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Abstract

Current B-cell disorder treatments take advantage of dose-intensive chemotherapy regimens and immunotherapy via use of
monoclonal antibodies. Unfortunately, they may lead to insufficient tumor distribution of therapeutic agents, and often
cause adverse effects on patients. In this contribution, we propose a novel therapeutic approach in which relatively high
doses of Hydroxychloroquine and Chlorambucil were loaded into biodegradable nanoparticles coated with an anti-CD20
antibody. We demonstrate their ability to effectively target and internalize in tumor B-cells. Moreover, these nanoparticles
were able to kill not only p53 mutated/deleted lymphoma cell lines expressing a low amount of CD20, but also circulating
primary cells purified from chronic lymphocitic leukemia patients. Their safety was demonstrated in healthy mice, and their
therapeutic effects in a new model of Burkitt’s lymphoma. The latter serves as a prototype of an aggressive lympho-
proliferative disease. In vitro and in vivo data showed the ability of anti-CD20 nanoparticles loaded with
Hydroxychloroquine and Chlorambucil to increase tumor cell killing in comparison to free cytotoxic agents or Rituximab.
These results shed light on the potential of anti-CD20 nanoparticles carrying Hydroxychloroquine and Chlorambucil for
controlling a disseminated model of aggressive lymphoma, and lend credence to the idea of adopting this therapeutic
approach for the treatment of B-cell disorders.
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Introduction

B-cell malignancies are a heterogeneous group of clinical

conditions with highly variable clinical courses that span between

indolent diseases like the chronic lymphocytic leukemia (CLL) and

highly aggressive lymphoproliferative disorders, like Burkitt lym-

phoma (BL) [1,2,3,4]. B-cell tumor treatments include dose-

intensive chemotherapy regimens and immunotherapy via mono-

clonal antibodies (mAbs) [5]. Despite the promising survival rates,

these intensive multi-agent treatments display a high degree of

toxicity, and a significant percentage of patients are also unrespon-

sive [6,7,8]. Several limitations have been described to explain

refractory/relapse patients. In particular, genetic modification in

specific onco- or oncosuppressor genes, such as p53 [9], is associated

with unsuccessful chemotherapeutic regimens. In contrast, anti-

body-based immunotherapy has little side effects but its efficacy is

mainly driven by the expression of sufficient amounts of tumor-

associated antigen on the neoplastic cell surface [10].

In recent years, nanotechnology has attracted significant interest

from oncologists given its potential to offer a new paradigm to

overcome complex therapeutic targeting [11,12,13]. Nanoparticles

made with biodegradable biopolymers (BNPs) as carrier material

have been extensively investigated for sustained and controlled

delivery of imaging and therapeutic agents with high efficacy and

minor side effects [14,15,16,17,18,19]. Targeted delivery of

nanoparticles can be achieved by attaching specific ligands or

antibodies onto the nanoparticle surface [20,21,22,23,24,25].

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e74216



In this study, we developed a novel therapeutic approach in

which the efficacy of high-dose chemotherapy is a consequence of

the specificity and low side effects of antibody-based therapy. This

approach is based on biodegradable nanoparticles coated with an

antibody to target cells, and loaded with Hydroxychloroquine

(HCQ) and Chlorambucil (CLB) to specifically kill the cancer cells.

For the first time, we demonstrate the ability of a certain class of

nanoparticles to kill p53 mutated/deleted leukemia/lymphoma

cells expressing a low amount of CD20, and their safety and

therapeutic effects in a BL model, as an aggressive lymphopro-

lipherative disease prototype.

Materials and Methods

Cells, antibodies and sera
BL cell lines (BJAB and Raji) were cultured in RPMI-1640

medium (Sigma-Aldrich, Milan, Italy) supplemented with 10%

fetal calf serum (FCS; Gibco, Invitrogen, Milan, Italy).

Heparinized peripheral blood samples were obtained after

written informed consent from B-CLL untreated patients at the

Maggiore Hospital in Trieste. Patients provided informed consent

in accordance with IRB requirements and The Declaration of

Helsinki. The study was approved by the IRB of the CRO

(IRCCS) of Aviano (IRB-06–2010). The mononuclear cell

fractions were isolated by centrifugation on Ficoll-Hypaque (GE

Healthcare, Milan, Italy) density gradients.

BJAB cells suspended in serum-free RPMI-1640 medium were

stained with VybrantTM DiD cell-labeling solution (GE Health-

care) as previously reported [26].

