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NEW POISSON-BOLTZMANN TYPE EQUATIONS:
ONE-DIMENSIONAL SOLUTIONS

CHIUN-CHANG LEE ∗, HIJIN LEE † , YUNKYONG HYON ‡ , TAI-CHIA LIN § , AND

CHUN LIU¶

Abstract. The Poisson-Boltzmann (PB) equation is conventionally used to model the equilib-
rium of bulk ionic species in different media and solvents. In this paper we study a new Poisson-
Boltzmann type (PB n) equation with a small dielectric parameter ǫ2 and nonlocal nonlinearity
which takes into consideration of the preservation of the total amount of each individual ion. This
equation can be derived from the original Poisson-Nernst-Planck (PNP) system. Under Robin type
boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviors of one
dimensional solutions of PB n equations as the parameter ǫ approaches to zero. In particular, we
show that in case of electro-neutrality, i.e., α = β, solutions of 1-D PB n equations have the similar
asymptotic behavior as those of 1-D PB equations. However, as α 6= β (local non-electroneutrality),
solutions of 1-D PB n equations may have blow-up behavior which can not be found in 1-D PB
equations. Such a difference between 1-D PB and PB n equations can also be verified by numerical
simulations.
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1. Introduction.
Understanding ion transport is crucial in the study of many physical and biological

problems, such as semiconductors [31], electro-kinetic fluids [28, 33, 34, 35], transport
of electrochemical systems [32] and ion channels in cell membranes [5, 13, 14, 22, 24, 27,
29, 30]. One of the fundamental models for the ionic transport is the time dependent
system consisting coupled diffusion-convection equations, the Poisson-Nernst-Planck
(PNP) system.

In this paper, we confine ourselves to the physical domain as a one-dimensional
interval (−1, 1), as was done in [1]. The PNP system is given by

nt = −∂xJn, pt = −∂xJp, (1.1)

Jn = −Dn

(
nx − zne

kBT
nφx

)
, Jp = −Dp

(
px +

zne

kBT
pφx

)
, (1.2)

ǫ2φxx = −ρ+ znen− zpep, for x ∈ (−1, 1), t > 0 (1.3)

where φ is the electrostatic potential, n is the density of anions, p is the density of
cations, ρ is the permanent (fixed) charge density in the domain, zn, zp are the valence

∗Department of Mathematics, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei
106, Taiwan, email:f92221030@ntu.edu.tw ,

†Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea 305-701, email:hijin@kaist.ac.kr,

‡Institute for Mathematics and Its Applications, 114 Lind, 207 Church St. S.E., Minneapolis,
MN 55455, USA, email: hyon@ima.umn.edu,

§Department of Mathematics, National Taiwan University, Taida Institute for Mathematical Sci-
ences (TIMS), and National Center for Theoretical Sciences (Taipei Office), No.1, Sec.4, Roosevelt
Road, Taipei 106, Taiwan, email: tclin@math.ntu.edu.tw,

¶Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA,
and Institute for Mathematics and Its Applications, University of Minnesota, 114 Lind, 207 Church
St. S.E., Minneapolis, MN 55455, USA, email: liu@math.psu.edu, liu@ima.umn.edu

1



of ions, e is the elementary charge, kB is the Boltzmann constant, T is temperature,
Jn, Jp are the ionic flux densities and Dn, Dp are their diffusion coefficients. The

parameter ǫ =
(
ǫ0 UT /(d

2 e S)
)1/2

> 0, where ǫ0 is the dielectric constant of the
electrolyte, UT is the thermal voltage, d is the length of the domain (−1, 1), and S is
the appropriate concentration scale (cf. [16]). Furthermore, ǫ d is known as the Debye
length and ǫ is of order 10−2 for the physiological cases of interest (cf. [2]). Thus
we may assume ǫ as a small parameter tending to zero. For simplicity, we consider
monovalent ions, that is, zn = zp = 1 with e/kBT = 1, ρ = 0, Dn = Dp = 1. Here we
reuse the notation, ǫ again. Then the PNP system (1.1)-(1.3) becomes

nt = −∂xJn , pt = −∂xJp, (1.4)

Jn = −(nx − nφx) , Jp = −(px + pφx), (1.5)

ǫ2φxx = n− p , for x ∈ (−1, 1), t > 0. (1.6)

The equation (1.4) represents the conservation of total charges of the individual
ions (similar to the conservation of mass equation in [15]). These so-called Nernst-
Planck equations describe electro-diffusion and electrophoresis according to Fick’s
and Kohlrausch’s laws, respectively. The equation (1.6) depicts the electro-static
Poisson’s law. We assume no-flux boundary conditions on the boundary to describe
the insulated domain boundaries:

Jn = Jp = 0 for x = ±1, t > 0. (1.7)

Hence it is easy to conclude that the total charges of both negative and positive ions
are conserved in time by (1.4) and (1.7):

d

dt

∫ 1

−1

ndx = −
∫ 1

−1

∂xJndx = −Jn

∣∣x=1

x=−1
= 0,

d

dt

∫ 1

−1

pdx = −
∫ 1

−1

∂xJpdx = −Jp

∣∣x=1

x=−1
= 0, for t > 0.

Consequently, we have the normalization condition given by

∫ 1

−1

n dx = α,

∫ 1

−1

p dx = β, for t > 0 (1.8)

where α and β are positive constants only determined by the initial conditions.
The PNP system (1.4)-(1.6) can be derived by the energetic variational ap-

proaches [33, 36]. The energy dissipation law of the PNP system (1.4)-(1.6) is given
as follows:

d

dt

∫ 1

−1

(
n logn+ p log p+

ǫ2

2
|φx|2

)
dx = −

∫ 1

−1

(
n
∣∣∣nx

n
− φx

∣∣∣
2

+ p

∣∣∣∣
px

p
+ φx

∣∣∣∣
2
)
dx.

Here the integral of n logn and p log p is the entropy related to Brownian motion of

anions and cations, and the integral of ǫ2

2 |φx|2 is the electrostatic potential of the
coulomb interaction between charged ions.

To see the equilibrium of the PNP system (1.4)-(1.6), it is standard to consider
the steady state i.e. time-independent solutions of the PNP system (1.4)-(1.6). Such
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a concept is well-known in many fields including biological systems and the electro-
physiology. Hence we may set nt ≡ pt ≡ 0 and (1.4)-(1.6) can be transformed into
the following system

∂x(nx − nφx) = 0, ∂x(px + pφx) = 0, for x ∈ (−1, 1), (1.9)

ǫ2φxx + p− n = 0, for x ∈ (−1, 1) , (1.10)

where n = n(x), p = p(x), φ = φ(x) are real-valued functions. On the other hand,
the no-flux boundary condition (1.7) and the normalization condition (1.8) become

(nx − nφx)(±1) = 0, (px + pφx)(±1) = 0 , (1.11)

and
∫ 1

−1 ndx = α,
∫ 1

−1 pdx = β where α and β are positive constants.

Remark 1.1. We want to point out, although most of the physical and biological
systems possess the (overall) electroneutrality, it may not be the case in local domains
(cf. [6, 12, 17]), which are the considerations of this paper. Such non-electroneutrality
phenomena are ubiquitous and can be extremely subtle when systems involves empirical
boundary conditions to take into account of electrochemical reactions on the bound-
aries, such as those in [?, ?, ?, ?]. For instance, the non-electroneutrality may hold
near the electrodes when the Faradaic current is driven by redox reactions occurring
at the electrodes (cf. [42]).

Boundary conditions play a crucial role on solutions of the system (1.9), (1.10).
The boundary conditions (1.11) guarantee the solutions of (1.9) have the following
forms:

n = n(x) = α̃eφ(x), p = p(x) = β̃e−φ(x), for x ∈ (−1, 1) (1.12)

where α̃ and β̃ are constants. Note that from (1.9), we have nx − nφx ≡ c1 and
px + pφx ≡ c2 for some constants cj ’s. Then the conditions (1.11) imply c1 = c2 = 0
which gives (1.12) by solving nx − nφx ≡ 0 and px + pφx ≡ 0, respectively. To fulfill
the total charge condition, α̃ and β̃ must satisfy

α̃ =
α

∫ 1

−1
eφdx

, β̃ =
β

∫ 1

−1
e−φdx

(1.13)

having the nonlocal dependence on φ. Consequently, (1.10), (1.12) and (1.13) give
the new Poisson-Boltzmann type (PB n) equation,

ǫ2φxx =
α eφ

∫ 1

−1 e
φdx

− β e−φ

∫ 1

−1 e
−φdx

for x ∈ (−1, 1). (1.14)

Conventionally, the Poisson-Boltzmann (PB) equation for electrolytes with two species’
densities n and p occupying (−1, 1) is the combination of the Poisson equation

ǫ2φxx = n− p in (−1, 1) ,

and the Boltzmann distribution

n = α1 e
φ and p = β1 e

−φ in (−1, 1) ,
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where α1 and β1 are positive constants (cf. [4], [8] and [9]). Then the PB equation
can be written as

ǫ2φxx = α1e
φ − β1e

−φ, for x ∈ (−1, 1) . (1.15)

Note that the PB equation (1.15) has only (spatially) local nonlinearity which is very
different from the nonlocal nonlinearity of the PB n equation (1.14). We may derive
the PB equation (1.15) from the steady state PNP system (1.9)-(1.10) with another
boundary conditions as follows:

(nx − nφx)(−1) = (px + pφx)(−1) = 0, (1.16)

n(1) = n1, p(1) = p1, φ(1) = φ1 , (1.17)

where n1, p1 and φ1 are positive constants satisfying α1 = n1 e
−φ1 and β1 = p1 e

φ1 .
One may remark that both the PB n equation (1.14) and the PB equation (1.15) come
from the same PNP system (1.9)-(1.10) but with respect to the different boundary
conditions (1.11) and (1.16)-(1.17), respectively. Physically, the boundary conditions
(1.11) provide no-flux at the boundary points x = ±1 but the boundary conditions
(1.16)-(1.17) have the Dirichlet boundary condition which may give nonzero flux at
the one end x = 1 and no-flux at the other end x = −1. Since various boundary
conditions may result in distinct solution behaviors, it would be natural to believe
that the PB n equation (1.14) and the PB equation (1.15) have different solution
behaviors.

In many applications, especially those in biological systems, the interfacial bound-
ary condition is extremely important. Here we may consider the interval (−1, 1) as
the ion channel with boundaries at x = ±1. To describe more general physical phe-
nomena, a Robin-type boundary condition (cf. [7]) for the electrostatic potential φ at
x = ±1 is given by

ηǫ
∂φ

∂ν
= φextra − φintra (1.18)

where ν is the unit outer normal vector, and φintra and φextra are the intrachan-
nel and extrachannel electrostatic potentials at the channel boundaries, respectively.
The coefficient ηǫ ∼ ǫ0

ǫm
is governed by the ratio of ǫ0 the dielectric constant of the

electrolyte and ǫm the dielectric constant of the membrane (cf. [40, 41]). Due to
ǫ0 ∼ ǫ2, ηǫ depends on the parameter ǫ and satisfies ηǫ/ǫ ∼ ǫ/ǫm. Generically, one
may not know the asymptotic limit of the ratio ηǫ/ǫ as the parameter ǫ goes to zero.
Here we assume the limit limǫ→0 ηǫ/ǫ to be zero, a positive constant γ and infinity,
respectively.

The boundary condition (1.18) may also represent the capacitance effect of cell
membrane [19, 20, 21] and can be found in other physical systems e.g. [33, 34, 35].
Setting φextra = φ0 and φintra = φ, we may transform the condition (1.18) into

{
(φ+ ηǫφx) (x) = φ0(x), if x = 1,

(φ− ηǫφx) (x) = φ0(x), if x = −1 ,
(1.19)

where φ0(1), φ0(−1) are constants and ηǫ is a nonnegative constant, with scale of
length, and related to the surface capacitance. Since we want to study the properties
of the solutions with respect to the relative relation of this parameter and the dielectric
constant, we assume that ηǫ depends on the parameter ǫ. Notice, as ηǫ = 0, (1.19)
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becomes the Dirichlet boundary condition. As ηǫ → ∞, (1.19) tends to the Neumann
boundary condition. It is obvious that the Robin boundary condition (1.19) has more
general feature rather than Dirichlet and Neumann boundary conditions.

To see the difference of the PB n equation (1.14) and the PB equation (1.15),
we assume α 6= β and remark the difference by contradiction. Suppose the solutions
for the PB n equation (1.14) and the PB equation (1.15) have the same asymptotic
behavior as the parameter ǫ goes to zero. Then by the PB equation (1.15), the solution
φ satisfies ∀x ∈ (−1, 1), φ(x) ∼ C as ǫ→ 0, where C is a (finite) constant determined

by α1 e
C = β1 e

−C . Hence α eφR 1
−1

eφ dx
∼ α

2 and β eφR 1
−1

eφ dx
∼ β

2 as ǫ → 0. However, by

the PB n equation (1.14), we have

0 ∼ ǫ2φxx =
α eφ

∫ 1

−1 e
φ dx

− β eφ

∫ 1

−1 e
φ dx

∼ α

2
− β

2

which contradicts to α 6= β. Therefore, the solutions for PB n equation (1.14) and
the PB equation (1.15) have different asymptotic behaviors as the parameter ǫ goes
to zero.

