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The main objective of this paper is to introduce I (p, g),-derivative and I (p, q) ,-integral for interval-valued functions and discuss
their key properties. Also, we prove the I (p, g),-Hermite-Hadamard inequalities for interval-valued functions is the development
of (p, q),-Hermite-Hadamard inequalities by using new defined I (p, q),-integral. Moreover, we prove some results for midpoint-
and trapezoidal-type inequalities by using the concept of Pompeiu-Hausdorft distance between the intervals. It is also shown that
the results presented in this paper are extensions of some of the results already shown in earlier works. The proposed studies
produce variants that would be useful for performing in-depth investigations on fractal theory, optimization, and research

problems in different applied fields, such as computer science, quantum mechanics, and quantum physics.

1. Introduction

In mathematics, the quantum calculus is equivalent to usual
infinitesimal calculus without the concept of limits or the
investigation of calculus without limits (quantum is from the
Latin word “quantus” and literally it means how much and
in Swedish it is “Kvant”). Euler and Jacobi can be credited
with establishing the basis of the modern understanding of
quantum calculus, but these developments were recently
applied in the field, bringing about tremendous develop-
ment. This could be due to the fact that it acts as a connection
between mathematics and physics. In 2002, the book [1] by
Kac and Cheung presented some in-depth details of
g-calculus. Later on, a few scholars have continued to es-
tablish the idea of g-calculus in a different direction of
mathematics and physics. Jackson [2] created the concept of
quantum-definite integrals in quantum calculus in the
twentieth century. This inspired many quantum calculus

analysts, and several papers have been published in this field
as a consequence. Ernst [3] developed the history of
g-calculus and a new method for finding quantum calculus.
Gauchman [4] derived integral inequalities in g-Calculus,
which is a generalization of classical integral inequalities. In
2013, Tariboon et al. presented g-calculus principles over
finite intervals, explored their characteristics, and applied
impulsive difference equations in [5]. In 2015, Sudsutad et al.
[6] proved quantum integral inequalities for convex func-
tions. Shortly afterward, certain g-Hermite-Hadamard form
inequalities are acquired by Alp in [7]. Recently, Lou et al. [8]
presented basic properties of Ig-calculus and derived
Ig-Hermite-Hadamard inequalities for convex interval-
valued functions. For more details, see [9-13].
Postquantum calculus theory, prefixed by the
(p> q)-calculus, is a native g-calculus generalization. We deal
with g-number with one base g in a recent development in
the study of quantum calculus, but postquantum calculus
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includes p and g numbers with two independent p and g
variables. Chakarabarti and Jagannathan [14] was the first to
consider this. Inspired by the current research on Tunc and
Gov [15], the definitions of (p,q)-derivatives and
(p, q)-integrals have been adopted on finite intervals; in-
terested readers are referred to [16-18]. A good deal of the
book by Moore [19] is a narrative of the methods used by
Moore to find an unknown variable and substitute it with an
interval of real numbers and an arithmetic interval used in
error analysis, which has a significant effect on the outcome
of the calculation and automatic error analysis. It has been
used extensively in several countries in recent days to ad-
dress a variety of uncertain topics. In particular, Costa et al.
[20] developed convex function understandings in the field
of inequality and provided Jensen inequality in 2017 for the
interval-valued functions. Therefore, some scientists have
combined classical inequalities with interval values to
achieve several extensive inequalities, see [21, 22].

The paper is summarized as follows. We review some
basic properties of interval analysis in Section 2. In Section 3,
we put forward the concepts of I (p, q),-derivative and give
some properties. Similarly, the concepts of I (p, q),-integral
and some properties are presented in Section 4. In Sections 5
and 6, we give some new I (p, q),-Hermite-Hadamard-type
inequalities and some results related to upper and lower
bounds of I(p, q),-Hermite-Hadamard. Briefly, conclusion
has been discussed in Section 7.

2. Preliminaries

Throughout this paper, we suppose that closed interval
K.={U = [g,0]l,0,0 € R,0 <}. You can describe the
length of interval [g, 0] € K, as L(U): =3 - . In addition,
we conclude that % seems to be positive if ¢ >0, and we
present that all positive intervals belong to K..

For some kind of U = [0,7],V = [a, @] € K. and € R;
then, we have the following properties:

U+V=[00]+[ad]=[c+aT+a],
popalitp>0
BU = B[o,5] =4 {0}, if f=0,
[Ba. Ba]if B<0.

Definition 1 (see [23]). For some kind of U Ve K., we
denote the O-difference of U and V as the set 7 ¢ K., and
we have

HU=V+%,
GeGV =W or (2)
(iHV = U+ (-7).
It seems beyond controversy that
Ger: [Q—g,?—&], lfL(?)Zg(\:/))
[0-@a—a], f L(U)<Z (V).

Suppose that if we take a consent V = a € R, then
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Ue,V =[0-a,7 - a]. (4)

The relation between U and V can be described by the
relation of “C™:

UcV, ifa<oandd<a. (5)

The distance of Hausdorff-Pompeiu H: K, x K, —
[0,00) between U and V is denoted as H(U,V) =
max{| o - a|, |6 - al}. The later result is that (K. H) is a
complete metric space, as proven in [24].

Definition 2. Suppose that a continuous function
F: [o,7] — K, at @, € [p, 7] if
IfI(F(GJ),lA:((DO)) — 0, asp— g, (6)

We denote C([p,7],K,) and C([p,7],R) to show the
collection of all continuous interval- and real-valued
tunctions on [p, 7], respectively.

For much more simple notations with interval analysis,
see [23, 25, 26].

In this paper, the symbols F and G are used to refer to
functions with interval values. If a function F: [g, 7] — K,
and F = [U, U], then F is L-increasing (or L-decreasing) on
[o, 7] if L(F): [0, 7] — [0, 00) is increasing (or decreasing)
on [p,7]. If L(F) is monotone on [0, 7], then F is
L-monotone on [p, 7].