The anti-CD20 chimeric mAb Rituximab (Roche, Milan, Italy)

was obtained from the clinical facilities (University of Trieste,

Italy). The mAb CD20 was secured from BioLegend (San Diego,

CA), and anti-PARP1 antibody was obtained from Bethyl

Laboratories. The anti-LC3 and anti-a-tubulin mAb were from

Sigma-Aldrich, and anti-p62 mAb was from Becton Dickinson

(Milan, Italy). For the immunophenotypical characterization

studies, anti-human-CD20 (clone L26, Novacastra), anti-human-

BCL6 (clone P1F1, Novacastra) and anti-human-Ki67 (clone Mib-

1, Dako, Denmark) mAbs were used.

Human sera from AB Rh+ blood donors were kindly provided

by the Blood Transfusion Center (Trieste, Italy) as a source of

complement (NHS – normal human serum).

BNPs preparation
Chemicals used for BNPs preparation were reagent grade or

better. Some of the chemicals purchased were: polyethylene glycol

(PEG) from Nektar, San Carlos, CA; Hydroxychloroquine sulfate

(HCQ) from ACROS, Gel Belgium; Chlorambucil (CLB) from

Sigma Aldrich, St Louis, MO. BNPs, based on carboxylic acid

terminated biodegradable polymers (PLA-b-PEG-COOH and

PCL-COOH), were produced with average diameter of 250 nm,

as measured by dynamic light scattering (data not shown). The

particles were fabricated under class 100 clean room conditions by

implementing Bio-Target’s technology at LNK Chemsolutions

LLC laboratories [25].

All BNPs were resuspended at the time of use in PBS buffer

(pH=7.4) with 10% BSA at a final total concentration of 900mg/

mL.

Animals
Female SCID mice (4–6 weeks of age) were purchased from

Charles River (Milan, Italy) and maintained under pathogen-free

conditions. C57/BL mice were obtained from the Animal House

of the University of Trieste.

All the experimental procedures involving animals were done in

compliance with the guidelines of the European (86/609/EEC)

and the Italian (D.L.116/92) laws, and were approved by both the

Italian Ministry of Health and the Administration of the

University Animal House (Prot. 42/2012).

FACS analysis
BJAB cells were labeled using anti-CD20 mAb at 10 mg/mL

and high and low CD20 expressing BJAB cells were isolated by cell

sorting on a BD FACS Aria II flow cytometer and CELLQuest

software.

Electron microscopy analysis
Samples were treated as previously described [27]. Ultrathin

sections were prepared with an Ultratome III (LKB, Pharmacia)

and observed by transmission electron microscopy (TEM; EM208;

Philips, Eindhoven, The Netherlands). Micrographs were taken

with a Morada Camera (Olympus Soft Imaging Solutions,

Munster, Germany).

Cell viability, apoptosis and autophagy
To investigate the ability of BNPs to affect cell viability, BJAB

cells (26105) were incubated with BNPs for 48 hours (in a

humidified 37uC, 5% CO2 incubator). The number of residual

viable cells was determined via the MTT assay, and the

percentage of dead cells was calculated according to the formula,

%D= [(test release – spontaneous release)/(total release –

spontaneous release)]6100.

Apoptosis was measured using FITC-labeled recombinant

human Annexin V assay (Apoptosis detection kit, Immunostep,

Spain) following the manufacturer’s instructions. For each

measurement 30,000 events were acquired with a standard

FACSCalibur (Becton Dickinson, San Jose, CA) flow cytometer

and analysis of data were performed with CellQuest (Becton

Dickinson). PARP-1, LC-3 and p62 activation were evaluated via

immunoblotting in order to show apoptosis and autophagy [28].

Complement-mediated lysis
A previously described procedure of Complement Dependent

Cytotoxicity (CDC) with some modifications was used to evaluate

the effect of Rituximab on complement-mediated killing of tumor

B-cells [29]. The number of residual viable cells was estimated

using the MTT assay.

Mouse Model of B-Lymphoma
SCID mice were inoculated i.p. on the right flank with 26106

BJAB cells and examined twice weekly up to 120 days for signs of

sickness.

Mice receiving the labeled cells were analyzed in vivo every day

and ex vivo on days 4, 7, 21 and 25 following cell injection using the

small-animal time-domain Optix MX2 preclinical NIRF-imager

(Advanced Research Technologies, Montreal, CA), as previously

described [26]. At the end of the in vivo evaluation, the animals

were sacrificed to perform ex vivo optical imaging analyses. The

peritoneal mass and other organs of interest such as liver, kidney,

spleen, heart, lung, lymph nodes and thigh bones were collected,

washed in PBS and analyzed by the eXplore Optix preclinical

imager (GE Healthcare).

Histopathological and Immunohistochemical analysis
Tissue specimens from peritoneal mass and other organs

obtained from lymphoma-bearing mice at necropsy were treated

as previously described [29]. Snap-frozen samples embedded in

Immunonanoparticles for B-Cell Disorders Treatment
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OCT Compound Embedding Medium (Diagnostic Division,

Miles, Inc.) were analyzed using fluorescence microscope Leica

DM2000 (Leica, Milan, Italy).

