)$ $\mathcal{O}'_{W} = \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$ $\mathcal{O}_{\widetilde{W}}' = \varepsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$ $X^2 \Phi^2$ $\psi^2 \Phi^2 D$ $\psi^2 X \Phi$ $\mathcal{O}_{DW}' = \left(\Phi^{\dagger} \tau^{I} \mathrm{i} \overleftrightarrow{D^{\mu}} \Phi\right) (D^{\nu} \mathrm{W}_{\mu\nu})^{I} \quad \mathcal{O}_{\mathrm{u}G}' = (\bar{\mathrm{q}} \sigma^{\mu\nu} \frac{\lambda^{A}}{2} \Gamma_{\mathrm{u}} \mathrm{u} \widetilde{\Phi}) G_{\mu\nu}^{A}$ $\mathcal{O}_{\Phi l}^{\prime(1)} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\overline{\mathrm{l}} \gamma^{\mu} \mathrm{l})$ $\mathcal{O}_{DB}^{\prime} = \left(\Phi^{\dagger} i \overleftrightarrow{D^{\mu}} \Phi \right) \left(\partial^{\nu} B_{\mu\nu} \right)$ $\mathcal{O}_{\mathrm{d}G}' = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$ $\mathcal{O}_{\Phi l}^{\prime(3)} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathrm{l}} \gamma^{\mu} \tau^{I} \mathrm{l})$ $\mathcal{O}_{\Phi e}' = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathrm{e}} \gamma^{\mu} \mathrm{e})$ $\mathcal{O}_{D\Phi W}^{\prime} = \mathrm{i} (D^{\mu} \Phi)^{\dagger} \tau^{I} (D^{\nu} \Phi) W_{\mu\nu}^{I}$ $\mathcal{O}_{eW}^{\prime} = (\bar{\mathbf{l}}\sigma^{\mu\nu}\Gamma_{e}\mathbf{e}\tau^{I}\Phi)\mathbf{W}_{\mu\nu}^{I}$ $\mathcal{O}_{\Phi q}^{\prime(1)} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{q} \gamma^{\mu} q)$ $\mathcal{O}_{D\Phi\widetilde{W}}' = \mathrm{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\widetilde{W}_{\mu\nu}^{I}$ $\mathcal{O}'_{\rm uW} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\Gamma_{\rm u}\mathbf{u}\tau^{I}\widetilde{\Phi})\mathbf{W}^{I}_{\mu\nu}$ $\mathcal{O}_{\Phi\alpha}^{\prime(3)} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathrm{q}} \gamma^{\mu} \tau^{I} \mathrm{q})$ $\mathcal{O}_{D\Phi B}' = \mathrm{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\mathrm{B}_{\mu\nu}$ $\mathcal{O}_{\rm dW}' = (\bar{\mathbf{q}}\sigma^{\mu\nu}\Gamma_{\rm d}\mathbf{d}\tau^{I}\Phi)\mathbf{W}_{\mu\nu}^{I}$ $\mathcal{O}_{D\Phi\widetilde{B}}' = \mathrm{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\widetilde{B}_{\mu\nu}$ $\mathcal{O}_{\Phi u}' = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{u}} \gamma^{\mu} \mathrm{u})$ $\mathcal{O}_{eB}' = (\bar{l}\sigma^{\mu\nu}\Gamma_e e\Phi)B_{\mu\nu}$ $\mathcal{O}'_{\Phi d} = (\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi) (\overline{d} \gamma^{\mu} d)$ $\mathcal{O}_{\Phi \mathrm{B}}' = (\Phi^{\dagger} \Phi) B_{\mu \nu} \mathrm{B}^{\mu \nu}$ $\mathcal{O}'_{\mu B} = (\bar{q}\sigma^{\mu\nu}\Gamma_{\mu}u\widetilde{\Phi})B_{\mu\nu}$ $\mathcal{O}'_{\Phi \widetilde{B}} = (\Phi^{\dagger} \Phi) B_{\mu \nu} \widetilde{B}^{\mu \nu}$ $\mathcal{O}_{\Phi \mathrm{ud}}' = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$ $\mathcal{O}_{\rm dB}' = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\rm d} \mathbf{d} \Phi) \mathbf{B}_{\mu\nu}$ $\mathcal{O}_{\Phi G}' = \Phi^{\dagger} \Phi G^A_{\mu\nu} G^{A\mu\nu}$ $\mathcal{O}'_{\Phi \widetilde{G}} = \Phi^{\dagger} \Phi G^A_{\mu \nu} \widetilde{G}^{A \mu \nu}$ Giudice et al. / Contino at al. +(25-2) four-fermion operators

New Physics in VBS at the LHC

New Physics in VBS at the LHC

Dimension-6 operators for Multiboson physics (CP-conserving)

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$ $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$ $\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$

$$\mathcal{O}_{\partial\Phi} = \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right)$$
$$\mathcal{O}_{\Phi W} = \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr}[W^{\mu\nu} W_{\mu\nu}]$$
$$\mathcal{O}_{\Phi B} = \left(\Phi^{\dagger} \Phi \right) B^{\mu\nu} B_{\mu\nu}$$

New Physics in VBS at the LHC

Dimension-6 operators for Multiboson physics (CP-conserving)

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \qquad \qquad \mathcal{O}_{\partial\Phi} = \partial_{\mu}\left(\Phi^{\dagger}\Phi\right)\partial^{\mu}\left(\Phi^{\dagger}\Phi\right) \\ \mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \qquad \qquad \mathcal{O}_{\Phi W} = \left(\Phi^{\dagger}\Phi\right)\operatorname{Tr}[W^{\mu\nu}W_{\mu\nu}] \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \qquad \mathcal{O}_{\Phi B} = \left(\Phi^{\dagger}\Phi\right)B^{\mu\nu}B_{\mu\nu}$

Dimension-6 operators for Multiboson physics (CP-violating)

 $\mathcal{O}_{\widetilde{W}W} = \Phi^{\dagger} \widetilde{W}_{\mu\nu} W^{\mu\nu} \Phi \qquad \qquad \mathcal{O}_{\widetilde{W}WW} = \operatorname{Tr}[\widetilde{W}_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}]$ $\mathcal{O}_{\widetilde{B}B} = \Phi^{\dagger} \widetilde{B}_{\mu\nu} B^{\mu\nu} \Phi \qquad \qquad \qquad \mathcal{O}_{\widetilde{W}} = (D_{\mu} \Phi)^{\dagger} \widetilde{W}^{\mu\nu} (D_{\nu} \Phi)$

New Physics in VBS at the LHC

Dimension-6 operators for Multiboson physics (CP-conserving)

