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the scattering amplitude, we derive several sets of generically nonlinear positivity bounds

for a generic scalar effective field theory: we refer to these as the PQ, Dsu, Dstu and D̄stu

bounds. While the PQ bounds and Dsu bounds only make use of the s ↔ u dispersion

relation, the Dstu and D̄stu bounds are obtained by further imposing the s ↔ t crossing

symmetry. In contradistinction to the linear positivity for scalars, these inequalities can

be applied to put upper and lower bounds on Wilson coefficients, and are much more con-

straining as shown in the lowest orders. In particular we are able to exclude theories with

soft amplitude behaviour such as weakly broken Galileon theories from admitting a stan-

dard UV completion. We also apply these bounds to chiral perturbation theory and we find

these bounds are stronger than the previous bounds in constraining its Wilson coefficients.
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1 Introduction

Effective field theories (EFTs) are widely used in modern physics. It is a general framework

that reflects the fact that physics at different energy scales are largely decoupled as long

as there is a healthy hierarchy between the scales. The standard practice to construct an

EFT is to write down all possible operators that are consistent with the symmetries of the

problem, be it gauge or global, and supply them with arbitrary Wilson coefficients. These

coefficients should be fixed or constrained by using the experimental data or matching to

the UV theory, and then the EFT can be used to predict new physical phenomena. This

is of course a foolproof procedure. However, quite often, experimental data are scarce and

imprecise, and the UV theory is unknown or very difficult to be matched to. After all,

those are often the reasons why EFT is used in the first place.
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Positivity bounds are constraints on the scattering amplitude that one can derive by as-

suming the UV theory satisfies some of the most fundamental properties of physics, such as

Lorentz invariance, unitarity, crossing symmetry, polynomial (or exponential) boundedness

and, crucially, analyticity. The textbook application of unitarity is the optical theorem,

which links the imaginary part of the amplitude in the forward limit to the total cross

section. The positivity of the cross section then implies that the imaginary part of the

amplitude is positive, which can be used to prove the forward limit positivity bounds [1]

(see [2–5] for related earlier work). Since the total angular momentum is conserved in a

scattering process, the amplitude can be decomposed into different partial waves, each of

which inherits unitarity. Thanks to partial wave unitary and properties of the Legendre

polynomials (Wigner’s small dJ
ab matrices for particles with spin), one can show that the

t (Mandelstam variable s, t, u) derivatives of the imaginary part of the amplitude is still

positive. Also, unitarity, coupled with polynomial boundedness, allows one to derive the

Froissart-Martin bound [6–8], which limits the amplitude to grow slower than s2 at large

|s|. This is useful because, with appropriate subtractions, it implies that a contour in-

tegral at large |s| should vanish. Then, by Cauchy’s integral formula in the complex s

plane, analyticity gives rise to a dispersion relation, which casts the amplitude in terms

of an integral along the discontinuities along the real s axis. The dispersion relation,

together with the positivity of the t derivative of the amplitude, can be used to derive

an infinite number of generalized positivity bounds [9, 10], to be referred to as the Y

bounds in this paper. Thanks to the analyticity in the complex t plane [11], the pos-

itivity bounds can also be extended away from the forward limit [9] (see [3, 12–15] for

earlier work).

These positivity bounds have useful applications in EFTs because at energies well be-

low the cutoff the EFT scattering amplitudes can approximate the full amplitude very

well. Therefore, we can replace the full amplitude in the positivity bounds with the am-

plitude computed from the EFT, which contains Wilson coefficients of the EFT, and so

the positivity bounds become inequalities for the Wilson coefficients. Typically, the EFT

parameter space spanned by the Wilson coefficients is very huge. For example, viewing

the Standard Model as an EFT, in addition to the textbook renormalizable Lagrangian,

it should be augmented with many more higher dimensional operators. Specifically, at di-

mension 6, 8 and 10, there are 84, 993 and 15456 independent operators respectively [16].

The positivity bounds, on the other hand, carve out the part of the parameter space that

is consistent with the fundamental physical principles mentioned above. Indeed, they are

often very effective in restricting the parameter space. Recently, there has been a lot of

interest in applying the positivity bounds in particle physics, gravitational theories and

cosmology [17–39]. In particular, positivity bounds have been used to constrain Standard

Model EFT [19–26]. For example, it has been shown that the vast majority of the pa-

rameter space of the dimension 8 anomalous quartic gauge couplings is excluded by the

positivity bounds [19, 20, 23, 25]. For another example, strong constraints can also be ob-

tained for Horndeski theory when pairing together with cosmological parameter estimation

analysis [36]. This helps the experimental searches for new physics, as experimentalists

can pay more attention to the parameter space consistent with the positivity bounds. On
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other hand, should signals indicate violations of the positivity bounds, it would imply that

some of the cherished physical principles be violated at high energies [22].

In this paper, we will demonstrate that there are a couple of new ways to extract

more positivity bounds using the dispersion relation and crossing symmetry for the case

of scalar field theories in D dimensions. These fall into two classes which we refer to as

the PQ bounds and the D bounds. To derive the PQ bounds, we follow a strategy used

in deriving the Y bounds in [9] and use the relaxing inequality, that is, use the fact that a

quantity gets relaxed (an inequality is obtained) when one fixes some factor of a positive

integrand to the lower limit of the integration. Different from the Y bounds case, here we

relax a quantity in two directions. This allows us to nonlinearly combine the derivatives

of the amplitude to obtain specific nonlinear positivity bounds. To derive the D bounds,

we expand the amplitude in the dispersion integral with partial waves and make use of

the angular momentum dependence of the partial wave coefficients. In this case, one also

relaxes the integrand of an integration, but now we relax the polynomial of the partial

wave number ℓ to its minimum. The triple crossing symmetry can improve this procedure

because the triple symmetry requires that the integration of some polynomials of ℓ be zero.

These new positivity bounds are very constraining. As we will show in section 6,

generically, the Y , PQ and D bounds are overlapping with each other, and combining

them together can improve constraints on the parameter space by more than one order

of magnitude in percentages. In particular, for the generic parameter space of the 2-to-

2 scattering amplitude truncated up to order E12 in an energy expansion, only about

0.2% of the total parameter space is consistent with the fundamental principles of the

scattering amplitude. The effectiveness of these new bounds can also be seen in their

phenomenological usages. As a simple example, we apply the new positivity bounds to

chiral perturbation theory (the theory that marks the beginning of applications of the

modern EFT idea), and we will show that the new bounds improve the bounds on the l̄1
and l̄2 parameters in the theory, compared to the previous positivity bounds.

As another concrete example of applications of these new positivity bounds, we show

that the new positivity bounds eliminate theories with soft behaviour for scattering am-

plitudes, i.e. for which the leading few terms in an energy expansion of the low energy

amplitude are suppressed relative to naive expectations [15, 40–42]. One notable example

is the case of theories with weakly broken Galileon symmetries. Galileon theory is a scalar

field theory with an enhanced shift symmetry π → π+c+bµxµ (c, bµ being constant and xµ

being the spacetime coordinates) [43] that arises in the decoupling limit of massive gravity

theories [44–46] (see [47] for a review). In this limit, one takes the (effective) graviton

mass m to zero and the Planck mass MP to infinity and keeps the strong coupling scale

Λ3 = (m2MP )1/3 fixed. As a result, Galileon theory captures the most important nonlinear

deviations of massive gravity theories from general relativity. Away from the decoupling

limit, the degree of freedom represented by the Galileon is massive, and thus it is arguably

motivated to add the mass term to Galileon theory. More generally, since the massless

Galileon is ruled out by the linear positivity bounds [1], it is generally regarded that a par-

tial resolution is to weakly break the Galileon symmetry. That is to say one may regard the

fact that the Galileon violates positivity bounds as a marginal phenomena. A mass term

– 3 –
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is the most natural way to do so in the sense that the non-renormalization theorem of the

Galileon theory still holds and all generated quantum corrections still enjoy the enhanced

shift symmetry [18], explicitly realised for example in the context of Galileon inflation [48].

It was shown in [18] that there is still a surviving region in the parameter space where softly

broken Galileon theory is compatible with the linear Y positivity bounds. More generally

in cosmological contexts it is natural to consider more general breaking terms [49].

In this paper, we will show that the new positivity bounds derived accounting for

full (triple) crossing symmetry implies that the Minkowski spacetime field theory of a

weakly broken Galileon symmetry is forbidden from admitting a standard UV completion.

Similar arguments trivially extend to theories with higher order Galileon symmetries or

higher order soft amplitude beahviour [15, 40–42]. The direct application of these results

to theories of massive gravity is more subtle, as it is necessary to deal with the application

of positivity bounds to particles with spin [10] and the difficult issues related to massive

and massless spin-2 t-channel poles [35, 50–52]. These shall be considered elsewhere [53].

It should be stressed that while these results do clearly rule out Galileons and their ex-

tensions as the low energy limit of standard local field theories, they do not forbid their role

as limits of more general gravitational type theories which admit weaker notion of local-

ity [54, 55]. Indeed, the entire strength of the standard positivity bound story rests on the

assumption that the scattering amplitude is bounded by |s|2, at large |s| and fixed momen-

tum transfer, which is traditionally derived from the assumptions of polynomial or (linear)

exponential boundedness. The validity of these assumptions in the gravitational context

is unclear. In essense, since we typically do not expect local gauge invariant observables

in a quantum theory of gravity, it is unclear why the scattering amplitude should respect

locality in the usual manner. These issues are further closely intertwined with the technical

issues in the applicability of positivity bounds in the presence of gravity [35, 50–52].

The paper is organized as follows: in section 2, we review the Y positivity bounds

derived in [9], as we will compare the new bounds with the Y bounds later, and also

establish some notations along the way; in section 3, as a warm-up, we derive some simple

examples of the new positivity bounds; in section 4, we apply the first new positivity

bounds to theories with soft amplitudes — specifically the weakly broken Galileon theory

and show that such soft amplitude theories cannot have an analytical UV completion; in

section 5, we take a more systematical approach to derive a few sets of different positivity

bounds, first using only the s ↔ u symmetric dispersion and then further imposing the

s ↔ t symmetry; the best triple crossing symmetric bounds up to level 1/µ10 in 4D are

presented in explicit form; in section 6, we explore the differences between the Y bounds

and the new positivity bounds; in section 7, we use these new bounds to constrain SU(2)

chiral perturbation theory; we conclude in section 8.

Note added. While we were putting final touches on this draft, [56] appeared which

contains some overlap in results obtained through a slightly different method. In particular,

these authors reach a similar conclusion about theories with soft amplitudes [15, 40–42].

In addition, after our paper appeared in arXiv, [57] and [58] also arrived. The discussion

of [57] in particular is closely parallel to the present paper.
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2 Fixed-t dispersion relations

In this section, we shall introduce the fixed-t dispersion relations that are the basis needed

to derive the positivity bounds in the following sections. We shall focus on the case of

a single scalar field. The formulas in the following are valid only, strictly speaking, for

D ≥ 4, but as we will see in appendix B, with some appropriate definitions, it is possible

to include the D = 3 case.

