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ABSTRACT

Context. Reliable predictions of mass-loss rates are important for massive-star evolution computations.
Aims. We aim to provide predictions for mass-loss rates and wind-momentum rates of O-type stars, while carefully studying the
behaviour of these winds as functions of stellar parameters, such as luminosity and metallicity.
Methods. We used newly developed steady-state models of radiation-driven winds to compute the global properties of a grid of O-
stars. The self-consistent models were calculated by means of an iterative solution to the equation of motion using full non-local
thermodynamic equilibrium radiative transfer in the co-moving frame to compute the radiative acceleration. In order to study winds
in different galactic environments, the grid covers main-sequence stars, giants, and supergiants in the Galaxy and both Magellanic
Clouds.
Results. We find a strong dependence of mass-loss on both luminosity and metallicity. Mean values across the grid are Ṁ ∼ L2.2

∗
and Ṁ ∼ Z0.95

∗ ; however, we also find a somewhat stronger dependence on metallicity for lower luminosities. Similarly, the mass loss-
luminosity relation is somewhat steeper for the Small Magellanic Cloud (SMC) than for the Galaxy. In addition, the computed rates
are systematically lower (by a factor 2 and more) than those commonly used in stellar-evolution calculations. Overall, our results are in
good agreement with observations in the Galaxy that properly account for wind-clumping, with empirical Ṁ versus Z∗ scaling relations
and with observations of O-dwarfs in the SMC.
Conclusions. Our results provide simple fit relations for mass-loss rates and wind momenta of massive O-stars stars as functions of
luminosity and metallicity, which are valid in the range Teff = 28 000–45 000 K. Due to the systematically lower values for Ṁ, our new
models suggest that new rates might be needed in evolution simulations of massive stars.

Key words. stars: atmospheres – stars: early-type – stars: massive – stars: mass-loss – stars: winds, outflows –
Magellanic Clouds

1. Introduction

Hot, massive stars with masses '9 M� of spectral type O and B
lose a significant amount of mass due to their radiation-driven
stellar winds (Castor et al. 1975). This mass loss has a dominant
influence on the life cycles of massive stars as well as in deter-
mining the properties of the remnants left behind when these
stars die (e.g. Smith 2014). The rates at which these stars lose
mass, which is of the order of Ṁ ∼ 10−5...−9 M� yr−1, comprise
a key uncertainty in current models of stellar evolution (even on
the main sequence where the stars are typically “well behaved”,
e.g. Keszthelyi et al. 2017), simply because the mass of a star
is the most important parameter when determining its evolu-
tion. In addition to the loss of mass, angular momentum is also
lost through stellar winds affecting the surface rotation speeds
of these stars. Moreover, uncertainties related to mass loss have
consequences on galactic scales beyond stellar physics, as mas-
sive stars provide strong mechanical and radiative feedback to
their host environment (Bresolin et al. 2008).

It is therefore important to have reliable quantitative predic-
tions of mass-loss rates and wind-momenta of massive stars. In

the first paper of this series (Sundqvist et al. 2019, from here
on Paper I), we developed a new method to provide mass-loss
predictions based on steady-state wind models using radiative
transfer in the co-moving frame (CMF) to compute the radiative
acceleration grad. Building on that, this paper now presents the
results from a full grid of models computed for O-stars in the
Galaxy, as well as the Small and the Large Magellanic Cloud,
analysing the general dependence on important stellar quantities,
such as luminosity and metallicity. Paper I shows that simula-
tions using CMF radiative transfer suggest reduced mass-loss
rates as compared to the predictions normally included in models
of massive star evolution (Vink et al. 2000, 2001). Although this
paper focuses on the presentation of our new rates for O-stars in
different galactic environments, a key aim for future publications
within this series will be to directly implement the results of the
new wind models into calculations of massive-star evolution.