The main goal of this paper is to compare solutions of the PB n equation (1.14)
and the PB equation (1.15) under the general Robin boundary condition (1.19) for the
electrostatic potential. For the coefficients α, β of the PB n equation (1.14), two cases
are considered as follows: One case is α = β for the global electroneutrality, which
means the total amounts of the positive charge and the negative charge are the same.
The other case is α 6= β for the non-electroneutrality which means the total positive
and negative charge densities are not equal to each other. For the later case, we want
emphasize again, although most of the physical and biological systems possess the
(overall) electroneutrality, it may not be the case in local domains (cf. [6, 12, 17]),
which are the considerations of this paper. For these two cases, we prove rigorously
interior and boundary estimates for the PB n equation (1.14) with the boundary con-
dition (1.19):

• Under the boundary condition (1.19), if α = β, then the solution of (1.14)
asymptotically close to the solution of (1.15) with α1 = α/2 = β/2 = β1 as ǫ
goes to zero. This shows that as α = β, solutions of the PB n equation (1.14)
and the PB equation (1.15) may have the same asymptotic behavior.

• If α 6= β, then the solution of (1.14) with the boundary condition (1.19) may
tend to infinity as ǫ goes to zero. Such a blow-up behavior is absent for the
solutions of (1.15) with the boundary condition (1.19). This provides one of
the key different behaviors of the solutions for PB n equation (1.14) and the
PB equation (1.15).

Now we summarize our results as follows:

(a) In the electroneutral case (α = β):
(a1) If limǫ↓0

ǫ
ηǫ

= 0, the solution φ approaches zero in [−1, 1] as ǫ ↓ 0. However,

φ has slope of order O(1/ηǫ) on the boundary (cf. Theorem 1.3(i)).

(a2) When ǫ
ηǫ

≥ C for some positive constant C independent of ǫ, the solution φ

possesses boundary layers with thickness ǫ (cf. Theorem 1.3(ii) and (iii) and
(1.25)).
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(b) In the non-electroneutral case (α 6= β):
The solution φ has boundary layers with thickness ǫ2 and φ(x) − φ(±1) tends to
infinity with the leading order term log(ǫ−2) as ǫ ↓ 0 for x ∈ (−1, 1) (see Theorem 1.5
− 1.7). The values φ(±1) can be estimated as follows:

(b1) If ηǫ

ǫ2 ≤ C, φ(1) and φ(−1) converge to different finite values as ǫ ↓ 0, where
C is a positive constant independent of ǫ (cf. Theorem 1.6(i) and (ii)).

(b2) If limǫ↓0
ηǫ

ǫ2 = ∞, both φ(1) and φ(−1) diverge to ∞, but |φ(1) − φ(−1)|
converges to zero as ǫ ↓ 0 (cf. Theorem 1.6(iii)).

(c) The difference between the solutions to the PB n equation (1.14) and the PB
equation (1.26) can be stated as follows:

(c1) When α = β, the solution of the PB n equation (1.14) may converge to the
solution of the PB equation (1.26) (cf. Theorem 1.4). Namely, in the case of
α = β, the solution of the PB n equation (1.14) have the same asymptotic
behavior as that of the PB equation (1.26).

(c2) When α 6= β, the solution of the PB equation (1.26) remain bounded for ǫ > 0
(cf. Theorem 4.2). However, as α 6= β, the solution of the PB n equation
(1.14) may tend to infinity as ǫ goes to zero (see (b)). This may provide
the difference between the solutions to the PB n equation (1.14) and the PB
equation (1.26).

Although people may believe that the non-electroneutrality i.e. α 6= β is impos-
sible for most biological systems, it seems difficult to specify what kind of biological
systems making the non-electroneutrality impossible. Here we show that if the non-
electroneutrality holds, then the blow-up behavior of the electrical potential φ occurs
by solving the new model PB n equation (1.14). Thus the non-electroneutrality is
impossible for those biological systems without the blow-up behavior of the electrical
potential. To avoid the non-electroneutrality, the new model PB n equation (1.14)
provides a new way which can not be found in the conventional PB equation (1.15).

Finally, we want to point out that in our ongoing projects [10, 11], we studied
the renormalized Poisson Boltzmann equations with multiple species, such as those
of Na+, K+, Ca2+, Cl−, as in the real biological environment. We also study the
corresponding results for higher dimensional cases.

1.1. Main Theorems. Hereafter, we set φ = φ(x) as the solution of the equa-
tion (1.14) with the boundary condition (1.19) [18, 23, 25, 26]. Actually, the solution
φ may depend on the parameter ǫ and should be denoted as φǫ but we denote it
as φ for simplicity. The equation (1.14) with the boundary condition (1.19) can be
regarded as the Euler-Lagrange equation of the energy functional written as

Eǫ[u] =
ǫ2

2

∫ 1

−1

|u′|2 dx+ α log

(∫ 1

−1

eu dx

)
+ β log

(∫ 1

−1

e−u dx

)

+
ǫ2

2η2
ǫ

[
(φ0(1) − u(1))2 + (φ0(−1) − u(−1))2

]
, (1.20)

for u ∈ H1((−1, 1)). Using the standard Direct method, we get the energy minimizer
of Eǫ over H1((−1, 1)). Applying the standard elliptic regularity theory (cf. [3]),
we obtain the classical solution of (1.14) with the boundary condition (1.19). The
uniqueness theorem is stated as follows:
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Theorem 1.1. (Uniqueness Theorem) There exists at most one φ ∈ C∞((−1, 1))∩
C2([−1, 1]) solution of the equation (1.14) with the boundary condition (1.19).

We will give the proof of this theorem in Appendix (Section 7).
Suppose α = β. When φ0(−1) = φ0(1) = A, one gets φ ≡ A trivially by The-

orem 1.1. Note that the equation (1.14) is invariant under the replacement of φ by
φ + C, for any nonzero constant C. Hence for the case of φ0(−1) 6= φ0(1), with-
out loss of generality, we may assume φ0(−1) = −φ0(1) > 0 by adjusting a suitable
constant C. Such an assumption and Theorem 1.1 can assure the solution φ is an
odd function on [−1, 1] i.e., φ(−x) = −φ(x) , ∀x ∈ [−1, 1]. Consequently, we have∫ 1

−1 e
φdx =

∫ 1

−1 e
−φdx which is crucial to study the equation (1.14). Now we state

the interior estimate of φ as follows:

Theorem 1.2. (Interior Estimates) Assume α = β > 0 and φ0(1) = −φ0(−1) >
0. For ǫ > 0, let φ ∈ C∞((−1, 1)) ∩C2([−1, 1]) be the solution of the equation (1.14)
with the boundary condition (1.19). Then the solution φ is odd, monotonically in-
creasing on [−1, 1], convex on (0, 1), and concave on (−1, 0). Moreover, there exists
M > 0 independent of ǫ such that

|φ(x)| ≤ φ0(1)
(
e−

M
ǫ (1+x) + e−

M
ǫ (1−x)

)
, ∀x ∈ [−1, 1], ǫ > 0. (1.21)

At the boundary x = 1, the asymptotic behavior of φ(x) may depend on ηǫ. Here we
study three cases for ηǫ > 0: (i) ǫ

ηǫ
→ 0 as ǫ ↓ 0, (ii) ηǫ = γǫ and (iii) ǫ

ηǫ
→ ∞ as

ǫ ↓ 0. The boundary estimates of these cases are presented as follows:

Theorem 1.3. (Boundary Estimates) Under the same hypotheses as in Theo-
rem 1.2, we have

(i) if ǫ
ηǫ

→ 0 as ǫ ↓ 0, then limǫ↓0 |φ(x)| = 0 uniformly in [−1, 1], and limǫ↓0
ηǫφ

′(1) = φ0(1),

(ii) if ηǫ = γǫ, where γ > 0 is a constant independent of ǫ, then

lim
ǫ↓0

φ(1) = φ∗ and lim
ǫ↓0

ǫφ′(1) =
√
α
(
eφ∗/2 − e−φ∗/2

)
, (1.22)

where 0 < φ∗ < φ0(1) is uniquely determined by

φ0(1) − φ∗ = γ
√
α
(
eφ∗/2 − e−φ∗/2

)
, (1.23)

(iii) if ǫ
ηǫ

→ ∞ as ǫ ↓ 0, then

lim
ǫ↓0

φ(1) = φ0(1) and lim
ǫ↓0

ǫφ′(1) =
√
α
(
eφ0(1)/2 − e−φ0(1)/2

)
. (1.24)

For the case (ii) and (iii), the asymptotic behavior of φ near the boundary x = 1 can
be represented by

φǫ
1(x) ≤ φ(x) ≤ φǫ

2(x) and φǫ
i(x) = 2 log

(
aǫ

i + bǫie
− cǫ

i
ǫ (1−x)

aǫ
i − bǫie

− cǫ
i
ǫ (1−x)

)
, (1.25)
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for x ∈ (0, 1), ǫ > 0, i = 1, 2. Here aǫ
i ’s, b

ǫ
i’s and cǫi ’s are constants satisfying

aǫ
i → es/2 + 1, bǫi → es/2 − 1 and cǫi →

√
α as ǫ ↓ 0, for i = 1, 2,

where

s =





φ∗ if ηǫ = γǫ,

φ0(1) if lim
ǫ↓0

ǫ

ηǫ
= ∞,

and φ∗ is defined in (1.23).

Theorem 1.3 (i) shows that there is no boundary layer if ǫ
ηǫ

→ 0 as ǫ ↓ 0. The-

orem 1.3 (ii) and (iii) provide the existence of boundary layers having asymptotic
behaviors exhibited by (1.25). Consequently, we obtain the boundary estimates of
φ at x = −1 since the solution φ is an odd function on [−1, 1]. One may refer to
Figure 5.1 for the solution profile.

Theorem 1.2 and 1.3 imply
∫ 1

−1 e
±φdx → 2 as ǫ → 0. Hence the PB n equa-

tion (1.14) is asymptotically close to the following PB equation:

ǫ2φxx =
α

2
eφ − β

2
e−φ, for x ∈ (−1, 1), (1.26)

i.e., the equation (1.15) with α1 = α/2 = β/2 = β1. It would be expected that as
α = β, the solutions of the PB n equation (1.14) and the PB equation (1.26) have the
same asymptotic behavior. Such a result can be stated as follows:

Theorem 1.4. Assume α = β > 0 and φ0(−1) = −φ0(1) < 0. Under the
boundary condition (1.19), let φ,w ∈ C∞((−1, 1)) ∩ C2([−1, 1]) be the solution of
(1.14) and (1.26), respectively. Then w is odd, monotone increasing on [−1, 1], convex
on (0, 1), and concave on (−1, 0). Furthermore,

lim
ǫ↓0

|φ(x) − w(x)| = 0, ∀ x ∈ [−1, 1]. (1.27)

The numerical results of the maximum norms ‖φ− w‖∞’s are presented in Table ??
which may support Theorem 1.4. To see the difference between the PB n equa-
tion (1.14) and the PB equation (1.26), we set α < β and study the asymptotic
behaviors of the solution φ of (1.14) and the solution w of (1.26) as ǫ goes to zero.
The interior estimates of φ are stated as follows:

Theorem 1.5. (Interior Estimates) Assume 0 < α < β. For ǫ > 0, let φ ∈
C∞((−1, 1))∩C2([−1, 1]) be the solution of (1.14) with the boundary condition (1.19).
For any compact subset K of (−1, 1), we have

(i) supx,y∈K |φ(x) − φ(y)| exponentially converges to zero as ǫ goes to zero.
(ii) There exists positive constant CK,α,β depending only on α, β and K such that

∣∣∣∣φ(x) − φ(±1) − log
1

ǫ2

∣∣∣∣ ≤ CK,α,β , (1.28)

for all x ∈ K.
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Theorem 1.5 (ii) presents that the interior value φ(x) − φ(±1) tends to infinity
with the leading order term log 1

ǫ2 and the second order term O(1) as ǫ approaches

zero. Note that this also shows limǫ↓0
φ(x)−φ(±1)

log ǫ−2 = 1 uniformly in any compact subset

K of (−1, 1).
When φ0(1) = φ0(−1), the asymptotic behaviors of φ(−1), φ(1) are depicted by

lim
ǫ↓0

φ(1) = φ0(1) if lim
ǫ↓0

ηǫ

ǫ2
= 0, (1.29)

φ(1) = φ0(1) +
γ(β − α)

2
if ηǫ = γǫ2, (1.30)

φ(1) = φ0(1) +
ηǫ(β − α)

2ǫ2
→ ∞ if lim

ǫ↓0

ηǫ

ǫ2
= ∞, (1.31)

where γ is a positive constant independent of ǫ. These formulas can be proved by
Remark 3.1 in Section 3. On the other hand, as φ0(1) 6= φ0(−1), the asymptotic
behaviors of φ(−1), φ(1) are given by

Theorem 1.6. Assume 0 < α < β and φ0(1) 6= φ0(−1). Let φ ∈ C∞((−1, 1)) ∩
C2([−1, 1]) be the solution of the equation (1.14) with the boundary condition (1.19).
Then φ has the following properties at x = ±1:
(i) If ηǫ