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \qquad \qquad \mathcal{O}_{\partial\Phi} = \partial_{\mu}\left(\Phi^{\dagger}\Phi\right)\partial^{\mu}\left(\Phi^{\dagger}\Phi\right) \\ \mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \qquad \qquad \mathcal{O}_{\Phi W} = \left(\Phi^{\dagger}\Phi\right)\operatorname{Tr}[W^{\mu\nu}W_{\mu\nu}] \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \qquad \mathcal{O}_{\Phi B} = \left(\Phi^{\dagger}\Phi\right)B^{\mu\nu}B_{\mu\nu}$

Dimension-6 operators for Multiboson physics (CP-violating)

 $\mathcal{O}_{\widetilde{W}W} = \Phi^{\dagger} \widetilde{W}_{\mu\nu} W^{\mu\nu} \Phi \qquad \qquad \mathcal{O}_{\widetilde{W}WW} = \operatorname{Tr}[\widetilde{W}_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}]$ $\mathcal{O}_{\widetilde{B}B} = \Phi^{\dagger} \widetilde{B}_{\mu\nu} B^{\mu\nu} \Phi \qquad \qquad \qquad \mathcal{O}_{\widetilde{W}} = (D_{\mu} \Phi)^{\dagger} \widetilde{W}^{\mu\nu} (D_{\nu} \Phi)$

Affect the following electroweak couplings:

	ZWW	AWW	HWW	HZZ	HZA	HAA	WWWW	ZZWW	ZAWW	AAWW
\mathcal{O}_{WWW}	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
\mathcal{O}_W	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
\mathcal{O}_B	\checkmark	\checkmark		\checkmark	\checkmark					
$\mathcal{O}_{\Phi d}$			\checkmark	\checkmark						
$\mathcal{O}_{\Phi W}$			\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{\Phi B}$				\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{ ilde{W}WW}$	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{ ilde{W}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
$\mathcal{O}_{ ilde{W}W}$			\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{ ilde{B}B}$				\checkmark	\checkmark	\checkmark				

New Physics in VBS at the LHC

Dimension-6 operators for Multiboson physics (CP-conserving)

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \qquad \qquad \mathcal{O}_{\partial\Phi} = \partial_{\mu}\left(\Phi^{\dagger}\Phi\right)\partial^{\mu}\left(\Phi^{\dagger}\Phi\right) \\ \mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \qquad \qquad \mathcal{O}_{\Phi W} = \left(\Phi^{\dagger}\Phi\right)\operatorname{Tr}[W^{\mu\nu}W_{\mu\nu}] \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \qquad \mathcal{O}_{\Phi B} = \left(\Phi^{\dagger}\Phi\right)B^{\mu\nu}B_{\mu\nu}$

Dimension-6 operators for Multiboson physics (CP-violating)

 $\mathcal{O}_{\widetilde{W}W} = \Phi^{\dagger} \widetilde{W}_{\mu\nu} W^{\mu\nu} \Phi \qquad \qquad \mathcal{O}_{\widetilde{W}WW} = \operatorname{Tr}[\widetilde{W}_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}]$ $\mathcal{O}_{\widetilde{B}B} = \Phi^{\dagger} \widetilde{B}_{\mu\nu} B^{\mu\nu} \Phi \qquad \qquad \qquad \mathcal{O}_{\widetilde{W}} = (D_{\mu} \Phi)^{\dagger} \widetilde{W}^{\mu\nu} (D_{\nu} \Phi)$

Affect the following electroweak couplings:

	ZWW	AWW	HWW	HZZ	HZA	HAA	WWWW	ZZWW	ZAWW	AAWW
\mathcal{O}_{WWW}	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
\mathcal{O}_W	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
\mathcal{O}_B	\checkmark	\checkmark		\checkmark	\checkmark					
$\mathcal{O}_{\Phi d}$			\checkmark	\checkmark						
$\mathcal{O}_{\Phi W}$			\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{\Phi B}$				\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{ ilde{W}WW}$	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{ ilde{W}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
$\mathcal{O}_{ ilde{W}W}$			\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{ ilde{B}B}$				\checkmark	\checkmark	\checkmark				
connected to Higgs physics										
.Reuter New Physics in VBS at the LHC BSM Workshop, NTU Singapore, 04.(ngapore, 04.03.2016

Dimension-8 operators for Multiboson physics

$$\mathcal{O}_{T,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right]$$
$$\mathcal{O}_{T,1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right]$$
$$\mathcal{O}_{T,2} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right]$$
$$\mathcal{O}_{T,5} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,6} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{O}_{T,7} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{O}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{M,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{O}_{M,1} = \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{O}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{O}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{O}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \cdot B^{\beta\nu}$$
$$\mathcal{O}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \cdot B^{\beta\mu}$$
$$\mathcal{O}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} W^{\beta\mu} D^{\mu} \Phi \right]$$

J.R.Reuter

New Physics in VBS at the LHC

Dimension-8 operators for Multiboson physics

$$\mathcal{O}_{T,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right]$$
$$\mathcal{O}_{T,1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right]$$
$$\mathcal{O}_{T,2} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right]$$
$$\mathcal{O}_{T,5} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,6} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{O}_{T,7} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{O}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{O}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{O}_{M,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{O}_{M,1} = \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{O}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{O}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{O}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \cdot B^{\beta\nu}$$

$$\mathcal{O}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \cdot B^{\beta\mu}$$

$$\mathcal{O}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} W^{\beta\mu} D^{\mu} \Phi \right]$$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0/1}$	\checkmark	\checkmark	\checkmark						
$\mathcal{O}_{M,0/1/6/7}$	\checkmark								
$\mathcal{O}_{M,2/3/4/5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{T,0/1/2}$	\checkmark								
$\mathcal{O}_{T,5/6/7}$		\checkmark							
$\mathcal{O}_{T,8/9}$			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark

New Physics in VBS at the LHC

Dimension-8 operators for Multiboson physics

$$\mathcal{O}_{T,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right]$$
$$\mathcal{O}_{T,1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right]$$
$$\mathcal{O}_{T,2} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right]$$
$$\mathcal{O}_{T,5} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,6} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{O}_{T,7} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{O}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{M,0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{O}_{M,1} = \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{O}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{O}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{O}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \cdot B^{\beta\nu}$$
$$\mathcal{O}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \cdot B^{\beta\mu}$$
$$\mathcal{O}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} W^{\beta\nu} D^{\mu} \Phi \right]$$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0/1}$	\checkmark	\checkmark	\checkmark						
$\mathcal{O}_{M,0/1/6/7}$	\checkmark		9 gono		dontly	\checkmark			
$\mathcal{O}_{M,2/3/4/5}$						\checkmark			
$\mathcal{O}_{T,0/1/2}$	\checkmark	• gen	erate ne	utrai quar	S	\checkmark	\checkmark	\checkmark	
$\mathcal{O}_{T,5/6/7}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{T,8/9}$			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark

J.R.Reuter

New Physics in VBS at the LHC

Optical Theorem (Unitarity of the S(cattering) Matrix): $\sigma_{tot} = \text{Im} \left[\mathcal{M}_{ii}(t=0) \right] / s \qquad t = -s(1 - \cos \theta)/2$