Statistical Analysis
The data were expressed as mean 6 SD and analyzed for

statistical significance by the two-tailed Student’s t test to compare

two paired groups of data. The Kaplan-Meier product-limit

method was used to estimate survival curves and the log-rank test

was adopted to compare different groups of mice.

Results

Anti-CD20 BNPs Target Tumor B-cells
Four different types of nanoparticles named BNP0, BNP1,

BNP2 and BNP3 were initially prepared as described in Figure S1.

BNP0 were prepared only with PLA-b-PEG-COOH and PCL-

COOH as polymeric carrier. BNP1 were prepared with the anti-

human CD20 on the surface. BNP2 particles were produced by

encapsulation of HCQ sulfate and CLB inside their core, and

modified by Rituximab on the surface. BNP3 were prepared as

BNP2 without anti-CD20 antibody on the surface.

The characterization of BNPs started by evaluating their ability

to bind to lymphoma cells. To this aim, BNP0 and BNP1 were

labeled with FITC and added to the BL cell line BJAB. The BNP1

system was able to target BJAB cells in a dose- and time-dependent

manner. The maximal uptake was measured after an incubation of

1 hour using 2 mL of BNP1, when all the cells appeared tagged by

BNP1 (Figure 1A). The BNP0 particles did not evidence specific

binding in one hour.

TEM studies were performed, following BNP migration into

tumor B-cells. To this end, two different types of BNPs (named

BNPA and BNPB) were prepared, as shown in Figure S1. BNPA

were produced by encapsulation of gadopentetate dimeglumine

(MagnevistH, Bayer HealthCare Pharmaceuticals Inc) while in

BNPB the anti-CD20 antibody was attached to the surface of

BNPA. BJAB cells were incubated with BNPA and BNPB and

then analyzed by TEM, exploiting the presence of Gd in the

particles. Images showed the binding of BNPB and their

interaction with the cell surface; the nanoparticles accumulated

in the cytoplasma of tumor cells but their internalization showed

no evidence of endocytotic vesicles involvement (Figure 1B). A

limited data set on the effect on BNPA in BJAB cells at different

times were documented (data not shown).

BNP2 Induce Tumor B-Cell Cytotoxicity
HCQ and CLB were chosen as therapeutic drugs. BJAB cells

incubated with HCQ (5.4 mg in 2 mL, 80 mM) resulted in 82% of

tumor cell death after 48 hours. Under the same conditions, CLB

(5.4 mg in 2 mL, 89 mM) is able to kill about 38% of BJAB cells. As

observed in other p53 mutated cells, like Raji, BJAB is quite

resistant to CLB and other classical chemotherapeutic agents such

as anthracyclines and purine analogues; in fact, the same doses of

fludarabine and doxorubicin kill 42% and 37% of cells,

respectively. Our data indicates that only CLB shows an additive

effect with HCQ, causing 92% of killing (HCQ+CLB vs. HCQ:

p,0.01), and these drugs were loaded in BNP2 and BNP3.

In order to evaluate the cytotoxic effect of BNPs, BJAB or Raji

lymphoma cells were incubated with different amount of BNP0,

BNP1, BNP2 and BNP3 and residual viable cells were measured.

BNP2 and BNP3 were able to induce cell cytotoxicity in a dose-

dependent manner while BNP0 and BNP1 were practically

ineffective. All tumor cells were killed in 48 hours using only

2 mL of BNP2 or BNP3 containing 5.4 mg of HCQ and CLB

(Figure 2A–B). This result is due to the pro-apoptotic effect

induced by the chemotherapeutic drugs. In fact, more than 30% of

tumor cells incubated for only 16 hours with 1 ml of BNP2 showed

the apoptotic profile in an Annexin V/PI test (Figure 2C). No

molecular studies were possible using 2 mL of BNP2 for 48 hours.

The poly (ADP-ribose) polymerase (PARP-1), a 113 kDa

nuclear enzyme, is cleaved in fragments of 89 and 24 KDa

during apoptosis and is a hallmark of the process. In fact, the

PARP-1 cleavage was detected in BJAB treated with a different

amount of BNP2 particles for only 16 hours by western blot assay

of cell lysate (Figure 2D).