ǫ2 → 0 as ǫ ↓ 0, then limǫ↓0 φ(1) = φ0(1) and limǫ↓0 φ(−1) = φ0(−1) and

lim
ǫ↓0

ǫ2φ′(1) =
(α− β)eφ0(−1)/2

eφ0(1)/2 + eφ0(−1)/2
, lim

ǫ↓0
ǫ2φ′(−1) =

(β − α)eφ0(1)/2

eφ0(1)/2 + eφ0(−1)/2
; (1.32)

(ii) If ηǫ = γǫ2 for some positive constant γ independent of ǫ, then limǫ↓0 φ(1) = φ∗1
and limǫ↓0 φ(−1) = φ∗2 satisfy





φ∗1 + φ∗2 = φ0(1) + φ0(−1) + γ(β − α),

(φ∗1 − φ0(1))eφ∗
1/2 − (φ∗2 − φ0(−1))eφ∗

2/2 = 0,

φ∗1 > φ0(1), φ∗2 > φ0(−1),

(1.33)

and limǫ↓0 ǫ2φ′(1) =
φ0(1)−φ∗

1

γ and limǫ↓0 ǫ2φ′(−1) = −φ0(−1)−φ∗
2

γ ;

(iii) If ηǫ

ǫ2 → ∞ as ǫ ↓ 0, then limǫ↓0(φ(−1) − φ(1)) = 0 and

lim
ǫ↓0

ǫ2φ′(−1) = − lim
ǫ↓0

ǫ2φ′(1) = −α− β

2
. (1.34)

As φ0(1) = φ0(−1), the boundary estimates of φ are given by

Theorem 1.7. (Boundary Estimates) Under the same hypotheses of Theo-
rem 1.5, if φ0(1) = φ0(−1), then

φǫ
1(x) ≤ φ(x) − φ(1) − log

(α− β)2

2ǫ2
≤ φǫ

2(x),

φǫ
1(x) = 2 log

1 − dǫ
1,1e

−
cǫ
1,1
ǫ (1−x)

√
α+ β

(
1 + dǫ

1,2e
−

cǫ
1,1
ǫ (1−x)

) , φǫ
2(x) = 2 log

1 − dǫ
2,1e

−
cǫ
2,2
ǫ (1−x)

1 + dǫ
2,2e

−
cǫ
2,2
ǫ (1−x)

,
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for ǫ > 0 sufficiently small and x ∈ (yǫ, 1), where 0 < yǫ < 1 is a constant sufficiently
close to 1 and cǫi,j’s, d

ǫ
i,j ’s (i, j = 1, 2) are constants satisfying cǫ1,1 →

√
2(α+ β),

cǫ2,2 →
√

3
2 (αβ)1/4, dǫ

1,1, d
ǫ
1,2, and dǫ

2,1 → 1 and dǫ
2,2 → 2 +

√
3 as ǫ ↓ 0.

Similar results also hold for φ0(1) 6= φ0(−1). One may refer to Figure 5.2-5.4 for the
solution profile.

1.2. Organization of the paper. The rest of this paper is organized as fol-
lows: The proof of the electroneutral cases (α = β), Theorem 1.2 and 1.3 are showed
in Section 2. In Section 3, we prove the non-electroneutral cases, Theorem 1.5-1.7.
Theorem 1.4 and 4.2 related to the difference/comparison between the PB n equa-
tion (1.14) and the PB equation (1.26) are given in Section 4. In Section 7, we give
the proof of Theorem 1.1 and demostrate some important facts of the PB n equation
(1.14). In Section 5, the numerical computations to solve the PB n equation (1.14)
and the PB equation (1.15) are performed using convex iteration method based on
finite element discretization [35].

2. Electroneutral cases: Proof of Theorem 1.2 and 1.3.

2.1. Proof of Theorem 1.2. Let ψ(x) = −φ(−x) for x ∈ [−1, 1]. Since α = β
and φ0(1) = −φ0(−1) > 0, it is obvious that ψ is also a solution of the equation (1.14)
with the boundary condition (1.19). Hence by Theorem 1.1, ψ ≡ φ i.e., φ is an odd
function on [−1, 1]. Consequently,

∫ 1

−1

eφ(y)dy =

∫ 1

−1

e−φ(y)dy , φ′′(0) = 0 , φ(0) = 0 . (2.1)

Moreover, (2.1), and α = β may transform (1.14) and (7.3) into

ǫ2φ′′(x)φ(x) =
α

∫ 1

−1 e
φ(y)dy

(
eφ(x) − e−φ(x)

)
φ(x) ≥ 0, ∀x ∈ (−1, 1) , (2.2)

and

ǫ2φ′′(x)φ′(x) ≥ α
∫ 1

−1 e
φ(y)dy

∫ x

0

(
eφ(y) + e−φ(y)

)
(φ′(y))2dy, ∀x ∈ [0, 1] , (2.3)

which imply that φ′′, φ′ and φ do not change sign and share the same sign on [0, 1].
In particular, we have φ(1)φ′(1) ≥ 0. By the boundary condition (1.19) and ηǫ ≥ 0,
we get 0 < φ(1), ηǫφ

′(1) ≤ φ0(1). So φ, φ′ and φ′′ are non-negative on (0, 1] i.e., φ is
convex and monotonically increasing on (0, 1]. On the other hand, since φ is odd on
[−1, 1], then φ is concave and monotonically increasing on [−1, 0). Thus |φ(x)| ≤ φ0(1)
for x ∈ [−1, 1] and (2.2) implies

ǫ2

2
(φ2(x))′′ ≥ ǫ2φ(x)φ′′(x)

=
α

∫ 1

−1 e
φ(y)dy

(
eφ(x) − e−φ(x)

)
φ(x) ≥ α

eφ0(1)
φ2(x), ∀x ∈ (−1, 1).

By the standard comparison theorem, we have

φ2(x) ≤ φ2
0(1)

(
e−

fM
ǫ (1+x) + e−

fM
ǫ (1−x)

)
, ∀x ∈ [−1, 1],

where M̃ =
√

2α
eφ0(1) .

Therefore, we have (1.21) and complete the proof of Theorem 1.2.
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2.2. Proof of Theorem 1.3. In order to prove Theorem 1.3, we need the fol-
lowing lemma:

Lemma 2.1. Assume α = β > 0 and −φ0(−1) = φ0(1) > 0. Let φ ∈ C∞((−1, 1))∩
C2([−1, 1]) satisfy (1.14) and (1.19). Then

∫ 1

−1 e
φ(y)dy =

∫ 1

−1 e
−φ(y)dy → 2 and

Cǫ → −α as ǫ ↓ 0, where Cǫ is defined in (7.1).
Proof. By (1.21) and the dominated convergence theorem, we obtain

lim
ǫ↓0

∫ 1

−1

eφ(y)dy = lim
ǫ↓0

∫ 1

−1

e−φ(y)dy = 2. (2.4)

Now we claim that Cǫ → −α as ǫ ↓ 0. Since α = β and
∫ 1

−1
eφ(y)dy =

∫ 1

−1
e−φ(y)dy,

then (7.1) becomes

ǫ2

2
(φ′(x))2 =

α
∫ 1

−1
eφ(y)dy

(
eφ(x) + e−φ(x)

)
+ Cǫ for |x| < 1 . (2.5)

Setting x = 0 in (2.5) and using the third condition of (2.1), we get

Cǫ =
−2α

∫ 1

−1
eφ(y)dy

+
ǫ2

2
(φ′(0))2 ≥ −2α

∫ 1

−1
eφ(y)dy

. (2.6)

On the other hand, due to the third condition of (2.1) and 0 < φ(1) ≤ φ0(1), there
exists x∗ ∈ (0, 1) such that 0 < φ′(x∗) = φ(1)−φ(0) ≤ φ0(1). Letting x = x∗ in (2.5),
we obtain

Cǫ ≤
ǫ2

2
φ2

0(1) − α
∫ 1

−1 e
φ(y)dy

(
eφ(x∗) + e−φ(x∗)

)
≤ ǫ2

2
φ2

0(1) − 2α
∫ 1

−1 e
φ(y)dy

. (2.7)

By (2.4), we combine (2.6) and (2.7) to get Cǫ → −α as ǫ ↓ 0.
Now we want to give the proof of Theorem 1.3. By (2.5) − (2.7), it is easy to

check that

0 ≤ ǫ2(φ′(x))2 − 2α
∫ 1

−1
eφ(y)dy

(
eφ(x)/2 − e−φ(x)/2

)2

≤ ǫ2φ2
0(1). (2.8)

By Theorem 1.2, φ is positive and monotonically increasing in (0, 1]. Hence

√
2α

∫ 1

−1
eφ(y)dy

(
eφ(x)/2 − e−φ(x)/2

)

(2.9)

≤ ǫφ′(x) ≤
√

2α
∫ 1

−1 e
φ(y)dy

(
eφ(x)/2 − e−φ(x)/2

)
+ ǫφ0(1), for x ∈ (0, 1] .

Setting x = 1 in (2.9) and using the boundary condition (1.19), we get

√
2α

∫ 1

−1
eφ(y)dy

(eφ(1)/2 − e−φ(1)/2) ≤ ǫ

ηǫ
(φ0(1) − φ(1))

(2.10)

= ǫφ′(1) ≤
√

2α
∫ 1

−1 e
φ(y)dy

(
eφ(1)/2 − e−φ(1)/2

)
+ ǫφ0(1).
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Now we deal with (2.10) in following three cases:
Case (i): ǫ

ηǫ
→ 0 as ǫ ↓ 0.

We remark that 0 < φ(1) ≤ φ0(1). Then (2.10) gives

√
2α

∫ 1

−1 e
φ(y)dy

(
eφ(1)/2 − 1

)
≤
√

2α
∫ 1

−1 e
φ(y)dy

(
eφ(1)/2 − e−φ(1)/2

)

≤ ǫ

ηǫ
(φ0(1) − φ(1)) ≤ ǫ

ηǫ
φ0(1),

i.e.,

0 < φ(1) ≤ 2 log


1 +

ǫ

ηǫ
φ0(1)

√∫ 1

−1
eφ(y)dy

2α


 . (2.11)

Since φ is a monotone increasing and odd function on [−1, 1], we have

|φ(x)| ≤ 2 log


1 +

ǫ

ηǫ
φ0(1)

√∫ 1

−1 e
φ(y)dy

2α


 , ∀x ∈ [−1, 1]. (2.12)

Hence (2.4) and (2.12) imply limǫ↓0 |φ(x)| = 0, uniformly, in [−1, 1]. Then the bound-
ary condition (1.19) gives limǫ↓0 ηǫφ

′(1) = φ0(1).
Therefore, we complete the proof of Theorem 1.3 (i).

Case (ii): ηǫ = γǫ for some positive constant γ independent of ǫ.

Due to |φ(1)| ≤ φ0(1), we assume lim supǫ↓0 φ(1) = φ∗s and lim infǫ↓0 φ(1) = φ∗i .
Then (2.10) implies φ∗s and φ∗i are the roots of (1.23) with 0 < φ∗i ≤ φ∗s < φ0(1).
It is obvious that the equation (1.23) has only one root in the interval (0, φ0(1)).
Consequently, φ∗s = φ∗i ≡ φ∗ is the unique root of (1.23) in the interval (0, φ0(1)).

Therefore, we have limǫ↓0 φ(1) = φ∗ ∈ (0, φ0(1)) which can be combined with
(2.10) to get (1.22) and complete the proof of Theorem 1.3 (ii).
Case (iii): ǫ

ηǫ
→ ∞ as ǫ ↓ 0

For this case, we need the following claim:
Claim 1. There exists C > 0 independent of ǫ such that φ(1) ≥ C for all ǫ > 0.
Proof. We shall prove the claim by contradiction. Suppose Claim 1 is false. Then

there exists a sequence {ǫj}j∈N such that limj→∞ ǫj = 0 and limj→∞ φǫj (1) = 0.
Putting ǫ = ǫj in (2.10) and taking j → ∞, we may obtain limj→∞

ǫj

ηǫj
= 0 which

contradicts with the assumption ǫ
ηǫ

→ ∞ as ǫ ↓ 0. Here we have used Lemma 2.1 and

the fact that φ0(1) > 0. Therefore, we may complete the proof of Cliam 1.

Claim 1 and Lemma 2.1 imply

0 < C1 ≤ C(ǫ, α, φ0(1)) =

√
2α

∫ 1

−1
eφ(y)dy

(
eφ(1)/2 − e−φ(1)/2

)
≤ C2 , (2.13)

for 0 < ǫ < 1, where C1, C2 are positive constants independent of ǫ. Thus by (2.10),
we have

C(ǫ, α, φ0(1)) ≤ ǫ

ηǫ
(φ0(1) − φ(1)) = ǫφ′(1) ≤ C(ǫ, α, φ0(1)) + ǫφ0(1), (2.14)
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∀ ǫ ∈ (0, 1) and then

(1 − ηǫ)φ0(1) − ηǫ

ǫ
C(ǫ, α, φ0(1)) ≤φ(1) ≤ φ0(1) − ηǫ

ǫ
C(ǫ, α, φ0(1)). (2.15)

Note that ηǫ → 0 as ǫ → 0 and φ0(1) is independent of ǫ. Hence (2.13) and (2.15)
imply limǫ↓0 φ(1) = φ0(1), and

lim
ǫ↓0

C(ǫ, α, φ0(1)) =
√
α
(
eφ0(1)/2 − e−φ0(1)/2

)
. (2.16)

Here we have used the assumption ηǫ

ǫ → 0 i.e., ǫ
ηǫ

→ ∞ as ǫ→ 0. As a consequence,

by (2.14) and (2.16), we obtain limǫ↓0 ǫφ′(1) =
√
α
(
eφ0(1)/2 − e−φ0(1)/2

)
and complete

the proof of Theorem 1.3 (iii).