Partial wave amplitudes:

 $\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1) \mathcal{A}_{\ell}(s) P_{\ell}(\cos \theta)$ ("Power spectrum")

New Physics in VBS at the LHC

Optical Theorem (Unitarity of the S(cattering) Matrix): $\sigma_{tot} = \text{Im} \left[\mathcal{M}_{ii}(t=0) \right] / s \qquad t = -s(1 - \cos \theta)$

Partial wave amplitudes:

$$\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1) \mathcal{A}_{\ell}(s) P_{\ell}(\cos\theta)$$
 ("Power spectr

New Physics in VBS at the LHC

Partial wave amplitudes:

$$\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1) \mathcal{A}_{\ell}(s) P_{\ell}(\cos\theta)$$
 ("Power spectr

Assuming only elastic scattering:

$$\sigma_{\text{tot}} = \sum_{\ell} \frac{32\pi(2\ell+1)}{s} |\mathcal{A}_{\ell}|^2 \stackrel{!}{=} \sum_{\ell} \frac{32\pi(2\ell+1)}{s} \text{Im}\left[\mathcal{A}_{\ell}\right] \quad \Rightarrow \quad \left|\mathcal{A}_{\ell}\right|^2 = \text{Im}\left[\mathcal{A}_{\ell}\right]$$

New Physics in VBS at the LHC

BSM Workshop, NTU Singapore, 04.03.2016

 $i\frac{x_{el}}{2}$

 $\operatorname{Re}[\mathcal{A}]$

Optical Theorem (Unitarity of the S(cattering) Matrix): $\sigma_{tot} = \text{Im} \left[\mathcal{M}_{ii}(t=0) \right] / s \qquad t = -s(1 - \cos \theta)$

Partial wave amplitudes:

$$\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1) \mathcal{A}_{\ell}(s) P_{\ell}(\cos\theta)$$
 ("Power spectr

Assuming only elastic scattering:

 $\sigma_{\rm tot} = \sum_{\ell} \frac{32\pi(2\ell+1)}{s} |\mathcal{A}_{\ell}|^2 \stackrel{!}{=} \sum_{\ell} \frac{32\pi(2\ell+1)}{s} \operatorname{Im} \left[\mathcal{A}_{\ell}\right] \quad \Rightarrow \quad \left|\mathcal{A}_{\ell}\right|^2 = \operatorname{Im} \left[\mathcal{A}_{\ell}\right]$

SM longitudinal isospin eigenamplitudes ($A_{I,spin=J}$):

$$\mathcal{A}_{I=0} = 2rac{s}{v^2}P_0(s) \qquad \mathcal{A}_{I=1} = rac{t-u}{v^2} = rac{s}{v^2}P_1(s) \qquad \mathcal{A}_{I=2} = -rac{s}{v^2}P_0(s)$$

New Physics in VBS at the LHC

Partial wave amplitudes:

$$\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1) \mathcal{A}_{\ell}(s) P_{\ell}(\cos\theta)$$
 ("Power spectr

Assuming only elastic scattering:

 $\sigma_{\text{tot}} = \sum_{\ell} \frac{32\pi(2\ell+1)}{s} |\mathcal{A}_{\ell}|^2 \stackrel{!}{=} \sum_{\ell} \frac{32\pi(2\ell+1)}{s} \text{Im}\left[\mathcal{A}_{\ell}\right] \quad \Rightarrow \quad \left|\mathcal{A}_{\ell}\right|^2 = \text{Im}\left[\mathcal{A}_{\ell}\right]$

SM longitudinal isospin eigenamplitudes ($A_{I,spin=J}$):

 $\mathcal{A}_{I=0} = 2rac{s}{v^2}P_0(s) \qquad \mathcal{A}_{I=1} = rac{t-u}{v^2} = rac{s}{v^2}P_1(s) \qquad \mathcal{A}_{I=2} = -rac{s}{v^2}P_0(s)$

Lee/Quigg/Thacker, 1973

 $\operatorname{Re}[\mathcal{A}]$

 $irac{x_{el}}{2}$

exceeds unitarity bound $|\mathcal{A}_{IJ}| \lesssim \frac{1}{2}$ at:Higgs exchaI = 0: $E \sim \sqrt{8\pi}v = 1.2 \,\text{TeV}$ Higgs excha<math>I = 1: $E \sim \sqrt{48\pi}v = 3.5 \,\text{TeV}$ $\mathcal{A}(s, t, v)$ I = 2: $E \sim \sqrt{16\pi}v = 1.7 \,\text{TeV}$ Unitarity:

J.R.Reuter

New Physics in VBS at the LHC

Scenarios for New Physics in VBS

- I. SM or weakly coupled physics (e.g. 2HDM): amplitude remains close to origin
- Rising amplitude (at least one dim-8 operator): rise beyond unitarity circle [unphys.], strongly interacting regime
- 3. Inelastic channel opens (form-factor description): new channels open out, multi-boson final states
- 4. Saturation of amplitude: maximal amplitude, strongly interacting continuum, K-/T-matrix unitarization

5. New resonance: amplitude turns over

 $\mathbf{Re}[\mathcal{A}]$

New Physics in VBS at the LHC

Procedures to treat unitarity violations

Cut-off (a.k.a. "Event clipping") $\theta(\Lambda_C^2 - s)$

unitarity bound (0th partial wave) at Λ_C no continuous transition beyond

New Physics in VBS at the LHC

Procedures to treat unitarity violations

Cut-off (a.k.a. "Event clipping") $\theta(\Lambda_C^2 - s)$

unitarity bound (0th partial wave) at Λ_C no continuous transition beyond

Form factor

$$\frac{1}{\left(1+\frac{s}{\Lambda_{FF}}\right)^n}$$

Applicable for arbitrary operators, tuning in 2 parameters: n damps unitarity violation, Λ_{FF} highest value to satisfy 0th partial wave

New Physics in VBS at the LHC

Procedures to treat unitarity violations

Cut-off (a.k.a. "Event clipping") $\theta(\Lambda_C^2 - s)$

unitarity bound (0th partial wave) at Λ_C no continuous transition beyond

Form factor

$$\frac{1}{\left(1+\frac{s}{\Lambda_{FF}}\right)^n}$$

Applicable for arbitrary operators, tuning in 2 parameters: n damps unitarity violation, Λ_{FF} highest value to satisfy 0th partial wave

K-/T-matrix saturation

saturates the amplitude, usable for complex amplitudes, no additional parameters

BSM Workshop, NTU Singapore, 04.03.2016

New Physics in VBS at the LHC

- K-matrix: Cayley transform of S-matrix
- Stereographic projection to Argand circle

$$S = \frac{1 + iK/2}{1 - iK/2}$$
 $a_K(s) = \frac{a(s)}{1 - ia(s)}$

New Physics in VBS at the LHC

BSM Workshop, NTU Singapore, 04.03.2016

Heitler, 1941; Schwinger, 1949; Gupta, 1950

- ☑ K-matrix: Cayley transform of S-matrix
- Stereographic projection to Argand circle

$$S = \frac{1 + iK/2}{1 - iK/2}$$
 $a_K(s) = \frac{a(s)}{1 - ia(s)}$

Heitler, 1941; Schwinger, 1949; Gupta, 1950

- Stereographic projection to Argand circle
- Formalism does a partial resummation of perturbative series
- need to construct (orig.) K-matrix as self-adjoint intermediate operator Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.

