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using aerial LiDAR data 
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ABSTRACT: Computation modelling has not been fully exploited for predicting building damage due to tunnel-
induced subsidence, because of the expense and time required to create computational meshes for the vast 
quantity of buildings  that may be impacted along a tunnel’s  route.  A possible circumvention of such a resourc e 

commitment lies in the exploitation of remote sensing data in the form of aerial laser scans (also know as Light 
Detection and Ranging – LiDAR). This paper presents work accomplished to date in the creation of a pip eline to 
automate the conversion of aerial LiDAR point cloud data directly into Finite Element Method (FEM) meshes 

without the intermediary step of triangulation-based conversion or reliance on geometric primitives through a 
Computer Aided Design (CAD) program. The paper highlights recent advances in flight path planning, data 
processing, plane identification, wall segmentation, and data transformation.   
 

 1. INTRODUCTION 

Given increasing pressures of urbanization, 

population growth, and heightened concerns 
about sustainability and environmental impacts, 

the importance of tunnels in providing transpor-

tation options and basic utilit ies continues to 

grow. Yet, the complexity of constructing such 
infrastructure beneath cities has also expanded 

because of the myriad of existing subsurface 

installations and the density of aboveground 

structures, which need protecting from potential 

subsidence problems. 
Yet, despite these risks and the large quanti-

ties of funding regularly committed to building 

monitoring during tunnelling and the require-

ment to pay for post-construction damage, the 
most advanced computational tools, such as 

FEM meshing, are rarely applied to the vast 

majority of structures that are subjected to 

tunnel-induced ground movements; because the 
cost of surveying the structures and then gener-

ating the meshes is prohibitive.  

Much of the expense is related to the collec-

tion of geometrically accurate data for the 

structures themselves and their pro ximity to the 
tunnel. For the vast majority of existing struc-

tures no measured drawings (either design or as-

built) exist, to say nothing of electronic CAD 

models that could easily be prepared as input 
files for FEM programs. Instead, a team of 

surveyors must be sent out to each building to 

measure and record all critical d imensions. This 

informat ion must then be converted into a 

format appropriate for solid modelling. The 
expense of this is typically two weeks of fu ll-

time work. Thus, to do this for each of the 

hundreds (if not thousands) of structures along a 

tunnel route is simply cost prohibitive. To 
circumvent this, an alternative approach is 

proposed.  

 

2. BACKGROUND 

In 2006, the authors began developing a pipe-

line to auto-generate FEM meshes from a form 
of remote sensing data referred to as laser 

scanning or Light Detection and Ranging 

(LiDAR); as extensive information about 

LiDAR is readily available elsewhere, it is not 
included herein (e.g. Baltsavias, 1999).  

The goal of the research program was to 

overcome the expense of present manual mes h-

ing approaches by processing the remote sens-
ing data in a way that enabled further computa-

tional manipulation. This work plan vastly 

differs from the context in which virtual cit ies 

are generated, as the goal was not to create 

visually compelling images but ones that were 
spatially accurate and capable of being auto-

mat ically transformed into solid models co m-

patible for FEM processing. The work presented 

herein represents progress to date on this ambi-
tious undertaking. 

 



3. METHODOLOGY 

An effective pipeline for auto-generation of 

FEM models from LiDAR data requires several 
major steps: (1) adequate data capture; (2) 

accurate data positioning; (3) wall identifica-

tion; (4) three-dimensional build ing component 

determination; (5) data transformat ion; and (6) 

optimization. 

(1) Adequate data capture 

Traditionally aerial LiDAR has been used to 

generate digital elevation models (DEMs) or 
digital terrain models (DTMs). Often the pur-

pose was for flood-plain mapping (Hollaus et 

al., 2005). Although there are examples of 

further processing to determine maximum 
building heights and tree growth elevation (e.g. 

Laefer & Pradhan, 2006), there has been rela-

tively litt le emphasis on façade detail capture. 

However, for build ing damage prediction good 
façade information is critical, especially with 

respect to identifying window openings, as this 

strongly influences a building’s stiffness 

(Truong-Hong & Laefer, 2010). 
Because the previous emphasis of LiDAR 

was on horizontal elevation capture, a new 

paradigm was needed to maximize the vertical 

data capture and overcome urban shadowing 

problems (as described at length in Hinks et al. 
2009a). The solution involved a triple overlap 

of the flight path (Fig. 1) oriented 45 degrees 

rom general city grid orientation (Fig. 2), as 

shown for the Dublin city-centre study area. 
The results are significantly better than what has 

traditionally been captured. In Fig. 3a density is 

approximately 35 points/m
2
 on the f ground, 

while in Fig. 3b it is around 225 points/m
2
.  

 

 
Figure 1. Triple overlap flight path needed to capture 
roof features and façade details.  

 
Figure 2. Flight orientation set 45 degrees from 

general street layout over the Dublin, Ireland city -
centre study area. 

 

 
(a) LiDAR from a conventional, single path flyover 

 
(b) LiDAR from a multi-path swath flyover 

Figure 3. Traditional single pass resolution shown in 

(a) and multi-path results displayed in (b). 
 