The 2-to-2 scattering amplitude for scalar particles is a Lorentz invariant function of

Mandelstam variables s, t and u that satisfy the constraint s + t + u = 4m2 and the

scattering angle θ can be expressed as

cos θ = 1 +
2t

s − 4m2
. (2.1)

Choosing s and t as the independent variables, the amplitude A(s, t) can be viewed as

an analytic function with complex variables s and t, except for certain poles and branch

cuts already seen in perturbation theory. The partial wave expansion in D dimensions is

facilitated by D-dimensional generalization of the Legendre polynomials — the Gegenbauer

polynomials C
(α)
ℓ (x):

A(s, t) = F (α)
s1/2

(s − 4m2)α

∞
∑

ℓ=0

(2ℓ + 2α)C
(α)
ℓ (cos θ)aℓ(s), α =

D − 3

2
, (2.2)

where F (α) = 24α+2παΓ(α) is positive for D ≥ 4. See appendix A for a brief introduction of

the Gegenbauer polynomials. In particular, the derivatives of the Gegenbauer polynomials

have positive properties when evaluated at x = 1:

dn

dxn
C

(α)
ℓ (x)

∣

∣

∣

∣

x=1
=

2−2α−n+1√
πΓ(ℓ + n + 2α)

Γ(ℓ − n + 1)Γ(α)Γ
(

n + α + 1
2

) ≥ 0, n ≥ 0. (2.3)

On the other hand, partial wave unitarity tells us that

|aℓ(s)|2 ≤ Imaℓ(s), s ≥ 4m2, (2.4)

so Imaℓ(s) is positive in the physical region s ≥ 4m2. Combining these positive properties,

we can infer that in the forward limit t = θ = 0 we have

dn

dtn
ImA(s, t = 0) > 0, s ≥ 4m2, n ≥ 0. (2.5)

Although stronger analyticity may be assumed, a weaker analyticity condition, proved

by Martin [11] from more basic assumptions, is already powerful in many applications,

which states that for fixed s, A(s, t) is analytic in the disk |t| < 4m2 modulo possible poles

and for fixed t, A(s, t) is analytic in the plane of s except for possible poles and the branch

cuts at s > 4m2 and s < −t. Fixed-s analyticity allows us to Taylor expand ImA(s, t)

around t = 0 in the disk |t| < 4m2 and the positivity of eq. (2.5) then implies

dn

dtn
ImA(s, t) > 0, s ≥ 4m2, 0 ≤ t < 4m2. (2.6)
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On the other hand, the Jin-Martin extension of the Froissart-Martin [6–8] (assumed to be

valid in D dimensions) implies that

lim
s→∞

|A(s, t)| < Cs1+ε(t), ε(t) < 1, 0 ≤ t < 4m2. (2.7)

Therefore, utilizing fixed-t analyticity in the s complex plane and Cauchy’s integral formula,

we can derive a twice-subtracted dispersion relation (see e.g. [9] for details)

A(s, t) = a(t) +
λ

m2 − s
+

λ

m2 − t
+

λ

m2 − u

+

∫ ∞

4m2

dµ

π(µ − µp)2

[

(s − µp)2

µ − s
+

(u − µp)2

µ − u

]

ImA(µ, t), (2.8)

where λ is a constant, µp is a subtraction point that we can choose and a(t) is an unknown

function of t. With the pole contribution also subtracted, we can define

B(s, t) = A(s, t) − λ

m2 − s
− λ

m2 − t
− λ

m2 − u
(2.9)

= a(t) +

∫ ∞

4m2

dµ

π(µ − µp)2

[

(s − µp)2

µ − s
+

(u − µp)2

µ − u

]

ImA(µ, t). (2.10)

With these ingredients, particularly eq. (2.6), we can derive an infinite number of positivity

bounds with s and t derivatives — the Y positivity bounds; see [9] for the recurrence

relations for the positive Y (2N,M) quantities. As we will see in the following sections, the

use of eq. (2.6) does not give rise to the optimal bounds. Indeed, better bounds can be

extracted by using the positivity of Imaℓ(s) and the detailed properties of the Gegnebauer

polynomials. To show this, in section 6, we shall compare our new bounds against the

Y bounds.

Up to this point, we have only used the UV full amplitude to derive the dispersion

relation. The reason why EFT comes into play is that at low energies the EFT amplitude

approximates the full amplitude very well, to a desired order in the EFT power counting,

so the bounds can be interpreted as constraints on the EFT. If one parametrizes the

amplitude as

B(s, t) =
∞
∑

i,j=0

ai,jxiyj =
∞
∑

i,j=0

ãi,j

Λ4i+6j
xiyj , (2.11)

where x and y are triple crossing symmetric variables defined as

x = −(s̄t̄ + s̄ū + t̄ū) = s̄2 + s̄t̄ + t̄2, y = −s̄t̄ū = s̄2t̄ + s̄t̄2, (2.12)

with

s̄ = s − 4

3
m2, t̄ = t − 4

3
m2, ū = u − 4

3
m2, (2.13)

then one can express the positivity bounds as inequalities on the expansion coefficients ai,j .

In EFTs, they are directly linked to the Wilson coefficients. So the positivity bounds are

constraints on the Wilson coefficients.

The lower limit of the integration in eq. (2.10) is from 4m2. This generally renders

higher order M applications of the Y bounds contentless as they will be dominated by the

– 6 –
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terms with the largest powers of the inverse of the small (in comparison to Λ) mass m.

However, since we can actually compute the imaginary part of the amplitude to a desired

order within the EFT framework from 4m2 to (ǫΛ)2, where Λ is the cutoff and ǫ . 1, so

we can also subtract out the low energy part of the integral and define

BǫΛ(s, t) = A(s, t) − λ

m2 − s
− λ

m2 − t
− λ

m2 − u

−
∫ (ǫΛ)2

4m2

dµ

π(µ − µp)2

[

(s − µp)2

µ − s
+

(u − µp)2

µ − u

]

ImA(µ, t) (2.14)

= a(t) +

∫ ∞

(ǫΛ)2

dµ

π(µ − µp)2

[

(s − µp)2

µ − s
+

(u − µp)2

µ − u

]

ImA(µ, t). (2.15)

With this, going through the same steps, we can derive improved Y positivity bounds

Y
(2N,M)

ǫΛ > 0 [18, 59]. As the higher t-derivative Y bounds are constructed by linearly

combining derivatives of the amplitude with the lower t-derivative bounds, a greater ǫΛ

will enhance the importance of the higher t-derivative bounds, in addition to the fact that

the subtraction from 4m2 to (ǫΛ)2 already improves the Y bounds.

An often considered case is that the UV completion is weakly coupled and this weak

coupling is also accessible at low energies. In this case, loop diagrams can be suppressed

with respect to the tree diagrams by the UV weak coupling and the tree level amplitude

already unitarizes the amplitude in the UV, so we can have a tree level dispersion relation

Btr(s, t), which is similar to eq. (2.14) but the integrand is replaced with the tree level

amplitude and the integration starts from Λth, the energy scale of the first state that lies

outside the EFT [9]. Then, we can similarly derive the tree level positivity bounds Y
(2N,M)

tr .

Note that for a tree level amplitude, its imaginary part vanishes, so the ǫΛ subtracted

amplitude BǫΛ(s, t) is the same as Btr(s, t), so Y
(2N,M)

tr is a special case of Y
(2N,M)

ǫΛ .

3 New positivity bounds: simple examples

In this section, we will make further use of the dispersion relation (2.15) to extract some

new positivity bounds. In deriving the Y positivity bounds, we essentially used the fact

that the imaginary part of the amplitude is positive in appropriate ranges of s and t, i.e.,

eq. (2.6). However, the partial wave expansion and partial wave unitarity actually contain

more information, yet to be profited to derive new positivity bounds. Also, the dispersion

relation (2.10) or (2.15) are only manifestly s ↔ u crossing symmetric, while the amplitude

is actually triple crossing symmetric, which has not been used to derive the Y positivity

bounds. In this section we will take advantages of these new pieces of information to derive

the first examples of new positivity bounds before taking a more systematical approach in

section 5.

First, since the integrand of eq. (2.15) is positive in the physical region µ > 4m2, we

can introduce a positive “density distribution”

ρℓ,α(µ) =
F (α)

(µ − µp)3

µ1/2

(µ − 4m2)α
(2ℓ + 2α)Imaℓ(µ)C

(α)
ℓ (1), (3.1)

– 7 –
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with

C
(α)
ℓ (1) =

Γ(ℓ + D − 3)

Γ(D − 3)Γ(ℓ + 1)
=

(

ℓ + D − 4

ℓ

)

> 0, D ≥ 4, (3.2)

where
(n

k

)

= n!/[k!(n − k)!] are the binomial coefficients. Then the dispersion relation can

be written as

BǫΛ(s, t) = a(t) +
∑

ℓ

∫

dµ

[

(s − µp)2

µ − s
+

(u − µp)2

µ − u

]

(µ − µp)ρℓ,α(µ)

C
(α)
ℓ (1)

C
(α)
ℓ

(

1 +
2t

µ − 4m2

)

,

(3.3)

where for simplicity we have suppressed the summation and the integration limits, which

are from (ǫΛ)2 from ∞.

New positivity bounds are easiest to see when the derivatives of the amplitude are

evaluated at s = t = 0 and the limit (ǫΛ)2 ≫ m2 → 0 is taken for the expansion coefficients,

which is the approach we take in this section. In other words, we shall evaluate s and

t derivatives of BǫΛ(s, t) at s = t = 0, which leads to a dispersion relation where the

integrand is a function of µ and m2, and since the low limit of µ is (ǫΛ)2, we can neglect

all the subleading terms with m2. Clearly, the m → 0 limit can be taken earlier, and also

choosing µp = 0 we have

BǫΛ(s, t) = a(t) +
∑

ℓ

∫

dµ

[

s2

µ − s
+

(−s − t)2

µ + s + t

]

µρℓ,α(µ)

C
(α)
ℓ (1)

C
(α)
ℓ

(

1 +
2t

µ

)

. (3.4)

To see the simplest examples of these positivity bounds, we may define

f (2N,M) ≡ 1

2(2N + 2)!
∂M

t ∂2N+2
s BǫΛ(s, t)|s,t→0. (3.5)

Making use of dispersion relation (3.4), we have

f (2N,0) =
∑

ℓ

∫

dµρℓ,α(µ)
1

µ2N
> 0, N = 0, 1, 2, . . . , (3.6)

which are positive, and f (2N−1,0) = 0 for N = 1, 2, 3, . . .. Making connection to the triple

symmetric expansion coefficient ai,j defined in eq. (2.11), we have f (2N,0) = aN+1,0/2 and so

aN,0 > 0 for N = 1, 2, . . . . (3.7)

Now, we can define an “expected value” or “moment” over the “distribution” ρℓ,α(µ):1

〈〈X(µ, ℓ)〉〉 =

∑

ℓ

∫

dµρℓ,α(µ)X(µ, ℓ)
∑

ℓ

∫

dµρℓ,α(µ)
. (3.8)

We will see that, since the scattering amplitude can be directly linked to this expected

value, inequalities associated with generic expected values can be used to derive positivity

bounds on the amplitude.

1The significance of the moment of the positive distribution has been emphasized by [60].

– 8 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
5

3.1 Nonlinear positivity bounds with s derivatives only

We first look for new positivity bounds with only s derivatives on the amplitude. For this

case, we consider X(µ, l) = 1/µ2N and we have
〈〈

1/µ2N
〉〉

= f (2N,0)/f (0,0). Then the

Cauchy-Schwarz inequality for expected values,

〈〈

1

µ2I

〉〉〈〈

1

µ2J

〉〉

≥
〈〈

1

µI+J

〉〉2

, (3.9)

leads to

f (2I,0)f (2J,0) ≥ (f (I+J,0))2, (3.10)

or, in terms of the coefficients aN+1,0,

a2I,0a2J,0 ≥ (aI+J,0)2. (3.11)

Note that when I + J is an odd number, f (I+J,0) = 0, so non-trivial constraints come from

when I + J is even. In particular, we have

f (4N,0)f (0,0) ≥ (f (2N,0))2. (3.12)

These positivity constraints are different from the positivity bounds defined in [9] in that

these positivity bounds are nonlinear in the amplitude and its s and t derivatives, while

the Y positivity bounds are linear in them. We would like to mention that the nonlinear

positivity bound (3.11) has been found previously [60], which was derived in the case of

a weakly coupled UV completion by matching to the UV heavy masses and realizing that

the ai,0 coefficients must be constrained by the convex hull of the half moment curve of the

heavy masses. Moreover, [60] has shown that the determinant of the Hankel matrix formed

by ai,0 to a given order is positive. The positivity of this Hankel matrix has found interesting

applications in the weak gravity conjecture [61] and string theory amplitudes [62, 63]. The

optimal positivity of the s derivative amplitudes has been recently sought after in [56] with

arc dispersion relations and positive moments, confirming the results of [60] and obtaining

optimal bounds truncated to a given order.

There are also some other immediate inequalities for expected values. Viewing 1/µ as

the independent variable, (1/µ)N for N > 1 is a convex function, and so we have Jensen’s

inequality
〈〈

1

µ2N

〉〉

≥
〈〈

1

µ2

〉〉N

, (3.13)

which leads to

f (2N,0) ≥ (f (2,0))N

(f (0,0))N−1
. (3.14)

This can also be obtained by repeated use of the Cauchy-Schwarz inequality. In general,

we have

f (2N,0) ≥ (f (2I,0))J

(f (0,0))J−1
, N = IJ, N, I = 0, 1, 2, . . . . (3.15)
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There is also Holder’s equality, which in terms of f (N,0) is given by

(

f (2I,0)

f (0,0)

)
1

i
(

f (2J,0)

f (0,0)

)
1

j

≥ f
( 2I

i
+ 2J

j
,0)

f (0,0)
,

1

i
+

1

j
= 1, i, j > 1. (3.16)

The Cauchy-Schwarz inequality is the special case where i = j = 2.