New Physics in VBS at the LHC

- K-matrix: Cayley transform of S-matrix
- Stereographic projection to Argand circle

$$S = \frac{1 + iK/2}{1 - iK/2}$$
 $a_K(s) = \frac{a(s)}{1 - ia(s)}$

Heitler, 1941; Schwinger, 1949; Gupta, 1950

- Formalism does a partial resummation of perturbative series
- need to construct (orig.) K-matrix as self-adjoint intermediate operator Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.
- T-matrix: Thales circle construction

Solution Defined via
$$\left|a - \frac{a_K}{2}\right| = \frac{a_K}{2} \Rightarrow a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_0}\right) - i}$$

Kilian/Ohl/JRR/Sekulla, 2014

New Physics in VBS at the LHC

- K-matrix: Cayley transform of S-matrix
- Stereographic projection to Argand circle

$$S = \frac{1 + iK/2}{1 - iK/2}$$
 $a_K(s) = \frac{a(s)}{1 - ia(s)}$

- Stereographic projection to Argand circle
- Formalism does a partial resummation of perturbative series
- need to construct (orig.) K-matrix as self-adjoint intermediate operator Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.
- T-matrix: Thales circle construction
- Solution Defined via $\left|a \frac{a_K}{2}\right| = \frac{a_K}{2} \Rightarrow a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_0}\right) i}$
- Identical to K matrix for real amplitudes
- Points on Argand circle left invariant

Reuter

- Does not rely on perturbation theory
- Applicable for amplitudes with imaginary parts (models with resonances)

New Physics in VBS at the LHC

Heitler, 1941; Schwinger, 1949; Gupta, 1950

Kilian/Ohl/JRR/Sekulla, 2014

- K-matrix: Cayley transform of S-matrix
- Stereographic projection to Argand circle

$$S = \frac{1 + iK/2}{1 - iK/2}$$
 $a_K(s) = \frac{a(s)}{1 - ia(s)}$

Stereographic projection to Argand circle

- Formalism does a partial resummation of perturbative series
- need to construct (orig.) K-matrix as self-adjoint intermediate operator Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.
- T-matrix: Thales circle construction
- Solution Defined via $\left|a \frac{a_{K}}{2}\right| = \frac{a_{K}}{2} \Rightarrow a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_{0}}\right) i}$
- Identical to K matrix for real amplitudes
- Points on Argand circle left invariant

Reuter

- Does not rely on perturbation theory
- Applicable for amplitudes with imaginary parts (models with resonances)

Kilian/Ohl/JRR/Sekulla, 2014

New Physics in VBS at the LHC BSM Work

BSM Workshop, NTU Singapore, 04.03.2016

Heitler, 1941; Schwinger, 1949; Gupta, 1950
VBS diboson spectra

WWWW-Vertex:	α_4	=	$rac{f_{S,0}}{\Lambda^4}rac{v^4}{8}$
$\alpha_4 + \beta_{1}$	$2 \cdot \alpha_5$	=	$\frac{f_{S,1}}{\Lambda^4}\frac{v^4}{8}$
WWZZ-Vertex:	α_4	=	$\frac{f_{S,0}}{\Lambda^4}\frac{v^4}{16}$
	α_5	=	$\frac{f_{S,1}}{\Lambda^4} \frac{v^4}{16}$

ZZZZ-Vertex:

$$\alpha_4 + \alpha_5 \quad = \quad \left(\frac{f_{S,0}}{\Lambda^4} + \frac{f_{S,1}}{\Lambda^4}\right) \frac{v^4}{16}$$

General cuts: $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

New Physics in VBS at the LHC

VBS diboson spectra

WWWW-Vertex:	α_4	=	$rac{f_{S,0}}{\Lambda^4}rac{v^4}{8}$
$\alpha_4 + 2$	$2 \cdot \alpha_5$	=	$\frac{f_{S,1}}{\Lambda^4}\frac{v^4}{8}$
WWZZ-Vertex:	α_4	=	$\frac{f_{S,0}}{\Lambda^4}\frac{v^4}{16}$
	α_5	=	$\frac{f_{S,1}}{\Lambda^4} \frac{v^4}{16}$

ZZZZ-Vertex:

$$\alpha_4 + \alpha_5 \quad = \quad \left(\frac{f_{S,0}}{\Lambda^4} + \frac{f_{S,1}}{\Lambda^4}\right) \frac{v^4}{16}$$

General cuts: $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

New Physics in VBS at the LHC

VBS diboson spectra

General cuts: $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

New Physics in VBS at the LHC

$$pp \to e^+ \mu^+ \nu_e \nu_\mu jj \qquad \sqrt{s} = 14 \,\mathrm{TeV} \qquad \mathcal{L} = 1 \,\mathrm{ab}^{-1}$$

Simulations with WHIZARD [http://whizard.hepforge.org, Kilian/Ohl/JRR]

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

J.R.Reuter New Physics in VBS at the LHC

$$pp \to e^+ \mu^+ \nu_e \nu_\mu jj \qquad \sqrt{s} = 14 \,\mathrm{TeV} \qquad \mathcal{L} = 1 \,\mathrm{ab}^{-1}$$

Simulations with WHIZARD [http://whizard.hepforge.org, Kilian/Ohl/JRR]

 $F_{HD} = 30 \text{ TeV}^{-2}$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

New Physics in VBS at the LHC

$$pp \to e^+ \mu^+ \nu_e \nu_\mu jj \qquad \sqrt{s} = 14 \,\mathrm{TeV} \qquad \mathcal{L} = 1 \,\mathrm{ab}^{-1}$$

Simulations with WHIZARD [http://whizard.hepforge.org, Kilian/Ohl/JRR]

$$F_{S,0} = 480 \text{ TeV}^{-4}$$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

New Physics in VBS at the LHC

$$pp \to e^+ \mu^+ \nu_e \nu_\mu jj$$
 $\sqrt{s} = 14 \,\mathrm{TeV}$ $\mathcal{L} = 1 \,\mathrm{ab}^{-1}$

Simulations with WHIZARD [http://whizard.hepforge.org, Kilian/Ohl/JRR]

$$F_{S,1} = 480 \text{ TeV}^{-4}$$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5; \ p_T^\ell > 20 \,\text{GeV}$

New Physics in VBS at the LHC

- Rise of amplitude / anomalous coupling: Taylor expansion below a resonance
 Resonances might be in direct reach of LHC
- FFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