Now we want to prove (1.25). Let δǫ(α) =
√

2αR
1
−1

eφ(y)dy
. Then Lemma 2.1 gives

lim
ǫ→0

δǫ(α) =
√
α . (2.17)

Using (2.9), and the fact that φ > 0 in (0, 1] we have

φ′(z)

eφ(z)/2 − e−φ(z)/2 + εφ0(1)
δǫ(α)

≤ δǫ(α)

ǫ
≤ φ′(z)

eφ(z)/2 − e−φ(z)/2
, ∀ z ∈ (0, 1]. (2.18)

For x ∈ (0, 1), integrating (2.18) over (x, 1), one can derive that

∫ 1

x

φ′(z)dz

eφ(z)/2 − e−φ(z)/2 + εφ0(1)
δǫ(α)

=

∫ eφ(1)/2

eφ(x)/2

2dt

t2 + εφ0(1)
δǫ(α) t− 1

=

∫ eφ(1)/2

eφ(x)/2

2dt

(t− t+)(t− t−)
=

2

t+ − t−
log

(eφ(1)/2 − t+)(eφ(x)/2 − t−)

(eφ(1)/2 − t−)(eφ(x)/2 − t+)
, (2.19)

where t± = 1
2

(
− εφ0(1)

δǫ(α) ±
√(

εφ0(1)
δǫ(α)

)2

+ 4

)
.

Similarly, we also have that

∫ 1

x

φ′(z)dz

eφ(z)/2 − e−φ(z)/2
= log

(eφ(1)/2 − 1)(eφ(x)/2 + 1)

(eφ(1)/2 + 1)(eφ(x)/2 − 1)
, (2.20)

Hence (2.18)-(2.20) imply

2 log
t+(etǫ/2 − t−) − t−(etǫ/2 − t+)e−(t+−t−)δǫ(α)(1−x)/2ǫ

(etǫ/2 − t−) − (etǫ/2 − t+)e−(t+−t−)δǫ(α)(1−x)/2ǫ

≤φ(x) ≤ 2 log
(etǫ/2 + 1) + (etǫ/2 − 1)e−δǫ(α)·(1−x)/ǫ

(etǫ/2 + 1) − (etǫ/2 − 1)e−δǫ(α)(1−x)/ǫ
, ∀x ∈ (0, 1), (2.21)

where tǫ = φ(1). Note that (2.17) shows t± → ±1 and δǫ(α) → √
α as ǫ ↓ 0. Thus

(1.22), (1.24) and (2.21) give (1.25) provided ηǫ = γǫ or ǫ
ηǫ

→ ∞ as ǫ ↓ 0.

Therefore, this complete the proof of Theorem 1.3.
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3. Non-electroneutral cases: Proof of Theorem 1.5 – 1.7. In this section,
we assume that 0 < α < β in the whole section. To prove Theorem 1.5 – 1.7, we need
the following lemma:

Lemma 3.1. Let B(φ)(x) = αR
1
−1

eφ(y)dy
eφ(x) − βR

1
−1

e−φ(y)dy
e−φ(x) for x ∈ [−1, 1],

where φ is the solution of (1.14) and (1.19). Then

(i)
∫ 1

−1
B(φ)(x)dx = α− β < 0;

(ii) B(φ)(x) is monotonically increasing to φ(x) in the sense that if φ(x) < φ(z),
then B(φ)(x) < B(φ)(z);

(iii) B(φ)(x) has no negative interior minima and positive interior maxima.
(iv) Assume that

sup
ǫ>0

∫ 1

−1

eφ(y)dy

∫ 1

−1

e−φ(y)dy <∞ . (3.1)

Then there exists C5 > 0 independent of ǫ such that ∀x ∈ [−1, 1]

B(φ)(x) ≥ min{B(φ)(1), B(φ)(−1)}
(
e−

C5(1+x)
ǫ + e−

C5(1−x)
ǫ

)
. (3.2)

Proof. It is easy to get (i) and (ii) immediately from the definition of B(φ)(x).
Since φ solves (1.14), then B(φ)(x) satisfies

ǫ2B(φ)′′(x) =

(
α

∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x) + ǫ2φ′2(x)

)
B(φ)(x) , (3.3)

for x ∈ (−1, 1). Thus (iii) is obtained by (3.3) and the standard maximum principle.
Now we want to prove (iv). Note that (i), (ii) and (iii) give

min{B(φ)(1), B(φ)(−1)} < 0 .

On the other hand, by (3.1), there exists C5 > 0 independent of ǫ such that

α
∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x) + ǫ2φ′2(x)

(3.4)

≥ 2
√
αβ√∫ 1

−1
eφ(y)dy

∫ 1

−1
e−φ(y)dy

≥ C2
5 .

Next we define the auxiliary function, v(x),

v(x) = min{B(φ)(1), B(φ)(−1)}
(
e−

C5(1+x)

ǫ + e−
C5(1−x)

ǫ

)
, ∀ x ∈ [−1, 1] .

Then v(x) < 0 for x ∈ [−1, 1], v(±1) ≤ min{B(φ)(1), B(φ)(−1)} ≤ B(φ)(±1) and

ǫ2v′′(x) −
(

α
∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x) + ǫ2φ′2(x)

)
v(x)

=

(
C2

5 − α
∫ 1

−1
eφ(y)dy

eφ(x) − β
∫ 1

−1
e−φ(y)dy

e−φ(x) − ǫ2φ′2(x)

)
v(x) ≥ 0 , ∀x ∈ (−1, 1) .
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By the standard comparison theorem, v(x) ≤ B(φ)(x) for all x ∈ (−1, 1).

Therefore, we obtain (3.2) and complete the proof of Lemma 3.1.

The interior gradient estimate of φ is crucial for the proof of Theorem 1.5 and
1.7. We state the result as follows:

Theorem 3.2. Assume 0 < α < β. Let φ ∈ C∞((−1, 1)) ∩ C2([−1, 1]) be the
solution of (1.14) and (1.19). Then
(i) if φ0(−1) = φ0(1), then φ is even, concave on (−1, 1), increasing on (−1, 0), and
decreasing on (0, 1) ,
(ii) if φ0(−1) 6= φ0(1), then φ is concave on (−1, 1) and there exists xǫ ∈ (−1, 1) such
that φ is increasing on (−1, xǫ) and decreasing on (xǫ, 1).
(iii)

|φ′(x)| ≤ max{|φ′(−1)|, |φ′(1)|}
(
e−

√
2α
2ǫ (1+x) + e−

√
2α
2ǫ (1−x)

)
, ∀x ∈ (−1, 1) . (3.5)

Proof. Firstly, we prove (i). Suppose φ0(−1) = φ0(1). Let ψ(x) = φ(−x) for
x ∈ [−1, 1]. Then it is obvious that ψ also satisfies (1.14) and (1.19). By Theorem 1.1,
φ ≡ ψ i.e., φ is an even function on [−1, 1]. Hence φ′(0) = 0, along with (7.3), we
have

φ′′(x)φ′(x) ≥ 0 , ∀ x ∈ (0, 1) . (3.6)

By (3.6), it is easy to check that both φ′′ and φ′ never change sign on (0, 1). On the
other hand, since φ is even on [−1, 1] i.e., φ(x) = φ(−x) for x ∈ [−1, 1], then

φ′(x) = −φ′(−x) , φ′′(x) = φ′′(−x) , ∀ x ∈ (0, 1) . (3.7)

Thus by the second condition of (3.7), the sign of φ′′ on (−1, 0) is exactly same as
the sign of φ′′ on (0, 1). This implies that φ′′ never changes sign on (−1, 1). By
Lemma 3.1(i) and (1.14), we have that φ′′(x0) < 0 for some x0 ∈ (−1, 1). Conse-
quently, φ′′ ≤ 0 on (−1, 1) and φ is concave on (−1, 1). Then by (3.6) and the first
condition of (3.7), we have that φ′(x) ≤ 0 for x ∈ (0, 1) and φ′(x) ≥ 0 for x ∈ (−1, 0)
i.e., φ is increasing on (−1, 0) and decreasing on (0, 1). Therefore, we complete the
proof of Theorem 3.2 (i).

For the case of φ0(−1) 6= φ0(1), without loss of generality, we assume that

φ0(−1) < φ0(1) . (3.8)

Claim 2. There exists xǫ ∈ (−1, 1) such that φ′(xǫ) = 0.

Proof. We may prove by contradiction. Suppose φ′(x) < 0 for x ∈ (−1, 1). Then
by (1.19) and (3.8), we have

φ(−1) ≥ φ(1) = φ0(1) − ηǫφ
′(1) ≥ φ0(1) > φ0(−1) ≥ φ0(−1) + ηǫφ

′(−1) = φ(−1),

which gives a contradiction. On the other hand, suppose φ′(x) > 0 for x ∈ (−1, 1).
Then by (1.19), we have

φ0(−1) ≤ φ(−1) ≤ φ(x) ≤ φ(1) ≤ φ0(1), ∀x ∈ [−1, 1]. (3.9)
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Hence φ satisfies the condition (3.1). Since φ(−1) ≤ φ(1), then Lemma 3.1(ii) implies
B(φ)(−1) ≤ B(φ)(1). Furthermore, Lemma 3.1(i) and (3.2) give

2ǫ

C5
(B(φ)(−1))

(
1 − e−2C5/ǫ

)
= (B(φ)(−1))

∫ 1

−1

(
e−

C5(1+x)
ǫ + e−

C5(1−x)
ǫ

)
dx

(3.10)
≤ α− β.

Note that (3.9) provides |B(φ)(−1)| = O(1). Letting ǫ ↓ 0 on (3.10), we get α ≥ β
which contradicts with the hypothesis α < β.

Therefore, we complete the proof of Claim 2.

As for (7.3), we integrate (7.2) over (xǫ, x) so we have φ′′(x)φ′(x) > 0 for x ∈
(xǫ, 1). Similarly, we obtain φ′′(x)φ′(x) < 0 for x ∈ (−1, xǫ). Here we have used the
fact that the solution φ is nontrivial due to the boundary condition (1.19) and the
assumption (3.8). Moreover, the proof of Claim 2 also give that φ′(x1)φ

′(x2) < 0 for
any x1 ∈ (xǫ, 1) and x2 ∈ (−1, xǫ). Consequently, φ′′ never changes sign on (−1, 1).
Then by Lemma 3.1(i), we obtain φ′′(x) ≤ 0 for x ∈ (−1, 1), φ′(x) < 0 for x ∈ (xǫ, 1)
and φ′(x) > 0 for x ∈ (−1, xǫ).

Therefore, we complete the proof of Theorem 3.2 (ii).
Now we want to prove (3.5). Firstly, we state a crucial estimate as follows:
Claim 3.

4 ≤
∫ 1

−1

eφ(y)dy

∫ 1

−1

e−φ(y)dy ≤ 4β

α
. (3.11)

Proof. The left side of the inequality (3.11) is trivial due to the application of
Hölder’s inequality. From the proof of Theorem 3.2 (i) and (ii), we have φ′′(x) ≤ 0

for x ∈ (−1, 1). Hence by (1.14), we obtain αeφ(x)R 1
−1

eφ(y)dy
− βe−φ(x)R 1

−1
e−φ(y)dy

= ǫ2φ′′(x) ≤ 0

for x ∈ (−1, 1) which implies e2φ(x) ≤ β
R

1
−1

eφ(y)dy

α
R 1
−1

e−φ(y)dy
for x ∈ (−1, 1). Integrating this

inequality over (−1, 1) and using Hölder’s inequality, we get

1

2

(∫ 1

−1

eφ(x)dx

)2

≤
∫ 1

−1

e2φ(x)dx ≤
2β
∫ 1

−1
eφ(y)dy

α
∫ 1

−1 e
−φ(y)dy

,

which implies the right side of the inequality (3.11) and complete the proof of Claim 3.

By (1.14) and (7.1), it is easy to calculate that

ǫ2

2
(φ′2)′′ = ǫ2(φ′′)2 +

(
α

∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x)

)
φ′2 (3.12)

in (−1, 1). Hence by (3.11) and (3.12), we obtain

ǫ2

2
(φ′2)′′ ≥ 2

(
αβ

∫ 1

−1 e
φ(y)dy

∫ 1

−1 e
−φ(y)dy

)1/2

φ′2 ≥ αφ′2 in (−1, 1) . (3.13)

Let v(x) = max{(φ′(−1))2, (φ′(1))2}
(
e−

√
2α
ǫ (1+x) + e−

√
2α
ǫ (1−x)

)
for x ∈ [−1, 1]. Then

v(±1) ≥ (φ′(±1))2 and ǫ2

2 v
′′(x) = α v(x).
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Therefore, by (3.13) and the standard comparison theorem, (φ′(x))2 ≤ v(x) for
x ∈ (−1, 1) which implies (3.5) and complete the proof of Theorem 3.2.