We can already learn something very powerful from for example the simple state-

ment (3.14). If it is ever the case that f (0,0)/f (2,0) ≪ (ǫΛ)4 for example, then it clearly

follows that f (2N,0)/f (0,0) becomes arbitrarily large at large N , undermining the typical

expectations of a low energy EFT expansion. This argument alone does not rule out EFTs

for which this is true, but clearly highlights a significant issue. Indeed this argument may

be extended for any pair of f (2l,0) as for example from eq. (3.15). This comes close to ruling

out situations where there is a soft behaviour in the amplitude [15, 40–42] from admitting

a standard UV completion. However, it does not quite achieve this as it only applies at

present at t = 0 which excludes the most interesting case of the Galileon. This will be

dealt with by a more refined argument in the next sections.

3.2 Triple crossing and t derivatives

To extract new positivity bounds with t derivatives, we can make use of detailed proper-

ties of the Gegenbauer polynomial and the fact that a scalar amplitude is trivially triple

crossing symmetric. The dispersion relation (2.9) is manifestly s ↔ u crossing symmetric

B(s, t) = B(u, t). Triple crossing symmetry means that B(s, t) should also be s ↔ t cross-

ing symmetric B(s, t) = B(t, s), which one can impose as a condition on eq. (2.9). Being

more precise, in the case where there scattering states are massive and their is a mass gap

to the branch cut, the scattering amplitude will be an analytic function in the so-called

Mandelstam triangle, for which the s and t channel dispersion relations may be identified

a(t) +

∫ ∞

4m2

dµ

π(µ − µp)2

[

(s − µp)2

µ − s
+

(u − µp)2

µ − u

]

ImA(µ, t)

= a(s) +

∫ ∞

4m2

dµ

π(µ − µp)2

[

(t − µp)2

µ − t
+

(u − µp)2

µ − u

]

ImA(µ, s) . (3.17)

Note that this relation is not valid outside of the Mandelstam triangle in general.

The ǫΛ subtracted amplitude (2.14) that is used in the improved positivity bounds is in

general not triple crossing symmetric, because the 4m2 to (ǫΛ)2 subtraction is only s ↔ u

crossing symmetric. Nevertheless, when there is a weakly coupled tree level UV completion,

the dispersion relation for the tree level amplitude Btr(s, t) is triple crossing symmetric,

as the 4m2 to (ǫΛ)2 subtraction vanishes then. With this in mind, triple crossing becomes

most powerful in the case of weakly coupled tree level UV completions.

To proceed and to simplify the core argument we shall assume m ≪ Λ and neglect

the mass dependence in the partial wave formula, as appropriate for weakly coupled UV

completions for which the leading bounds are on the tree amplitudes. Imposing s ↔ t

crossing symmetry at s = 0, that is, Btr(0, t) = Btr(t, 0), we can express the unknown
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subtraction function a(t) in terms of the dispersion integral:

a(t) = a(0) +
∑

ℓ

∫

dµ

([

t2

µ − t
+

t2

µ + t

]

µρℓ,α(µ) − t2

µ + t

µρℓ,α(µ)

C
(α)
ℓ (1)

C
(α)
ℓ

(

1 +
2t

µ

)

)

.

(3.18)

Imposing the s ↔ t crossing symmetry in general and then expanding in terms of powers

of kinematic invariants (which amounts to an expansion in 1/µ) gives rise to

0 = Btr(t, s) − Btr(s, t) =
∑

ℓ

∫

dµ ρℓ,α(µ)

[

2HD,ℓst(s2 − t2)

(D − 2)Dµ2
+ O

(

1

µ3

)

]

, (3.19)

where we have defined

HD,ℓ = ℓ(ℓ + D − 3)[4 − 5D − 2(3 − D)ℓ + 2ℓ2]. (3.20)

Since this relation must be true for any s and t, it follows that

∑

ℓ

∫

dµ ρℓ,α(µ)
HD,ℓ

µ2
= 0, (3.21)

must hold as an identity. This is one of the many nontrivial consequences of full crossing

symmetry on the partial wave expansion coefficients, which will be explored systematically

in section 5.3. For now, as we shall see, the condition eq. (3.21) already turns out to be

remarkably fruitful.

Using the s ↔ u symmetric dispersion relation, we can cast the amplitude in a triple-

crossing-symmetric way Btr(s, t) = (Btr(s, t) + Btr(s, u) + Btr(t, s))/3. A straightforward

evaluation gives

f (0,1)

f (0,0)
=

〈〈

3(2 − D) + 4(−3 + D)ℓ + 4ℓ2

2(D − 2)µ

〉〉

, (3.22)

which leads to
f (0,1)

f (0,0)
+

〈〈

3

2µ

〉〉

=

〈〈

2(−3 + D)ℓ + 2ℓ2

(D − 2)µ

〉〉

. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values 〈〈X(µ, l)〉〉2 ≤
〈〈

X(µ, l)2
〉〉

(or “the variance is positive”) tells us that

(

f (0,1)

f (0,0)
+

〈〈

3

2µ

〉〉

)2

=

〈〈

2(D − 3)ℓ + 2ℓ2

(D − 2)µ

〉〉2

≤
〈〈(

2(D − 3)ℓ + 2ℓ2

(D − 2)µ

)2〉〉

. (3.24)

Since we can split the square into

(2(D − 3)ℓ + 2ℓ2)2 = (5D − 4)
[

2(D − 3)ℓ + 2ℓ2
]

+ 2HD,ℓ, (3.25)

plugging back into (3.24), the later term vanishes due to eq. (3.21), so we get

(

f (0,1)

f (0,0)
+

〈〈

3

2µ

〉〉

)2

≤ 5D − 4

D − 2

〈〈

2(D − 3)ℓ + 2ℓ2

(D − 2)µ2

〉〉

. (3.26)
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Note that the integrand of the integral
∑

ℓ

∫

dµρℓ,α(µ)(. . .)/µ2 is positive definite. So if one

fixes one of the µ’s in the denominator to the lower limit of the integration, which is Λ2
th

for this case, the result is greater than the original integral. For the case where Λth = Λ,

we have the following inequality

〈〈

2(D − 3)ℓ + 2ℓ2

(D − 2)µ2

〉〉

<
1

Λ2

〈〈

2(D − 3)ℓ + 2ℓ2

(D − 2)µ

〉〉

. (3.27)

Combining it with eq. (3.26), we have

(

f (0,1)

f (0,0)
+

〈〈

3

2µ

〉〉

)2

<
5D − 4

(D − 2)Λ2

(

f (0,1)

f (0,0)
+

〈〈

3

2µ

〉〉

)

, (3.28)

which can be written as

0 <
f (0,1)

f (0,0)
+

〈〈

3

2µ

〉〉

<
5D − 4

(D − 2)Λ2
. (3.29)

Since 〈〈1/µ〉〉 and f (0,0) are positive, we have

f (0,1) <
5D − 4

(D − 2)Λ2
f (0,0) (3.30)

Similarly, we have the inequality

〈〈

1

µ

〉〉

<
1

Λ2
=⇒

∑

ℓ

∫

dµρℓ,α(µ)
1

µ
<

1

Λ2
f (0,0), (3.31)

and thus we have

0 < f (0,1) +
3

2Λ2
f (0,0). (3.32)

In other words we have both an upper and lower bound on f (0,1), bounded by a term of

the same order.

− 3

2Λ2
f (0,0) < f (0,1) <

5D − 4

(D − 2)Λ2
f (0,0) (3.33)

This is a remarkably strong restriction on the parameter of the effective theory.

We will generalize these new positivity bounds in section 5, following a similar ar-

gument, and compare the new positivity bounds to the previous Y bounds in section 6,

but before that, as an example of potential applications, we will show that these first new

bounds indeed provide extra constraints on an EFT and already have important implication

for weakly broken Galileons in the next section.

4 Implication for weakly broken Galileon theories

In this section, we apply the new positivity bounds derived above to weaklly broken Galileon

theory. The Y positivity bounds [9] were applied to the specific case of a massive Galileon

in [18] and it was found that there is a parameter region where the theory is compatible

with analyticity. We will see that the new positivity bounds can rule out massive Galileon
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and more generally any weakly broken Galileon theory as an EFT with a healthy hierarchy

and standard local UV completion.

Let us first see what the nonlinear forward limit positivity bounds imply for a generic

scattering amplitude which is parametrized as in eq. (2.11) and where ã1,0 is suppressed

ã1,0 ∼ g2 with g ≪ 1. With the notation (2.11), the positivity bound (3.14) can be

written as

ãN+1,0 ãN−1
1,0 ≥ ãN

2,0. (4.1)

In the large N limit, this bound essentially implies ã1,0 > ã2,0 if we assume the high order

coefficients do not grow arbitrarily large.2 Since ãN,0 > 0 for N = 1, 2, 3, . . ., the fact that

ã1,0 is suppressed (ã1,0 ∼ g2) then implies that ã2,0 also has to be suppressed (ã2,0 ∼ g2).

With this established, we can go back to eq. (4.1), and we can then infer that generically

ãN,0 ∼ g2. So in the forward limit t = 0, neglecting the constant term, the amplitude

should schematically go like

B(s, 0) ∼ g2

ΛD−4

(

x

Λ4
+

x2

Λ8
+

x3

Λ12
+ · · ·

)

, (4.2)

where we have neglected order unity coefficients. This is as far as we get with the forward

limit bounds, but does not say anything interesting about the Galileon case for which it is

the leading y ∼ −stu term that is relevant.

On the other hand, the t derivative positivity bound (3.30) implies

ã0,1 <
5D − 4

(D − 2)
ã1,0, (4.3)

and the bound (3.32) implies

0 < ã0,1 +
3

2
ã1,0. (4.4)

Since ã1,0 is suppressed ã1,0 ∼ g2, the two inequalities above imply that ã0,1 also has to be

suppressed, that is, ã0,1 ∼ g2. Therefore, for an amplitude where the leading term ã1,0 is

soft, positivity bounds implies that the amplitude has to be of the schematic form

B(s, t) ∼ g2

ΛD−4

(

x

Λ4
+

y

Λ6
+

x2

Λ8
+ · · ·

)

, (4.5)

again neglecting order unity factors.

Galileon theories are scalar field theory that captures salient features of a number of

massive gravitational models [45, 46, 64, 65] but have also been considered in their own

right as effective theories with soft behaviour for their scattering amplitudes [43]. The

Galileon symmetry π → π + bµxµ translates directly into the requirement that the usual

O(E4) term in the scattering amplitude low energy expansion vanishes. When the Galileon

symmetry is weakly broken, the term is recovered but with a coefficient which is suppressed

2This assumption can actually be dropped; see eq. (5.12) with ǫ = 1. Note that cm,0 = am,0.
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by the amount of breaking. In D dimensions, it is given by the following Lagrangian

Λ4−D
3 Lmg = −1

2
∂µπ∂µπ − 1

2
m2π2 +

D+1
∑

n=3

gn

Λ3n−3
3

π∂µ1∂[µ1
π∂µ2∂µ2

π · · · ∂µn∂µn]π

+
∑

i

Oi

(

∂2π

Λ3
3

,
∂3π

Λ4
3

,
∂4π

Λ5
3

, . . .

)

, (4.6)

where gn are dimensionless coefficients of order one, [ ] is anti-symmetrization of the indices,

Λ3 is the strong coupling scale and the Oi operators represent higher derivative terms, which

if not present at the classical level can be generated by quantum corrections. An explicit

calculation shows that the scattering amplitude for massive galileon goes like [18]

Bmg(s, t) ∼ 1

ΛD−4
3

(

m2

Λ6
3

x +
1

Λ6
3

y +
1

Λ8
3

x2 + · · ·
)

, (4.7)

where we have neglected the constant term of order m2/Λ2
3 and order unity coefficients.

So the massive galileon amplitude belongs to the type of the amplitude where the leading

low energy behaviour is soft. Matching this amplitude to eq. (4.5), we can infer that

g2

ΛD
∼ m2

ΛD+2
3

,
g2

ΛD+2
∼ 1

ΛD+2
3

. (4.8)

Therefore, the new positivity bounds imply that for massive galileon the cutoff of the theory

has to be parametrically close to the mass of the field

Λ ∼ m, (4.9)

which contradicts the most basic requirement of an EFT, a healthy hierarchy between the

two scales.