Since most of the important spectral lines driving hot-star
winds are metallic, a strong dependence on metallicity Z∗ is
expected for the mass-loss rate (Kudritzki et al. 1987; Vink et al.
2001; Mokiem et al. 2007). To investigate this, here, we compute
models tailored to our local Galactic environment, assuming
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a metal content similar to that in the Sun, as well as for the
Magellanic Clouds. The metallicities of these external galaxies
are about half the Galactic one for the Large Magellanic Cloud
(LMC) and a fifth for the Small Magellanic Cloud (SMC). Using
these three regimes, we aim to study the mass-loss rate as a func-
tion of Z∗. The Magellanic Clouds are interesting labs for stellar
astrophysics because the distances to the stars are relatively well
constrained, providing values of their luminosities and radii.
Another reason we are focusing on the Magellanic Clouds is that
quantitative spectroscopy of individual stars there has been per-
formed and compiled into an observed set of scaling-relations
for wind-momenta (Mokiem et al. 2007). While the quantitative
spectroscopy of individual, hot, massive stars is also possible
nowadays in galaxies further away (e.g. Garcia et al. 2019), such
studies are only in their infancy.

In order to derive global dependencies and relations for the
mass-loss rates and wind-momenta, we perform a study using
a grid of O-star models. Thanks to the fast performance of
the method, as explained in detail in Paper I, this is finally
possible for the hydrodynamically consistent steady-state mod-
els with a non-paramterised CMF line-force computed without
any assumptions about underlying line-distribution functions. In
Sect. 2, we briefly review our method for computing mass-loss
rates, highlighting one representative model from the grid. In
Sect. 3, the results of the full grid of models are shown, first
for the Galaxy and then including the Magellanic Clouds, in
terms of computed wind-momenta and mass-loss rates. From
these results we derive simple fit relations for the dependence on
luminosity and metallicity. Section 4 provides a discussion of the
results, highlighting the general trends and comparing to other
existing models and to observations. Additionally we address the
implication for stellar evolution and current issues such as the so-
called weak wind problem. Section 5 contains the conclusions
and future prospects.

2. Methods

A crucial part about the radiation-driven steady-state wind mod-
els used in our research is that they are hydrodynamically
consistent. This means that the equation of motion (e.o.m.) in the
spherically symmetric, steady-state case is solved as described in
Paper I. This e.o.m. reads

3(r)
d3(r)

dr

(
1 − a2(r)
32(r)

)
= grad(r) − g(r) +

2a2(r)
r
− da2(r)

dr
. (1)

Here, 3(r) is the velocity, a(r) the isothermal sound speed, grad(r)
the radiative acceleration, g(r) = GM∗/r2 the gravity, with grav-
itation constant G, M∗ the stellar mass used in the model, and r
the radius coordinate. The temperature structure T (r) enters the
equation through the isothermal sound speed

a2(r) =
kbT (r)
µ(r)mH

, (2)

with kB Boltzmann’s constant, µ(r) the mean molecular weight,
and mH the mass of a hydrogen atom. Equation (1) has a sonic
point where 3(r) = a(r). Because in the above formulation grad is
only an explicit function of radius, and not of the velocity gra-
dient, the corresponding critical point in the e.o.m. is this sonic
point (also see the discussion in Paper I). The radiative accelera-
tion also depends on velocity and mass loss, of course, but in our
method these dependencies are implicit; they are accounted for

through the iterative updates of the velocity and density structure
and do not affect the critical point condition in an explicit way.