This flyover generating approximately 700 

million data points was done in February 2007 

at altitudes ranging from 350m to 400m. By  

surface modelling the data, a rapid visual 
comparison can be made with the terrestrial 

equivalent, which required 30 times the cost and 

nearly 1,000 times the duration (per building) to 

achieve the improved results (Fig. 4). Since that 
time, new aerial hardware has been released, 

with the potential of doubling the density 

depicted in Fig. 4. So although the aerial data is 

not yet equivalent in quality to the terrestrial 



scans, its potential is now clear, and most likely, 

it is simply a matter of time for the technology 
to generate a financially and temporally viable 

output. 

 

 
Figure 4. Surface rendering of three approaches to 

LiDAR data capture. 

 

In terms of achieving computational models 

from this data relevant to the tunnelling co m-
munity, a crit ical aspect is accurate window 

detection as apertures strongly influence in-

plane wall stiffness. 

(2) Accurate data positioning 

To generate spatially correct urban-scale mod-

els, the data must be properly represented in 

their actual locations. Inherent to this is devel-
oping and understanding the data capture 

mechanis m’s role in further data processing. 

The integral parts of a LiDAR flight path 

involve mult iple flight tracks, and within  each 
are flight track segments (Fig. 5). Each flight 

track segment is composed of multip le scan 

lines. Each scan line has multiple pulses, each 

of which may or may not have multip le returns 
depending upon the reflectiv ity and opacity of 

the material (Fig. 5). Each return generates a 

data point with an x-, y-, and z-positional 

locator based on simultaneous collection of 

global positioning system (GPS) data. The data 
may also have a co-registered set of red, green, 

and blue (RGB) colour values. There is an 

inherent relationship between the scanner and 

the point of data capture. Understanding this 
relationship allows previously ignored latent 

data to be used as part of the post-processing 

procedures. Details of the development of 

specific geometric relat ionships are described 
elsewhere (Hinks et al. 2009a and b).  

 
Figure 5. Component elements of LiDAR data 
capture. 

 

Knowing the true location of a point allows 

it to be clustered with other points. Then, the 

point density can be used as a key indicator of 
the underlying three-dimensional (3D) geome-

try of an environment. As an exa mple, in Fig. 

6a, the data has been processed using a single 

value maximum height field. In contrast, Fig. 6b  
applies pixel intensities proportional to visibil-

ity. The visual results are of a significantly  

higher quality and are of a clarity level that they 

could be mistaken for an aerial photograph. 
 

(3) Wall identification 

A common method for wall identificat ion relies 

upon a single height field criterion or other 
methods that require some a priori knowledge 

of the specific built environment (Rottensteiner, 

2003, Forlani et al. 2006). Fig. 7a shows the 

data processed based upon the maximum 
elevation. The approach poses the significant 



challenge of selecting a single value over which 

the data is classified as belonging to a build ing 
and below which is categorized as not a build-

ing (e.g. trees, buses, signage, street furniture, 

etc.).  
 

 

 
(a) Traditional, vertical data projection using 

single value of maximum height field to define 
visual representation. 

 
(b) New, visibility projection used to define 
pixel intensities.  

Figure 6. Comparative visualization approaches. 

 

When a low threshold value is used, tree 
and other data related to tall objects that are not 

buildings are unintentionally included (Fig. 7b). 

As the threshold value increases, the percentage 

of trees and similar objects decreases, but single 
storey buildings are then erroneously omitted 

(Fig. 7c). By selecting a sufficiently high 

threshold to avoid all foliage, significant loss of 

potential structures occurs (Fig. 7d). In short the 
approach fails except in environments of nearly 

uniform build ing elevations, where the height of 

non-building items is clearly distinctive from 

building heights. In Dublin, the dual presence 

double-decker buses and Georgian townhouses 
of similar scale makes this an especially cha l-

lenging approach to adopt. 

As an alternative first step for identifying 

the locations of buildings, the geometric rela-
tionships and the latent flight path data can be 

used to determine the exact locations of missing 

data (Fig. 8) that is a function of when a pulse 

encounters glass or another highly reflective 
material and no return is generated. As build-

ings are in part comprised of windows, the 

quantity of vertical façade data that is captured 

is then necessarily reduced. 

 
 

 
(a) Single elevation depiction.  

 
(b) Low elevation threshold criterion.  

 
(c) Medium elevation threshold criterion.  

 
(d) High elevation threshold criterion.  

Figure 7. Application of a single elevation threshold 
for building detection.  

 

To help find the specific walls for a struc-

ture, this missing information can be identified 

and temporarily p laced into the data set (Fig. 8).  

 
(4) Three-dimensional building component 

determination 

The fourth step is to identify data from specific 

walls so that they can be grouped. Each wall 

must be identified, and then each of the walls 



must be affiliated with each other and the 

relevant roof structure (Fig. 9).  
 

 
Figure 8. Temporary insertion of missing pulse, P4. 

 

 
Figure 9. Preliminary wall identification. Left: 
LiDAR data; Middle: Wall outlines; Right: Wall 
generation.  

 
The traditional workflow is shown in Fig. 