Remark 3.1. (i) By (1.19) and Theorem 3.2, φ(1) ≥ φ0(1) and φ(−1) ≥ φ0(−1).
(ii) By (1.14) and Lemma 3.1 (i), we have

ǫ2
∫ 1

−1

φ′′(x)dx =

∫ 1

−1

B(φ)(x)dx = α− β,

i.e.,

φ′(1) − φ′(−1) =
α− β

ǫ2
. (3.14)

Suppose that φ0(1) = φ0(−1). Then φ is even i.e., φ(x) = φ(−x) for x ∈ [−1, 1] which
implies φ′(1) = −φ′(−1). Hence by (3.14), φ′(1) = −φ′(−1) = α−β

2ǫ2 . Furthermore, by
(1.19), we obtain (1.29)-(1.31). However, as φ0(1) 6= φ0(−1), the asymptotic behavior
of φ(1) is not obvious. Now we state results of this case as follows:

Lemma 3.3. Assume that 0 < α < β and φ0(1) 6= φ0(−1). Let φ ∈ C∞((−1, 1))∩
C2([−1, 1]) be the solution of (1.14) and (1.19). Then there exist 0 < C6 ≤ C7 ≤ β−α
independent of ǫ such that C6

ǫ2 ≤ φ′(−1),−φ′(1) ≤ C7

ǫ2 as 0 < ǫ << 1.
Proof. From Theorem 3.2 (ii), we have φ′(−1), −φ′(1) ≥ 0. Without loss of

generality, we assume that 0 ≤ −φ′(1) ≤ φ′(−1). Then by (3.14), we obtain

β − α

2ǫ2
≤ φ′(−1) ≤ β − α

ǫ2
. (3.15)

Setting x = 1,−1, xǫ in (7.1) and using φ′(xǫ) = 0 (see Claim 2), one can easily derive
that

ǫ2

2
(φ′(1))2 =

α
(
eφ(1) − eφ(xǫ)

)
∫ 1

−1
eφ(y)dy

+
β
(
e−φ(1) − e−φ(xǫ)

)
∫ 1

−1
e−φ(y)dy

, (3.16)

ǫ2

2
(φ′(−1))2 =

α
(
eφ(−1) − eφ(xǫ)

)
∫ 1

−1 e
φ(y)dy

+
β
(
e−φ(−1) − e−φ(xǫ)

)
∫ 1

−1 e
−φ(y)dy

. (3.17)

By (7.4), (3.16) and (3.17), we have

α
∫ 1

−1 e
φ(y)dy

eφ(xǫ) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(xǫ) +
ǫ2

4

∫ 1

−1

(φ′(x))2dx =
α+ β

2
. (3.18)

Note that by Theorem 3.2 (ii),

φ(±1) ≤ φ(xǫ) . (3.19)

Thus (3.16)-(3.19) give

−α+ β

2
+

β
∫ 1

−1
e−φ(y)dy

e−φ(1) ≤ ǫ2

2
(φ′(1))2 ≤ β

∫ 1

−1
e−φ(y)dy

e−φ(1), (3.20)

−α+ β

2
+

β
∫ 1

−1
e−φ(y)dy

e−φ(−1) ≤ ǫ2

2
(φ′(−1))2 ≤ β

∫ 1

−1
e−φ(y)dy

e−φ(−1) . (3.21)
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Moreover, (3.15) and (3.21) imply

(β − α)2

8ǫ2
eφ(−1) ≤ β

∫ 1

−1
e−φ(y)dy

≤
[
(β − α)2

2ǫ2
+
α+ β

2

]
eφ(−1). (3.22)

Combining (3.20) and (3.22), we obtain

ǫ2

2
(φ′(1))2 ≥ −α+ β

2
+

(β − α)2

8ǫ2
eφ(−1)−φ(1) . (3.23)

By (1.19) and the assumption 0 ≤ −φ′(1) ≤ φ′(−1), it is trivial that φ(−1) − φ(1) =
φ0(−1) − φ0(1) + ηǫ(φ

′(−1) + φ′(1)) ≥ φ0(−1) − φ0(1). Hence by (3.23), there exists
ǫ∗ > 0 such that

ǫ2

2
(φ′(1))2 ≥ (β − α)2

Kǫ2
for 0 < ǫ < ǫ∗ (3.24)

where K ≥ 8 is a constant independent of ǫ.
Therefore, by (3.15) and (3.24), we complete the proof of Lemma 3.3.

3.1. Proof of Theorem 1.6. To prove Theorem 1.6, we need
Claim 4. Assume that there exists M > 0 independent of ǫ such that ηǫ

ǫ2 ≤ M
as 0 < ǫ << 1. Then

lim
ǫ↓0

ǫ2
(
φ′(1)eφ(1)/2 + φ′(−1)eφ(−1)/2

)
= 0. (3.25)

Proof. By (3.16) and (3.17) we have

ǫ2

2

[
(φ′(1))2eφ(1) − (φ′(−1))2eφ(−1)

]
= I1 − I2, (3.26)

where

I1 =

[
α

∫ 1

−1 e
φ(y)dy

(
eφ(1) − eφ(xǫ)

)
− β
∫ 1

−1 e
−φ(y)dy

e−φ(xǫ)

]
eφ(1) ,

I2 =

[
α

∫ 1

−1
eφ(y)dy

(
eφ(−1) − eφ(xǫ)

)
− β
∫ 1

−1
e−φ(y)dy

e−φ(xǫ)

]
eφ(−1).

By (1.19), (3.18), (3.19), Lemma 3.3 and Remark 3.1 (i), we have

|I1|, |I2| ≤
α+ β

2
emax{|φ0(1)|,|φ0(−1)|}+ ηǫ

ǫ2
C7 , (3.27)

and

ǫ2(−φ′(1)eφ(1)/2 + φ′(−1)eφ(−1)/2) ≥ C6

(
eφ(1)/2 + eφ(−1)/2

)

(3.28)
≥ C6

(
eφ0(1)/2 + eφ0(−1)/2

)
.

Then we use (3.26) and (3.28) to get

ǫ2
∣∣∣φ′(1)eφ(1)/2 + φ′(−1)eφ(−1)/2

∣∣∣ ≤ |I1| + |I2|∣∣φ′(1)eφ(1)/2 − φ′(−1)eφ(−1)/2
∣∣
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(3.29)

≤ ǫ2(|I1| + |I2|)
C6

(
eφ(1)/2 + eφ(−1)/2

) .

Therefore, by (3.27) and (3.29), we complete the proof of Claim 4.

Suppose ηǫ

ǫ2 → 0 as ǫ ↓ 0. Then Lemma 3.3 and the boundary condition (1.19) im-
ply limǫ↓0 φ(1) = φ0(1) and limǫ↓0 φ(−1) = φ0(−1). Hence by (3.25) and Remark 3.1
(ii) we obtain (1.32) and complete the proof of Theorem 1.6 (i).

Suppose ηǫ = γǫ2, where γ > 0 is a constant independent of ǫ. By Lemma 3.3 and
the boundary condition (1.19), |φ(±1)| has an upper bound independent of ǫ. Thus
we can assume that lim supǫ↓0 φ(1) = φ∗1,s, lim infǫ↓0 φ(1) = φ∗1,i , lim supǫ↓0 φ(−1) =
φ∗2,s, and lim infǫ↓0 φ(−1) = φ∗2,i. By (3.25) and the boundary condition (1.19) with

ηǫ = γǫ2, we have

lim
ǫ↓0

[
(φ(1) − φ0(1))eφ(1)/2 − (φ(−1) − φ0(−1))eφ(−1)/2

]
= 0. (3.30)

On the other hand, (3.14) and the boundary condition (1.19) give

φ(1) + φ(−1) = φ0(1) + φ0(−1) + γ(β − α). (3.31)

By Remark 3.1 (i), (3.30) and (3.31), (φ∗1,s, φ
∗
2,s) and (φ∗1,i, φ

∗
2,i) solve the system (1.33).

Claim 5. System (1.33) has a unique solution (φ∗1, φ
∗
2).

Proof. Given (φ∗1, φ
∗
2) a solution of system (1.33). Then by (3.30) and (3.31),

φ∗j , j = 1, 2 satisfy φ∗1 = φ0(1)+s∗, φ∗2 = φ0(−1)+γ(β−α)−s∗ and s∗ ∈ (0, γ(β−α))
is a root of the equation f(s) = 0, where

f(s) = se
φ0(1)+s

2 − (γ(β − α) − s) e
φ0(−1)+γ(β−α)−s

2 .

It is easy to check that f ′(s) > 0 on (0, γ(β−α)) and f(0) < 0 < f(γ(β−α)). Hence
f(s) = 0 has a unique solution in the interval (0, γ(β − α)).

Therefore, we complete the proof of Claim 5.
By Claim 5, (φ∗1,s, φ

∗
2,s) = (φ∗1,i, φ

∗
2,i), and then limǫ↓0 φ(1) = φ∗1, limǫ↓0 φ(−1) =

φ∗2, together with the boundary condition (1.19), we have limǫ↓0 ǫ2φ′(1) =
φ0(1)−φ∗

1

γ

and limǫ↓0 ǫ2φ′(−1) = −φ0(−1)−φ∗
2

γ .

Therefore, we complete the proof of Theorem 1.6 (ii).
Suppose ηǫ

ǫ2 → ∞ as ǫ ↓ 0. Subtracting (3.17) from (3.16) and using (3.14)
and (1.19), we obtain

α− β

2ηǫ
(φ(−1) − φ(1) − φ0(−1) + φ0(1))

(3.32)

=
α

∫ 1

−1 e
φ(y)dy

(
eφ(1) − eφ(−1)

)
+

β
∫ 1

−1 e
−φ(y)dy

e−φ(−1)
(
eφ(−1)−φ(1) − 1

)
.

By (3.18) and (3.19), we have

∣∣∣∣∣
α

∫ 1

−1 e
φ(y)dy

(
eφ(1) − eφ(−1)

)∣∣∣∣∣ ≤
2α

∫ 1

−1 e
φ(y)dy

eφ(xǫ) ≤ α+ β . (3.33)
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As for the proof of Lemma 3.3, we assume φ′(−1) + φ′(1) ≥ 0. Then the boundary
condition (1.19) gives φ(−1) − φ(1) ≥ φ0(−1) − φ0(1). Hence by (3.8), we have

∣∣∣eφ(−1)−φ(1) − 1
∣∣∣ ≥ eφ0(−1)−φ0(1) |φ(−1) − φ(1)|. (3.34)

By (3.8), (3.22), (3.32) and (3.33), we find the following inequality:

(β − α)2

8ǫ2

∣∣∣eφ(−1)−φ(1) − 1
∣∣∣ ≤ (α+ β) +

β − α

2ηǫ
(φ0(1) − φ0(−1))

(3.35)

+
β − α

2ηǫ
|φ(−1) − φ(1)| .

Hence (3.34) and (3.35) imply

[
eφ0(−1)−φ0(1) − 4ǫ2

(β − α)ηǫ

]
|φ(−1) − φ(1)|

(3.36)

≤ 8ǫ2

(β − α)2

[
(α+ β) +

β − α

2ηǫ
(φ0(1) − φ0(−1))

]
.

Since ǫ2

ηǫ
→ 0 as ǫ ↓ 0, then (3.36) gives limǫ↓0(φ(−1) − φ(1)) = 0. By the boundary

condition (1.19), we have ǫ2(φ′(1)+φ′(−1)) = ǫ2

ηǫ
[(φ0(1)−φ0(−1)−(φ(1)−φ(−1)]) → 0

as ǫ ↓ 0.
Therefore, by (3.14), we get (1.34) and complete the proof of Theorem 1.6.

3.2. Proof of Theorem 1.5. By (3.5) and Lemma 3.3, we have

|φ′(x)| ≤
(
β − α

ǫ2

)(
e−

√
2α
2ǫ (1+x) + e−

√
2α
2ǫ (1−x)

)
, ∀x ∈ (−1, 1) .

Consequently,

|φ(x) − φ(0)|≤
∫ x

0

|φ′(s)| ds≤ β − α

ǫ

√
2

α

∣∣∣e−
√

2α(1+x)/(2ǫ) − e−
√

2α(1−x)/(2ǫ)
∣∣∣ , (3.37)

for x ∈ (−1, 1). By (3.37) and supx,y∈K |φ(x) − φ(y)| ≤ 2 supx∈K |φ(x) − φ(0)| for
K ⊂ (−1, 1), we complete the proof of Theorem 1.5(i).

Now we prove Theorem 1.5(ii). Assume that φ0(1) = φ0(−1). Then φ is even
and φ(1) = φ(−1). By Remark 3.1 (ii) and Lemma 7.1, we have

αeφ(1)

∫ 1

−1
eφ(y)dy

+
βe−φ(1)

∫ 1

−1
e−φ(y)dy

+
ǫ2

4

∫ 1

−1

(φ′(x))2dx =
(α− β)2

8ǫ2
+
α+ β

2
. (3.38)

Setting x = 0 in (7.1) and integrating (7.1) from −1 to 1, we get

αeφ(0)

∫ 1

−1
eφ(y)dy

+
βe−φ(0)

∫ 1

−1
e−φ(y)dy

+
ǫ2

4

∫ 1

−1

(φ′(x))2dx =
α+ β

2
. (3.39)

Here we have used the fact that φ′(0) = 0. By Theorem 3.2 (i), φ(1) ≤ φ(0), and then
(3.39) gives

αeφ(1)

∫ 1

−1
eφ(y)dy

+
ǫ2

4

∫ 1

−1

(φ′(x))2dx ≤ αeφ(0)

∫ 1

−1
eφ(y)dy

+
ǫ2

4

∫ 1

−1

(φ′(x))2dx ≤ α+ β

2
. (3.40)
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Hence (3.38) and (3.40) imply

(α− β)2

8ǫ2
≤ βe−φ(1)

∫ 1

−1 e
−φ(y)dy

≤ (α− β)2

8ǫ2
+
α+ β

2
. (3.41)

By (3.39), (3.41) and (3.11), we have

eφ(0) ≤ α+ β

2α

∫ 1

−1

eφ(y)dy , e−φ(1)

∫ 1

−1

eφ(y)dy ≤ 4

α

[
(α − β)2

8ǫ2
+
α+ β

2

]
,

e−φ(0) ≤ α+ β

2β

∫ 1

−1

e−φ(y)dy , eφ(1)

∫ 1

−1

e−φ(y)dy ≤ 8βǫ2

(α− β)2
.