New Physics in VBS at the LHC

- Rise of amplitude / anomalous coupling: Taylor expansion below a resonance
 Resonances might be in direct reach of LHC
- FFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

New Physics in VBS at the LHC

- Rise of amplitude / anomalous coupling: Taylor expansion below a resonance
 Resonances might be in direct reach of LHC
- FFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

$SU(2)_L \times SU(2)_R$	\rightarrow	$SU(2)_C$
(0,0)	\rightarrow	0
(1,1)	\rightarrow	2 + 1 + 0

New Physics in VBS at the LHC

- Rise of amplitude / anomalous coupling: Taylor expansion below a resonance
 Resonances might be in direct reach of LHC
- FFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

$SU(2)_L \times SU(2)_R$	\rightarrow	$SU(2)_C$
(0,0)	\rightarrow	0
(1,1)	\rightarrow	2 + 1 + 0

	isoscalar	isotensor
scalar	σ^0	$ \begin{array}{c} \phi_t^{}, \phi_t^{-}, \phi_t^{0}, \phi_t^{+}, \phi_t^{++} \\ \phi_v^{-}, \phi_v^{0}, \phi_v^{+} \\ \phi_s^{0} \end{array} $
tensor	f^0	$\begin{pmatrix} X_t^{}, X_t^{-}, X_t^{0}, X_t^{+}, X_t^{++} \\ X_v^{-}, X_v^{0}, X_v^{+} \\ X_s^{0} \end{pmatrix}$
•••	•••	

New Physics in VBS at the LHC

- Rise of amplitude / anomalous coupling: Taylor expansion below a resonance
 Resonances might be in direct reach of LHC
- FFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

$SU(2)_L \times SU(2)_R$	\rightarrow	$SU(2)_C$
(0,0)	\rightarrow	0
(1,1)	\rightarrow	2 + 1 + 0

	isoscalar	isotensor
scalar	σ^0	$ \begin{array}{c} \phi_t^{}, \phi_t^{-}, \phi_t^{0}, \phi_t^{+}, \phi_t^{++} \\ \phi_v^{-}, \phi_v^{0}, \phi_v^{+} \\ \phi_s^{0} \end{array} $
tensor	f^0	$\begin{pmatrix} X_t^{}, X_t^{-}, X_t^{0}, X_t^{+}, X_t^{++} \\ X_v^{-}, X_v^{0}, X_v^{+} \\ X_s^{0} \end{pmatrix}$

R.Reuter

New Physics in VBS at the LHC

Tensor resonances

- Symmetric tensor $f_{\mu
 u}$
- On-shell conditions: 10 → 5 components
- Tracelessness: $f_{\mu}{}^{\mu} = 0$
- Transversality: $\partial_{\mu}f^{\mu\nu} = 0$

How to deal with off-shell tensor in realistic processes?

Tensor resonances: Fierz-Pauli vs. Stückelberg

Start with Fierz-Pauli Lagrangian for symmetric tensor

$$\mathcal{L}_{\rm FP} = \frac{1}{2} \partial_{\alpha} f_{\mu\nu} \partial^{\alpha} f^{\mu\nu} - \frac{1}{2} m^2 f_{\mu\nu} f^{\mu\nu} - \frac{1}{2} \partial_{\alpha} f^{\mu}_{\ \mu} \partial^{\alpha} f^{\nu}_{\ \nu} + \frac{1}{2} m^2 f^{\mu}_{\ \mu} f^{\nu}_{\ \nu} - \partial^{\alpha} f_{\alpha\mu} \partial_{\beta} f^{\beta\mu} - f^{\alpha}_{\ \alpha} \partial^{\mu} \partial^{\nu} f_{\mu\nu} + f_{\mu\nu} J^{\mu\nu}_{f}$$

New Physics in VBS at the LHC

Tensor resonances: Fierz-Pauli vs. Stückelberg

Start with Fierz-Pauli Lagrangian for symmetric tensor

$$\mathcal{L}_{\rm FP} = \frac{1}{2} \partial_{\alpha} f_{\mu\nu} \partial^{\alpha} f^{\mu\nu} - \frac{1}{2} m^2 f_{\mu\nu} f^{\mu\nu} - \frac{1}{2} \partial_{\alpha} f^{\mu}_{\ \mu} \partial^{\alpha} f^{\nu}_{\ \nu} + \frac{1}{2} m^2 f^{\mu}_{\ \mu} f^{\nu}_{\ \nu} - \partial^{\alpha} f_{\alpha\mu} \partial_{\beta} f^{\beta\mu} - f^{\alpha}_{\ \alpha} \partial^{\mu} \partial^{\nu} f_{\mu\nu} + f_{\mu\nu} J^{\mu\nu}_{f}$$

- Fierz-Pauli conditions not valid off-shell
- Fierz-Pauli propagator has bad high-energy behavior
- Use Stückelberg formalism to make off-shell high-energy behavior explicit
- \bigcirc Introduce compensator fields \Rightarrow no propagators with momentum factors
- Crucial for MCs

New Physics in VBS at the LHC

Tensor resonances: Fierz-Pauli vs. Stückelberg

Start with Fierz-Pauli Lagrangian for symmetric tensor

$$\mathcal{L}_{\rm FP} = \frac{1}{2} \partial_{\alpha} f_{\mu\nu} \partial^{\alpha} f^{\mu\nu} - \frac{1}{2} m^2 f_{\mu\nu} f^{\mu\nu} - \frac{1}{2} \partial_{\alpha} f^{\mu}_{\ \mu} \partial^{\alpha} f^{\nu}_{\ \nu} + \frac{1}{2} m^2 f^{\mu}_{\ \mu} f^{\nu}_{\ \nu} - \partial^{\alpha} f_{\alpha\mu} \partial_{\beta} f^{\beta\mu} - f^{\alpha}_{\ \alpha} \partial^{\mu} \partial^{\nu} f_{\mu\nu} + f_{\mu\nu} J^{\mu\nu}_{f}$$

Fierz-Pauli conditions not valid off-shell

- Fierz-Pauli propagator has bad high-energy behavior
- Use Stückelberg formalism to make off-shell high-energy behavior explicit
- Introduce compensator fields \Rightarrow no propagators with momentum factors

New Physics in VBS at the LHC

Comparison: Simplified Models & EFT

Kilian/Ohl/JRR/Sekulla: PRD93(16),3.036004 [1511.00022]

Black dashed line: saturation of $A_{22}(W^+W^+)/A_{00}(ZZ)$

- EFT fails at resonance
- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars

 $32\pi\Gamma/M^5$ $\sigma \phi f X$ $F_{S,0}$ $\frac{1}{2}$ 2 15 5 $F_{S,1}$ - $-\frac{1}{2}$ -5 -35

 $|F_{S,0}| < 480 \text{ TeV}^{-4}$ $|F_{S,1}| < 480 \text{ TeV}^{-4}$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