3. 1(p, q),-Derivative for Interval-
Valued Functions

In this portion, we introduce the I(p,q),-derivative con-
cepts and give some properties. Firstly, let us study the
(p, q)-derivative concept. Let any constant be 0 <g< p<1.

Definition 3 (see [15]). Let F: o, 7] — RandF e C (fo, 7],
R); the (p,q)-derivative of function F at @ € [p, pr+ (1 -
plel is defined by

F(p@ + (1 - p)o) —F(q@ + (1 - q)o)
(p-a)(@-0)

QDMF(@) = , @#0,

QDp,qF (o) = oli}lrt‘+ D, F (@).

(7)
If, for all ® € [, pt+ (1 - p)o] and D E(®) exists,

then we called F as a a g-differentiable on Q, I? 0=0in(9),
then oD, F D, F then,
- F(pa) - F(q@
D, (@)= M (8)
’ (p-qgo

For more details, see [15].
Now, we are adding the I(p,q),-derivative for the in-
terval-valued functions and some related properties.

Definition 4. Suppose that F: [p, 7] — K, and F e C([o,
7],K,), and the I (p, g),-derivative of F at @ € [o, pT+ (1 -
p)e] is denoted as
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F(pa + (1 - p)o)ogE (g + (1 - q)o)
(p-q(®-09)

QDMF((D) = , OF0,

Ly F )= oli_)m@ D, F(@),

(9)
where Dp,qli is said I(p, q),-derivative of F denoted as

F(pw)eGme).

(- (10)

Dpyq'lf(a)) =

Theorem 1. Suppose that F: [p,71] — K. F s
I(p, q),-differentiable at ® € [, pt + (1 — p)e] if and only if
U and U are (p, q)-differentiable at @ € [o, pt + (1 - p)ol,
and

gDp,qlA:((D) = [min{ oD, U (@) QDMU(G))}, max{ oD, U (@), QDp)qU(m)H, (11)

Proof. Suppose F is I(p, q),-differentiable at @; then, there
exist G (@) and G (@) such that D F((D) [G (@), G(d)].
According to Definition 4,

G(@) = min{ﬁ(pw +(1-po)-U(ga+(1 —q)e))ﬁ(pa) +(1-p)-U(ga+(1 —q)@)})
(p-q9(@-0) (p-q(@-9)
- B (12)
G(@) = max{ﬁ(pw +(1-po)-U(ga+(1 —q)e)’U(pw +(1-p)o)-U(go +(1 —q)e)}’
(p-q9(@-0) (p-q(@-9)

Exist; then, equation (11) is proved by using the above
derivatives.

., U(@).,D, T(@)

_[Upa+(1-pl)-

U(q@+(1-¢)o) U(pa +(1-p)o)

Conversely, suppose U and U are (p, g)-differentiable at
.
If QDp,q U(@) < @DMU (@), then

-U(gqa + (1 -9g)p)

(p-q(@-9)

_ F(p@ + (1 - p)o)osF (q@ + (1 - q)o)

(p-q(@-9)

= QDp,qF (@).

So, F is I(pq )o-differentiable at @. Similarly, if

9D U(@)=,D U(GJ) then D F(a)) [QDMU(G))
LU "
Show the above result in the next example. O

Example 1. Let E: [0, 7] — K_, taking F(@) = [-]al, |0]].
It shows that F (@) is I (p, q)g—differentiable. By Definition 4,
if p <0, we have

(p-9(@-0)
(13)
= (1= p)e,—(1 - p)eleg (1 - g)e, —(1 - g)e]
oPpgF(0) = (-0
| A=plo-1-g9 -(1-qo+(1-9go
mm{ (p-a(-0) (p-q9)(-0) }

(1-ple-(1-g) -(1-ple+(1-q
max{ (p-a) (-0 (p-a) (-0 }

=[_1>1])
(14)



and taking o = 0, then

[-plol, pl@lleg[-gl@l, gl@l]
(p-9a

F(O)

(D*>O‘r

= [min{ lim
®—0"

~In the meantime, we realize that U(®) = -|®| and
U(®) = |@| are (p, g)-differentiable at 0. In the same way,
taking o <0, we have

(0= L=Pe-U-9e_

-pla| + gl@| lim plol - gl@|
(p-9o (p—9a

’ o—0*

}, max{ lim
®—0"
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(15)

’ o—0*

-plol+gl@l | plol- qlwl}
1 =[-1,1].
p-ao "o (p-ga | "V

We include the following findings to more clearly ex-
plain the existence of the derivatives.

Theorem 2. Let F: [p,7] — K. If F is I(p, q),-differen-

e pg— (p—-q(-0) tiable on [p, 7], then we have that
(16)
(i) D F(@)= (,D, U(®),,D U(@)], for all
_ ~(1-p)o+(1- 0
QDp,qU(O) - ( (ppzeq) ((—Q) e =-L € q[ , pT+ (1 - };1)9] sz zspL increasing
' (11) i F(@) = DMU(@) DPqU((D)] for  all
and taking ¢ = 0, then (D € [o, pt+ (1 - p)ol, if F is L-decreasing
pgUO) = lim —i'a"f ;JC'D‘D' -1,
P (17)  Proof. First, suppose F is L-increasing and I(p, q),-differ-
pl@l - glo| entiable is on [p, 7]. For any @ € [, pT + (1 - p)el, we have
U(O) m—»o* (p-qa =L p@+ (1-p)o>qd+ (1-q)o. Since L(F)=U-U is in-
creasing, then we have
It show that if p<0, then DP F(0)= [ quU(O)
quU(O)] And, if o =0, then D F(O) [oD U (0),
gV (0)].
[U(p@ + (1~ p)o) = U(p@+ (1~ p)o)] - [U(q@ + (1 - g)e) - U(q@ + (1 - 9)0)] >0, (18)
U(p@ +(1-p)e) - U(gad +(1-g)e)> U(p@ + (1 - p)e) - U(q®d + (1 - g)o).
Therefore,
D (e = [U(p@+(1-p)o), U(p@+ (1 - p)o)]eg[U(q@ + (1 - ¢)o), U(qd + (1 — 9)0)]
(@) =
¢ pa (p-9(@-0)
_[Up@+(1-p)o) - U(q@d + (1 -q)e) U(pd+(1- p)e) - U(q®d +(1 - q)o) (19)
(P-a)(@-0) (p-9)(@-0)
= [ P, U@),,D, U(@)|.
The other condition can be proved, similarly. O  Example 2. Suppose thata function #: [0,1] — F#; then,