The presence of HCQ in BNP2 could also induce an impaired

autophagy [30]. It has been demonstrated that the LC3 protein

during autophagy is processed to a cytosolic version (LC3-I,

18 KDa), and then converted to a lipidized form (LC3-II,

16 KDa) that stably associates with the membrane of phago-

phores, autophagosomes or autophagolysosomes [31]. LC3-II is

commonly used as a marker of autophagosome accumulation,

caused either by induction of their formation, or by inhibition of

Figure 1. Interacion between anti-CD20 BNPs and B-cells. A)
Binding of anti-CD20 BNP to BJAB cells. BJAB cells were labeled with
FAST-DiO (membrane-red) and DAPI (Nucleous-blue) and incubated
with FITC-labeled BNP1 (Green) for 1 hour at 37uC; samples were
analyzed using confocal microscopy. Original magnification 2006. B)
Internalization of anti-CD20 BNP to BJAB cells. Bjab cells were incubated
with BNPB for 1h and analyzed by TEM.
doi:10.1371/journal.pone.0074216.g001

Immunonanoparticles for B-Cell Disorders Treatment
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fusion with lysosomes. The effect of HCQ in nanoparticles is

clearly demonstrated by analyzing LC3 in cell lysate of BJAB

incubated with BNP2. Cells treated with a different amount of

nanoparticles showed a dose-dependent accumulation of LC3-II

(Figure 2D). p62 is a protein recruited to the autophagosomal

membrane, and represents another marker of autophagosome

accumulation. The effect of HCQ was confirmed by analyzing the

presence of p62 protein in the same samples. The amount of p62

was again increased in a dose-dependent manner after the

treatment of lymphoma cells with BNP2 (Figure 2D).

Comparison Between BNP2 and Rituximab Cytotoxic
Effects
The anti-CD20 chimeric antibody Rituximab mainly works by

activating the complement system, and antibody-dependent cell

cytotoxicity (ADCC). In contrast, a very low killing effect is due to

its ability to activate apoptotic pathways. For this reason, we have

compared the killing of BJAB cells expressing high and low

amounts of CD20 induced by a saturating concentration of

Rituximab (complement-dependent killing), or by BNP2 (apopto-

sis). BJAB cells were analyzed using anti-CD20 antibodies (Mean

Fluorescence Intensity-MFI: 316) and sorted in order to obtain

two different populations expressing high (MFI: 602) and low

(MFI: 103) amounts of CD20 on their surface. Rituximab was able

to kill up to 22% of BJAB [32] or high-CD20 BJAB, but it was

unable to lyse low-CD20 BJAB. On the other hand, BNP2 killed

92% of BJAB or 93% of high-CD20 BJAB and maintained the

capacity to induce cell death in 83% of low-CD20 tumor cells

(Table 1).

Circulating tumor B-cells in a CLL patient are also character-

ized by the expression of a low amount of CD20 on the cell

surface, as we documented in purified cells. The cytotoxic effect of

Rituximab on these cells ranged between 0 and 22%, with a

median value of 9.9%. Conversely, BNP2 killed up to 82% of

tumor B-cell, with a median value of 55.1% (BNP2 vs. Rituximab:

p,0.0001) (Table 1).

BNPs Show a Safe Toxicological Profile
The toxic effects induced by the intra-peritoneal injection of

BNPs were evaluated in C57/BL mice by analyzing total body

Figure 2. In vitro characterization of the cytotoxic effect of BNP2. BJAB (A) and Raji (B) cells were incubated with 0.5, 1 and 2 mL of BNPs or
HCQ+CLB for 48 hours at 37uC and residual viable cells were measured. Data are expressed as mean 6 SD. *: p,0.01 vs BNP1. C) BJAB cells wer
incubated with 1 mL of BNPs for only 16 hours at 37uC and apoptotic cells were analyzed using AnnexinV/PI test. D) Western blot analysis of activated
PARP-1, LC3 and p62 from cell lysates obtained from BJAB cells incubated with 0, 0.5, 1 and 2 mL of BNP2.
doi:10.1371/journal.pone.0074216.g002
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weight and survival. Groups of five animals received different

doses of BNP1, BNP2, BNP3 or free HCQ+CLB and were

followed for 28 days. Only the mice receiving 8 times the mixture

of free HCQ+CLB died in this experiment (Figure 3A), but the

analysis of body weight showed a significant toxicity also in mice

receiving 4 i.p. injections of the two drugs (untreated vs.

HCQ+CLB 64: p,0.001) (Figure 3B). BNPs appear to have a

very safe toxicological profile, without significant loss of body

weight in all treated mice (Figure 3B). These data were also

confirmed by histological analysis of mice tissues; in fact, all

samples collected from BNPs-treated animals maintained a normal

morphology (data not shown).