ATLAS PRL 113(2014)14, 141803 [1405.6241]

New Physics in VBS at the LHC

Comparison: Simplified Models & EFT

Kilian/Ohl/JRR/Sekulla: PRD93(16),3.036004 [1511.00022]

Black dashed line: saturation of $A_{22}(W^+W^+)/A_{00}(ZZ)$

- EFT fails at resonance
- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars

 $\begin{array}{c|ccc} 32\pi\Gamma/M^5 \\ \hline \sigma & \phi & f & X \\ \hline \frac{1}{2} & 2 & 15 & 5 \end{array}$

-5

-35

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

 $|F_{S,0}| < 480 \ {\rm TeV^{-4}} \qquad |F_{S,1}| < 480 \ {\rm TeV^{-4}}$

ATLAS PRL 113(2014)14, 141803 [1405.6241]

 $F_{S,0}$

 $F_{S,1}$

New Physics in VBS at the LHC

Complete LHC process at 14 TeV

New Physics in VBS at the LHC

Triple [multiple] Vector Boson Production ?

Yes, same Feynman rule as in VBS, but ...

one external $W/Z/\gamma$ always far off-shell

Unitarization formalism not available (would need $2 \rightarrow 3$ unitarizations)

Different Wilson coefficients dominate (particularly for resonances)

Important physics (partially) independent from VBS

J.R.Reuter

New Physics in VBS at the LHC

Conclusions / Summary

- Vector boson scattering one of flagship measurements of Runs II/III
- + EFT provides a (!) [not the] consistent framework for SM deviations
- Very well-defined (and limited) range of applicability
- Accounts for access to New Physics in VBS and Di-/Triboson channels
- Unitarization for theoretically sane description (allows to calculate 'best limit')
- T-matrix unitarization universal scheme for EFT and resonances
- Simplified models: generic electroweak resonances
- + Limits from LHC still incredibly limited: $M \sim 200-300 \text{ GeV}$
- Make sure that actual limits are meaningful and comparable

New Physics in VBS at the LHC

Conclusions / Summary

- Vector boson scattering one of flagship measurements of Runs II/III
- + EFT provides a (!) [not the] consistent framework for SM deviations
- Very well-defined (and limited) range of applicability
- Accounts for access to New Physics in VBS and Di-/Triboson channels
- Unitarization for theoretically sane description (allows to calculate 'best limit')
- T-matrix unitarization universal scheme for EFT and resonances
- Simplified models: generic electroweak resonances
- Limits from LHC still incredibly limited: M ~ 200-300 GeV
- Make sure that actual limits are meaningful and comparable

ILC I TeV, I/ab expectations:

Spin	I = 0	I = 1	I=2
0	1.55	-	1.95
1	-	2.49	-
2	3.29	-	4.30

2	Spin	I = 0	I = 1	I = 2
5	0	1.39	1.55	1.95
	1	1.74	2.67	-
0	2	3.00	3.01	5.84

New Physics in VBS at the LHC

BSM Workshop, NTU Singapore, 04.03.2016

LHC 13/14 TeV, 0.3-3/ab

Conclusions / Summary

- Vector boson scattering one of flagship measurements of Runs II/III
- + EFT provides a (!) [not the] consistent framework for SM deviations
- Very well-defined (and limited) range of applicability
- Accounts for access to New Physics in VBS and Di-/Triboson channels
- Unitarization for theoretically sane description (allows to calculate 'best limit')

I = 1

1.55

2.67

3.01

I=2

1.95

5.84

- T-matrix unitarization universal scheme for EFT and resonances
- Simplified models: generic electroweak resonances
- Limits from LHC still incredibly limited: M ~ 200-300 GeV
- Make sure that actual limits are meaningful and comparable

ca. I-3 TeV [very preliminary]

J.R.Reuter

Spin

0

1

2

New Physics in VBS at the LHC

whatever approach

New Physics in VBS at the LHC

whatever approach always get the correct ellipses

New Physics in VBS at the LHC

BACKUP SLIDES

New Physics in VBS at the LHC

- * SppS: discovery of W, Z (on-shell)
- * SLC/LEP: proof of non-Abelian weak structure, failure to find (very) light Higgs
- * Measurement of longitudinal Ws: ee \rightarrow WW (LEP), $t \rightarrow$ Wb (Tevatron)
- * Using all known d.o.f., parameterizing all possible interactions

Building blocks for EFT:

$$\psi$$
, \mathbf{W}_{μ} , \mathbf{B}_{μ} , $\Sigma = \exp\left[\frac{-i}{v}\mathbf{w}\boldsymbol{\tau}\right]$

SM fermions weak bosons hypercharge boson longitudinal d.o.f.

- * SppS: discovery of W, Z (on-shell)
- * SLC/LEP: proof of non-Abelian weak structure, failure to find (very) light Higgs
- * Measurement of longitudinal Ws: ee \rightarrow WW (LEP), $t \rightarrow$ Wb (Tevatron)
- * Using all known d.o.f., parameterizing all possible interactions

Building blocks for EFT:

$$\left[\psi$$
, \mathbf{W}_{μ} , \mathbf{B}_{μ} , $\Sigma = \exp\left[\frac{-i}{v}\mathbf{w}\boldsymbol{\tau}\right]$

SM fermions weak bosons hypercharge boson longitudinal d.o.f.

Minimal Lagrangian describing measurements at SLC / LEP [II] / Tevatron

$$\mathcal{L}_{\text{pre-LHC}} = \sum_{\psi} \overline{\psi}(i\not\!\!\!D)\psi - \frac{1}{2g^2} \text{tr} \left[\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}\right] - \frac{1}{2g'^2} \text{tr} \left[\mathbf{B}_{\mu\nu}\mathbf{B}^{\mu\nu}\right] + \frac{v^2}{4} \text{tr} \left[(\mathbf{D}_{\mu}\Sigma)(\mathbf{D}^{\mu}\Sigma)\right]$$
with the following useful definitions:

$$\mathbf{D}_{\mu} = \partial_{\mu} + \frac{i}{2}g\tau^{I}W_{\mu}^{I} + \frac{i}{2}g'B_{\mu}\tau^{3}$$

$$\mathbf{W}_{\mu\nu} = \frac{i}{2}g\tau^{I}(\partial_{\mu}W_{\nu}^{I} - \partial_{\nu}W_{\mu}^{I} + g\epsilon_{IJK}W_{\mu}^{J}W_{\nu}^{K})$$

$$\mathbf{B}_{\mu\nu} = \frac{i}{2}g'(\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu})\tau^{3}$$

New Physics in VBS at the LHC

- * SppS: discovery of W, Z (on-shell)
- * SLC/LEP: proof of non-Abelian weak structure, failure to find (very) light Higgs
- * Measurement of longitudinal Ws: ee \rightarrow WW (LEP), $t \rightarrow$ Wb (Tevatron)
- * Using all known d.o.f., parameterizing all possible interactions

Building blocks for EFT:

$$\left|\psi\right|$$
, \mathbf{W}_{μ} , \mathbf{B}_{μ} , $\Sigma = \exp\left[\frac{-i}{v}\mathbf{w}\boldsymbol{\tau}\right]$

SM fermions weak bosons hypercharge boson longitudinal d.o.f.