For given stellar parameters luminosity L∗, mass M∗, radius
R∗ (to be defined below), and metallicity Z∗, the e.o.m. (1) is
solved to obtain 3(r) for the subsonic photosphere and supersonic
radiation-driven wind. For a steady-state mass-loss rate Ṁ the
mass conservation equation Ṁ = 4πr2ρ3 gives the density struc-
ture ρ(r). The wind models further rely on the NLTE (non-local
thermodynamic equilibrium) radiative transfer in FASTWIND
(see Paper I and Puls 2017) for the computation of grad, by
means of a co-moving frame (CMF) solution and without using
any parametrised distribution functions. The atomic data are
taken from the WM-BASIC data base (Pauldrach et al. 2001).
This compilation consists of more than a million spectral lines,
including all major metallic elements up to Zn and all ionisa-
tion stages relevant for O-stars. The data base is the same as
the one utilised in Paper I, as well as in previous versions of
the FASTWIND code (see, e.g. Puls et al. 2005). Also the hydro-
gen and helium model atoms are identical to those used in our
previous work. We note that since WM-BASIC is calibrated
for diagnostic usage in the UV regime, its principal database
should be ideally suited for the radiative force calculations in
focus here. In the NLTE and grad calculation, we account for
pure Doppler-broadening alone1 as depth and mass dependent
profiles, including also a fixed microturbulent velocity 3turb (see
further Paper I, and Sects. 2.3 and 4.5 of this paper). More spe-
cific details of the NLTE and radiative transfer in the new CMF
FASTWIND v11 are laid out in detail in Puls et al. (2020, see
also Puls 2017 and Paper I).

The steady-state Ṁ and 3(r) are converged in the model com-
putation starting from a first guess. For all simulations presented
in this paper, the start-value for Ṁ was taken as the mass-loss rate
predicted by the Vink et al. (2001) recipe using the stellar input
parameters of the model. The initial velocity structure is obtained
by assuming that a quasi-hydrostatic atmosphere connects at
3tr ≈ 0.1a(T = Teff) to a so-called β-velocity law

3(r) = 3∞
(
1 − b

R∗
r

)β
, (3)

with 3∞ the terminal wind speed, R∗ the stellar radius, β a
positive exponent, and b a constant derived from the transition
velocity 3tr. We further define the stellar radius

R∗ ≡ r(τ̃F = 2/3), (4)

where τ̃F is the spherically modified flux-weighted optical depth

τ̃F(r) =

∫ ∞

r
ρ(r̂)κF(r̂)

(R∗
r̂

)2

dr̂, (5)

for the flux-weighted opacity κF (cm2 g−1). The flux-
weighted opacity is related to the radiative acceleration as
grad = κFL∗/(4πcr2). After each update of the hydrodynamical
structure (see below), an NLTE/radiative transfer loop is carried
out, to converge the occupation numbers and grad. The velocity

1 Relaxing this assumption would have an only marginal effect on the
occupation numbers (e.g. Hamann 1981; Lamers et al. 1987). Also for
the calculation of grad, pure Doppler-broadening is sufficient, since (i)
only few strong lines have significant natural and – in the photosphere
– collisionally line-broadened wings that could contibute to grad; and
(ii), because of line-overlap effects, these wings are typically dominated
by the (Doppler-core) line opacity from other transitions, which then
dominate the acceleration.
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gradient at the wind critical point is then computed by applying
l’Hôpital’s rule, after which the momentum Eq. (1) is solved
with a Runge–Kutta method to obtain the velocity structure 3(r)
above and below the critical point. This integration is performed
by shooting both outwards from the sonic point to a radius of
about 100R∗ to 140R∗ and inwards towards the star, stopping
at r = rmin when a column mass mc =

∫ ∞
rmin

ρ(r)dr = 80 g cm−2 is
reached.

In addition to the velocity structure, the temperature structure
is also updated every hydrodynamic iteration. We use a simpli-
fied method similar to Lucy (1971) to speed up the convergence;
the temperature throughout the radial grid is calculated as

T (r) = Teff

(
W(r) +

3
4
τ̃F(r)

)1/4

, (6)

where W(r) is the dilution factor given by

W(r) =

 1
2

(
1 −

√
1 − R2∗

r2

)
if r > R∗,

1
2 if r ≤ R∗.

(7)

The effective temperature Teff in Eq. (6) is defined as σT 4
eff
≡

L∗/4πR2
∗, withσ the Stefan–Boltzman constant and R∗ as defined

in Eq. (4). Additionally there is a floor temperature of T ≈ 0.4Teff

such as in previous versions of FASTWIND. This tempera-
ture structure is held fixed during the following NLTE iteration,
meaning that, formally, perfect radiative equilibrium is not
achieved; however, the effects from this on the wind dynamics
are typically negligible (see Paper I).