10(left) where the data is vertically pro jected 

into various bins and then processed based on 

the single elevation criterion. Fig. 10(right), 

instead, schematically represents the newly 
proposed workflow in which angular binning 

occurs, and a statistically based processing is 

applied through contour analysis to connect the 

walls to each other. 
The edges of individual buildings can be 

discerned (Fig. 11) by coupling statistical 

analysis with the known location of the scanner 

(to help determine what openings are interior 
courtyards) and a set of contour analysis based 

rules (Fig. 12). The successful identification of 

an actual building is verified by flood-filling the 

area between connected walls (Fig. 13). The 

results of traditional processing (Fig. 14a) are 
shown for the entire study area, in comparison 

to what is now achievable (Fig. 14b).  

 

 
Fig. 10. Outline wall detection workflow. 

 

 
Figure 11. Building outlines shown for portion of 
study area. 

 



 
Fig. 12. Contour analysis rules app lied to determine 
whether a group of walls do or do not represent a 

building. 

 

 
Figure 13. Flood filling of building contours as a 
means of verification of individual building identifi-
cation. 

 

Although not foolproof, automated build ing 

detection is vastly improved (Fig. 14a versus 

Fig. 14b). In some cases structures are still not 

visible, but the majority of buildings are identi-
fied (Fig. 14b). Of note is that this  improved 

performance has been achieved without any a 

priori knowledge of the buildings, their floor 

plans, or the street locations. Also, the method 
is robust in the sense that it does not detect any 

false positives. 

(5) Data Transformation 

Once a building has been identified, the data 

affiliated with it can be segregated for further 

processing. As this step is still in progress, 

groups of data have been manually selected and 

removed for the next step in pipeline develop-
ment.  

 

 

 
(a) Traditional processing.  

 
(b) Alternative processing using contour analysis. 

Fig. 14. Results of automatic building identification. 

 

Ideally, the resulting FEM meshes would be 

three-dimensional (3D), but to begin to achieve 

this, a two-dimensional (2D) approach has first 
been adopted. Given that much of the tunnelling 

community still considers building damage 

prediction based upon a plane-strain scenario, 

the creation of 2D meshes remains a reasonable 
short-term goal. 

For this portion of the pipeline, a major in-

novation was achieved. Specifically a spatial 

index structure known as an octree was applied 
to the data set (Fig. 15). Th is allows the data to 

be positionally described by repeatedly subdi-

viding the dataset into eight congruent cubic 

blocks (also known as voxels) up to a user-
specified tiling level. There are various criteria 

that can be applied to determine how much  

subdivision occurs (Hinks et al., 2009b). As 

shown in Fig. 16, a data set was recursively 

subdivided eight times, and major structures are 
clearly visible. 



 

Fig. 15. Octree structure. 

 

 

Fig. 16. Octree applied to LiDAR data set. 

 

The voxelization permits a rather simple 

format to further manipulate into a solid model 

as the input file for a commercial FEM software 

package. The details of this are provided else-
where (Hinks et al., 2009b). 

Figure 17 depicts the transformat ion of the 

LiDAR data into a usable FEM mesh. Although 

the mesh is not fully reflective of the building’s 
detailed geometry, it shows the potential of the 

technique. In this case, the critical breakthrough 

shown iss that even with the relatively sparse 

sampling of the aerial LiDAR data (as opposed 
to its terrestrial counterpart), the proposed two-

step technique of octree application and voxeli-

zation can result in an FEM mesh that can be 

generated and can converge with no manual 

intervention and no a priori information. The 
mesh is shown stressed only under self-weight 

(fig. 17e). Lighter areas show those portions of 

the structure with higher stresses.  From a 

qualitative perspective, the model reacts as 

expected by exh ibiting h igher stress levels in 

more slender members and around the window 
openings. 

 
(a) Photograph. (b) LiDAR data. 

 
(c) Voxelization. (d) Solid Model.  

 
(e) FEM Stress Analysis Results. 

Fig. 17. Pipeline for automated data conversion from 
LiDAR to solid model into an FEM format (using 

ANSYS), with verification shown under self-weight 
loading. 

 

Based on these demonstrable advances, the 

next steps involve the further geometric optimi-

zation and verificat ion of these techniques. 
They are the main emphasis of current research 

efforts by the authors. 

 



4. CONCLUSIONS 

This paper presents an overview of critical new 

advances in the creation of a fully automated 
pipeline to generate accurate finite element 

meshes from LiDAR data.  Key steps include 

(1) changes in flight path based data capture; (2) 

disaggregation and subsequent min ing of latent 

data within each LiDAR point based on a 
knowledge of the structure of the data acquis i-

tion process and known location of the scanner; 

(3) statistically based post-process for building 

wall identificat ion; (4) application of contour 
analysis methods to generate a fail-safe building 

detection process as verified through flood 

filling; (5) data transformat ion from LiDAR 

point clouds into FEM meshes through the 
application of an octree spatial index and its 

subsequent voxelizat ion as verified through the 

stress analysis generated by simple self-weight 

loading. The advances herein hold strong 

promise for providing the underpinnings of the 
next generation of urban modelling.  
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