Minimal Lagrangian describing measurements at SLC / LEP [II] / Tevatron

$$\mathcal{L}_{\text{pre-LHC}} = \sum_{\psi} \overline{\psi}(iD)\psi - \frac{1}{2g^2} \text{tr} \left[\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} \right] - \frac{1}{2g'^2} \text{tr} \left[\mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} \right] + \frac{v^2}{4} \text{tr} \left[(\mathbf{D}_{\mu} \Sigma) (\mathbf{D}^{\mu} \Sigma) \right]$$
with the following useful definitions:
Electroweak Chiral Lagrangian

$$\mathbf{W}_{\mu\nu} = \frac{i}{2}g\tau^I (\partial_{\mu} W^I_{\nu} - \partial_{\nu} W^I_{\mu} + g\epsilon_{IJK} W^J_{\mu} W^K_{\nu})$$

$$\mathbf{B}_{\mu\nu} = \frac{i}{2}g' (\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}) \tau^3$$

J.R.Reuter

New Physics in VBS at the LHC

- * SppS: discovery of W, Z (on-shell)
- * SLC/LEP: proof of non-Abelian weak structure, failure to find (very) light Higgs
- * Measurement of longitudinal Ws: ee \rightarrow WW (LEP), $t \rightarrow$ Wb (Tevatron)
- * Using all known d.o.f., parameterizing all possible interactions

Building blocks for EFT:

R.Reuter

$$\psi$$
, \mathbf{W}_{μ} , \mathbf{B}_{μ} , $\Sigma = \exp\left[\frac{-i}{v}\mathbf{w}\boldsymbol{\tau}\right]$

SM fermions weak bosons hypercharge boson longitudinal d.o.f.

Minimal Lagrangian describing measurements at SLC / LEP [II] / Tevatron

$$\mathcal{L}_{\text{pre-LHC}} = \sum_{\psi} \overline{\psi}(iD)\psi - \frac{1}{2g^2} \text{tr} \left[\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}\right] - \frac{1}{2g'^2} \text{tr} \left[\mathbf{B}_{\mu\nu}\mathbf{B}^{\mu\nu}\right] + \frac{v^2}{4} \text{tr} \left[(\mathbf{D}_{\mu}\Sigma)(\mathbf{D}^{\mu}\Sigma)\right]$$

ith the following useful definitions:
$$\mathbf{D}_{\mu} = \partial_{\mu} + \frac{i}{2}g\tau^I W^I_{\mu} + \frac{i}{2}g' B_{\mu}\tau^3$$
$$\mathbf{W}_{\mu\nu} = \frac{i}{2}g\tau^I(\partial_{\mu}W^I_{\nu} - \partial_{\nu}W^I_{\nu} + q\epsilon_{IJK}W^J_{\nu}W^K_{\nu})$$

Electroweak Chiral Lagrangian

$$\mathbf{D}_{\mu} = \partial_{\mu} + \frac{1}{2}g\boldsymbol{\tau}^{I}W_{\mu}^{I} + \frac{1}{2}g^{\prime}B_{\mu}\boldsymbol{\tau}^{3}$$
$$\mathbf{W}_{\mu\nu} = \frac{i}{2}g\boldsymbol{\tau}^{I}(\partial_{\mu}W_{\nu}^{I} - \partial_{\nu}W_{\mu}^{I} + g\epsilon_{IJK}W_{\mu}^{J}W_{\nu}^{K}$$
$$\mathbf{B}_{\mu\nu} = \frac{i}{2}g^{\prime}(\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu})\boldsymbol{\tau}^{3}$$

Ruled out by LHC data (Higgs discovery)

New Physics in VBS at the LHC

* Specific models (SUSY, Compositeness, Little Higgses, 2HDM, Modified Higgses, Xdim,)

- Could give strong signals in VBS (presumably Little Higgses, Compositeness, Xdim)
- Could give faint signals in VBS (presumably SUSY, 2HDM [Higgs data!],)
- Up to parametric uncertainties precise predictions from the models (new independent couplings)
- Mostly even beyond tree level predictable
- Analysis has to be repeated for each and every model, introduces new parameters

New Physics in VBS at the LHC

* Specific models (SUSY, Compositeness, Little Higgses, 2HDM, Modified Higgses, Xdim,)

- Could give strong signals in VBS (presumably Little Higgses, Compositeness, Xdim)
- Could give faint signals in VBS (presumably SUSY, 2HDM [Higgs data!],)
- Up to parametric uncertainties precise predictions from the models (new independent couplings)
- Mostly even beyond tree level predictable
- Analysis has to be repeated for each and every model, introduces new parameters

* Anomalous Couplings

- Usually first "model-independent" proposal
- At the moment applied by HXSWG (but under debate)
- Only modifications of SM couplings or introduction of new (Lorentz) structures ?
- Allows fits of coupling strengths
- Possible deviations difficult to interpret in terms of quantum field theory, unitarity!!

* Specific models (SUSY, Compositeness, Little Higgses, 2HDM, Modified Higgses, Xdim,)

- Could give strong signals in VBS (presumably Little Higgses, Compositeness, Xdim)
- Could give faint signals in VBS (presumably SUSY, 2HDM [Higgs data!],)
- Up to parametric uncertainties precise predictions from the models (new independent couplings)
- Mostly even beyond tree level predictable
- Analysis has to be repeated for each and every model, introduces new parameters

* Anomalous Couplings

- Usually first "model-independent" proposal
- At the moment applied by HXSWG (but under debate)
- Only modifications of SM couplings or introduction of new (Lorentz) structures ?
- Allows fits of coupling strengths
- Possible deviations difficult to interpret in terms of quantum field theory, unitarity!!

★ Form factors

- Similar approach to anomalous couplings, partially resums perturbative series
- (Almost) completely general and model-independent
- Needs parameterizations, violates gauge invariance, unitarity ad-hoc curable (new parameters)

New Physics in VBS at the LHC

* Specific models (SUSY, Compositeness, Little Higgses, 2HDM, Modified Higgses, Xdim,)

- Could give strong signals in VBS (presumably Little Higgses, Compositeness, Xdim)
- Could give faint signals in VBS (presumably SUSY, 2HDM [Higgs data!],)
- Up to parametric uncertainties precise predictions from the models (new independent couplings)
- Mostly even beyond tree level predictable
- Analysis has to be repeated for each and every model, introduces new parameters

* Anomalous Couplings

- Usually first "model-independent" proposal
- At the moment applied by HXSWG (but under debate)
- Only modifications of SM couplings or introduction of new (Lorentz) structures ?
- Allows fits of coupling strengths
- Possible deviations difficult to interpret in terms of quantum field theory, unitarity!!