As described in Paper I, the singularity and regularity con-
ditions applied in CAK-theory cannot be used to update the
mass-loss rate because in the approach considered here grad does
not explicitly depend on density, velocity, or the velocity gradi-
ent. Instead, here at iteration i the mass-loss rate used in iteration
i + 1 is updated to counter the current mismatch in the force bal-
ance at the critical sonic point (see also Sander et al. 2017). For
a hydrodynamically consistent solution, the quantity

frc = 1 − 2a2

rg
+

da2

dr
1
g

(8)

should be equal to Γ = grad/g at the sonic point. In order to fulfill
the e.o.m. (1) the current mismatch is countered by updating the
mass-loss rate according to Ṁi+1 = Ṁi(Γ/ frc)1/b, following the
basic theory of line-driven winds where grad ∝ 1/Ṁb (Castor
et al. 1975). Our models take a value of b = 1 in the iteration
loop, providing a stable way to converge the steady-state mass-
loss rate. From this Ṁ and the computed velocity field, a new
density is obtained from the mass conservation equation.

2.1. Convergence

The new wind structure (3(r), ρ(r),T (r), Ṁ) is used in the next
NLTE iteration loop to converge the radiative acceleration once
more in the radiative-transfer scheme. This method is then iter-
ated until the error in the momentum equation is small enough
to consider the model as converged and thus hydrodynamically
consistent. By rewriting the e.o.m. (1) the quantity describing
the current error is

ferr(r) = 1 − Λ

Γ
, (9)

Table 1. Parameters of the characteristic model as described in Sect. 2.2.

M∗ R∗ Teff log g∗ Ṁ 3∞ Z∗
(M�) (R�) (K) (M� yr−1) (km s−1) (Z�)

58 13.8 44 616 3.92 1.4× 10−6 3152 1.0

Notes. The parameter log g∗ introduced here is the logarithm of the
surface gravity which is g(R∗) = g∗.

with

Λ =
1
g

(
3

d3
dr

(
1 − a2

32

)
+ g − 2a2

r
+

da2

dr

)
, (10)

for each radial position r. For a hydrodynamically consistent
model ferr is zero everywhere and Γ should thus be equal to Λ.
As such, in the models we need the maximum error in the radial
grid

f max
err = max (abs ( ferr)) (11)

to be close enough to zero; in this paper we require a threshold
0.01, meaning the converged model is dynamically consistent to
within a percent. Additional convergence criteria apply to the
mass-loss rate and the velocity structure. These quantities are not
allowed to vary by more than 2% for the former and 3% for the
latter between the last two hydrodynamic iteration steps reaching
convergence.

2.2. Generic model outcome

As a first illustration, some generic outcomes of one character-
istic simulation are now highlighted; the model parameters are
listed in Table 1. The top panel of Fig. 1 shows the evolution of Γ
for several iterations in the scheme starting from an initial β-law
structure. The characteristic pattern of a steep wind acceleration
starting around the sonic point, where Γ ≈ 1, is clearly visi-
ble throughout the iteration loop. The model starts off being far
from consistency (yellow), but as the error in the hydrodynami-
cal structure becomes smaller the solution eventually relaxes to
a final converged velocity structure (dark blue). The innermost
points deepest in the photosphere remain quite constant, since
the deep photospheric layers relax relatively quickly. In the bot-
tom panel of Fig. 1 a colour plot of the iterative evolution of
the model error ferr throughout the wind can be seen. The point
of maximum error at each iteration is marked with a plus and
the dash-dotted line shows where the velocity equals the sound
speed. The dashed lines further show the boundaries within
which f max

err is computed, where we note that the part at very
low velocity is excluded because here the opacity is parametrised
(see below). In addition a few of the outermost points are for-
mally excluded in the calculation of f max