Consequently,

log
(α− β)2

4ǫ2(α+ β)
≤ φ(0) − φ(1) ≤ log

{
2(α+ β)

α2

[
(α− β)2

8ǫ2
+
α+ β

2

]}
. (3.42)

Therefore, by (3.37) and (3.42), we obtain (1.28).

Now we assume φ0(1) 6= φ(−1). By Lemma 3.3, (3.20) and (3.21), we have

C2
6

2ǫ2
≤ β e−φ(1)

∫ 1

−1
e−φ(y)dy

,
β e−φ(−1)

∫ 1

−1
e−φ(y)dy

≤ C2
7

2ǫ2
+
α+ β

2
. (3.43)

As for the proof of Theorem 1.5 (ii) for the case of φ0(1) = φ0(−1), we use (3.11),
(3.18) and (3.43) to derive

C8 ≤ φ(xǫ) − φ(±1) − log
1

ǫ2
≤ C9 for 0 < ǫ < 1 , (3.44)

where C8, C9 are positive constants independent of ǫ. To complete the proof of The-
orem 1.5 (ii), we need the following claim:

Claim 6. There exists C10 > 0 independent of ǫ, such that 0 ≤ φ(xǫ)−φ(0) ≤ C10

as 0 < ǫ << 1.

Proof. Setting x = 0 and x = xǫ in (7.1), one can check that

β e−φ(xǫ)

∫ 1

−1 e
−φ(y)dy

(
eφ(xǫ)−φ(0) − 1

)
=
ǫ2

2
(φ′(0))2+

α eφ(xǫ)

∫ 1

−1 e
φ(y)dy

(
1 − eφ(0)−φ(xǫ)

)
. (3.45)

By (3.5), (3.11), (3.18) and (3.45), we obtain

α2

4

(
eφ(xǫ)−φ(0) − 1

)
≤ α eφ(xǫ)

∫ 1

−1 e
φ(y)dy

β e−φ(xǫ)

∫ 1

−1 e
−φ(y)dy

(
eφ(xǫ)−φ(0) − 1

)

≤ α eφ(xǫ)

∫ 1

−1 e
φ(y)dy

[
ǫ2

2
(φ′(0))2 +

α eφ(xǫ)

∫ 1

−1 e
φ(y)dy

]
≤ 3(α+ β)2

4

as 0 < ǫ << 1. This complete the proof of Claim 6.

Therefore, by Claim 6, (3.5) and (3.44), we get (1.28) and complete the proof of
Theorem 1.5.
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3.3. Proof of Theorem 1.7. By (3.11) and (3.41), we have

(α− β)2

8ǫ2
e−φ(x)+φ(1) ≤ βe−φ(x)

∫ 1

−1
e−φ(y)dy

≤
[
(α − β)2

8ǫ2
+
α+ β

2

]
e−φ(x)+φ(1), (3.46)

2α2ǫ2

(α− β)2 + 4ǫ2(α+ β)
eφ(x)−φ(1) ≤ αeφ(x)

∫ 1

−1 e
φ(y)dy

≤ 2αβǫ2

(α− β)2
eφ(x)−φ(1). (3.47)

Let u(x) = φ(x) − φ(1) for x ∈ [−1, 1]. Then (1.14), (3.46) and (3.47) give

α2Aeu(x) − 1

4A
e−u(x) ≤ ǫ2u′′(x) ≤ αβBeu(x) − 1

4B
e−u(x), (3.48)

for x ∈ (−1, 1), where A = 2ǫ2

(α−β)2+4ǫ2(α+β) and B = 2ǫ2

(α−β)2 . Since φ0(1) = φ0(−1),

then by Theorem 3.2 (i), u′ ≤ 0 in (0, 1). Multiplying (3.48) by u′(x), we find that
for x ∈ (0, 1),

(
αβBeu(x) +

1

4B
e−u(x)

)′
≤ ǫ2u′′(x)u′(x) ≤

(
α2Aeu(x) +

1

4A
e−u(x)

)′
. (3.49)

Integrating (3.49) over (y, 1) for y ∈ (0, 1), we obtain

ǫ2

2
u′2(y) ≤

(√
αβe

u(y)+log B
2 − 1

2
e−

u(y)+log B
2

)2

+
√
αβ (3.50)

and

ǫ2

2
u′2(y) ≥ α2eu(y)+log A +

1

4
e−(u(y)+log A) − α+ β

2
− 2α2ǫ2

(α− β)2
. (3.51)

Here we have used the fact that u(1) = 0 and u′(1) = α−β
2ǫ2 . Note that

√
αβe

u(1)+log B
2 −

1
2e

−u(1)+log B
2 = 1√

B

(
2
√

αβǫ2

(α−β)2 − 1
2

)
is negative for 0 < ǫ < β−α

2(αβ)1/4 . Hence by the

continuity, there exists y1,ǫ ∈ (0, 1) sufficiently close to 1 such that

√
αβe

u(y)+log B
2 − 1

2
e−

u(y)+log B
2 < 0 for y ∈ (y1,ǫ, 1). (3.52)

Consequently, by (3.50), (3.52) and Theorem 3.2(i), we have

0 ≤ − ǫ√
2
u′(y) ≤ −

(√
αβe

u(y)+log B
2 − 1

2
e−

u(y)+log B
2

)
+ (αβ)1/4, (3.53)

∀ y ∈ (y1,ǫ, 1). On the other hand, for 0 < ǫ < β−α
4
√

α+β
, one can check that

α2eu(1)+log A +
1

4
e−(u(1)+log A) − α+ β

2
− 2α2ǫ2

(α − β)2

−
(
α+ β

2
e

u(1)+log A
2 − 1

2
e−

u(1)+log A
2

)2

=
(3α+ β)(α − β)

2[(α− β)2 + 4(α+ β)ǫ2]
ǫ2 − 2α2ǫ2

(α − β)2
≥ −1

2

(
α+ β

α− β

)2

ǫ2

22



and

α+ β

2
e

u(1)+log A
2 − 1

2
e−

u(1)+log A
2 +

α+ β

β − α
ǫ < −β − α

16ǫ
+
α+ β

β − α
ǫ < 0.

Hence there exists y2,ǫ ∈ (0, 1) depends on ǫ such that

α2eu(y)+log A +
1

4
e−(u(y)+log A) − α+ β

2
− 2α2ǫ2

(α− β)2

−
(
α+ β

2
e

u(y)+log A
2 − 1

2
e−

u(y)+log A
2

)2

≥ −
(
α+ β

α− β

)2

ǫ2 (3.54)

and

α+ β

2
e

u(y)+log A
2 − 1

2
e−

u(y)+log A
2 +

α+ β

β − α
ǫ < 0, for y ∈ (y2,ǫ, 1). (3.55)

By (3.51), (3.54), (3.55) and Theorem 3.2(i), we have, for y ∈ (y2,ǫ, 1),

0 ≤ −
(
α+ β

2
e

u(y)+log A
2 − 1

2
e−

u(y)+log A
2 +

α+ β

β − α
ǫ

)
≤ − ǫ√

2
u′(y). (3.56)

Let yǫ = max{y1,ǫ, y2,ǫ}, by (3.53) and (3.56) we have, for y ∈ (yǫ, 1),

u′(y)
√
αβe

u(y)+log B
2 − 1

2e
−u(y)+log B

2 − (αβ)1/4
≤

√
2

ǫ
≤ u′(y)

α+β
2 e

u(y)+log A
2 − 1

2e
−u(y)+log A

2 + α+β
β−αǫ

.

Note that (3.52) and (3.55). Integrating the above inequality over (z, 1) for z ∈
(yǫ, 1), then

2 log
t1,+(

√
A− t1,−) + t1,−(t1,+ −

√
A)e−

r
1
2
(

α+β
β−α

)2ǫ2+2(α+β)

ǫ (1−z)

(
√
A− t1,−) + (t1,+ −

√
A)e−

r
1
2
(

α+β
β−α

)2ǫ2+2(α+β)

ǫ (1−z)

≤ u(z)− log
(α − β)2

2ǫ2
(3.57)

≤ 2 log
t2,+(

√
B − t2,−) + t2,−(t2,+ −

√
B)e−

√
3
2

(αβ)1/4

ǫ
(1−z)

(
√
B − t2,−) + (t2,+ −

√
B)e−

√
3
2

(αβ)1/4

ǫ (1−z)
,

where t1,± = ǫ
β−α ±

√
( ǫ

β−α )2 + 1
α+β → ± 1√

α+β
as ǫ ↓ 0 and t2,± = (1±

√
3)(αβ)−1/4.

Therefore, by (3.57), we complete the proof of theorem 1.7.

4. Comparison of PB n and PB equations: Proof of Theorem 1.4. In
this section, we compare the PB n equation (1.14) and the PB equation (1.26) with the
boundary condition (1.19). It is easy to prove that the solution w ∈ C∞((−1, 1)) ∩
C2([−1, 1]) of (1.26) and (1.19) has uniqueness which can be proved by the same
method as Theorem 1.1. Besides, by (1.26), there exists constant Cǫ such that

ǫ2

2
(w′(x))2 =

α

2
ew(x) +

β

2
e−w(x) + Cǫ , ∀x ∈ [−1, 1], (4.1)
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and

ǫ2(w′′(b)w′(b) − w′′(a)w′(a)) ≥
∫ b

a

(
α

2
ew(x) +

β

2
e−w(x)

)
(w′(x))2dx, (4.2)

for −1 ≤ a < b ≤ 1.
As for the proof of Theorem 1.2, we can prove that w is odd, monotonically

increasing on [−1, 1], convex on (0, 1) and concave on (−1, 0). Setting sǫ = w(1) and
following the proof of Theorem 1.3, we obtain limǫ↓0(tǫ − sǫ) = 0, and

2 log
s+(esǫ/2 − s−) − s−(esǫ/2 − s+)e−(s+−s−)

√
α(1−x)/2ǫ

(esǫ/2 − s−) − (esǫ/2 − s+)e−(s+−s−)
√

α(1−x)/2ǫ

≤w(x) ≤ 2 log
(esǫ/2 + 1) + (esǫ/2 − 1)e−

√
α(1−x)/ǫ

(esǫ/2 + 1) − (esǫ/2 − 1)e−
√

α(1−x)/ǫ
, ∀x ∈ (0, 1) (4.3)

where tǫ = φ(1) and s± = 1
2

(
εφ0(1)√

α
±
√(

εφ0(1)√
α

)2

+ 4

)
. By (2.21), (4.3), and

limǫ↓0(tǫ − sǫ) = 0 we get (1.27) and complete the proof. Here we have used Theo-
rem 1.2, 1.3 and the fact that both φ and w are odd functions on [−1, 1].

For α 6= β and φ0(−1) = φ0(1), we obtain the following lemma:

Lemma 4.1. Assume that α 6= β and φ0(−1) = φ0(1). Let w ∈ C∞((−1, 1)) ∩
C2([−1, 1]) be the solution of (1.26) and (1.19). Then w is an even function on [−1, 1]
satisfying
(i) If φ0(−1) = φ0(1) > 1

2 log β
α , then w is convex on [−1, 1] and φ0(1) ≥ w(x) ≥

w(0) > 1
2 log β

α for all x ∈ [−1, 1];

(ii) If φ0(−1) = φ0(1) < 1
2 log β

α , then w is concave on [−1, 1] and φ0(1) ≤ w(x) ≤
w(0) < 1

2 log β
α for all x ∈ [−1, 1].

(iii)

|w′(x)| ≤ |w′(1)|
(
e−

(αβ)1/4

ǫ (1+x) + e−
(αβ)1/4

ǫ (1−x)

)
, ∀x ∈ (−1, 1) . (4.4)

Proof. By the uniqueness of w and φ0(−1) = φ0(1), w is an even function on
[−1, 1]. Consequently, w′ is odd on [−1, 1] and w′(0) = 0. By (4.2), we have

w′′(x)w′(x) ≥ 0 , for x ∈ (0, 1) , w′′(x)w′(x) ≤ 0 , for x ∈ (−1, 0) . (4.5)

Since w′ is odd, (4.5) implies that w′′ does not change sign on (−1, 1). Hence either
w′′ ≥ 0 or w′′ ≤ 0 on (−1, 1). Suppose w′′ ≤ 0 on (−1, 1). Then (1.26) implies w(x) ≤
1
2 log β

α for all x ∈ (−1, 1) and (4.5) implies w′(x) ≥ 0 for x ∈ (−1, 0) and w′(x) ≤ 0

for x ∈ (0, 1). By the boundary condition (1.19), φ0(1) = w(1) + ηǫ w
′(1) ≤ 1

2 log β
α .