A similar argument applies a theory of a massless Galileon with a small Galileon

symmetry breaking term such as

Λ4−D
3 Lwbg = −1

2
∂µπ∂µπ − α4

Λ4
3

(∂π)4 +
D+1
∑

n=3

gn

Λ3n−3
3

π∂µ1∂[µ1
π∂µ2∂µ2

π · · · ∂µn∂µn]π

+
∑

i

Oi

(

∂2π

Λ3
3

,
∂3π

Λ4
3

,
∂4π

Λ5
3

, . . .

)

, (4.10)

with |α4| ≪ 1 the measure of the Galileon symmetry breaking. The form of the scattering

amplitude is then again (4.7) with now m2 → α4Λ2
3, and the bounds (3.30) and (3.32)

amount to the requirement that |α4| ∼ O(1) (see [30] for a weaker lower bound on |α4|).
Stated differently, the Galileon symmetry can never just be weakly broken, since this would

require the leading x term to be suppressed relative to the y term in a way forbidden by

the new positivity bounds.
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5 New positivity bounds: generalizations

Having seen how powerful these new positivity bounds can be in the example in the last

section, in this section, we will generalize the new positivity bounds found in section 3,

again making use of the finer properties of the partial wave expansion and the triple crossing

symmetry that are already exploited there, but in a more systematical way.

Note that dispersion relation eq. (3.3) is s ↔ u symmetric, so we may take advantage

of an s ↔ u symmetric variable

w ≡ −ŝû = ŝ(ŝ + t), ŝ = s − 2m2, û = u − 2m2 (5.1)

So, slightly different from the way to derive the Y (2N,M) bounds or the direct approach in

section 3, here we find it convenient to expand the amplitude in terms of w and t. Choosing

the subtraction point at µp = 2m2 and defining µ̂ = µ − 2m2, the dispersion relation can

be re-cast as3

BǫΛ(s, t) = a(t) +
∑

ℓ

∫

dµρℓ,α(µ + 2m2)µ

[

ŝ2

µ − ŝ
+

û2

µ − û

]

C
(α)
ℓ (1 + 2t

µ̂ )

2C
(α)
ℓ (1)

(5.2)

= b(t) +
∑

ℓ

∫

dµρℓ,α(µ + 2m2)µ2
2 + t

µ

1 + t
µ − w

µ2

C
(α)
ℓ (1 + 2t

µ̂ )

2C
(α)
ℓ (1)

, (5.3)

where now the integration limit of µ is from (ǫΛ)2 − 2m2 to infinity and b(t), although not

important for this paper, is for clarity given by

b(t) = a(t) +
∑

ℓ

∫

dµρℓ,α(µ + 2m2)[tµ − 2µ2]
C

(α)
ℓ (1 + 2t

µ̂ )

2C
(α)
ℓ (1)

. (5.4)

Expanding w/µ2 in the denominator and 2t/µ̂ in C
(α)
ℓ (1 + 2t

µ̂ ) respectively and then ex-

panding t/µ in the denominator, we can get

BǫΛ(s, t) =
∞
∑

m=0

∞
∑

n=0

cm,nwmtn, (5.5)

where the expansion coefficients are given by

cm,n ≡
〈

D̂m,n

µ2m+n−2

〉

≡
n
∑

i=0

(−1)iM i
m

〈

Ln−i
ℓ

µ2m+n−2

〉

(5.6)

=

〈

Ln
ℓ

µ2m+n−2

〉

− M1
m

〈

Ln−1
ℓ

µ2m+n−2

〉

+ M2
m

〈

Ln−2
ℓ

µ2m+n−2

〉

+ . . . , (5.7)

and for c0,n we also need to add the Taylor coefficients of b(t), although the c0,n terms

will play no essential role in the following. Here Ln
ℓ , up to a factor, are semi-positive

polynomials of ℓ, defined as

Ln
ℓ ≡ L̃n

ℓ

(

µ

µ̂

)n

, L̃n
ℓ ≡ 1

n!

Γ(ℓ + n + 2α)

Γ(ℓ + 2α)

Γ(ℓ + 1)

Γ(ℓ − n + 1)

Γ(α + 1
2)

Γ(α + 1
2 + n)

≥ 0, (5.8)

3Note that the µ here differs by a shift of 2m2 from the µ previously.
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while M i
m are positive numbers defined as

M i
m ≡ 1

2

[

(m − 1 + i)!

(m − 1)!i!
+

(m + i)!

m!i!

]

> 0. (5.9)

The average 〈 〉 is defined as

〈X(µ, ℓ)〉 =
∑

ℓ

∫

dµρℓ,α(µ + 2m2)X(µ, ℓ), (5.10)

which is different from the normalized average 〈〈 〉〉 in section 3. With this average, cm,0

can be written as

cm,0 =

〈

1

µ2(m−1)

〉

. (5.11)

By limiting factors of µ in the denominator to be the lower limit of the integration (ǫΛ)2,

we immediately get that

c1,0 > (ǫΛ)2c2,0 > (ǫΛ)4c3,0 > (ǫΛ)6c4,0 > . . . . (5.12)

To translate between the s ↔ u symmetric cm,n and the triple symmetric ai,j parameters,

using x = w + t2 and y = wt, we can get the relation

cm,n =
∑

k∈N,−3k+m+n≥0,n−2k≥0

(3k + m − n)!a3k+m−n,n−2k

k!(2k + m − n)!
. (5.13)

Then the Cauchy-Schwarz nonlinear positivity bounds with only s derivatives in section 3.1

can be written as

cm,0 cm+2,0 > (cm+1,0)2. (5.14)

As mentioned above, we can also get additional inequalities from eq. (5.14) (and cm,0 > 0),

such as cm,0 cn,0 ≥ (c m+n
2

,0)2 for m + n = even, and (cm,0)n−1 cm+n,0 > (cm+1,0)n, but

the bounds from eq. (5.14) are independent and complete, in the sense that those extra

bounds can be derived from them. For example, multiplying cm,0cm+2,0 > c2
m+1,0 and

cm+2,0cm+4,0 > c2
m+3,0 and the square of cm+1,0cm+3,0 > c2

m+2,0, we can derive cm,0cm+4,0 >

c2
m+2,0; similarly, we can derive cm,0cm+6,0 > c2

m+3,0 and so on. Also, noticing that 〈1/µ〉2 <

c1,0c2,0, the t-derivative bounds eq. (3.30) and eq. (3.32) become

−3

2

√
c1,0c2,0 < c1,1 <

10α + 11

2α + 1

√
c1,0c2,0. (5.15)

5.1 The P Q positivity bounds

Now, we generalize the s-derivative nonlinear positivity bounds to allow for t derivatives.

Similar to [9], we will do linear cancelation among cm,n. The problem, as observed in [9],

is that we cannot do it at the level of the same µ power. To overcome this, we have to fix

one of the µ denominator to the lower limit of the integration, which is now

(ǫΛ̂)2 = (ǫΛ)2 − 2m2, (5.16)
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to obtain the relaxing inequality. If we consider (ǫΛ)2 ≫ m2, then (ǫΛ̂)2 ≃ (ǫΛ)2. Here, as

oppose to using it in one direction [9], now we use the relaxing inequality in both directions,

that is, we will use something like4

1

(ǫΛ̂)2

〈

Li
ℓ

µj−1

〉

>

〈

Li
ℓ

µj

〉

> (ǫΛ̂)2

〈

Li
ℓ

µj+1

〉

. (5.17)

Similar to the case of the Y bounds [9], the alternating sign in eq. (5.6) is the main

obstacle to get positivity for t derivatives. Again, we can perform linear cancellations to

overcome this, but now we will introducing two sequences of linear combinations of cm,n:

Pm,n and Qm,n.

5.1.1 The nonlinear P Q bounds

First, we start with the case with the 1st t derivative. Considering

cm,1 =

〈

L1
ℓ

µ2m−1

〉

− M1
m

〈

1

µ2m−1

〉

, (5.18)

we can define

Pm,1 ≡ cm,1 +
M1

m

(ǫΛ̂)2
cm,0, (5.19)

Qm,1 ≡ cm,1 + M1
m(ǫΛ̂)2cm+1,0. (5.20)

Using the relaxing inequality eq. (5.17), we can obtain

Pm,1 >

〈

L1
ℓ

µ2m−1

〉

> Qm,1. (5.21)

We can define a modified (positive) density ρ̃i
ℓ,α = ρℓ,αLi

ℓ, and the Cauchy-Schwarz inequal-

ity implies that

Pm,1 Pm+2,1 >

〈

L1
ℓ

µ2m−1

〉〈

L1
ℓ

µ2m+3

〉

>

〈

L1
ℓ

µ2m+1

〉2

> Q2
m+1,1. (5.22)

Similarly, for the 2nd t derivative, we have

cm,2 =

〈

L2
ℓ

µ2m

〉

− M1
m

〈

L1
ℓ

µ2m

〉

+ M2
m

〈

1

µ2m

〉

. (5.23)

Making use of the relaxing inequality eq. (5.17) and the lower t derivative bounds

−
〈

L1
ℓ/µ2m−1

〉

> −Pm,1, −
〈

L1
ℓ/µ2m+1

〉

< −Qm+1,1, we can use a linear combination of

ci,0 and ci,1 to cancel all the other terms but the leading
〈

L2
ℓ/µ2m

〉

in cm,2. Defining

Pm,2 ≡ cm,2 +
M1

m

(ǫΛ̂)2
Pm,1 − M2

mcm+1,0, (5.24)

Qm,2 ≡ cm,2 + M1
m(ǫΛ̂)2Qm+1,1 − M2

mcm+1,0, (5.25)

4Note that Li
ℓ can vanish, but that is if and only if ℓ = 0. Since an amplitude must also have at least

some of ℓ > 0 waves, we have “>” instead of “≥” in these inequalities.
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we can get

Pm,2 >

〈

L2
ℓ

µ2m

〉

> Qm,2, (5.26)

which leads to

Pm,2 Pm+2,2 > (Qm+1,2)2. (5.27)

For the 3rd t derivative, we have

cm,3 =

〈

L3
ℓ

µ2m+1

〉

− M1
m

〈

L2
ℓ

µ2m+1

〉

+ M2
m

〈

L1
ℓ

µ2m+1

〉

− M3
m

〈

1

µ2m+1

〉

, (5.28)

which inspires us to define

Pm,3 ≡ cm,3 +
M1

m

(ǫΛ̂)2
Pm,2 − M2

mQm+1,1 +
M3

m

(ǫΛ̂)2
cm+1,0, (5.29)

Qm,3 ≡ cm,3 + M1
m(ǫΛ̂)2Qm+1,2 − M2

mPm+1,1 + M3
m(ǫΛ̂)2cm+2,0, (5.30)

and we can again get

Pm,3 >

〈

L3
ℓ

µ2m+1

〉

> Qm,3, (5.31)

which leads to

Pm,3 Pm+2,3 > (Qm+1,3)2. (5.32)

Thus, for generic t derivatives, we need to mix Pm,n and Qm,n, and considering the structure

of eq. (5.6), it is not difficult to find the linear combinations for generic m and n:

Pm,n ≡ cm,n +
1

(ǫΛ̂)2

⌊ n+1

2
⌋

∑

i=1

M2i−1
m Pm+i−1,n+1−2i −

⌊ n
2

⌋
∑

j=1

M2j
m Qm+j,n−2j , (5.33)

Qm,n ≡ cm,n + (ǫΛ̂)2

⌊ n+1

2
⌋

∑

i=1

M2i−1
m Qm+i,n+1−2i −

⌊ n
2

⌋
∑

j=1

M2j
m Pm+j,n−2j , (5.34)

Pm,n >

〈

Ln
ℓ

µ2m+n−2

〉

> Qm,n, (5.35)

where we have defined Pm,0 = Qm,0 = cm,0 and ⌊ ⌋ again means taking the flooring integer.

Thus, the simplest of generic nonlinear positivity bounds take the form

Pm,n Pm+2,n > (Qm+1,n)2. (5.36)

The n = 0 bounds reduce to the s-derivative nonlinear positivity bounds.

5.1.2 The linear P Q bounds

Having defined the Pm,n and Qm,n quantities, by eq. (5.35) and the relaxing inequality, it

is easy to see that they can also be used to construct a set of linear positivity bounds:

Pm,n > (ǫΛ̂)4kQm+k,n, k = 0, 1, 2, . . . , (5.37)
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which we will refer to as the linear PQ positivity bounds. Also by eq. (5.35), we can

find that

Pm,n > 0, (5.38)

which are very similar to the Y positivity bounds in [9]. In section 6, we compare the

P > 0 bounds with the Y bounds by explicitly evaluating the first few bounds in the two

sets; see figure 7.