err (due to resolution
considerations). Since the calculation of f max

err excludes the inner-
most region and a few outermost points, these points do not
contribute to the condition of convergence based on the error in
ferr. Nonetheless the models do provide reliable terminal wind
speeds, as they additionally require the complete velocity struc-
ture (including 3∞) to be converged to better than 3% between the
final two iteration steps (see above). The figure illustrates explic-
itly how both the overall and maximum errors generally decrease
throughout the iteration cycle of the simulation. We note that,
after some initial relaxation, for this particular model the posi-
tion of maximum error always lies in the supersonic region, often
quite close to the critical sonic point.
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Fig. 1. Top panel: value of Γ versus scaled radius-coordinate for 7
(non-consecutive) hydrodynamic iterations over the complete run. The
starting structure (yellow) relaxes to the final converged structure (dark
blue). Bottom panel: colour map of log( ferr) for all hydrodynamic iter-
ations; on the abscissa is hydrodynamic iteration number and on the
ordinate scaled wind velocity. The pluses indicate the location of f max

err
for each iteration, the dashed lines the limits between which f max

err is
computed and the dash-dotted line the location of the sonic point.

At the end of the sequence, the model is dynamically consis-
tent and Γ matches the other terms in the equation of motion Λ.
This is illustrated in Fig. 2. This figure compares Γ and Λ at
each radial point of the converged model, showing a clear match
between the quantities. Only below a velocity 3 . 0.1 km s−1

there is some discrepancy; this arises because in these quasi-
static layers the flux-weighted opacity is approximated by a
Kramer-like parametrisation (see Paper I), which is useful to sta-
bilise the base in the deep subsonic atmosphere. It is important
to point out that this parametrisation is applied only at low veloc-
ities and high optical depths and so does not affect the structure
of the wind or the derived global parameters.

The behaviour of the mass-loss rate Ṁ is important to under-
stand for the purposes of this paper. The top panel of Fig. 3 shows
f max
err of the model for all iterations versus the mass-loss rate com-

puted for that iteration. The general trend is that f max
err decreases

quite consistently during the iteration cycle. The mass-loss rate
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g r
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=
g r
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/g

Fig. 2. Top panel: final converged structure of the characteristic model
showing Γ in black squares and Λ (see text for definition) as a green line.
The black dashed lines show the location of the sonic point approx-
imately at Γ = 1 (but not exactly because of the additional pressure
terms). Bottom panel: same as in the top panel, however versus velocity
(which resolves the inner wind more).

can be seen to converge to one value as the structure gets closer
to dynamical consistence. Indeed, in the last couple of iterations
the value of Ṁ only changes minimally from its former value.
In the bottom panel of Fig. 3, the same plot is shown for the
iterative evolution of the terminal wind speed. Also this quan-
tity displays a stable convergence behaviour towards one final
value. The quantities Ṁ and 3∞ are from Fig. 3 seen to have an
anti-correlation, as for this model the total wind-momentum rate
Ṁ3∞ does not vary much after the first few iterations. Finally,
Fig. 4 shows the converged velocity structure versus the modi-
fied radius coordinate r

rmin
− 1, where rmin is the inner-most radial

point of the grid. This figure illustrates the very steep accelera-
tion around the sonic point that is characteristic for our O-star
models, followed by a supersonic β-law-like behaviour typical of
a radiation-driven stellar wind. In the figure we add a fit to the
velocity structure using a double β-law defined by Eq. (22) and
elaborate further on this comparison in Sect. 4.5.