Development of a Burkitt Lymphoma Model Using BJAB
Cells
In order to characterize the potential in vivo effect of BNP2, we

set up a human/mouse model of BL using BJAB cells in SCID

mice. Tumor cell distribution was analyzed using near-infrared

time-domain optical imaging; intra-peritoneal injection of DiD-

labeled BJAB induced a fast tumor cell distribution, demonstrated

already after four days for the presence of BJAB cells in different

organs (Figure 4B). A tumor mass was grown at the site of injection

in 20–25 days in all SCID mice (Figure 4A and C). Localization of

tumor cells in liver, spleen, bone marrow, kidney and lung was

further confirmed by confocal microscopy in sections of tissue

samples obtained 7 days after cell injection (Figure S2), and was

partially documented in SCID mice up to 25 days after

inoculation of BJAB cells (data not shown). Figure 4D shows

sections of a peritoneal tumor mass collected on day 25 from mice

xenograft, stained with H&E and examined for the presence of

lymphoma cells. Immunohistochemical analysis revealed strong

membrane reactivity with antibody to human CD20, cytosolic

presence of BCL-6 and Ki-67 as markers of human lymphoma

cells (Figure 4D). The liver was involved in all the analyzed

animals but BJAB cells were also detected in the bone marrow of

14 mice out of 15 (Figure S3). None of the other organs analyzed

showed cell infiltration except for the spleen of 6 out 15 animals

and the kidneys in two animals, but in both cases the organ

involvement appeared to be ‘‘ab extrinseco’’. All animals died

between 50 and 70 days after tumor cell injection.

BNP2 Demonstrates a Therapeutic Effect in a
Disseminated Burkitt Lymphoma Model
DID-labeled BNP1 and BNP2 were injected i.p. (40 mL for

3 times in 5 days) in five tumor-bearing mice, with a visible

peritoneal tumor mass. These animals were sacrificed 7 days after

the end of the treatment. The tumor masses were analyzed by

confocal microscopy and H&E to detect the presence of

nanoparticles and apoptotic/necrotic areas induced by BNPs

activity. Figure 5 demonstrates the presence of DID-labeled anti-

CD20 nanoparticles 7 days after their injection. Apoptotic/

necrotic areas in tumor masses were documented in all animals

receiving BNP2 while no cytotoxic effect was evident in BNP1-

treated mice (figure 5).

All the in vivo data showed that BNP2 injection is safe, and is

able to induce tumor cell death in a human/mouse model of BL.

We then tested the efficacy of BNP2 in the treatment of the

human/SCID model of BL (Figure 5). To this goal, BJAB cells

Table 1. Comparison between BNP2 and Rituximab effects.

CD20 BNP2 RITUXIMAB

(MFI) (% killing) (% killing)

BJAB 316,8 92,0 18,9

BJAB-High 602,9 93,2 20,6

BJAB-low 103,1 83,1 0,6

Pz1 73,6 77,4 0,0

Pz2 22,2 81,7 8,9

Pz3 25,3 55,1 9,9

Pz4 41,4 44,9 18,0

Pz5 64,5 47,9 21,8

Median 41,4 55,1 9,9

BJAB cells were sorted to obtain High-CD20 and Low-CD20 cells. Mononuclear
cells were purified from untreated CLL patients. Cells were analyzed for CD20
expression (MFI-mean fluorescence intensity) and then incubated with BNP2 for
48 hours to induce apoptosis. Cells were also incubated with Rituximab + NHS
as a source of Complement for 1 h to induce CDC. Residual viable cells were
measure using MTT assay.
doi:10.1371/journal.pone.0074216.t001

Figure 3. Toxicological studies. C57/BL mice received BNP1, BNP2,
BNP3 and HCQ+CLB at different doses. A) Animal survival and B) total
body weight was measured for 28 days to evaluate toxicity of the
treatments. *: p,0.001 vs PBS.
doi:10.1371/journal.pone.0074216.g003
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were injected in SCID mice and divided into groups of 7–10

animals, and followed for 120 days.

Group 1 was kept untreated, and mice died within 50 to 70 days

after tumor cell injection.

Group 2 received 8 injections of 80 mL of BNP1, but the

treatment did not significantly increase their survival.

Groups 3 and 4 were challenged with the mixture HCQ+CLB

(400 mg each) for 4 times in 8 days or 8 times in 17 days

respectively. Eight injections of HCQ+CLB confirmed the data

obtained with healthy mice, and all animals died during the

treatment. Four i.p. injections of chemotherapeutic drugs were

tolerated also by tumor-bearing mice, and caused a cytotoxic effect

of tumor cells that induced 33% of mice survival (Untreated vs.

(HCQ+CLB)64: p,0.0003).