5.2 The Dsu positivity bounds

In section 5.1, we have used the relaxing inequality and the Cauchy-Schwarz inequality to

obtain the linear and nonlinear PQ positivity bounds. Here and in section 5.3 we make

use of a new strategy to extract more positivity bounds from the partial wave expanded

dispersion relation. To understand the basic idea, we first note that since 1/µ < 1/µ̂ <

σ/µ with

σ =
(ǫΛ̂)2

(ǫΛ̂)2 − 2m2
, (5.39)

we have

cm,n =

〈

D̂m,n

µ2m+n−2

〉

>

〈

Dm,n

µ2m+n−2

〉

, (5.40)

where we have defined

Dm,n ≡
n
∑

even i=0

M i
mL̃n−i

ℓ −
n
∑

odd i=1

σn−iM i
mL̃n−i

ℓ . (5.41)

When (ǫΛ)2 ≫ m2, D̂m,n simply becomes Dm,n. Since 〈 〉 is an integration over a positive

density distribution ρℓ,α, bounds on cm,n can be extracted if Dm,n is bounded below for all

possible ℓ. Indeed, Dm,n is bounded below as it is a 2n-th order polynomial in term of ℓ

with a positive coefficient for the highest order.

To see this, note that L̃n
ℓ are roughly speaking the derivatives of the Gegenbauer

polynomial C
(α)
ℓ (x) evaluated at x = 1, which are n-th order polynomials in terms of ℓ:

L̃n
ℓ =

1

n!

Γ(α + 1
2)

Γ(α + 1
2 + n)

ℓ(ℓ + 2α) (ℓ − 1)(ℓ + 2α + 1) . . . (ℓ − n + 1)(ℓ + 2α + n − 1). (5.42)

Inspecting the structure of L̃n
ℓ , it is convenient to introduce a new variable

η ≡ ℓ(ℓ + 2α) (5.43)

and then L̃n
ℓ can be cast as n-th order polynomials in terms of η:

L̃n
ℓ =

1

n!

Γ(α + 1
2)

Γ(α + 1
2 + n)

n−1
∏

k=0

(η − k(2α + k)). (5.44)

Note that η is always non-negative η ≥ 0 for α ≥ 0, ie, for D ≥ 3. Then we can re-cast

Dm,n as

Dm,n(η) ≡
n
∑

i=0

(−1)iW i
m,nηn−i (5.45)
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where

W i
m,n ≡

i
∑

even k=0

Mk
mRn−kαn−k−1

k +
i
∑

odd k=1

σn−kMk
mRn−kαn−k−1

k > 0, (5.46)

with

Rn ≡ 1

n!

Γ(α + 1
2)

Γ(α + 1
2 + n)

, (5.47)

αl
k ≡

∑

0≤i1 6=... 6=ik≤l

i1(2α + i1) . . . ik(2α + ik), αl
0 ≡ 1. (5.48)

From eq. (5.45), we see that Dm,n(η) is an n-th order polynomial with a positive coefficient

for the highest order term, so Dm,n(η) must be bounded below for non-negative η, and

thus by replacing Dm,n(η) with its minimum in eq. (5.40), we can get a lower bound for

cm,n. Suppose S0
m,n is the minimum of Dm,n(η) over all possible values of η

S0
m,n = minη Dm,n(η). (5.49)

By eq. (5.40), we immediately get the lower bounds for n = 2k

cm,2k − S0
m,2k cm+k,0 > 0. (5.50)

For the case of an odd number of t derivatives (that is, n = 2k +1), the η0 term in Dm,n(η)

is negative, so S0
m,n must be negative, which leads to

cm,2k+1 − S0
m,2k+1

√
cm+k,0cm+k+1,0 > cm,2k+1 − S0

m,2k+1

〈

1

µ2m+2k−1

〉

> 0. (5.51)

It would be instructive to look at a simple example: the case of D2,2(η) in the limit of

σ = 1. Evaluating eq. (5.45) directly, we can get

D2,2(η) =
1

2
(

α + 1
2

) (

α + 3
2

)

(

η2 − 14α + 17

2
η +

36α2 + 72α + 27

4

)

. (5.52)

In 4D (α = 1/2), it is easy to see that the minimum of the η polynomial is achieved by

ℓ = 2 (remembering η ≡ ℓ(ℓ + 2α)), so the positivity bound is simply c2,2 + 9
2c3,0 ≥ 0. In

5D, we have S0
m,n = D2,2(2(2 + 1)) = −12/5, and the bound is c2,2 + 12

5 c3,0 > 0.

There is an obvious generalization to these positivity bounds. Instead of extracting

the positivity bounds from eq. (5.40) with the minimum of Dm,n, we may also linearly

superimpose cm,n at the same level of 1/µ. That is, we consider a linear combination of

the form

Dsu
m,n(η, k) ≡

∑

i≥0

kiDm+i,n−2i(η), k0 = 1, (5.53)

which is still an n-th order polynomial of η with a positive coefficient for the highest order

term. (For example, for D3,3(η), we can consider Dsu
3,3(η, k) = D3,3(η) + kD4,1(η).) Note

that if ki>0 is positive, Dm,n is defined as in eq. (5.41), as we need to use the inequality
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1/µ < 1/µ̂ < σ/µ̂ in eq. (5.40). However, a negative ki>0 is allowed, and if ki>0 < 0, we

must define Dm,n as

Dm,n ≡
n
∑

even i=0

σn−iM i
mL̃n−i

ℓ −
n
∑

odd i=1

M i
mL̃n−i

ℓ , if ki>0 < 0. (5.54)

We emphasize that the two definitions of Dm,n are essentially the same if (ǫΛ)2 ≫ m2.

For a given set of ki, we can again minimize Dsu
m,n(η, k) with respect to η to get

Sm,n(k) = min
η

Dsu
m,n(η, k). (5.55)

Following the same procedure as for the single Dm,n(η) case, we can obtain the Dsu posi-

tivity bounds

cm,2k +
∑

i≥1

kicm+i,2k−2i > Sm,2k(k) cm+k,0, (5.56)

cm,2k+1 +
∑

i≥1

kicm+i,2k+1−2i > Sm,2k+1(k)
√

cm+k,0cm+k+1,0, (5.57)

where ki are constants that can be arbitrarily chosen in order to get the best bounds.

Combing different Dsu
m,n(η) at the same level ought to give rise to better positivity

bounds due to the simple fact that, for a set of functions fi(η), we have minη
∑

i fi(η) ≥
∑

i minη fi(η). Choosing fi(η) as kiDm+i,n−2i(η) with ki > 0, this will enhance the in-

equalities by allowing greater Sm,n. Note that for an individual bound the effect of this

enhancement is not easy to see, as adding a Dm+i,n−2i(η) introduces an extra cm+i,n−2i

into the inequality; the enhancement can be seen after one puts all the inequalities to-

gether, which is also what we have found empirically, as will be shown in section 6. If

one also takes into accounting triple crossing symmetry, as will be discussed shortly in

section 5.3, even for those combinations with ki < 0, we will have the enhancement in the

sense of “min
∑ ≥ ∑

min” stated above, because with triple crossing symmetry we can get

inequalities going the opposite direction for a given cm,n.

5.3 Triple crossing symmetric positivity bounds

In section 5.1 and 5.2, we have only used the s ↔ u symmetry of a scalar amplitude. But of

course the scalar amplitude B(s, t) enjoys the bigger triple crossing symmetry s ↔ t ↔ u.

In this subsection, we will exploit this fact to extract more positivity bounds. We should

emphasize that the ǫΛ subtracted amplitude BǫΛ(s, t) is in general not triple crossing

symmetric because the subtraction from 4m2 to ǫΛ is only s ↔ u symmetric. Of course,

for the tree level amplitude, BǫΛ(s, t) still has the triple crossing symmetry because for that

case the subtraction from 4m2 to (ǫΛ)2 vanishes. That is, we take (ǫΛ)2 to be the scale of

the first heavy state that lies outside of EFT: Λ2
th. We will work with this understanding

of the notations in this subsection. Also, since for this scenario we are only interested in

the case where a healthy hierarchy of scales exists in the EFT Λ2
th ≫ m2, we shall take the

limit s, t ≫ m2, and neglect the differences between the hatted and un-hatted variables,

thus having

D̂m,n = Dm,n and L̃n
ℓ = Ln

ℓ . (5.58)
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Starting from an s ↔ u symmetric dispersion relation, the triple crossing symmetry

can be exploited by further imposing the s ↔ t symmetry. In section 3.2, we have derived

the simplest of such s ↔ t crossing constraints, eq. (3.21), which states that the average,

as defined in eq. (5.10), over a polynomial of ℓ multiplied by powers of 1/µ must vanish

to preserve the s ↔ t symmetry. However, a more convenient way to impose the triple

crossing symmetry is to start with the s ↔ u symmetric expansion (5.5), and then the s ↔ t

crossing symmetry can be viewed as the redundancy of the expansion coefficients cm,n. To

extract these redundancies, we may express the s ↔ u symmetric coefficients cm,n in terms

of some triple symmetric coefficients. A good triple symmetric basis to express cm,n can be

provided by ai,j as defined in eq. (2.11). Then one can eliminate ai,j in these relations to

obtain relations between cm,n. The lowest orders of the explicit relations between cm,n and

the independent cm,n can be found in table 1. The black cm,n in the table can be viewed

as independent. Note that the number of cm,n at level 1/µN−2 should be the number of

possible (m, n) solutions to equation 2m+n = N , while the number of independent cm,n at

level 1/µN−2 should be the number of possible (i, j) solutions to equation 2i+3j = N . The

difference between them is the number of the constraints which are shown in table 1. From

eq. (5.6), we can see that these constraints on cm,n can be viewed as conditions imposed on

the integral average of the polynomials of ℓ with the density ρℓ,α, generalizing the condition

of eq. (3.21).

Let us use a simple example to illustrate how this table is obtained. An amplitude

may be expressed either (w, t) or (x, y), which are related by x = w + t2, y = wt:

Btr(s, t) = c1,0w + c0,2t2 + c1,1wt + c0,3t3 + c2,0w2 + c1,2wt2 + c0,4t4 + . . . (5.59)

Btr(s, t) = a1,0x + a0,1y + a2,0x2 + . . . , (5.60)

= a1,0w + a1,0t2 + a0,1wt + a2,0w2 + 2a2,0wt2 + a2,0t4 + . . . . (5.61)

Matching eq. (5.59) to eq. (5.61), we can get c1,2 = 2a2,0 = 2c2,0, which is the first

redundancy shown in table 1.

As we can see in table 1, these triple symmetric constraints appear as linear combina-

tions of cm,n at the same level of 1/µ. Generally, they take the form

〈

Γm,n(η)

µ2m+n−2

〉

= cm,n +
∑

2k+l=2m+n

γk,lck,l = 0, (5.62)

where γi,j can be read from the table above. As mentioned above, for a given level of

1/µ, there may be several Γm,n, as shown in table 1, which is the difference between the

numbers of cm,n and ai,j with (m, n) and (i, j) satisfying 2m + n = 2i + 3j = N . In table 1

and eq. (5.62), we have adapted a convention that Γm,n is an n-order polynomial of η that

has a positive coefficient for the highest order term.