★ Form factors

R.Reuter

- Similar approach to anomalous couplings, partially resums perturbative series
- (Almost) completely general and model-independent
- Needs parameterizations, violates gauge invariance, unitarity ad-hoc curable (new parameters)

★ Effective Field Theory

- (Almost) model-independent, consistent calculation of perturbative corrections (power counting !?)
- Depends on (possibly) many free parameters
- Requires decoupling of New Physics
- Range of applicability strongly depends on couplings and scales (unitarity issue)

New Physics in VBS at the LHC

General Procedure using EFTs

- Use all experimental observables \implies global fit to all Wilson coefficients
- Would-be optimal approach
- Too many independent variables \implies needs staged fitting
- Need for simplifying assumptions
- Try to find minimal "physically well motivated" operator basis
- Experimental bias: consider only LHC-accessible operators
- Cross check from low-energy physics (flavor / EDMs / EWPO etc. / Higgs!)
- Explore full structure of EW Higgs doublet:

General Procedure using EFTs

- Use all experimental observables \implies global fit to all Wilson coefficients
- Would-be optimal approach
- Too many independent variables \implies needs staged fitting
- Need for simplifying assumptions
- Try to find minimal "physically well motivated" operator basis
- Experimental bias: consider only LHC-accessible operators
- Cross check from low-energy physics (flavor / EDMs / EWPO etc. / Higgs!)
- Explore full structure of EW Higgs doublet:

$$\mathcal{O}_{\Phi f} = (\Phi^{\dagger} \vec{D}_{\mu} \Phi) (\bar{f} \gamma^{\mu} f) \qquad \qquad \mathcal{O}_{\Phi W} = (\Phi^{\dagger} \Phi) W_{\mu\nu} W^{\mu\nu}$$

$$\overset{H}{\times} \overset{v}{\times} \overset{$$

 $Z \rightarrow ff \implies$ constrained by SLC/LEP

physics: $H \rightarrow WW \implies$ no experimental constraints

New Physics in VBS at the LHC

General Procedure using EFTs

- Use all experimental observables \implies global fit to all Wilson coefficients
- Would-be optimal approach

R.Reuter

- Too many independent variables \implies needs staged fitting
- Need for simplifying assumptions
- Try to find minimal "physically well motivated" operator basis
- Experimental bias: consider only LHC-accessible operators
- Cross check from low-energy physics (flavor / EDMs / EWPO etc. / Higgs!)
- Explore full structure of EW Higgs doublet:

$$\mathcal{O}_{\Phi f} = (\Phi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\overline{f} \gamma^{\mu} f) \qquad \qquad \mathcal{O}_{\Phi W} = (\Phi^{\dagger} \Phi) W_{\mu\nu} W^{\mu\nu}$$

$$\overset{H}{\longrightarrow} \overset{v}{\longrightarrow} \overset{v}{\longrightarrow}$$

- Often use vev-subtracted operators: $\mathcal{O}(\Phi^{\dagger}\Phi) \longrightarrow \mathcal{O}'(\Phi^{\dagger}\Phi v^2)$
- EFT allows to systemically calculate higher-order corrections

New Physics in VBS at the LHC
+ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993

New Physics in VBS at the LHC

+ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993

- Integrating out heavy d.o.f.s marginalizes over details of short-distance interactions
- + Toy Example: two interacting scalar fields $arphi, \Phi$

Path integral

$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \exp\left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi (\Box + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J \Phi + j\varphi\right)\right]$$

+ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993

- Integrating out heavy d.o.f.s marginalizes over details of short-distance interactions
- + Toy Example: two interacting scalar fields $arphi, \Phi$

Path integral
$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \exp\left[i \int dx \left(\frac{1}{2}(\partial\varphi)^2 - \frac{1}{2}\Phi(\Box + M^2)\Phi - \lambda\varphi^2\Phi - \ldots + J\Phi + j\varphi\right)\right]$$

Completing the square (Gaussian integration)

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \qquad \Longrightarrow \qquad \checkmark \qquad \checkmark$$

New Physics in VBS at the LHC

+ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993

- Integrating out heavy d.o.f.s marginalizes over details of short-distance interactions
- + Toy Example: two interacting scalar fields φ, Φ

Path integral
$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \exp\left[i \int dx \left(\frac{1}{2}(\partial\varphi)^2 - \frac{1}{2}\Phi(\Box + M^2)\Phi - \lambda\varphi^2\Phi - \ldots + J\Phi + j\varphi\right)\right]$$

Completing the square (Gaussian integration)

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \qquad \Longrightarrow \qquad \checkmark \checkmark$$

In the Lagrangian remove the high-scale d.o.f.s:

$$\frac{1}{2}(\partial\Phi)^2 - \frac{1}{2}M^2\Phi^2 - \lambda\varphi^2\Phi = -\frac{1}{2}\Phi'(M^2 + \partial^2)\Phi' + \underbrace{\frac{\lambda^2}{2M^2}\varphi^2\left(1 + \frac{\partial^2}{M^2}\right)^{-1}\varphi^2}_{-1}$$

Irrelevant normalization of the path integral

Tower of higher and higher-dim. operators of light fields

New Physics in VBS at the LHC

R.Reuter

Generation of Higher-dimensional Operators

Couplings of new states to the longitudinal / transversal diboson system

	J = 0	J = 1	J=2
I = 0	σ^0 (Higgs singlet?)	$\omega^0 \; (\gamma'/Z'\;?)$	f^0 (Graviton ?)
I = 1	π^{\pm},π^{0} (2HDM ?)	$ ho^{\pm}, ho^0 \; (W'/Z' \; ?)$	a^{\pm},a^{0}
I=2	$\phi^{\pm\pm}, \phi^{\pm}, \phi^0$ (Higgs triplet ?)		$t^{\pm\pm}, t^{\pm}, t^0$

J.R.Reuter

New Physics in VBS at the LHC

Generation of Higher-dimensional Operators

Couplings of new states to the longitudinal / transversal diboson system

	J = 0	J = 1	J=2
I = 0	σ^0 (Higgs singlet?)	$\omega^0 \; (\gamma'/Z'\;?)$	f^0 (Graviton ?)
I = 1	π^{\pm},π^{0} (2HDM ?)	$\rho^{\pm}, \rho^0 \; (W'/Z' \; ?)$	a^{\pm},a^{0}
I=2	$\phi^{\pm\pm}, \phi^{\pm}, \phi^0$ (Higgs triplet ?)		$t^{\pm\pm},t^{\pm},t^0$

Different power counting for weakly and strongly interacting theories

$$\frac{c_i}{\Lambda} \sim \frac{g}{4\pi\Lambda}$$
 vs. $\frac{c_i}{\Lambda} \sim \frac{g}{\Lambda}$

J.R.Reuter

New Physics in VBS at the LHC