Groups 5 received 80 mL of BNP2 (corresponding to 400 mg of

each encapsulated chemotherapeutic agent targeted via anti-

CD20 antibody) for 4 times in 8 days; this treatment rendered a

survival curve similar to the profile obtained for group 3, but 50%

Figure 4. Characterization of Burkitt model in SCID mice. Labeled BJAB (26106 cells) were injected i.p. in SCID mice and fluorescence intensity
emissions were acquired in vivo for 25 days. (A) Whole body scans at indicated post-injection time are reported. (B) To evaluate the dissemination to
multiple organs by ex vivo analysis, mice were injected with labeled cells and they were sacrificed 7 days after the injection. (C) The same ex vivo

analysis was performed on mice 25 days after the BJAB injection, when the tumor mass was already developed. NC= Normalized Count. D)
Peritoneal tumor mass displays a solid cohesive pattern of growth with round small/medium sized elements and a high number of mitotic and
apoptotic figures (Hematoxilin and Eosin, original magnification 2006). Neoplastic cells show strong immunoreactivity to CD20 (anti-CD20
immunostaining, Strept-ABC method, original magnification 2006) and Bcl-6 (anti-Bcl-6 immunostaining, Strept-ABC, original magnification 2006).
The high proliferation rate of neoplastic cells (nearly 100% of cells) is highlighted by Ki-67 immunostaining (anti-Ki-67, Strep-ABC method, original
magnification 1006).
doi:10.1371/journal.pone.0074216.g004

Figure 5. Therapeutic effect of BNPs, HCQ+CLB and Rituximab. A) SCID mice (n = 5 per group) received 26106 BJAB cells i.p.; Cy5.5 labeled-
BNP1 or BNP2 (40 mL for 3 times in 5 days) were injected in tumor-bearing mice with a visible peritoneal tumor mass at day 25; the animals were
sacrificed 7 days after the end of the treatment and the tumor masses were visualized by confocal microscopy and analyzed by H&E. Original
magnification 2006. B) Survival curve. SCID mice (n = 7–10 per group) received 26106 BJAB cells i.p. and BNP1, BNP2, BNP3, HCQ+CLB or Rituximab as
described in the results. P values. Untreated vs. BNP1: Not significant; Untreated vs. BNP264: p,0.0001; Untreated vs. BNP268: p,0.0001; Untreated
vs. (HCQ+CLB)64: p,0.0003; Untreated vs. Rituximab: p,0.0005; BNP264 vs. (HCQ+CLB)64: Not significant; BNP264 vs. Rituximab: Not significant;
BNP268 vs. (HCQ+CLB) 68: p,0.0001; BNP268 vs. Rituximab: p,0.0003; BNP368 vs BNP1: Not significant; BNP368 vs BNP264: p,0.0005;
BNP368 vs BNP268: p,0.0001.
doi:10.1371/journal.pone.0074216.g005
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of the mice were cured by this treatment (Untreated vs. BNP264:

p,0.0001; BNP264 vs. (HCQ+CLB)64: Not significant).

Group 6 received 80 mL of BNP2 for 8 times in 17 days. This

treatment was effective in all the tumor-bearing mice and 90 days

after tumor challenge 100% of animals were still alive. At the end

of the experiment, only one mouse out of 10 died for the

development of lymphoma and 90% of mice were cured

(Untreated vs. BNP268: p,0.0001; BNP268 vs. (HCQ+CLB)

68: p,0.0001), as subsequently demonstrated by immunohisto-

chemistry analysis of all the organs of these animals (data not

shown).

Groups 7 received 80 mL of nanoparticles without antibodies

(BNP3) for 4 times, with an equal amount of chemotherapeutic

agents in group 5 (BNP2) and group 3 (free agents). No significant

therapeutic effect was observed.

Group 8 received 80 mL of BNP3 for 8 times in 17 days,

containing the same amount of HCQ+CLB injected in group 6

and 4. Animals did not evidence toxicity but BNP3 has no

significant therapeutic effects (BNP368 vs Untreated: Not signif-

icant; BNP368 vs BNP1: Not significant; BNP368 vs BNP264:

p,0.0005; BNP368 vs BNP268: p,0.0001).

Rituximab (12.5 mg at days 4 and 11 [29]) was injected in

animals of group 9 resulting in a 40% of mice survival after this

treatment (Untreated vs. Rituximab: p,0.0005; Rituximab vs.

BNP264: Not significant; Rituximab vs. BNP268: p,0.0003)

(Figure 5).

The organs and masses recovered from tumor-developing mice

(three months after the treatment) were analyzed by H&E in order

to confirm the development of BL model. Necrotic/apoptotic

areas were still present in mice from groups 5 and 6, in comparison

with BNP1-treated animals (Figure S4).

Discussion

The use of Ab-coated nanoparticles represents a new strategy to

target only tumor cells with high-dose chemotherapy, even in the

context of an adverse genetic profile. In this contribution, we

characterized both in vitro and in vivo the effects of a new kind of

biodegradable nanoparticles coated with the anti-CD20 chimeric

antibody Rituximab, and loaded with CLB and HCQ.

CLB, an alkylating agent, has been in use for decades to treat

hematological malignancies [33]. This drug is given orally, but

causes problems because the rate of drug absorption into the

bloodstream can vary significantly from patient to patient [34].