2.3. Grid setup

In order to study the mass-loss rates of O stars in a quantitative
way, a model-grid was constructed by varying the fundamen-
tal input stellar parameters. For the Galactic stars, we used the
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Fig. 3. Top panel: iterative behaviour of the mass-loss rate as f max
err

decreases towards a value below 1%. The colour signifies the itera-
tion number starting from Ṁ as predicted by the Vink et al recipe in
light green. Bottom panel: iterative behaviour of the terminal velocity
3∞ towards convergence.
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Fig. 4. Converged velocity structure for the characteristic model of
Sect. 2.2, showing velocity over terminal wind speed versus the scaled
radius-coordinate in black. The green line shows a fit using a double
β-law following Eq. (22) (see text for details).

calibrated stellar parameters obtained from a theoretical Teff

scale of a set of O stars from Martins et al. (2005; adopting
the values from their Table 1). The Martins et al. parameters
are retrieved by means of a grid of non-LTE, line-blanketed

synthetic spectra models using the code CMFGEN (Hillier &
Miller 1998). Here, a self-consistent wind model as described
above was calculated for the stellar parameters of each star in
the grid, resulting in predictions of the wind structure, terminal
velocity, and mass-loss rate. The wind models were computed
with the microturbulent velocity kept at a standard value for O-
stars of 3turb = 10 km s−1 (see also Paper I) and the helium number
abundance was kept fixed at YHe = nHe/nH = 0.1. Moreover, the
simulations were performed without any inclusion of clumping
or high-energy X-rays. As discussed in detail in Paper I, while
such wind clumping is both theoretically expected (Owocki et al.
1988; Sundqvist et al. 2018; Driessen et al. 2019) and obser-
vationally established (see Sect. 4.2), it is still uncertain what
effect this might have on theoretically derived global mass-loss
rates (indeed, in the simple tests performed in Paper I the effect
was only marginal). In addition, any inclusion of wind clumping
into steady-state models will inevitably be of ad-hoc nature (see
also discussion in Paper I). A study by Muijres et al. (2011), for
example, shows that introducing clumps can sometimes change
their predicted mass-loss rate by as much as an order of mag-
nitude. The models used in their study, however, use a global
energy constraint to derive the mass-loss rate for an assumed
fixed β velocity law. As such, they are not locally consistent
and thus might not necessarily fulfill the force requirements
around the sonic point. By contrast, the models presented here
are (by design) both locally and globally consistent, with a mass-
loss rate that is primarily sensitive to the conditions around the
critical sonic point. It might only be influenced if these corre-
sponding regions where Ṁ is determined, are strongly clumped.
This is a key difference between the mass-loss rates derived here
and those in Muijres et al. (2011) and a prime reason that, con-
trary to their findings, Ṁ in our models does not seem to change
significantly when introducing clumping in the supersonic parts.
However, as also discussed in Paper I, the terminal velocities are
typically affected by adding such clumping. Namely, since grad
is altered in the supersonic regions due to the presence of the
clumps, this can lead to modified values of 3∞. So even though
Ṁ is barely influenced when including typical wind-clumping, it
remains an uncertainty of the current models and future work
should aim for a more systematic study of possible feedback
effects from clumping upon also the steady-state e.o.m.

In any case, the models presented here contain 12 spectro-
scopic dwarfs, 12 giants and 12 supergiants for each value of
metallicity Z∗. For simplicity, the same stellar parameters (L∗,
M∗, R∗) as for the Galactic grid were assumed to create mod-
els for the LMC and SMC, changing only their metallicity. This
set-up has the advantage of enabling a rather direct compari-
son for the model-dependence on metallicity, independent of the
other input parameters. The used metallicities in the grid are
ZGalaxy = Z�, ZLMC = 0.5 Z�, and ZSMC = 0.2 Z�, respectively. The
value of the Solar metallicity was here taken to be Z� = 0.013
(Asplund et al. 2009). In total this gives 108 models, with input
stellar parameters as listed in Table A.1.

3. Results

The results for all 108 models are added to Table A.1, contain-
ing the derived values for Ṁ and 3∞. The runs typically took
about 50 iterative updates of the hydrodynamical structure to
converge, where for most parts the corresponding calculation
of grad (aside from the first ones) takes 10–15 NLTE radiative
transfer steps per hydrodynamic update. Using the criteria as
presented in Sect. 2.1, all models presented in this paper are for-
mally converged. The following subsections highlight the results
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for the Galaxy, as well as the Small and the Large Magellanic
Clouds.