From the explicitly obtained constraints, we find that Γm,m+1(η) satisfies the following

simple relations

Γm,m+1(η) = Dm,m+1(η) − 2Dm+1,m−1(η), (5.63)

Γm,n(η) = Γm+1,n(η) + Γm,n−1(η). (5.64)
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η0 η2 η4 η6 η8 η10 η12 Γm,n constraints from s ↔ t symmetry

µ2 c0,0

1 c1,0 c0,2

1
µ2 c2,0 c1,2 c0,4 c1,2 − 2c2,0 = 0

1
µ4 c3,0 c2,2 c1,4 c0,6 c1,4 − 3c3,0 = 0

1
µ6 c4,0 c3,2 c2,4 c1,6 c0,8 c2,4 − c3,2 − 2c4,0 = 0, c1,6 − 2c2,4 − 2c3,2 −

8c4,0 = 0

1
µ8 c5,0 c4,2 c3,4 c2,6 c1,8 c0,10 c3,4−2c4,2 = 0, c2,6+c3,4−3c4,2−5c5,0 = 0,

c1,8 + 4c2,6 + 3c3,4 − 10c4,2 − 25c5,0 = 0

1
µ10 c6,0 c5,2 c4,4 c3,6 c2,8 c1,10 c0,12 c3,6 −3c5,2 −2c6,0 = 0, c2,8 +3c3,6 −10c5,2 −

15c6,0 = 0, c1,10 + 6c2,8 + 12c3,6 − 42c5,2 −
84c6,0 = 0

η1 η3 η5 η7 η9 η11 Γm,n constraints from s ↔ t symmetry

µ c0,1

1
µ c1,1 c0,3

1
µ3 c2,1 c1,3 c0,5 c1,3 − c2,1 = 0

1
µ5 c3,1 c2,3 c1,5 c0,7 c2,3 − 2c3,1 = 0, c1,5 + c2,3 − 3c3,1 = 0

1
µ7 c4,1 c3,3 c2,5 c1,7 c0,9 c2,5 − 3c4,1 = 0, c1,7 + 3c2,5 − 10c4,1 = 0

1
µ9 c5,1 c4,3 c3,5 c2,7 c1,9 c0,11 c3,5−c4,3−2c5,1 = 0, c2,7+2c3,5−2c4,3−8c5,1 = 0,

c1,9 + 5c2,7 + 7c3,5 − 7c4,3 − 35c5,1 = 0

Table 1. First constraints on s ↔ u symmetric coefficients cm,n from triple crossing symmetry.

The label ηn and 1/µ2m+n−2 can be understoon from eq. (5.40). The green cm,n come from the

b(t) term in eq. (5.5), which can be fixed by the s ↔ t symmetry: c0,2k = ck,0 and c0,2k+1 = 0.

The black ones can be chosen as the independent set of cm,n with the full triple crossing symmetry.

We have preferred less t derivative coefficients because they are simpler. The blue ones can be

expressed as linear combinations of the black ones. We have listed all the constraints up to level

1/µ10 and further constraints at least up to order 1/µ22 can be obtained by eq. (5.40), eq. (5.63)

and recurrence relation (5.64).

We have not proven them generically, but they have been explicitly verified up to level

1/µ22. It is not difficult to see that general Γm,n(η) can be generated by Γm,m+1(η) via

the relation

Γm,n(η) =
n−m−1
∑

i=0

(n − m − 1)!

i!(n − m − 1 − i)!
Γn−i−1,n−i(η). (5.65)

There is only one such “generator” Γm,m+1(η) at each column in the table 1. There

are some interesting properties of Γm,n. For example, there are only n − 1 constraints at

order ηn: Γ1,n, Γ2,n . . . Γn−1,n. So the constraints Γm,n appear only when m < n, our

independent cm,n being those with m ≥ n. Also, Γm,n does not have any η0 term, i.e.,

Γm,n(η = 0) = 0.
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5.3.1 The D̄stu positivity bounds

To see how these constraints can be used to derive new positivity bounds, let us consider

a linear combination at level 1/µ2m+n−2

D̄stu
m,n(η, k, κ) = −Dsu

m,n(η, k) +
∑

j≥0

κjΓm′+j,n′−2j(η), (5.66)

where j runs over all possible s ↔ t constraints at level 1/µ2m+n−2 and

2m′ + n′ = 2m + n, n′ > n, κ0 > 0. (5.67)

Since Dsu
m,n(η, k) is an n-th order polynomial of η and Γm′,n′ is an n′-th order polynomial

of η that has a positive coefficient for the highest order term, D̄stu
m,n(η, k, κ) must have a

minimum with respect to η: T κ
m,n(k) = minηD̄stu

m,n(η, k, κ). This leads to a multi-parameter

family of positivity bounds, with the choice of different ki and κj , and we can vary κj get

the best bounds, which is to take the maximum of T κ
m,n(k) with respect to κj :

Tm,n(k) = maxκT κ
m,n(k) = maxκminηD̄stu

m,n(η, k, κ), (5.68)

−
〈

Dsu
m,n(η, k)

µ2m+n−2

〉

=

〈

−Dsu
m,n(η, k) +

∑

j≥0 κjΓm′+j,n′−2j(η)

µ2m+n−2

〉

> Tm,n(k)

〈

1

µ2m+n−2

〉

.

(5.69)

Note that ki and κj are different in that adding a ki will introduce a cm,n into the positivity

bound, while adding κj will not. That is why we can vary κj to maximize T κ
m,n(k) to get

a bonafide best bound for given ki, but not so to vary ki to maximize T κ
m,n(k). With extra

parameters coming into play, the bounds with different ki are often complementary to each

other, restricting the parameter space in different directions, as one can see late from the

explicit examples of figure 2 and 3. If one were to vary ki to maximize T κ
m,n(k), it would

correspond to restricting the bounds with maximum intersections with the vertical axis in

these figures, which does not necessarily give rise to the best bounds.

In practice, our empirical results indicate that adding the κj≥1 does not seem to

improve the bound. So in the rest of the paper, we will set

κj = 0, j ≥ 1, (5.70)

and only need to add the constraint Γm′,n′(η) with the highest n′ to D̄stu
m,n(η, k, κ):

D̄stu
m,n(η, k, κ) = −Dsu

m,n(η, k) + κΓm−l,n+2l(η) ≥ Tm,n, l =

⌊

m − n

3

⌋

+ 1, κ > 0. (5.71)

So we have the positivity bound

−
〈

Dsu
m,n(η, k)

µ2m+n−2

〉

=

〈

−Dsu
m,n(η, k) + κΓm′,n′(η)

µ2m+n−2

〉

> Tm,n(k)

〈

1

µ2m+n−2

〉

, (5.72)

which leads to the D̄stu positivity bounds

cm,2k +
∑

i≥1

kicm+i,2k−2i < −Tm,2k(k) cm+k,0, (5.73)

cm,2k+1 +
∑

i≥1

kicm+i,2k+1−2i < −Tm,2k+1(k)
√

cm+k,0cm+k+1,0, (5.74)
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where ki are constants that we can choose to get the best bounds and the bound (5.74)

can be obtained when Tm,2k+1(k) < 0. Note that an important feature these bounds are

that, compared with the bounds (5.56) and (5.57) in section 5.2, because of the minus

sign in the front of Dm,n, the direction of the inequality is reversed for the cm,n term, so

these new bounds are complementary to each other, restricting the Wilson coefficients from

both directions.

Determining the maximum of the minimum of D̄stu
m,n(η, k, κ) is typically easier than

it looks. Note that we do not want κ, which is positive, to be too small or large, since

taking the limit κ → 0 or κ → ∞ would make the polynomial unbounded below. For

fixed η and ki, D̄stu
m,n(η, k, κ) is a straight line in the D̄stu

m,n-κ plot. So it is suffice to evaluate

D̄stu
m,n(η, k, κ) for the first few η and find the maximum of the minimum envelope of different

D̄stu
m,n(η, k, κ) with η = ℓ(ℓ + 1), ℓ = 0, 1, 2, . . ..

It is easiest to understand the procedure by a couple of examples. First, suppose that

we want to find T2,1 = maxκminηD̄stu
2,1 (η, κ) in 4D. At that level, there is only a single

Dm,n(η), so we only need to consider D̄stu
2,1 (η, κ) = −D2,1(η) + κΓ1,3(η). A straightforward

computation gives

D̄stu
2,1 (η, κ) = −D2,1 + κΓ1,3 = −η +

5

2
+ κ

(

1

36
η3 − 43

72
η2 +

25

12
η

)

. (5.75)

Evaluating this expression for η = ℓ(ℓ + α) with ℓ = 0, 1, 2, . . ., we have

D̄stu
2,1 (0, κ) =

5

2
, D̄stu

2,1 (2, κ) = 2κ +
1

2
, D̄stu

2,1 (6, κ) = −3κ − 7

2
, D̄stu

2,1 (12, κ) = −13κ − 19

2
,

(5.76)

D̄stu
2,1 (20, κ) = 25κ − 35

2
, D̄stu

2,1 (30, κ) = 275κ − 55

2
, D̄stu

2,1 (42, κ) = 1092κ − 79

2
, . . . . (5.77)

We then plot all these lines on the D̄stu
m,n-κ plot and find the envelope of the minimum of

these lines; see figure 1. The maximum of this envelope is T2,1. For this example, we have

T2,1 = −465/38, which is at the intersection point of line D̄stu
2,1 (12, κ) and line D̄stu

2,1 (20, κ)

at κ = 4/19. By eq. (5.74), we have a bound

c2,1 <
465

38

√
c2,0 c3,0. (5.78)

Now, for the example of D3,3(η) in 4D, we have Dsu
3,2(η, k) = D3,3(η) − kD4,1(η) and

D̄stu
3,2 (η, k, κ) = −D3,3(η) + kD4,1(η) + κΓ2,5(η), where we have dropped the constraints

Γ1,3(η), as it does not improve the bound. If we choose k = 16, then −D3,3 + 16D4,1 +
88
139Γ2,5 ≥ −57, so the maximum of the minimum envelope of different D̄stu

m,n(η, k, κ) is

T3,3(16) = −57. This gives rise to a bound: c3,3 − 16c4,1 < 57
〈

1/µ7
〉

< 57
√

c4,0c5,0. On

the other hand, if we choose k = 1, then T3,3(1) = 176127/278, which gives rise to a

complementary bound: c3,3 − c4,1 < 176127
√

c4,0c5,0/278.

5.3.2 The Dstu positivity bounds

Of course, we can also use the s ↔ t constraints to upgrade the Dsu bounds. At level

1/µ2m+n−2, we can consider

Dstu
m,n(η, k, κ) = Dsu

m,n(η, k) +
∑

j≥0

κjΓm′+j,n′−2j(η), (5.79)
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Figure 1. Convex hull of D̄stu
2,1(η, κ) in 4D for different η = ℓ(ℓ + 1), ℓ = 0, 1, 2, . . .. This convex

hull gives T κ
2,1 = minκD̄stu

2,1(η, κ). The maximum of T κ
2,1 over positive κ gives T2,1 in the positivity

bound (5.74), which is at the intersection point of line D̄stu
2,1(12, κ) and line D̄stu

2,1(20, κ).

where j runs over all possible s ↔ t constraints at level 1/µ2m+n−2 and

2m′ + n′ = 2m + n, n′ < n. (5.80)

Note that here we require n′ < n and we do not require κ0 > 0. Since Dsu
m,n(η, k) is

an n-th order polynomial of η that has a positive coefficient for the highest order term,

Dstu
m,n(η, k, κ) must have a minimum with respect to η: Uκ

m,n(k) = minηDstu
m,n(η, k, κ), and

we can vary κj get the best bound:
〈

Dsu
m,n(η, k)

µ2m+n−2

〉

=

〈

Dsu
m,n(η, k) +

∑

j≥0 κjΓm′+j,n′−2j(η)

µ2m+n−2

〉

> Um,n(k)

〈

1

µ2m+n−2

〉

, (5.81)

where

Um,n(k) = max
κ

min
η

Dstu
m,n(η, k, κ). (5.82)

In practice, we can also set κj≥1 = 0. This gives the Dstu positivity bounds

cm,2k +
∑

i≥1

kicm+i,2k−2i > Um,2k(k)cm+k,0, (5.83)

cm,2k+1 +
∑

i≥1

kicm+i,2k+1−2i > Um,2k+1(k)
√

cm+k,0cm+k+1,0, (5.84)

where ki are constants that can be chosen at will to get the best bounds.

Note that the Dstu and D̄stu bounds constrain the linear combinations of all cm,n at

the same level 2m + n = fixed in opposite directions. For a given set of ki, Um,n(m, n)

and Tm.n(k) are generically different, so the Dstu and D̄stu bounds for a given set of ki

sandwich out a stripe of space in the parameter space spanned by all cm,n at a given level.