Remark 1. Lety € (o, pt+ (1 — p)o) be a given point. If F is
L-increasing on [p,y) and L-decreasing on (y,7], then
D F=[D U,D U] on [0,y) and

= 4= pq
er,qF [@quU,QD Ul on (y, pr+ (1 - p)ol.

we take F(®)=[-®*-1,®*-20]. We know that
L(F) = 2@* - 2@ + 1, and it shows that F is L-decreasing on
[0, (1/2)) and L-increasing on ((1/2),1]. We know that
U(@) =-@*-1 and U(®@) = @* - 2@ are (p,q)-differen-
tiable on [0, 1]; then, we have
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~(p@)* - 1+((q@)* +1

0Dpg U(@) = T = [21,4)@.
_ (p@)* +2(p@) - (q@)* - 2(q@)
0DpqU (@) = (p-qa =(R2lpg)2-2,
[(pe+(12)(1-p)?) 1] -[-(q@ + (1/2) (1 - 9)*) - 1]
12D, U (@) = (p-@(@-(172))
1
=~(B,5)0 -3 (p-a). (20)
D T(@)= (p@ +(1/2) (1 - p))* +2(p@ + (1/2) (1 = p)) — (q@ + (1/2) (1 — 9))* + 2(q@ + (1/2) (1 - g))
1294 = (1-9q)(®-(1/2))

=([21,,)@ -2+ (1/2)(p - @)

li D, U(®)=-1,
@—1}?1/2) p’q_( )

li D. U(®) = -1.
mi}g/z) Pq ( )

Therefore,

[ [{12,)a.(121,)0- 2], f € [0.5),

D F@) =1 (-1} ifo =%, (21)

. [([z]p,q)oz +% (p-ah~121,,)@ —% (p —q)], ifoe (% 1].

Theorem 3. Suppose that F: o7l — K. is a  I(p,q),-differentiable on [g,7], such that QDM (F+C) =
I(p, q)g—dzﬁerentiable on |, T]AwitAh C=[e7] € K, and QDp)qF and QDp)q (BF) = ﬁQDp)qF.
peR; then,  functions F+C and PF are

Proof. For any @ € [p, pr + (1 - p)ol,

(E(p@ + (1 - p)o) + C)og (F(ga + (1 - g)p) + C)

(),D,, (F(@)+0) =

(p-q9(@-9)
:9(p®+(1—p)g)eGF(q®+(1—q)@)
(p-q(@-9)
=,D F(@),
;FI(W (1 - p)e)egBE( (1-9o) 22
.. = _ P+ (1-p)o)SgpF(qw +(1-9g)o
(i) D, (BF(@)) = (- (@-0)
:/SF(pGJ+(1—p)g)eGF(q®+(l—q)g)
(p-q(®-9)
=B,D F(@)

¢ pq



Theorem 4. Suppose that F: [p,71] — K, is a
I(p, q)g-diﬁerentiable on [p, 7]. Let C = [¢,©] € K. ifL(IE)

L(C) has a constant sign on [, 7], then functions Fo,C is
I(p, q)g—diﬂerentiable on [, 7] and \D (FeGC) p,qF'
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Proof. For any ® € [p, pT+ (1 - p)ol,

(f: (po+(1- p)g)eG(AD)eg(f: (g0 + (1 - q)g)eGC)

D _(F(@)esC) =
oD, (F(@esC) (p-9(@-0)
(23)
_F(po+(1 - p)o)ocF(q@ + (1 -q)e) _ D, F(@).
(p-a)(@-0) o

B . A D U< D ﬁ O
Theorem 5. Suppose that F,G: [, 7] — K. Let Fand G be ) G 7
I(p, q)g-diﬁferentiable on [Q, 7]; then, F + G: [Q, 7] — K. is gDp,qg < D G.

1(p, q),-differentiable on [, T]; then, we have the following
properties:

(i) If Fand G are equally L-monotonic on g, 7], for all
@ € [p, pt+ (1 — p)ol, then

L, (F(@) +G(@)) = QDp)qF(a)) + QDMG(@).

(ii) It shows that U+G and U +G are (p,q)-differ-
entiable functions on [p, 7], and also, F+G is
I(p, q)g—differentiable on [p, 7] and

D

. Pq(F+G)=[min{D u+,D, G D U+ D G}

=07 pq ¢ pa

(24) max{ D U+D G,D U+,D G}
pa— @ ¢ pa
(ii) If F and G are differently L-monotonic on [, 7], for [ D, U+,D, G,D T+ D G]
all ® € o, pt+ (1 - p)ol, then 7 pa = e7pg T 2 pa
- = = ~ = D F+0D G.
QDp,q(F +G)(®) = QDMF(@)GG(—1)QDMG(®). ¢“pa ¢ pg
(25) (28)
Therefore, we have (iii) Correspopdmgly, both F and G can be shown to be
L-decreasing.
(F(®)+G(®))§0Dp F(‘D)+ D, G(‘D) (26) (iv) Suppose that F is L-increasing and G is L-de-
creasing. Then,
gquQ <,D, U
Proof o ’ _ (29)
(i) Suppose that two functions FandG are D )qQ z D G-
I(p,q ) -differentiable and L-increasing on [, 7];
taking U, U , G, and G are (p,q)-differentiable, (v) Moreover,
D (F+G)=min{D U+, G,D, U+D G}
201 ¢ pq
(30)
maX{QD Uu+,D G, D U+ ,D G},
P4 ¢ pq— 2 pgq 27 pg
D, Fec(-1),D, G = [QDM U, QDMU]eG (—1)[QDMG, D, g]
= [QDPQQ’QDP U]eG[_@DMQ’_ b G] (31)