Hence we may get (i) by contradiction.
Similarly, we prove (ii). Following the same argument as Theorem 3.2, we ob-

tain (4.4).

Remark 4.1. If φ0(−1) = φ0(1) = 1
2 log β

α , then there is only trivial solution

w ≡ 1
2 log β

α .
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It is easy to get Remark 4.1 by the uniqueness of w. To see nontrivial solutions, we
assume that φ0(−1) = φ0(1) 6= 1

2 log β
α . Then we have the following theorem:

Theorem 4.2. Assume α 6= β and φ0(−1) = φ0(1) 6= 1
2 log β

α , where α and β are
positive constants independent of ǫ. Let w ∈ C∞((−1, 1))∩C2([−1, 1]) be the solution
of (1.26) and (1.19). Then

min

{
φ0(1),

1

2
log

β

α

}
≤ w(x) ≤ max

{
φ0(1),

1

2
log

β

α

}
, ∀x ∈ [−1, 1], (4.6)

w → 1

2
log

β

α
, (4.7)

uniformly in any compact subset of (−1, 1) as ǫ goes to zero, and

lim
ǫ↓0

w(1) = t, (4.8)

where

t =

{
1
2 log β

α if limǫ↓0
ǫ
ηǫ

= 0 ,

φ0(1) if limǫ↓0
ǫ
ηǫ

= ∞ ,

and min
{
φ0(1), 1

2 log β
α

}
< t < max

{
φ0(1), 1

2 log β
α

}
is the unique zero of |φ0(1)−t| =

γ
∣∣√2αet/2 −√

2βe−t/2
∣∣ if ηǫ

ǫ = γ and γ is a positive constant independent of ǫ.
Moreover,

wǫ
1(x) ≤ w(x) − 1

2
log

β

α
≤ wǫ

2(x) , ∀x ∈ [0, 1], (4.9)

where wǫ
i (x) = log

f ǫ
i e

(hǫ
i )1/4

ǫ (1−x) + gǫ
i

f ǫ
i e

(hǫ
i
)1/4

ǫ (1−x) − gǫ
i

for x ∈ [0, 1] and f ǫ’s, gǫ
i ’s and hǫ

i ’s are

constants satisfying f ǫ
i → α1/4et/2 + β1/4, gǫ

i → α1/4et/2 − β1/4 and hǫ
i → (4αβ)1/4

as ǫ ↓ 0+, i = 1, 2.
Proof. By Lemma 4.1, we have (4.6). Setting x = 0 in (4.1) and using w′(0) = 0,

one may check that

ǫ2

2
(w′(x))2 = α

(
ew(x) − ew(0)

)
+ β

(
e−w(x) − e−w(0)

)
, ∀x ∈ [−1, 1]. (4.10)

Note that ǫ2w′(1) = ǫ2
∫ 1

0 w
′′(x)dx =

∫ 1

0

(
αew(x) − βe−w(x)

)
dx. If w′′ ≥ 0 on (0, 1),

then by (4.5), we have w′ ≥ 0 on (0, 1), hence αew(x)−βe−w(x) is increasing on (0, 1),
and then ǫ2w′(1) ≥ αew(0) − βe−w(0) ≥ 0.

Similarly, if w′′ ≤ 0 on (0, 1), we get ǫ2w′(1) ≤ αew(0) − βe−w(0) ≤ 0. Conse-
quently,

(
αew(0) − βe−w(0)

)2

≤ ǫ4(w′(1))2. (4.11)
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By (4.6), (4.10) (at x = 1) and (4.11), we have

lim
ǫ↓0

w(0) =
1

2
log

β

α
and |w′(1)| ≤ C13

ǫ
, (4.12)

for some positive constant C13 independent of ǫ. It is easy to see that (4.4) and (4.12)
imply (4.7). By (4.10) and boundary condition (1.19) we have

ǫ2

2η2
ǫ

(φ0(1) − w(1))2 = α
(
ew(1) − ew(0)

)
+ β

(
e−w(1) − e−w(0)

)
.

Using (4.7) and the proof of Theorem 1.3, we prove (4.8). On the other hand, (4.10)
can be written as

ǫ2

2
(w′(x))2 =

(√
αew(x)/2 −

√
βe−w(x)/2

)2

−
(√

αew(0)/2 −
√
βe−w(0)/2

)2

, (4.13)

∀x ∈ [−1, 1]. Note that by (1.26) and (4.5), w′(x) and
√
αew(x)/2−

√
βe−w(x)/2 share

the same sign for x ∈ [0, 1]. Hence (4.13) implies

w′(x)√
αew(x)/2 −

√
βe−w(x)/2

≤
√

2

ǫ
≤ w′(x)√

αew(x)/2 −
√
βe−w(x)/2 − δǫ

, x ∈ [0, 1], (4.14)

where δǫ =
√
αew(0)/2 −√

βe−w(0)/2. Note that by (4.7), we have δǫ → 0 as ǫ ↓ 0.
Therefore, as for (2.18)-(2.21), we use (4.14) to get (4.9) and complete the proof

of Theorem 4.2.

5. Numerical simulations. Here we present numerical results to support the
theories in this paper. For the electroneutral case i.e., α = β, the Gummel method
[37, 38, 39] is well-known for solving PB type equations. One may apply Gummel
method to PB n equation. However we have empirically observed that this method
shows a deviation to the solution in the nonelectroneutral case i.e., α 6= β with
high electrostatic potential. It may be caused by the inaccurate correction of the
exponential fitting for high electrostatic potential. Moreover, since PB n equation has
a normalization of charge density, it is not easy to find a numerical remedy in using
Gummel method for the nonelectroneutral case. Due to these reasons, we here employ
convex iteration [35] rather than Gummel method to linearize PB n equation (1.14)
and PB equation (1.26) with the Robin boundary condition (1.19). If φ1 satisfying
boundary condition (1.19) is initially given, then an iteration scheme of (1.14) can be
defined with 0 < c < 1 as follows:





ǫ2φ′′
k+ 1

2

=
α∫
eφk

eφk − β∫
e−φk

e−φk ,

φk+1 = cφk+ 1
2

+ (1 − c)φk, for k = 1, 2, · · · .
(5.1)

with boundary conditions

φk+ 1
2
(−1) − ηφ′k+ 1

2
(−1) = φ0(−1) , φk+ 1

2
(1) + ηφ′k+ 1

2
(1) = φ0(1). (5.2)

Let φk+ 1
2

= φk + δk with the correction δk which satisfies

δk(−1) − ηδ′k(−1) = 0 , δk(1) + ηδ′k(1) = 0 , (5.3)
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so that φk+1 = φk + cδk = φ1 + c
∑k

i=1 δi. If limk→∞ |δk| = 0, then the iterative
scheme converges.

Define the residual function R(φk) as

R(φk) =
α∫
eφk

eφk − β∫
e−φk

e−φk − ǫ2φ′′k , (5.4)

then we get

ǫ2φ′′k+1 − ǫ2φ′′k = ǫ2cδ′′k = cR(φk). (5.5)

If we integrate R(φk+1) −R(φk), then we obtain

∫ 1

−1

R(φk+1) = (1 − c)

∫ 1

−1

R(φk). (5.6)

Remark 5.1. In (5.5), it is clear that the numerical scheme converges when
limk→∞ |R(φk)| = 0 under the boundary conditions (5.3). In case of c = 1 in (5.6),
we can not guarantee that limk→∞ |R(φk)| = 0 but

∫
R(φk+1) = 0 for k = 1, 2, · · ·

so that it may cause an oscillation during the iteration procedure. Moreover, we
have empirically observed that when the value of c is compatible to ǫ2, the iteration
converges well.

The finite element methods with piecewise linear basis functions are used to solve
the linearized equations. The numerical computations are performed with the con-
stants ǫ = 2−j, j = 1, · · · , 6 and ηǫ = 0, ǫ2, ǫ, ǫ1/2, ǫ0. The computational domain is
[−1, 1] and the mesh size is 1/2048 uniformly throughout all computations. The value
10−6 is applied for stopping criterion of iterative scheme with |δk| = |(φk+1 − φk)/c|.

5.1. Electroneutral case (α = β). For simplicity, we set α = β = 1, and
φ0(1) = −φ0(−1) = 1. The numerical solutions of the PB n equation (1.14) with the
Robin boundary condition (1.19) are presented in Figure 5.1. The pictures (a)-(b) of
Figure 5.1 are corresponding to the case of ǫ = 2−2, 2−6, and the curves 1-5 in each
picture are associated with ηǫ = 0, ǫ2, ǫ, ǫ1/2, ǫ0, respectively. Numerical outputs of
φ(1)’s are written at the right end of the curves 1-5 of Figure 5.1. According to the
numerical results, we observe that as ǫ goes to zero, these φ(1)’s close to φ0(1) = 1
when ηǫ = 0, ǫ2. φ(1)’s close to 0 when ηǫ = ǫ1/2, ǫ0 as ǫ goes to zero. φ(1) close
to φ∗ = 0.4974 when ηǫ = ǫ as ǫ goes to zero i.e., γ = 1, where φ∗ = 0.4974 is the
root of (1.23) numerically solved by Newton’s method. These results have excellent
consistency with Theorem 1.2 and Theorem 1.3. One may remark Figure 5.1 to see
how the solution φ tends to 0 in (−1, 1) but may have boundary layers at x = ±1 as
ǫ goes to zero.

The difference between the PB n equation (1.14) and the PB equation (1.26) is

the integral
∫ 1

−1
eφ(x)dx and

∫ 1

−1
e−φ(x)dx located at the denominator of right hand

side of (1.14). However, the numerical integrals
∫ 1

−1 e
φ(x)dx and

∫ 1

−1 e
−φ(x)dx are quite

close to 2 as ǫ goes to zero (see the first table in Table 5.1). Such a numerical result
is consistent with Lemma 2.1. Moreover, the second table in Table 5.1 shows that φ
the solution of (1.14) approaches to w the solution of (1.26) as ǫ goes to zero. This
may support Theorem 1.4.

5.2. Non-electroneutral case (α 6= β). We consider the case of α = 1, β = 2
with ǫ = 2−2, 2−4. Numerical solutions of the PB n equation (1.14) are sketched in
Figure 5.2 and Figure 5.3 for the case of φ0(−1) = φ0(1) = 1 and φ0(−1) = 1, φ0(1) =
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2, respectively. The numerical values of φ(1) are presented on the right hand side of
pictures in Figure 5.2 and Figure 5.3. As for Theorem 1.5, our numerical results may
indicate the solution φ tend to infinity as ǫ goes to zero. Figure 5.4 is the zoom-in
curve of the curve 5 in Figure 5.2 (b) to express the boundary layer of the solution φ
with huge slopes at x = ±1 which can also be observed in Figure 5.3. These results
are comparable to Theorem 1.6.

For the PB equation (1.26), numerical solutions are sketched in Figure 5.5 for
the case of φ0(−1) = φ0(1) = 1. Such a result may support Theorem 4.2. One may
compare Figure 5.2 and 5.5 to see the difference between solutions of (1.14) and (1.26).
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(a) Electrostatic potential of PB n, ǫ = 2−2

 1.0000

 0.7989

 0.4992

 0.3329

 0.1998

1

2

3

4
5

1: ηǫ = 0
2: ηǫ = ǫ2
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(b) Electrostatic potential of PB n, ǫ = 2−6
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Fig. 5.1. The numerical solutions of electrostatic potential φ to PB n equation with
boundary condition φ0(1) = −φ0(−1) = 1 in electroneutral case, α = β = 1. The numerical
values of φ(1) is written on the right hand side of picture for each curve. Each picture
depends on the dielectric constant, (a) ǫ = 2−2, (b) ǫ = 2−6. The label of curves in the
picture (b) follows that in the picture (a).
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Fig. 5.2. The numerical solutions of electrostatic potential φ to PB n equation with
boundary condition φ0(−1) = φ0(1) = 1 in non-electroneutral case, α = 1, β = 2. The
numerical values of φ(1) is written on the right hand side of picture for each curve. Each
picture depends on the dielectric constant, (a) ǫ = 2−2, (b) ǫ = 2−4. The label of curves in
the picture (b) follows that in the picture (a).
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Fig. 5.3. The numerical solutions of electrostatic potential φ to PB n equation with
boundary condition φ0(−1) = 1, φ0(1) = 2 in non-electroneutral case, α = 1, β = 2. The
numerical values of φ(1) is written on the right hand side of picture for each curve. Each
picture depends on the dielectric constant, (a) ǫ = 2−2, (b) ǫ = 2−4. The label of curves in
the picture (b) follows that in the picture (a).
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7. Appendix. In this section, we prove Theorem 1.1 and demonstrate some
basic facts of the system (1.14) with the boundary condition (1.19). Let φ be the
solution of the equation (1.14) with the boundary condition (1.19). Multiplying the
equation (1.14) by φ′(x), it is easy to check that

ǫ2

2
(φ′(x))2 =

α
∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x) + Cǫ. (7.1)