3.1. The Galaxy

When studying the overall behaviour of line-driven winds, it is
useful to look at a modified wind-momentum rate as function of
the stellar luminosity:

Ṁ3∞
√

R∗ ∝ Lx
∗ (12)

where the left hand side is the so-called modified wind-
momentum rate Dmom ≡ Ṁ3∞

√
R∗ (Kudritzki et al. 1995; Puls

et al. 1996), which is proportional to the luminosity to some
power x.

The key advantage when using this modified wind-
momentum is that basic line driven wind theory predicts the
dependence on M∗ to scale out (or at least to become of only
second order impact). Namely, from (modified) CAK theory the
following relations can be found (e.g. Puls et al. 2008):

Ṁ ∝ L1/αeff∗ M
1− 1

αeff

eff ,

3∞ ∝ 3esc ∝
√

Meff

R∗
.

(13)

Here, the effective escape speed from the stellar surface is

3esc =

√
2GMeff

R∗
for an effective stellar mass Meff = M∗(1 − Γe),

reduced by electron scattering

Γe =
κeL∗

GM∗4πc
(14)

with an opacity κe (cm2 g−1). Equation (13) above further intro-
duces αeff =α−δ, where α, describing the power law distribution
of the line strength of contributing spectral lines in CAK theory,
takes values between 0 and 1 and the parameter δ accounts for
ionising effects in the wind. For a simple αeff = 2/3 we thus have2

Ṁ3∞
√

R∗ ∝ L1/αeff∗ , (15)

as in the wind-momentum-luminosity relation (WLR) of
Eq. (12) for x = 1/αeff . However, even if αeff is not exactly 2/3,
the dependence on M∗ will still be relatively weak. The validity
of the WLR relation is an overall key success of line-driven wind
theory and the basic concept has been observationally confirmed
by a multitude of studies (see Puls et al. 2008, for an overview).

The Galactic WLR for the radiation-hydrodynamic wind
models presented here is shown in the top panel of Fig. 5. The
figure indeed shows a quite tight relationship between the mod-
ified wind-momentum rate and luminosity; fitting the models
according to Eq. (12) above, a slope x = 2.07± 0.32 is derived
(with the error mentioned being the 1σ standard deviation).
Interpreted in terms of the (modified) CAK theory above, this
would imply a αeff ≈ 0.5 for our models in the Galaxy, in rather
good agreement with the typical O-star values α ≈ 0.6 and
δ ≈ 0.1 (Puls et al. 2008).

Next, the mass-loss rate versus luminosity is plotted in the
bottom panel of Fig. 5. From this figure, we infer a rather steep
dependence of Ṁ on L∗; fitting a simple power-law Ṁ ∝ Ly∗ here

2 Such a value results from considering the distribution of oscillator
strengths for resonance lines within a hydrogenic ion and neglecting δ,
see Puls et al. (2000).
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Fig. 5. Top panel: modified wind-momentum rate versus luminosity for
all Galactic models. The solid black line is a linear fit through the points
and the dashed line shows the theoretical relation by Vink et al. (2000).
Bottom panel: mass-loss rates versus luminosity for all Galactic models
with a linear fit as a solid black line. The dashed line is a fit through the
mass-loss rates computed using the Vink et al. recipe, the dash-dotted
line is the relation derived by Krtička & Kubát (2017) and the dotted
line is the relation computed from the results from Lucy (2010).

gives y= 2.16± 0.34. Within our grid, we further do not find any
strong systematic trends of mass-loss rate (or wind-momentum
rate) with respect to spectral type (in the considered temperature
range) and luminosity class.