{ D U+QD G
pq

{D U+D GD U+ DMG}

G,D, U+,D, Gp,
201
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(vi) We get (25) by comparing (30) with (31).
Additionally,

DU+DGDU+DG

D F+ D G= ,
7 pq 2 pq ¢ pqa— ¢ pqg "2 pg

(32)

(v) We obtain F+G if it is L-increasing or L-de-
creasing; we can obtain

oD, E@+G(@)e,D, F(@)+,D, G(@). (33)

(vi) The opposite case, similarly, can be proved. O

Theorem 6. Let G: [o,7r] — K. If FandG are

I(p, q) dzﬁ”erentzable and L(F) - L(G) has a constant sign

on [o, T] then FoiG: [o, 7] — K_ is I (p, q),-differentiable
n [0, 7], and one of the following cases holds:

(i) If Fand G are equally L-monotonic on g, 7], for all
@ € [, pr+ (1 - p)ol, then

oD, (F@ecG(@) = ,D, F(@)eg,D, G(a).
(34)

(ii) If E and G are differently L-monotonic on [g, 7], for
all ® € [p, pt+ (1 — p)o], then

D, (FesG)(@) = ,D, F(@)+(-1),D, G(a).

e 27 pq
(35)

froof. We now assume that L(F)>L(G) on [o,7], and
Fo;G=[U-G,U-QG].

(i) Suppose Fand G are L-increasing on [, 7]. Since
F and G are I(p, q),-differentiable, we have that U,
U, G, and G are (p,q)-differentiable and
QDM U< QDMU,
_ (36)
D G< D G
27 pq 27 pq
(ii) Then, U~G and U -G are (p,q)-differentiable
functions on [, 7]. So, FegG is I(p, q),-differen-
tiable on [p, 7] and

qu(f?ecé)zmin{D v-p, G,D,U-,D G},

Y =@ pq 27 pg

max{DQDQ,DU DG}
" paq ¢ pg— 2 pq

.0,,U..0,,0eq|,D,,G.,D, ]
p4q Pa

@DM Feg ODM G.
(37)

(iii) The case of F and G are both L-decreasing can be
proved, similarly.

(iv) Suppose F is L-increasing and G is L-decreasing.
From (i), we have that

D U< D T,
e pg ¢ pg (38)
D G=>D G
¢ pq 2 pg
(v) For L(F) 2L(G), on the one hand,
gDp’q(FeGG) = mm{ D,,U-,D,,G,D, U- QDMG},
{QD U-,D G,D, U-,D G}
pa— ¢ p4q P4 pq
=[0D u-,p, G,D, U D G]
S 2 ¢ pq 27 pq
(39)

(vi) On the other hand,

D, F+(-1,D, G= i (- 1)[ G.D G]

[” Pq—’Q P4 ] 97 pa 2 pag

[" pq—@ P ] [0 pq—’ L’DMG]

[”DMQ @DMG” PqU QDMG]'

(vii) Comparing (39) with (40), we get (35). The opposite
case, similarly, can be proved. O

Example 3. Let F,G: [0,2] — K_, given byP(G)) [0, -@?
+20] andG((D) = [0,2®% — 4@ + 3]. SlnceL(F(G))) = -+
2@ and L(G(®)) = 2% - 4@ + 3, then L(F(®@)) <L(G(@)),
for all ® € [0,2]. We have that F (@) is L-increasing on [0, 1]
and L-decreasing on [1,2]. G(@) is L-decreasing on [0, 1]
and L-increasing on [1,2].

Furthermore, we have that F(@) +G(@) = [0,@* - 2@ +
3] and F(@)e;G (@) = [-3@? + 6@ — 3,0]. Since L(F(@) +
G(@) = @* - 2@+ 3 and L(F(@)e;G(@)) = 3@* - 6@ + 3,
then F(®@)+G (@), F ((D)GGG((D) are L-decreasing on
[0,1] and L-increasing on [1,2]. For all @ € [0, 1], we get
that

oD, F(@ =[,D,,U(@),,D, U(@)]
=[0.{121,,)@ +2],
0D,,G(@) =[,D,,G(@),,D,,G(@)]
= [2( (21,
D, (F(@)+G(@)) =[,D,,(T(@)+G(@),,D,,(U (@) + G(@)]
=[(214)2-2.0],
0Dpq(F (@666 (@) = [4D, (U (@) - G (@)
= [0.-3(121,)@ + 6]

,q)m _4’0]’

D, (T(a)-G(a))]

(41)
Then, from (31) and (40),
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oD, F (@G (-1),D, G (@) = [0, [2],,)@ +2]ec (-D[2([2],,)@ - 4,0]

=[0,-(1+q)@ + 2]eg [0,-2([2],,, )@ + 4]

= [min{o, (121,4)@ - 2}, max{o, ((2],, )@ - 2}]

=[(121,,)@ - 2,0}, (42)
oD, F (@) +(-1)yD, G (@) = [0,[2],, )@ + 2] + (-1)[2([2] 5, )@ — 4.0]

=[0,121,,)@ + 2] +[0,-2([2],, )@ + 4]

=[0,-3([21,,)@ +6].