29



Table 5.1

The numerical results of
R 1
−1

eφ(x)dx for PB n equation with boundary condition φ0(1) =

−φ0(−1) = 1 in electroneutral case, α = β = 1. The values of
R 1
−1 e−φ(x)dx are equivalent toR 1

−1 eφ(x)dx in stopping criterion. (The first table) The maximum norms ||φ−w||∞ of the solutions

of PB n and PB with the condition φ0(1) = −φ0(−1) = 1 in the case of α = β = 1. (The second
table)

ηǫ\ǫ 2−2 2−4 2−6 ηǫ\ǫ 2−2 2−4 2−6

0 2.131 2.032 2.008 0 1.14e-02 2.90e-03 7.25e-04

ǫ2 2.082 2.028 2.008 ǫ2 7.06e-03 2.55e-03 7.01e-04

ǫ 2.031 2.008 2.002 ǫ 2.32e-03 5.83e-04 1.46e-04

ǫ1/2 2.014 2.001 2.000 ǫ1/2 8.14e-04 5.09e-05 2.39e-06

ǫ0 2.005 2.000 2.000 ǫ0 2.02e-04 1.50e-06 7.00e-09
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Fig. 5.5. The numerical solutions of electrostatic potential w to PB equation with the
condition φ0(−1) = φ0(1) = 1 for the case of α = 1, β = 2. The numerical values of φ(1) is
written on the right hand side of pictures. Each picture depends on the dielectric constant,
(a) ǫ = 2−2, (b) ǫ = 2−4. The order of curves corresponding to ηǫ follows the order in the
picture (a).

where Cǫ is a constant. Differentiating the equation (1.14) to x and then multiplying
it by φ′, we have

ǫ2φ′′′(x)φ′(x) =

(
α

∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x)

)
(φ′(x))2 (7.2)

for |x| < 1. Integrating (7.2) over (0, a) (for 0 < a ≤ 1) gives

ǫ2(φ′′(a)φ′(a) − φ′′(0)φ′(0))
(7.3)

≥
∫ a

0

(
α

∫ 1

−1 e
φ(y)dy

eφ(x) +
β

∫ 1

−1 e
−φ(y)dy

e−φ(x)

)
(φ′(x))2dx, ∀ a ∈ (0, 1].

This inequality will play a crucial role in this paper.

The following identity is useful in the arguments of this paper:
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Lemma 7.1. Let φ ∈ C∞((−1, 1)) ∩ C2([−1, 1]) satisfy (1.14). Then

ǫ2

2

[
(φ′(1))2 + (φ′(−1))2 −

∫ 1

−1

(φ′(x))2dx

]

=
α

∫ 1

−1 e
φ(y)dy

(
eφ(1) + eφ(−1)

)
+

β
∫ 1

−1 e
−φ(y)dy

(
e−φ(1) + e−φ(−1)

)
− (α+ β). (7.4)

Proof. Multiplying (1.14) by xφ′(x) and integrating the expression over (−1, 1).
Using integration by parts, we get (7.4).

Now we state the proof of Theorem 1.1. Suppose φi ∈ C∞((−1, 1))∩C2([−1, 1]),
i = 1, 2, are two solutions of (1.14) and (1.19). Subtracting (1.14) for φ2 from that
for φ1, we have

ǫ2(φ1 − φ2)
′′(x) =α

(
eφ1(x)−log

R 1
−1

eφ1 − eφ2(x)−log
R 1
−1

eφ2
)

− β
(
e−φ1(x)−log

R
1
−1

e−φ1 − e−φ2(x)−log
R

1
−1

e−φ2
)
. (7.5)

Multiplying (7.5) by φ1(x) − φ2(x) and integrating the expression from −1 to 1, we
may get

− ǫ2
∫ 1

−1

(φ1 − φ2)
′′(φ1 − φ2)dx +

∫ 1

−1

α
(
eφ1−log

R 1
−1

eφ1 − eφ2−log
R 1
−1

eφ2
)

(φ1 − φ2)dx

−
∫ 1

−1

β
(
e−φ1−log

R
1
−1

e−φ1 − e−φ2−log
R

1
−1

e−φ2
)

(φ1 − φ2)dx = 0. (7.6)

Since both φ1 and φ2 satisfy the same boundary condition (1.19), then we have (φ1 −
φ2)(1) + ηǫ(φ1 − φ2)

′(1) = (φ1 − φ2)(−1) − ηǫ(φ1 − φ2)
′(−1) = 0. Consequently, we

may use integration by parts to get

−ǫ2
∫ 1

−1

(φ1 − φ2)
′′(φ1 − φ2)dx =ǫ2

∫ 1

−1

|(φ1 − φ2)
′|2dx

+
ǫ2

ηǫ

[
(φ1 − φ2)

2(1) + (φ1 − φ2)
2(−1)

]
. (7.7)

For the last two terms of (7.6), we set a(x) = φ1(x) − log
∫ 1

−1
eφ1 and b(x) = φ2(x) −

log
∫ 1

−1 e
φ2 . Note that (ea(x)−eb(x))(a(x)−b(x)) ≥ 0 for x ∈ [−1, 1] and

∫ 1

−1 e
a(x)dx =∫ 1

−1
eb(x)dx = 1. Hence we obtain

∫ 1

−1

α
(
eφ1−log

R 1
−1

eφ1 − eφ2−log
R 1
−1

eφ2
)

(φ1 − φ2)dx

=

∫ 1

−1

α
(
ea(x) − eb(x)

)(
a(x) − b(x) + log

∫ 1

−1
eφ1

∫ 1

−1 e
φ2

)
dx (7.8)

≥α
(

log

∫ 1

−1
eφ1

∫ 1

−1
eφ2

)∫ 1

−1

(
ea(x) − eb(x)

)
dx = 0.

Similarly, we have

−
∫ 1

−1

β
(
e−φ1−log

R
1
−1

e−φ1 − e−φ2−log
R

1
−1

e−φ2
)

(φ1 − φ2)dx ≥ 0. (7.9)
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Therefore, by (7.6)−(7.9), we have φ1 ≡ φ2 on [−1, 1] and complete the proof of
Theorem 1.1.

REFERENCES

[1] V. Barcilon, D. P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels:
part II, SIAM J. APPL. MATH. Vol.52, No.5, pp.1405–1425 (1992).

[2] V. Barcilon, D. P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of
steady-state Poisson-Nernst-Planck systems: perturbation and simulation study, SIAM J.
APPL. MATH. Vol.57, No.3, pp.631–648 (1997).

[3] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Clas-
sics in Mathematics. Springer-Verlag, Berlin, (2001).

[4] P. Grochowski and J. Trylska, Continuum molecular electrostatics, salt effects and counte-
rion binding a review of the Poisson-Boltzmann model and its modifications, Biopolymers
89 93-113 (2008).

[5] B. Hille, Ion channels of excitable membranes, 3rd Edition, Sinauer Associates, Inc. (2001).
[6] J. P. Hsu and B. T. Liu, Current Efficiency of Ion-Selective Membranes: Effects of Local

Electroneutrality and Donnan Equilibrium, J. Phys. Chem. B 1997, 101, 7928–7932.
[7] D. Lacoste, G.I. Menon, M.Z. Bazant, and J.F. Joanny, Electrostatic and electrokinetic

contributions to the elastic moduli of a driven membrane, Eur. Phys. J. E 28 (2009) 243–
264.

[8] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes, Nonlinearity
22 (2009) 811-833.

[9] B. Li, Minimization of electrostatic free energy and the Poisson-Boltzmann equation for mole-
cular solvation with implicit solvent, SIAM J. Math. Anal. (2009) Vol.40, No. 6, pp.2536–
2566.

[10] C. C. Lee, H. Lee, Y. Hyon, T. C. Lin and C. Liu, Solutions of 1-D renormalized Multi-
Poisson-Boltzmann equations, preprint.

[11] C. C. Lee, T. C. Lin and C. Liu, Steady-state solutions of the Poisson-Nernst-Planck equa-
tions with N spatial dimension, N ≥ 1, preprint.

[12] M. Lee and K. Y. Chan, Non-neutrality in a charged slit pore, Chem. Phys. Letts. 275 (1997)
56–62.

[13] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck sys-
tems, SIAM J. Appl. Math. (2005) Vol.65. No.3, pp.754–766.

[14] D.G. Luchinsky, R. Tindjong, I. Kaufman, P.V.E. McClintock and R.S. Eisenberg, Ion
channels as electrostatic amplifiers of charge fluctuations, Journal of Physics: Conference
Series 142 (2008) 012049(1-9).

[15] J. E. Marsden and A. J. Chorin, A Mathematical Introduction To Fluid Mechanics, Springer
(1993).

[16] J. H. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck
systems: mathematical study, SIAM J. APPL. MATH. Vol.57, No.3, pp.609–630 (1997).

[17] E. Riccardi, J. C. Wang and A. I. Liapis, Porous Polymer Absorbent Media Constructed by
Molecular Dynamics Modeling and Simulations: The Immobilization of Charged Ligands
and Their Effect on Pore Structure and Local Nonelectroneutrality, J. Phys. Chem. B 2009,
113, 2317–2327.

[18] M. F. Schumaker and C. J. Kentler, Far-Field Analysis of Coupled Bulk and Boundary
Layer Diffusion Toward an Ion Channel Entrance, Biophysical Journal Vol.74, pp.2235–
2248 (1998).

[19] Y. Mori, J.W. Jerome, and C.S. Peskin, A Three-dimensional Model of Cellular Electrical
Activity, Bulletin of the Institute of Mathematics Academia Sinica, 2(2)(2007), pp.367–390.

[20] Y. Mori, A Three-Dimensional Model of Cellular Electrical Activity, PhD thesis, New York
University, (2007).

[21] Y. Hyon, R. Eisenberg, C. Liu, and Y. Mori, A Mathematical Model For Electrical Activity
in Cell Membrane: Energetic Variational Approach, in preparation, (2007).

[22] A. L. Hodgkin, and A. F. Huxley, A Qualitative Description of the Membrane Current and
Its Application to Conduction and Excitation in Nerve, J. Physiology, 117(1952), pp.500–
544.

[23] J. P. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 1998.
[24] C. Koch, Biophysics of Computation, Oxford University Press, New York, 1999.
[25] P. J. Rabier and W. C. Rheinbolt, Theoretical and Numerical Analysis of Differential-

algebraic Equations, volume VIII of Handbook of Numerical Analysis, pp.183–540, North-

32



Holland, 2002.
[26] S. Carl, and J. Jerome, Trapping Region for Discontinuous Quasilinear Elliptic Systems of

Mixed Monotone Type, Nonlinear Anal., 51(2002), pp.843–863.
[27] D. J. Aidley, The Physiology of Excitable Cells, 4th edition, Cambridge University Press, New

York, 1998.
[28] J. Zhang, X. Gong, C. Liu, W. Wen, and P. Sheng, Electrorheological Fluid Dynamics,

PRL, 101(2008), pp.194503-1–194503-4.
[29] B. Eisenberg, Ionic Channels in Biological Membranes: Natural Nanotubes, Acc. Chem. Res.,

31(1998), pp.117–123.
[30] W. Nonner, D. P. Chen, and B. Eisenberg, Progress and Prospects in Permeation, J. Gen.

Physiol., 113(1999), pp.773–782.
[31] P. A. Marcowich, The Stationary Semiconductor Device Equations, Springer-Verlag, Vienna,

1986.
[32] O. J. Riveros, T. L. Croxton, and W. M. Armstrong, Liquid Junction Potentials Calcu-

lated From Numerical Solutions of the Nernst-Planck and Poisson Equations, J. Theor.
Biol., 140(1989), pp.221–230.

[33] R. Ryham, An Energetic Variational Approach To Mathematical Modeling Of Charged Fluids:
Charge Phases, Simulation And Well Posedness, thesis, Pennsylvania State University,
2006.

[34] R. Ryham, C. Liu, and L. Zikatanov, Mathematical Models for the Deformation of Electrolyte
Droplets, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, p. 649–661.

[35] R. Ryham, C. Liu and Z.Q. Wang, On electro-kinetic fluids: one dimensional configurations,
Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 2, p. 357–371.

[36] Y. Hyon, D. Y. Kwak and C. Liu, Energetic Variational Approach in Complex Fluids :
Maximum Dissipation Principle, DCDS-A, 2009, Accepted.

[37] H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor
calculations, IEEE Transactions on Electron Devices, vol. ED-11, pp. 455–465 (1964).

[38] D. L. Scharfetter and H. K. Gummel, Large-Signal Analysis of a Silicon Read Diode Os-
cillator, IEEE Transactions on Electron Devices, vol. ED-16, pp. 64–77 (1969).

[39] S. W. Bova and G. F. Carey, Iterative Solution of the Semiconductor Device, IEEE Trans-
actions on Electron Devices, vol. ED-16, pp. 64–77 (1969).

[40] F. Ziebert, M. Z. Bazant and David Lacoste, Effective zero-thickness model for a conductive
membrane driven by an electric field, Phys Rev E 81, (2010) 031912(1-13).

[41] F. Ziebert, and David Lacoste, A Poisson.Boltzmann approach for a lipid membrane in an
electric field, New J. Phys. 12,(2010) 095002(1-15).

[42] Martin Z. Bazant, Kevin T. Chu, And B. J. Bayly, Current-voltage relations for electro-
chemical thin films., SIAM J. APPL. MATH.,Vol. 65, No. 5, pp.1463–1484 (2005).

33