Therefore, with different choices of ki, the positivity bounds always carve out an enclosed

region for the cm,n parameter space at a given level, and this region is always convex.
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(m, n) Dstu
m,n bound D̄stu

m,n bound

(1, 1) c1,1 > −3
2

√
c1,0c2,0 c1,1 < 8

√
c1,0c2,0

(2, 1) c2,1 > −5
2

√
c2,0c3,0 c2,1 < 465

38

√
c2,0c3,0

(2, 2) c2,2 > −9
2c3,0 c2,2 < 2961

58 c3,0

(3, 1) c3,1 > −7
2

√
c3,0c4,0 c3,1 < 1097

58

√
c3,0c4,0

(3, 2) c3,2 > −7c4,0 c3,2 < 10027
59 c4,0

(3, 3) c3,3 + 3
4c4,1 > −147

8

√
c4,0c5,0, c3,3 − 650

41 c4,1 < 2310
41

√
c4,0c5,0

c3,3 − 8c4,1 > −154
√

c4,0c5,0,

c3,3 − 481
12 c4,1 > −7777

8

√
c4,0c5,0,

c3,3 − 104c4,1 > −3369
√

c4,0c5,0

(4, 2) c4,2 > −17
2 c5,0 c4,2 < 3923

12 c5,0

(4, 3) c4,3 + 3
4c5,1 > −253

8

√
c5,0c6,0, c4,3 − 73153

1748 c5,1 < 708543
3496

√
c5,0c6,0

c4,3 − 180
41 c5,1 > −8705

82

√
c5,0c6,0,

c4,3 − 325
12 c5,1 > −16825

24

√
c5,0c6,0,

c4,3 − 169
2 c5,1 > −11187

4

√
c5,0c6,0

c4,3 − 743
4 c5,1 > −63279

8

√
c5,0c6,0

(4, 4) c4,4 + 25
24c5,2 > −147

8 c6,0, c4,4 − 15c5,2 < 195
2 c6,0,

c4,4 − 125
37 c5,2 > −71175

74 c6,0, c4,4 + 368085
36544 c5,2 < 2365845

18272 c6,0

c4,4 − 785
52 c5,2 > −83490

13 c6,0,

c4,4 − 2485
69 c5,2 > −1144125

46 c6,0

Table 2. Explicit triple crossing positivity bounds in 4D up to level 1/µ10. cm,n are the expansion

coefficients of the pole subtracted amplitude in terms of w and t (see eq. (5.5)). These bounds are

valid for weakly coupled UV completions where we choose σ = 1 (see eq. (5.39)).

5.3.3 Frist few triple crossing bounds

The Dstu and D̄stu positivity bounds contain arbitrary constants ki and Um,n(k) and

Tm,n(k) that should be computed for a given set of ki. While an optimal set of ki and

Um,n(k) and Tm,n(k) can be straightforwardly computed to give the best bounds, it is

nevertheless a tedious task. In an actual application of EFT, one usually restricts to the

lowest few orders. For an easy reference, here we list the best Dstu and D̄stu positivity

bounds of the lowest few orders in 4D, up to level 1/µ10.

First, we have two t-derivative bounds on c1,1 (see eq. (5.15)): −3
2

√
c1,0c2,0 < c1,1 <

8
√

c1,0c2,0, which are derived in section 3.2 but not obvious from the generic formalism in

this section. In fact, every cm,n with n 6= 0 can be bounded by cn′,0 in the generic formalism

except c1,1. See table 2 for all the Dstu and D̄stu positivity bounds in 4D up to level 1/µ10.

The optimal set of ki, Um,n and Tm,n can be read from the bounds directly. For example,

for the Dstu
3,3 and D̄stu

3,3 bounds, the optimal choice is U3,3(3/4) = −147/8, U3,3(−8) = −154,
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Figure 2. Positivity bounds on c3,3/
√

c4,0c5,0 and c4,1/
√

c4,0c5,0. The red (blue) lines are the Dstu
3,3

(D̄stu
3,3) bounds with different choices of k. The enclosed region pentagon is the region allowed by

the optimal positivity bounds. Non-optimal positivity bounds are also plotted with equal interval

choices of k.

U3,3(−481/12) = −7777/8, U3,3(−104) = −3369 and T3,3(−650/41) = −2310/41. If we

plot the bounds in the c4,1-c3,3 plane in the units of
√

c4,0c5,0, we get a pentagon: the

enclosed region in figure 2. See also figure 3 for the bounds on the c4,4-c5,2 plane. As one

can see in figure 2 and figure 3, we always get an enclosed region from the Dstu and D̄stu

bounds for all cm,n parameters at a given level.

6 Comparison of the different positivity bounds

In this section, we shall compare the different positivity bounds derived here and also in [9]

up to level 1/µ4 in 4D. We will see that the various new positivity bounds are generically

complementary to each other and also overlap with the Y bounds. Combining the various

bounds, the constraints on the parameter space can be significantly improved. We shall

write the bounds in terms of ãi,j , which can be translated from cm,n by eq. (5.13) and

eq. (2.11). We will take the limit of ǫ = 1 and σ = 1.

Here, up to level 1/µ4 means that we should include all the bounds containing ãi,j with

(i, j) satisfying 2i + 3j ≤ 6, in which case there are 6 parameters in the triple symmetric

amplitude: ã1,0, ã2,0, ã3,0, ã0,1, ã1,1 and ã0,2. All the positivity bounds up to level 1/µ4

are as follows:

• The Y bounds [9]:

ã1,0 > 0, ã2,0 > 0, ã3,0 > 0, ã0,1 +
3

2
ã1,0 > 0, ã1,1 +

5

2
ã2,0 > 0, (6.1)
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Figure 3. Positivity bounds on c4,4/c6,0 and c5,2/c6,0. The red (blue) lines are the Dstu
4,4 (D̄stu

4,4)

bounds with different choices of k. The enclosed region hexagon is the region allowed by the optimal

positivity bounds.

ã0,2 − 3

2
ã3,0 +

5

2

(

ã1,1 +
5

2
ã2,0

)

> 0, 2ã0,2 − 3ã3,0 +
3

2

[

−ã1,1 +
9

4

(

ã0,1 +
3

2
ã1,0

)]

> 0

(6.2)

− ã1,1 +
9

4

(

ã0,1 +
3

2
ã1,0

)

> 0. (6.3)

• The nonlinear PQ bounds:

ã1,0 ã3,0 > (ã2,0)2. (6.4)

• The linear P > 0 bounds: same as the Y bounds except replacing eq. (6.3) with

− ã1,1 +
9

4ǫ4

(

ã0,1 +
3

2
ã1,0

)

+
5

2
ã2,0 − 3ã3,0 > 0. (6.5)

• The linear P > Q bounds:

ã1,0 > ã2,0 > ã3,0, ã0,1 +
3

2
ã2,0 > ã1,1 +

5

2
ã3,0. (6.6)

• The Dstu (lower) and D̄stu (upper) bounds:

− 3

2

√

ã1,0ã2,0 < ã0,1 < 8
√

ã1,0ã2,0, − 5

2

√

ã2,0ã3,0 < ã1,1 <
31

2

√

ã2,0ã3,0, (6.7)

− 15

2
ã3,0 < ã0,2 <

3135

58
ã3,0. (6.8)

Note that all the positivity inequalities above are homogeneous in ai,j , so the bounds

are invariant under a global scaling of all ai,j . This means that the parameter space
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Figure 4. Comparison of the Y bounds, PQ bounds and D bounds. The total parameter space is

a 6-dimensional sphere. The percentages denoted in the corresponding areas are the percentages of

the total solid angle. The blue disk schematically represents the solid angle of the parameter space

that satisfies the Y bounds. The red disk represents the solid angle that satisfies the 3 types of

PQ bounds, excluding the bounds that are already in the Y bounds. The green circle represents

the solid angle that satisfies the D bounds (plus an,0 > 0, because of the square roots in the D

bounds). We assume that the EFT is valid up to the cutoff, so settting ǫ = 1 and σ = 1.

Figure 5. Comparison of the Dstu and D̄stu bounds and the nonlinear PQ bounds.

allowed by the positivity bounds corresponds to a solid angle on a 6-dimensional sphere

(i.e., a convex cone). We shall compute the sizes of the solid angles allowed by the various

bounds, by statistically sampling the 6-dimensional sphere and counting the percentages of

points falling in the various bounds; see figure 4, 5, 6 and 7 for schematical portraits of the

comparisons (Venn diagrams). As shown in figure 4, combining all the available bounds,

only 0.2% of the total parameter space of the Wilson coefficients is consistent with the

fundamental properties of analytical S-matrix, compared with the previous Y bounds for

which 5.6% of the total space is allowed.
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Figure 6. Comparison of the Dstu bounds and the D̄stu bounds.

Figure 7. Comparison of the Y bounds and the linear P > 0 bounds. These two sets of bounds

are very similar.

As we mentioned at the end of the Introduction, ref. [57] appeared soon after our paper

was posted on arXiv, and has also obtained new positivity bounds on a single scalar EFT

utilizing full crossing symmetry. As the main idea and methods of ref. [57] are very similar

to ours, let us check the consistency between our results. Our full crossing symmetric

constraints Γm,n(η) (see eq. (5.62)) are dubbed “null constraints” ni(J 2) in ref. [57]. We

have explicitly checked the first few null constraints in eq. (3.29) of [57]), and, as expected,

found that they exactly agree with our Γm,n(η) constraints. Ref. [57] has also explicitly

computed the numerical bounds on the first few individual Wilson coefficients, in their

notation, g̃
(p)
k = g

(p)
k M2k−4/g2 in their table 3, up to order g̃

(p)
10 . We can easily obtain these

bounds from the bounds in our table 2 and additionally the bounds c1,0 > (ǫΛ)2c2,0 >

. . . > (ǫΛ)2m−2cm,0 > 0. The correspondences between our cm,n and their g
(p)
k are: c1,0 =

2g2, c1,1 = −g3, c2,0 = 4g4, c2,1 = −2g5, c3,0 = 8g6, c2,2 = 24g6 + g′
6, c3,1 = −4g7, . . ., and

note that their M is just our ǫΛ. We then find that our bounds on g̃4, g̃6, g̃8, g̃10, . . . are

the same as those of ref. [57], while for others we have −16 < g̃3 < 3, −465/38 < g̃5 <

5/2, −15 < g̃′
6 < 2787/29, −1097/116 < g̃7 < 7/4, . . ., which are slightly weaker on one

side or both sides than those of ref. [57]. This is, of course, expected as they use the semi-

definite programing technique to combine crossing symmetric constraints across different

levels (or different n’s in 1/µn) to numerically obtain the strongest bounds, while we have
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only used all available crossing symmetric constraints at the same level, which can be

evaluated analytically.

7 New constraints on chiral perturbation theory

In the previous section, we have compared the effectiveness of the newly obtained PQ

and D bounds and the previous Y bounds on constraining the lowest orders of Wilson

coefficients in a generic EFT. We have seen that the new bounds give rise to significant

improvements in terms of volume statistics. In this section, we shall see the effectiveness

the new bounds in another concrete example, SU(2) chiral perturbation theory.

Chiral perturbation theory is often considered as an exemplary EFT, a popular test

ground for many new ideas. Indeed, it is the first EFT to be considered following Weinberg’s

seminal work [66]. It is used in hadron physics to describe the pion interactions, as the low

energy EFT of strong coupled quantum chromodynamics, and may also be relevant to other

scenarios. The Y positive bounds have recently been applied to SU(2) chiral perturbation

theory [67], and it is found that the Y bounds can impose strict bounds on the Wilson

coefficients (low energy constants as they are often called there), which improve the older

positivity bounds by [13].

The ππ scattering amplitudes in SU(2) chiral perturbation theory has been computed

up to O(p6) [68]. We shall apply the PQ and Dsu bounds to the π0π0 loop amplitude.

We are not applying the triple crossing Dstu and D̄stu bounds here, because we often

consider strongly coupled UV completions for chiral perturbation theory such as in quantum

chromodynamics. Also, even if the UV theory is weakly coupled, the tree level amplitude,

for which the Dstu and D̄stu bounds can be used, is completely fixed by the symmetries up

to an overall constant [66], which for π0π0 → π0π0 is given by

T Weinberg
π0π0 =

M2
π

F 2
π

(s + t + u − 3), (7.1)

where Mπ is the pion mass and Fπ is the pion decay constant, and following the notation

of [68], we define the Mandelstam variables in the units of M2
π such that in this section

s, t, u are dimensionless and s + t + u = 4. This tree amplitude does not contribute to

positivity bounds up on the twice subtraction to make use of the Froissart-Martin bound.