Furthermore, for all ® € [1,2], similarly, we obtain that

D, F@) =[,D,,U(@),,D,, U@)]=[{12],,)@-(p-q) +2,0],
1Dp,qé( )= 1Dy G( ‘D)’le,qG(‘D)] =[ > ([Z]P,q)‘D“LZ(P_q)_‘l]’
1D, (F (@) + % (@) =[,D,, (U (@) +G(@)),,D,,(T(@) +G(a))]

0,([21pq)@+ (p—a) -2},
\D,,(T(@)-G(@)),,D,, (U (@) - G(a))]
( )@= 3(p—q)+6,0],

oD, F(@)eg (-1),D, G (@)

[- (121,4)@ = (p =) + 2,00 (-1)[0,2([2],,, )@ +2(p - q) - 4] (43)
=[-([2],4)@ - (p - q) +2,0]e5[-2([2],,)@ - 2(p - q) + 4,0]
= [min{([2],,)® + (p - @) - 2,0}, max{([2],,)@ + (p - q) - 2,0}]
=[0,([2],)0+(p -9 -2],

F(co) + (—1)ODMG(Q)
[ ( pa)@ = (p—q) +2,0] + (=1)[0,2([2],,)@+2(p - 9) — 4]
[- ([21,4)@ = (p—q) +2,0] +[-2([2],,)@ - 2(p - q) +4,0]
[-3(12],,)@-3(p-q) +6,0].

1D, (F(@)e:G (@) =

[
[
Dy,
=
LDy
-

2]
2]

Obviously, we can see that 0 F+ GQ)(@)= Definition 5 (see [15]). Let E: [o,7] — R and
pq- ~ = . . .
D F(a))eG( 1), D G(GJ) and Qqu(FeGG)(‘D) = F € C([p, 7], R); then, the expression (p,q)-integral is de-
D F(Co)+( l)D G(G)) ’ fined by

v A T’l qﬂ
F(@),d @=( ) + >
4.1(p, q),-Integral for Interval-Valued I il PO Z P ( Pt ( p”+1>9>
Functions (44)

In this section, we present the concepts of I(p, q),-integral for all y € [, pr + (1 - plol.
and give some properties. Firstly, let us review the definition Additionally, if ¢ € (p,y), then the definite (p, g)-inte-
of (p,q) Q-integral. gral on [p, 7] is defined by
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y v
| f@)d,,0- L F(@)d, o- J f@d, @
~(p-al-0) F( p°3,+1y+(1 - p3+1>e> (45)
N (P N q) (C - 9) Z ‘ZH F(p[r]wl +<1 _p?w-l)Q)‘
n=0
Note that if o =0, then (44) reduces to the classical  for all y € [p, pr+ (1 - p)ol.
(p>q)-Jackson integral of a function F(®), defined by
Y4 _ (o] n/ o n+t1\T nygontl ~ —~
IOF(G‘))OdM(D =(p-ay Z"=0(q PR P )y) for Theorem 7. Let E: [o,7] — K, and F € C([p,7],K,). If
@ € [0, 00). Fo? more details, see [15]. . c € (0,y), then we have that
Next, we give the concept of the I(p,q),-integral and . , ,
discuss some basic properties. T I T I ~_|'=w I
prop L F(m)gdp’qm + JC F(@)de’qm = L F(m)gdp,qco (47)
Definition 6. Let F: [o,7] — K, and Fe C(lo,7],K.);
then, the expression I(p,q), -integral is defined by
T g Proof.
I F((D)deqx - (P q)(y Q)Z n+1 (pn+1 V +<1 - pn+l)g)’
(46)
JCF(Q) d o+ JVIE((D) d o
¢ pa c ¢ pa
(P q)(C_Q)Z n+1 ( n+lc+<l_ qr:l)g)
p p
o0 qn . qﬂ qn
+(P—Q)(Y—C) n+ F<Ty+<1_ n+ )C)
,;)p AV P
o0 qﬂ q?l qﬂ
=l(p-q9(c-9) . !( . C+(1— " )9>>
|: r;)p +1 P +1 P +1
(o) qﬂ o qi’l qﬂ
-3 Lo( Lie(1-0)o)]
q q (49
[(p q) (V —c) Z n+1 —<pn+1 Y +< Pn+1> )
4 o 4 q
(P - q) (Y -0 r;) n+lU(pn+1 Y +( pn+1 ):|
[(p D(y-0) Z ( ,ﬁm(l - ?.H)e),
n= 0 p p
q q
o3 Lol £))
nzop BV P
N q [ I
~p-00-0 3Ly (1-)e) - [ Fa 0
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’Iheorem 8. Let F: [o, 7] — K.. Ifli € C([o, 7], %), then
FisI(p,q),-integralif and only if U and U are (p, q)-integral
over [p,T]. Moreover,

"F(@),d!
L (@),d,,0 = 2" pa

rU(co) d o Jyﬁ(co)d o
or epa ]

(49)

Proof. The proof can be obtained by combining Definitions
5 and 6 and, hence, is omitted. O

Example 4. Let F: [0,1] — K_, given by F(@) = [@% @].
For 0 <g< p<1, we have

1 [ 1 1
- I 2
J-o F(@)dy,@ = Jo @ odpq® Jo Popq®@

r 3n

00 0 2n
4q q
={(p-9 ) = (P~ 9 T:|
i ;)zf : ;pz :

1 ;]
LBl R,
(50)

I L = I
O] F@+G@ld,o

=p-9y-0Y 1 [F(
n:OP

- 49 =f 4
=(p-q(y-0) ,,+F<
p-a9(y ;plp

+(p-a)(y-0 )
n:OP

9 A
1+1 G(
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Theorem 9. Let EG: [o,71] — K, and let BeR. If
F,G € C(lo, 7], K,), for @ € [p, pT + (1 — p)ol, then we have
that

@) ["F(@) +G@)],d, o= ['F(@),d o+

jYG ®),d @ 27 pa e 2"paq

e g P Y=

(ii) [} BE@),d, @= B[ F(@),d, @

Proof. From Definition 6, we have that

n+1y+<1_ qn+1>9)+é< qn+1y+(1_ ZH)Q)]
p p p p
n+1y+(1 _PZH)@

q q
Pn+1 Y +<1 T

g) (51)

Y Y -
_ L F(0),d, @+ Jg G@,d, o,

7 I
(i) L p7 (@),d. 0 >

Y
— oz
oy L F@,d, o
Theorem 10. Let F,G: [o,7] — K. IfF,G € C([o, 7], K,),
then
"f0),d "G@),d ac['® G(@),d
L (@),d, 0 Jg (@), Mco_L (@G (0),d, o.