Also, most B cell malignancies will become resistant to this agent at

some point no matter whether it is used at increasing doses, or

within more aggressive regimens. In resistant situations, it could be

important to have a therapeutic system for a better delivery of high

amounts of drugs specifically inside B malignant cells in order to

circumvent genetically driven tumor mechanisms of resistance.

The combination of an elevated concentration of CLB

intracellularly with another kind of pro-apoptotic drug not

dependent on surviving genes, could not only enhance their

respective cancer killing activities but perhaps make a resistant

lymphoma cell sensitive again. HCQ [35] has demonstrated an

interesting pro-apoptotic effect. Its anti-neoplastic properties in

vitro depend on its concentration, but this cannot routinely be

obtained in vivo by the usual oral route of administration [36,37].

Its capacity to block the fusion between autophagosomes and

lysosome was clearly demonstrated [38], inducing cell cytotoxicity

in a p53-independent manner.

BJAB is a well characterized BL cell line, mutated in p53 [39]

and expressing high levels of CD20 expression [40]. As others p53

mutated cells, like Raji, BJAB is quite resistant to CLB and other

classical chemotherapeutic agents such as anthracyclines and

purine analogues; in fact, high doses of CLB were able to induce

only 38% of cell cytotoxicity, while fludarabine and doxorubicin

kill 42% and 37% of cells, respectively. However, in our study they

appeared more susceptible to HCQ (82% of killing). Combining

HCQ with other drugs could probably be synergistic, especially for

those patients in an already resistant disease state, or with bad

prognosis gene mutations, as already described [41]. Our data

indicates that only CLB has an additive effect with HCQ, causing

92% of killing. Moreover, side effects induced by these drugs are

well described in the literature, [42,43] and were also evident in

our experiments in healthy mice.

These issues were addressed by including these drugs in BNPs

produced from biocompatible and biodegradable materials.

Receptor-targeted nanoparticles like the ones presented here

(200–300 nm) are viewed as good drug carriers: they can transport

large amounts of therapeutic agents while having a prolonged

circulation time, as well as a very selective tumor penetration when

coated with monoclonal antibodies such as the anti-CD20

Rituximab. These nanoparticles (BNP2) can release enough

amounts of drugs inside the cancer cells and in this way, overcome

multidrug resistance (MDR) mechanisms which are over-ex-

pressed in many B-cell disorders [44]. In vitro, we have also

documented a cytotoxic effect induced by the penetration of BNP3

in tumor B cells, but their efficacy were not confirmed in vivo

probably due to the effect of the blood flow, or the reduced

residence time of the untargeted nanoparticles in the tumor

microenvironment.

HCQ-CLB-loaded nanoparticles demonstrated their ability to

selectively target CD20-positive cells in vivo, resulting in a very

promising toxicological profile in healthy mice. The presence of

anti-CD20 antibody targets BNPs on the surface of cells expressing

this antigen, and induces their preferential penetration in vivo.

Confocal and electron microscopy studies showed the interaction

between anti-CD20 nanoparticles and the cell membrane.

Moreover, BNPs were localized into the cell cytoplasma.

Intracellular trafficking of nanoscale objects is regulated by cell

membranes through interactions that are currently under intense

investigation. These materials are typically internalized by cells

into membrane-bound endosomes. Other bio-macromolecules can

penetrate or fuse with cell membranes without causing any

significant membrane disruption. Some nanoscale objects pass

through cell membranes by generating transient holes, a process

associated with cytotoxicity [45,46,47]. BNPs seem to be

internalized outside endosomes, and accumulate in the cyto-

plasma.

The cytotoxic effect caused by the degradation of the particles

and the subsequent release of the two drugs was apparent by

analyzing apoptosis just after 16 hours of incubation of lymphoma

cells with BNP2. Autophagy is a lysosome-mediated intracellular

trafficking pathway often up-regulated to support tumor cell

survival [48]. Primary CLL cells, for example, express the critical

components of the autophagy machinery, which could be robustly

activated or blocked in these cells by commonly reported stimuli

like HCQ [30]. LC3 and p62 activations are markers of this

process. BNP2 treated cells showed an accumulation of proteins

that demonstrate the blocking of autophagolysosome formation,

and may partially explain tumor cell cytotoxicity induced by

HCQ/CLB-loaded BNPs. In 48 hours, all cancer B-cells were

killed.

The loading of Rituximab in BNPs is very low and it is not

sufficient to induce apoptosis as shown by incubating BJAB cells

with BNP1. The ability of Rituximab to activate the complement

system (one of its effector systems) is dependent on the amount of
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Ab bound to the tumor cell and, as a consequence, to the amount

of CD20 on the cell surface [49,50,51,52,53,54]. For this reason,

we compared the cytotoxic effect of Rituximab and BNP2 in a

population of BJAB cells and primary cells purified from five CLL

patients expressing a low amount of the tumor-associated antigen.