Up to one loop, the π0π0 amplitude is given by

Tπ0π0 = A(s, t, u) + A(t, s, u) + A(u, t, s), (7.2)

with

A(s, t, u) =
M2

π

F 2
π

[s − 1] +
M4

π

F 4
π

[

b1 + b2s + b3s2 + b4(t − u)2
]

+
M4

π

F 4
π

[

F (1)(s) + G(1)(s, t) + G(1)(s, u)
]

, (7.3)
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where bi are combinations of the low energy constants and F (1)(s) and G(1)(s, t) are defined

as follows

F (1)(s) =
1

2

( √
zs

16π2
ln

√
zs − 1√
zs + 1

+
1

8π2

)

(

s2 − 1
)

, zx = 1 − 4

x
, (7.4)

G(1)(s, t) =
1

6

( √
zt

16π2
ln

√
zt − 1√
zt + 1

+
1

8π2

)

(

14 − 4s − 10t + st + 2t2
)

. (7.5)

Again, up on the twice subtraction, b1 and b2 do not enter the positivity bounds. b3

and b4 are related to the scale-independent O(p4) low energy constants l̄1 and l̄2 (or the

renormalized low energy constants lr1(µ) and lr2(µ)) as follows

b3 =
1

16π2

(

1

3
l̄1 +

1

6
l̄2 − 7

12

)

, lr1(µ) =
1

96π2

(

l̄1 + ln
M2

π

µ2

)

, (7.6)

b4 =
1

16π2

(

1

6
l̄2 − 5

36

)

, lr2(µ) =
1

48π2

(

l̄2 + ln
M2

π

µ2

)

. (7.7)

We shall formulate the bounds in terms of l̄1 and l̄2.

Since we have truncated the amplitude up to O(M4
π/F 4

π ) (or really O(M4
π/Λ4) =

M4
π/(4πFπ)4), b3,4 (and thus l̄1,2) only appear in the quadratic terms in the amplitude

(cf. eq. (7.3)), so we only use bounds that at least contain one of cm,n with 2m + n ≤ 4.

If a bound only contains cm,n with 2m + n > 4, l̄1,2 will not appear in the bound, the

bound being just a consistent relation without l̄1,2. Another observation is that up to

O(M4
π/F 4

π ) only the term M4
π

[

b3s2 + b4(t − u)2
]

/F 4
π in the amplitude enters the positivity

bounds with dependence on the low energy constants. Since this term only contributes

c1,0 in the positivity bounds, we can use the bounds containing c1,0 to constrain the low

energy constants, while the other bounds can be used as consistency checks. The linear PQ

bounds do not contain anything different from the Y bounds. The c1,0 dependent bounds

are the first nonlinear PQ bound

c1,0 c3,0 > c2
2,0 =⇒ l̄1 + 2l̄2 > 3.85, (7.8)

and the first Dsu bounds

c1,1 +
3

2

√
c1,0 c2,0 > 0 =⇒ l̄1 + 2l̄2 > 6.74. (7.9)

Clearly, the first Dsu bound is stronger. We want to emphasize that since Mπ and Fπ factor

out in these bounds, these bounds are independent of these parameters, that is, these are

universal bounds on any SU(2) chiral perturbation theory, be it from quantum chromody-

namics or from other UV models. See figure 8 for the comparison of the Dsu bound with

the previous bounds. We see that our Dsu bound is stronger than the previous bounds.

The above bounds are obtained without using the ǫΛ improved subtraction in eq. (2.14),

where we estimate the low energy part (from 4 to (ǫΛ)2 since in this section we use the

units where Mπ = 1) of the dispersive integral by using the EFT amplitude. In this lan-

guage, the bound in figure 8 is the one with ǫΛ = 2. If we choose ǫΛ = 2.2, we would get
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Figure 8. Comparison of the Dsu bound with the previous bounds on l̄1 and l̄2. The colored

regions below the corresponding lines are ruled out by positivity. The Manohar&Mateu bounds are

obtained in [13] by exploring the maximum analyticity of the amplitude in the Mandelstam plane

for the s derivative positivity bounds, and the Y bounds are obtained in [67] by the generalized

bounds with both s and t derivatives that are also valid away from the forward limit. The “GL”,

“ABT”, “GKMS” rectangle and the small ellipse are respectively the range of the fitted values of

l̄1 and l̄2 from [69], [70], [71] and [72].

l̄1 + 2l̄2 > 7.23, and if we choose ǫΛ = 2.4, we would get l̄1 + 2l̄2 > 7.81. How much sub-

traction one can use depends on how much errors introduced by using the EFT amplitude

in the dispersive integral. A phenomenological analysis of the completion of errors and its

application to hadron physics is left for future work.

8 Summary

The parameter space of the Wilson coefficients of an EFT is often vast. However, much

of it may turn out to be some kind of “uninhabitable swampland”, at least if we assume

standard properties for the UV completion. By requiring the existence of a local analytic

UV completion for the EFT, we can derive dispersion integral representations for the

scattering amplitude, and use them to derive the positivity bounds to impose theoretical

bounds on the vast parameter space. In this paper, we have supplied the tool box of

positivity bounds with a few new sets of bounds, again using the dispersion relation but

now with finer properties of the Legendre polynomials (Gegenbauer polynomials in general

dimensions) and the triple crossing symmetry of the amplitude. We have restricted to the

simple case of single scalar fields for which crossing is straightforward.

While it is relatively straightforward to generalize the PQ and Dsu bounds to generic

field theories with spin, the Dstu and D̄stu bounds, which make use of triple crossing

symmetry, are more involved to implement, which will be discussed elsewhere [53].

– 34 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
5

For a quick reference, we summarize the new positivity bounds that have been de-

rived here:

• The nonlinear PQ bounds

Pm,n Pm+2,n > (Qm+1,n)2, (8.1)

where Pm,0 ≡ Qm,0 ≡ cm,0 and

Pm,n ≡ cm,n +
1

(ǫΛ̂)2

⌊ n+1

2
⌋

∑

i=1

M2i−1
m Pm+i−1,n+1−2i −

⌊ n
2

⌋
∑

j=1

M2j
m Qm+j,n−2j , (8.2)

Qm,n ≡ cm,n + (ǫΛ̂)2

⌊ n+1

2
⌋

∑

i=1

M2i−1
m Qm+i,n+1−2i −

⌊ n
2

⌋
∑

j=1

M2j
m Pm+j,n−2j , (8.3)

with (ǫΛ̂)2 = (ǫΛ)2−2m2 and M i
m ≡ [(m − 1 + i)!/((m − 1)!i!) + (m + i)!/(m!i!)] /2.

• The linear PQ bounds

Pm,n > 0, (8.4)

Pm,n > (ǫΛ̂)4kQm+k,n, k = 0, 1, 2, . . . . (8.5)

• The Dsu bounds

cm,2k +
∑

i≥1

kicm+i,2k−2i > Sm,2k(k) cm+k,0, (8.6)

cm,2k+1 +
∑

i≥1

kicm+i,2k+1−2i > Sm,2k+1(k)
√

cm+k,0cm+k+1,0, (8.7)

where Sm,n(k) = minη Dsu
m,n(η, k), Dsu

m,n(η, k) ≡ ∑

i≥0 kiDm+i,n−2i(η) with k0 = 1

and Dm,n(η) is defined in eq. (5.41) and eq. (5.54).

• The Dstu bounds

cm,2k +
∑

i≥1

kicm+i,2k−2i > Um,2k(k)cm+k,0, (8.8)

cm,2k+1 +
∑

i≥1

kicm+i,2k+1−2i > Um,2k+1(k)
√

cm+k,0cm+k+1,0, (8.9)

where Um,n(k) = maxκ minη Dstu
m,n(η, k, κ), Dstu

m,n(η, k, κ) = Dsu
m,n(η, k) +

∑

j≥0 κjΓm′+j,n′−2j(η) and Γ(m, n) can be computed from eq. (5.63) to eq. (5.65).

• The D̄stu bounds

cm,2k +
∑

i≥1

kicm+i,2k−2i < −Tm,2k(k) cm+k,0, (8.10)

cm,2k+1 +
∑

i≥1

kicm+i,2k+1−2i < −Tm,2k+1(k)
√

cm+k,0cm+k+1,0, (8.11)

where Tm,n(k) = maxκminηD̄stu
m,n(η, k, κ), D̄stu

m,n(η, k, κ) = −Dsu
m,n(η, k) +

∑

j≥0 κjΓm′+j,n′−2j(η) and κ0 > 0.
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We have applied the new positivity bounds to weakly broken Galileon theories and

found that in the case of the massive Galileon the new bounds constrain the cutoff of the

theory to be parametrically close to the mass of the theory. Similarly in the generic case

of a weakly broken Galileon symmetry for other EFT operators, the symmetry breaking is

forced to be at least of order unity. Thus, to be compatible with a standard local analytical

UV completion, weakly broken Galileon theories are ruled out. This does not preclude

Galileon theories from playing a role in some UV completion, but necessitates that at least

one of the standard assumptions, for instance locality, should be given up [54, 55]. It does

however confirm that the apparent marginality of the massless Galileon, which appeared

to be evaded by including a small breaking term [18] is in fact not marginal at all.

We have shown that the new bounds are complementary to each other and can in

general significantly reduce the parameter space of allowed Wilson coefficients, improving

the results of the previous Y bounds. We have briefly considered chiral perturbation theory

as an illustrative example of this. It is unlikely that we have exhausted the full implications

of triple crossing symmetry in the bounds discussed, not of the specific details of the partial

wave expansion, and it would be interested to further refine these arguments. We shall

consider the extension of these bounds to massive particles with spin elsewhere [53], where

the application of positivity bounds away from the forward limit is significantly more

challenging [10].
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A Gegenbauer polynomials

The Gegenbauer polynomials are orthogonal polynomials defined via the generating func-

tion

1

(1 − 2xt + t2)α
=

∞
∑

ℓ=0

C
(α)
ℓ (x)tℓ, (A.1)

which can be used to perform partial wave expansion in D = 2α + 3 dimensions when

D ≥ 4. C
( 1

2
)

l (x) = Pl(x) is just the Legendre polynomial and C
(1)
l (x) = Ul(x) is the

Chebyshev polynomial of the second kind. Applying n-th x derivatives on the both sides
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of eq. (A.1) gives

(2t)nα(α + 1) . . . (α + n − 1)

(1 − 2xt + t2)α+n
=

∞
∑

ℓ=0

dn

dxn
C

(α)
ℓ (x)tℓ, (A.2)

and expanding t in the left hand side gives

dn

dxn
C

(α)
ℓ (x)

∣

∣

∣

∣

x=1
=

2−2α−n+1√
πΓ(ℓ + n + 2α)

Γ(ℓ − n + 1)Γ(α)Γ
(

n + α + 1
2

) , n = 0, 1, 2, . . . , (A.3)

which can shown to be positive. The Gegenbauer polynomials also satisfy the recurrence

relation

C
(α)
ℓ (x) =

1

ℓ

[

2x(ℓ + α − 1)C
(α)
ℓ−1(x) − (ℓ + 2α − 2)C

(α)
ℓ−2(x)

]

, (A.4)

with C
(α)
0 (x) = 1 and C

(α)
1 (x) = 2αx.

B The D = 3 case

When D ≤ 3 (or α ≤ 0), the Gegenbauer polynomials are usually not defined (see the

generating function eq. (A.1)). For D < 3, there is no scattering angle, so it is not really

meaningful to use the partial wave expansion. When D = 3, eq. (3.2) blows up due to Γ(0)

in the denominator. However, one can certainly decompose different angular momenta

modes in 3D. To this end, sometimes Gegenbauer polynomials with α = 0 are defined

as [73]

C
(0)
0 (x) = 1, C

(0)
ℓ (x) =

2

ℓ
Tℓ(x), ℓ > 0, (B.1)

where Tℓ(x) is the Chebyshev polynomial of the first kind that can be defined as

Tℓ(cos θ) = cos ℓθ. (B.2)

Directly using this expression to evaluate derivatives of Tℓ(x) at x = 1 leads to a 0/0

indeterminate, but careful considerations give

dn

dxn
Tℓ(x)

∣

∣

∣

∣

x=1
=

n−1
∏

k=0

ℓ2 − k2

2k + 1
=

ℓ2(ℓ2 − 12) . . . (ℓ2 − (n − 1)2)

1 · 3 · . . . · (2n − 1)
≥ 0. (B.3)

Combining this with partial wave unitarity, we still have

dn

dtn
ImA(s, t) > 0, s ≥ 4m2, 0 ≤ t < 4m2. (B.4)

So the nonlinear s derivative bounds, which have no explicit D dependence, still hold.

Furthermore, with appropriate normalization, the subtracted dispersion relation is given by

B(s, t) = a(t) +
∑

ℓ

∫

dµ

[

s2

µ − s
+

u2

µ − u

]

µρℓ(µ)Tℓ

(

1 +
2t

µ − 4m2

)

. (B.5)

Then following similar steps as in the generic case, we can explicitly check that the generic

nonlinear t-derivative positivity bound eq. (3.33) can be applied to the case of D = 3 —

just evaluating D in the equations at D = 3.
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