(52)

=(P—q)(y—9)zpz+1ﬂ9(

Z+1y+<1 - ?ﬁ—l)@)
p p

O
Moreover, i]‘L(F) —L(G) has a constant sign on [, 7],
then

v Yy YL ~
J Fo)d! 0, J G@),d o =J F(@ecG(@),d) o
0 € e

(53)
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Proof. First, we have

¥ _
J min{fU-G,U-G},d @
0 pq

v Y
< min{Jg (H—Q)de o, L (U~ G)de,qCO}

(54)

< rnax{ J: (U-G)d, o j: (T- G)de)qa)}

Y _
< J maX{Q—Q,U—G}Qd Q.
0 Pq

It implies that

LN 1 1
| 5, aeGJ G,d o
0 Pq 2 pq

Yy .  _
= [min{ L (U-G)d, o, L (U- G)de’qco},

(55)

Moreover, FeGG [U-GU-G] if L(F)>L(G), or
FGGG [U G, U-GJifL(F )<L(G) We now assume that
L(F)>L(G) on [0, 7], and FGGG [U-G,U-G]. So, we
have fy(U G), d GJ<J (U - G) d GD It implies that

L FocGyd! 0= [ min{U-GU-Gl,d, o

(58)

Theorem 11. Let F: [p, 7 7] — K. IfFis I(p, q)o-differen-
tiable on [g, 7], then ,D FzsI(p, )o-integral. Moreover, ifF
is L-monotone on g, T‘T then

F(@)egF(c) = J . qu(y)Qd v forallc € [o, p@ + (1 - plel.
(57)

Proof. If F is I(p, q),-differentiable on [, 7], then, from
Theorem 1, it follows that Uand Uare (p, q),-differentiable.

Hence, QD U and D U exist on [p,7]. Meanwhile,

11

D Uand Dp qU are (p, q),-integral. Therefore, Theorem
8 1mphes that D qF isI(p, q) -integral. If & is L-increasing
on [, 7], then quF((D) [ DPqU(GJ) D U(GJ)] for all
@ € [, pr+ (1 — p)o]. Then, we have that

u@-u@=|",0, umnd,
g (58)
U@-0@ = 0, 004,y
It follows that
[}
F@)=Fo+ | 0, Fndy ()
Since & is Z-increasing on [, 7], by (2), then
[0
F@ef(©) = | D, Fin,d, (60)
If F is L-decreasing on [p,7], then D F(@) =

Q" pg

[,D,,U0(@),,D, U@)], for all ceo,pad+ (1~ pel

Then, we get that

J . MF(y)O oa? —“ L, U,d, v j D, U,y ]

=[U(@) - U(c), U(@) - U(c)]
=[U(@), U(@)]eg[U (), U(e)]
= F(@)esF (o).

(64

Remark 2. We remark that if F is L-increasing on [g, 7], then
(57) is equivalent with

F(@):F(C)Jrj D, F(y)g o (62)

and if Fis L-decreasing on [g, ], then (57) is equivalent with

F(y),d (63)

2 pgq "M

B(@) = E()eg (- 1)]

for all ® € [p, pt + (1 — p)p]. Also, we remark that relation
(57) can be false if F is not L-monotone on [0, 7]. Indeed, let
E: [0,2] — K., given by. For ¢ € (0,1) and @ € (1,2), we
have that (see Example 3)

Jf oDy F(0),d,, 7 = Ji oDp F()d, v+ Ja FW,d v
=[0,¢ - 2c+1] +[-@° +20 - 1,0]
=[-@*+20 -1, - 2c+1].

(64)

Then, we get that
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F(@)e:F(c)

#J WD F (), dy

Therefore, (57) is not true for all @ € [0, 2].

Example 5. Let F: [0,2] — K_, given by F(@) = [0,@"].
Since F(@) is I1(p,q)y- -differentiable and L-increasing on

= [min{0, (c - ®)(c +® —

Mathematical Problems in Engineering

2)}, max{0, (c — @) (c + ® — 2)}]
(65)

Theorem 12 (see [27]). Let F: [o,7] — R be a convex
differentiable function on [p,7]. Then, the following in-
equalities holds for (p,q)-integrals:

[o, Z]L then gD F((D) is  I(p q) -integral  and
QDMF((D) [o, ([2 )co] Letc =1 € [0, GJ] then,
F(@)ogF(1) = [0,0” - 1],
0] I [}
Jl 0Dpa? (odpgy =10, Jl ([Z]P,q)yodp,qy]
(66)
® 1
(o[} @)y [ (2|
_[0.0®-1].
- pri-ple _ F F
21,, ) (-0 pa 21,
Theorem 13 (see [27]). Let F: [o,7] — R be a convex
differentiable function on [p,7]. Then, the following in-
equalities holds for (p,q)-integrals:
- -0)= prH1-ple
F(q””) (p=9) (1= Qg (quQ)S ! J F(@),d, @
~ ~ (68)
<pF(g) +qF (1)
_7[2]”1 :
Theorem 14 (see [27]). Let E: lo, T]A—> R be a differen- where
tiable function on (o,7) and ,D_F is continuous and P’
integrable on [o,7]. If |, D FI is convex function over Vi (pq) = 2F 13l
[0, 7], then we have “th" following  (p, q)-midpoint P PA
inequalit
o pre(i-p) %/(pcz)—pzmp’q_‘v3
T o ) == >
[ o0 H(22) P0G
0 b (2154 (70)
2p°
= = Vs(pq =5
<q(r-0) [(|@Dp,qF<r>|% (@) +|,D, F (|7 (pa) NPT
4 3 2 2 3
+ + -2
%/4(17)61):17 pq+pq P’