Our data indicate that BNP2 were able to kill cells expressing very

low amounts of CD20, where Rituximab was almost ineffective.

BJAB cells were able to develop a human/mouse model of

lymphoma in SCID mice. A characteristic feature that this model

shares with human aggressive lymphomas, like BL, is the early

multi-organ involvement that starts with the formation of a tumor

mass. The liver was the main target of the tumor cells outside the

peritoneum, and it was involved in nearly all the animals analyzed.

This is compatible with the concept of preferential diffusion of the

cancer cells into the liver, even though invasion may be initiated

by contiguity with the tumor mass as it may occur also in the

spleen and, to a much lower extent, in the kidney. Despite the fact

that the cells were injected via the intraperitoneal route rather

than intravenously, the finding that the bone marrow was

infiltrated in approximately 80% of mice provides compelling

evidence for the ability of tumor cells to colonize tissues that are

rather distant from the primary implantation site, while still

maintaining the same morphology and phenotype of the cells in

the original tumor mass.

The animal model of BL with multi-organ involvement proved

to be a valid preclinical tool to evaluate the anti-tumor effect of

BNPs therapy. This is particularly important because the

treatment of aggressive lymphoma is currently based on the use

of dose-intensive polychemotherapy protocols to eradicate the

high tumor bulk [55].

The BNP2 particles demonstrated for the first time their ability

to target human tumor B-cells in vivo, but also their potential

efficacy in tumor bearing mice, showing the binding of fluorescent-

antiCD20-BNPs and the evident necrotic/apoptotic areas in the

tumor mass 7 days after being injected i.p. The therapeutic

protocols used in this study were derived from toxicological data

obtained with free HCQ+CLB, because BNPs containing the

same amount of drugs never showed tissue damage in healthy

animals. Our aim was to mimic the clinical situation i.e.,

administering the first dose of BNPs on day four after cell

injection, when the neoplastic cells were already disseminated, as

shown by optical imaging and confocal microscope analysis.

The BNP2 particles were very effective in prolonging the

survival of tumor-bearing mice in our model system. Four

injections of BNP2 containing 400 mg of HCQ+CLB increase

mice survival by about 15% with respect to the same amount of

free drug or a standard treatment with Rituximab[29] but without

any side effects. Moreover, 8 injections of BNP2 containing 400 mg

of HCQ+CLB were able to increase survival to 100% of mice.

Ninety percent of animals survived for four months and were

disease-free after immunohistochemical analysis. This amount of

HCQ+CLB cannot be used as free drugs because of its toxicity,

showing again the capacity of BNPs to guarantee the use of high

doses of chemotherapeutic drugs while avoiding side effects.

In conclusion, the results of the present study demonstrate that

anti-CD20 nanoparticles containing HCQ+CLB can be effective

as a single agent in controlling a disseminated model of aggressive

lymphoma. It also provides a rationale for adopting this

therapeutic approach for the treatment of other B-cell disorders

with BNP2 or different types of tumors, using other monoclonal

antibodies to specifically deliver cytotoxic agent-loaded nanopar-

ticles in cancer cells.

Supporting Information

Figure S1 Characteristics of BNPs used in the experi-

ments.

(TIF)

Figure S2 Characterization of Burkitt model in SCID

mice. Labeled BJAB (26106 cells) were injected i.p. in SCID mice

and specific staining of labeled-cells in tissues collected from

untreated animals at day 7 was documented. Serial stacks were z-

projected using average algorithm. The tissue auto-fluorescence to

laser 488 nm is visible in green fluorescence. Objective Plan Apo

20X was used to achieve a low magnification capable of better

describing the tissue environment. Original magnification 2006.

(TIF)

Figure S3 Characterization of Burkitt model in SCID

mice. Liver is infiltrated by neoplastic cells, which show a

cohesive and diffuse growth pattern (A) and the same immuno-

phenotypic profile observed in primary masses: anti-CD20 (B) and

anti-Bcl-6 (C) (immunostainings, strept-ABC method). D) Foci of

neoplastic lymphoid cells can be detected in the bone marrow and

highlighted by anti-human-CD45 immunostaining (inset). Original

magnification 2006.

(TIF)

Figure S4 Effect of BNP2 in tumor mass of lymphoma-

bearing mice. SCID mice received 26106 BJAB cells i.p. and

BNP1 or BNP2 (80 mL for 4 times) were injected i.p. from day 4.

Tumor mass were collected at necroscopy and analyzed by H&E

to detect necrotic/apoptotic areas.

(TIF)
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