{2, Foprioa |0, Foprp)|

(69)

213,31,

and 0<gq<p<l.
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Theorem 15 (see [28]). Let E: [0, 7] — R be a differen-
tiable function on (p,1) and D E be continuous and in-
tegrable on [p,1]. If IQD E| is convex function over [p, 7],
then we have the following new (p, q)-trapezoidal inequality:
o3 IS TH 11—
|47 (@ +pF() 1 [ f@, 0
|2, pa-0 “pa

Y

ng]_pf) |0, F @7 (p.0 4|0, F@[7(p.0)].

(71)
where
_242p)+(2p" +2)g + pg’| +2p* -2
7 (o)~ L2 r) (p3 Ja+pa]+2p"-2p
(21543154
2([2],, -1
“7/6(17,!1)=(p4’3)—%(p,q).
(2154
(72)

5.1(p, q),-Hermite-Hadamard Inequalities for
Interval-Valued Functions

Now, we review the content of the convex interval-valued
functions.

Definition 7 (see [21]). Suppose that E: [o, 7] — K.. Take
F is convex if, for all ®,, o, € [o,7] and y € [0, 1], we have
F(y@, + (1 -p)@,) 2yF(@;) + (1 — p)F(@,). (73)

We use SX ([p, 7], # ) to represent the set of all convex
interval-valued functions.

Theorem 16 (see [21]). Let F: [0, 7] — K. Then, F is said
to be convex if and only if U is convex and U is concave on
[0, 7].

Theorem 17. Let F = [U, U]: [0, 7] — K be a differen-
tiable interval-valued convex function; then, the following
inequalities hold for the I(p, q),-integral:

?<qe +pr
(21,4
+1-p) 7 & 79
1 pri{l=ple 1 __qF(e)+ pF(7)
] R S e

Proof. Since F=[U,Ul: [o,7] — K{ is an interval-
valued convex function, therefore U is a convex function

13

and U is a concave function. So, from U and inequality
(67), we have

ﬁ<qe + PT)
(21,4
prHl-plo __ U U
< 1 J ¢ U((D)od < M’
p(r-0) Jo b 2] 54
(75)
and from concavity of U and (67), we have
qU () + pU(7)
(2],,
(76)
pri(1-p)
<1 J ‘U@,d o< Q(M).
p(r=0) Jo ¢ pa 2],q
From (75) and (76), we obtain
U(QQ + pr) o1 JPH(PP)QU(Q) i
2l,, /) p(r-0) Jo ¢ pa
(77)

TH 1-p)
<! jp ™ U(@),d (DsU(qurpT),
p(r—0) Jo R R N ] P8

and hence, we have

~(qe+pr\. 1 prH(l=ple _ !
F( [2]P’q )_P(T—Q) J F((D)de)q@. (78)

0
Also, from (75) and (76), we obtain
qU (o) + pU(7)

1 JPT+(1—P)@6(®) i o
<
p(r—0) Jo “ra 214
prH1-p)
L4V +pU@ _ 1 j Sord, o,
21, pr-0 Jo pa
(79)
and hence, we have
1 pri(l=ple 1 qU(g)+pU(7)
_ F(@)d oo>—m"——— 80
p(t-o) Je (@ (254 (80

By combining (78) and (80), we obtain the required
inequality which accomplishes the proof. O

Theorem 18. Let E = [U,UJ: lo,7] — K be a differen-
tiable interval-valued convex function on [o,1]; then, the
following inequalities hold for the I(p, q)-integral:
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—~ qT+pQ
F( 21, )* 2l

Proof. Since F=[U,U]: [0, 7] — K is an interval-valued
convex function, therefore, U is a convex function and U is a

B oL pr+(1-plo _
(p-q( Q)F/ ar+pe) 1 J QF(@) d @
21,, v p

S pr-0) Jo
R R (81)
DpF(Q) + qF(T).

- 2l

concave function. Because of convexity of U and from in-
equalities (68), we obtain that

qr + po
U( . )* 2L,

Now, using the fact that U is concave function and from
inequality (68), we obtain that

(p-q@ (- Q)G<q7+p@> B 1 J'pT+(1—P)Qg((D) i o
(21,4

_P(T—Q) 27 pq

0
(82)

<pQ(9)+qH(r)
- (21,4 '

qrt + po
Q( 2, )* R,

The rest part of the proof can be done by applying the
same lines of previous theorem and considering inequalities
(82) and (83). Thus, the proof is completed.

Theorem 19. Let F = [U,U]: [0, 7] — KT be a differen-
tiable interval-valued convex function on [o,7]; then, the
following inequalities hold for the I (p,q)-integral:

1 pr1-ple !
max{%l, ‘%2} 2 m J-Q ?(@)de,qm
R R (84)
S pE(7) +gF ()
B 21,
where
~(qo0+ pt
M, = )
1 F( 2l )
(85)
- F(c]f + PQ) (- Q)F/<‘1T + Pe)_
(21,4 (21,4 (21,4

Proof. From inequalities (74) and (75), we have the required
inequalities (84). Thus, the proof is finished. O

(P_Q)(T—Q){J(q‘r+pg)> 1 Jpr+(1—p)g
(2],

2o U(@),d, @

Q

>pH(9)+q!(T)
- (21,4 '

6. Midpoint- and Trapezoidal-Type
Inequalities for I (p, q),-Integral

In this section, some new inequalities of midpoint and
trapezoidal type for interval-valued functions are obtained.

Theorem 20. Let F=[U,U]: [p,7] — K’ be a
I(p, q)g—diﬁerentiablefunction. IfIQD U | and lQDP qu are
convex functions on [, 7], then the fg?lowing I(p, q)g mid-

point inequality holds for interval-valued functions:
1 qrH1-p)p _ ~(qo + PT>>
dy| ——— J F(@),d @,F( ,

H(P(T— 0 Jo @, b4 (21,4

F[7(pa)),

<q(t-0) |:(|9Dp,qF(T)‘W1 (P9 +|QDP"1

H{],D, F @75 () +|,D, F |7 (. q))],
(86)

where W'\ (p,q)-W 4 (p,q) are defined in Theorem 14 and dy,
is Pompeiu-Hausdor(f distance between the intervals.

Proof. Using the definition of d}; distance between intervals,
one can easily obtain that
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1 pr{i=ple qo + pt
dH(p(r—e) J, g F( 217 ))
([ o Q) U(@)deqco -0l
[(9””) (‘”””)) w
2]

pr+<1 ple
‘ U@ d @- U<q9+pT),

U(@),d @

pr+1 po 1 prH1-p)o
J ¢ pq

p(r- 9) ¢ pa (2],4
prH(1-ple
J U(@),d, - U(qe - PT) }
p(f -0 Je P (21,4
Now, using the fact that | D U] is a convex function Similarly, considering that | D U] is convex on [, 7]
and from inequality (69), we hatd and using inequality (69), we have -
prH1-pe pri-ple __
! J Uw),d @- U<q9+pT> 1 J U@ d o- U<Q9+PT>
p(r-0) Jo ¢ P [2]54 p(r—0) Jo ¢ P (21,4

<at-0|(|.2,, L@ (p@ +],0,, V@72 (p0)  <atz-o|(|,2,, U@ (p@+],D, U@ (p0)

+(|QDMH(T)|W3 (P @) +|,D,,

) (0, 367 5.0 2, D0} r0)
(88) (89)

So, from inequalities (88) and (89), we have

] pri-ple ! (q@ + PT))
dy|l ——— d
H(p(f—e) L, F(0),d,,0.F 21,

prH1-p)o
- max|— J U(@) d @_g%(qe+pr)
pt—0) Jo ¢ pa (2]

predip)
|t J ‘T@).d o- U(qeﬂm)
p(r—0) Jo ¢ pa (21,4

<maxq(r—g)<' T)"?/ p,q)+|@ MH(Q)|W2(P»Q)>

O pg—

<|@Dp U(7) |7/3(P’ 'g pq— |W4(P> )>, (90)

q(e- 9>[(|QDP,qU(r)]% (P +|,D, U@[7(p.0)
(2, O pa 0, T @)

= q(r-9) |:<|QDP,qF(T)|W1 (P +|,D, F Q[ (p.0))

<|@ g T)'Ws(P:‘Z)+|D F |‘W4(p, )>:|,
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since
‘9 qu(Q)’ maxﬂg qu(Q)HQDP U(Q)”’ (1)
0y 2] = max{|,0, , (s |2, o)}
Therefore, the proof is completed. O

Corollary 1. If we set p = 1 in Theorem 20, then we have the
following new Iq, -midpoint inequality for interval-valued
functions:

U (Taimy alm @0+ T
oty et ()

cate- o F0 0.0 4|0 F0]a10)

+<’9Dqﬁ (T)‘W3 (1,9 +‘QDqF(Q)’W4 (1, q))],
(92)

where |QDqQ| and Iqum both are convex functions.

Corollary 2. If we set p=1 and q — 1~ in Theorem 20,
then we have following midpoint inequality for interval-
valued functions:

dH(i j F@)do, F(Q;FT))

<(1-9) [(lF’ (0|7, (1,1) +[F (0|7, (1,1))  (93)

+(|F' ()75 (1, 1) +[F (0|7, (1, 1))},
where |U’ (0)| and U’ (0)| both are convex functions.

Theorem 21. Let F=[U,Ul: [o,7] — K be a I(p,
q) -differentiable function. If | DMUI and IDMUI are

convex functions on [g, 7], then the following I1(p,q), trap-
ezoidal inequality holds for interval-valued fzmctzons

p (qF(g)+ pE(r) 1 JPT+<1-P>
" 21, “P(r-0) Jo

F(a),d a))

¢ pq

<q(T—9)[
T 2]

9)+),0,, |7 (p.)]
(94)

where W5 and W are defined in Theorem 15 and dy is
Pompeiu-Hausdorff distance between the intervals.

Proof. From definition of dy; distance between the intervals
and inequality (71) and using the strategies that were
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followed in Theorem 21, one can easily obtain inequality
(94). O

Corollary 3. If we set p =1 in Theorem 21, then we have
following new 1q,-trapezoidal inequality for interval-valued

functions:
F(o)+ pF(r) 1 (74 .
dH( B} ,,_QLF(deq@)
~0) A
< [2] H F(T)‘W5(1’q)+‘quF(Q)‘°W/6(1,q)],

(95)

where IquQI and |@DqU| both are convex functions.

Corollary 4. If we set p =1 and g — 1~ in Theorem 21,
then we have the following new trapezoidal inequality for

interval-valued functions:
| F(m)d%n)
0

F(o)+E(1) 1
dH<f’ﬁ
<O [IF @l +[F @Prs (.0

(96)

where |U' (0)| and U1 (g)| both are convex functions.

7. Conclusions

In this work, the concept of I(p,q),-derivative and
I(p,q)y-integral are introduced and some fundamental
properties are discussed. Furthermore, some new
I(p,q),-Hermite-Hadamard type inequalities are estab-
lished and we proved some results for midpoint- and
trapezoidal-type inequalities by using the concept of
Pompeiu-Hausdorff distance between the intervals. We
intend to study the integral inequalities of fuzzy-interval-
valued functions and some applications in interval opti-
mizations by using I (p, q),-integral.
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