Figure 6 shows the terminal wind speeds for the Galactic
models. We obtain a mean value 3∞/3esc = 3.7 for the complete
Galactic sample, however with a relatively large scatter (1σ stan-
dard deviation of 0.8). There is a systematic trend of increasing
3∞/3esc ratios for lower luminosities (see also Paper I), but also
here the corresponding scatter is significant. Overall, although
these Galactic 3∞/3esc values are quite high for O-stars, the sig-
nificant scatter we find is generally consistent with observational
studies. Section 4.3 further addresses this, including a discussion
about if a reduction in 3∞ might also affect the prediction of Ṁ.

3.2. All models

In the top panel of Fig. 7 the modified wind-momenta for the
Magellanic Cloud simulations are added to those of the Galaxy,
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metallicity for all three luminosity classes are shown.
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Fig. 7. Top panel: modified wind-momentum rate of all models versus
luminosity. The dashed lines show linear fits through each of the three
sets of models. The markers show the different luminosity classes, con-
sistent with previous plots. Bottom panel: same as the top panel, but for
the mass-loss rate.

also including power-law fits to the models in the LMC and
SMC. The bottom panel of Fig. 7 shows the same plot for Ṁ
versus L∗. On both figures, there is a clear systematic trend that
the mass-loss and wind-momentum rates are always lower for the
LMC than for the Galaxy and lower still for the SMC. This is as
expected for radiation-driven O-star winds since the majority of
driving is done by metallic spectral lines. Inspection of the slope
of the WLR at the LMC reveals a similar trend as for the Galaxy
and we derive x = 2.12± 0.34 from a fit according to Eq. (12).
On the other hand, already from simple visual inspection it is
clear that for low-luminosity dwarfs in the SMC the overall slope
changes significantly; indeed, an overall fit to Eq. (12) for all
SMC stars here results in a higher x = 2.56± 0.44.

Another feature visible for the SMC supergiant models is a
bump in Dmom at log L∗

106 L�
≈ −0.3. As discussed in Sect. 4.1, this

feature most likely arises because of the different effective tem-
peratures of these models, which affects the ionisation balance
of important driving elements in the wind.

The derived slopes of the mass-loss rate versus luminos-
ity, Ṁ ∝ Ly∗, for the LMC and SMC are y= 2.17± 0.34 and
y= 2.37± 0.40, respectively. We note that while the dependence
for the LMC is virtually unchanged with respect to the Galaxy,
the SMC models again display a steeper dependence, driven by
the very low mass-loss rates found for the stars with the lowest
luminosities. As discussed further in Sect. 4, these findings are
generally consistent with the line-statistics predictions by Puls
et al. (2000) that αeff becomes lower both for lower density winds
and for winds of lower metallicity.

3.3. Function of metallicity

Examining trends of the modified wind-momentum rate for the
Galaxy, the Large, and the Small Magellanic Cloud, a depen-
dence on metallicity is next derived. As discussed above, Fig. 7
shows that the wind-momenta of all models with the same
metallicity follow a quite tight correlation with L∗. As such,
to investigate the metallicity dependence we consider the three
models with identical stellar parameters, but with different Z∗,
assuming for each triplet a simple dependence

Ṁ3∞
√

R∗ ∝ Zn
∗ . (16)

The derived values of n are plotted in Fig. 8, where the
distribution gives a mean value n = 0.85 with a 1σ stan-
dard deviation of 0.29; this significant scatter is not surpris-
ing since we consider only three different metallicities in
the fits. However, inspection of Fig. 8 also reveals a trend
of decreasing n with increasing luminosity. Approximating it
here by a simple linear fit with respect to log(L∗/106 L�), we
find n(L∗) =−0.73 log(L∗/106 L�) + 0.46, providing an analytic
approximation for the dependence of Dmom on Z∗ in function
of L∗.

The same analysis is performed also for Ṁ, assuming a
dependence

Ṁ ∝ Zm
∗ . (17)

The distribution of the exponent m here gives a mean value 0.95.
The scatter around this mean is also significant, with a 1σ stan-
dard deviation of 0.21. If we again approximate the dependence
of the factor m with L∗, we find m(L∗) =−0.32 log(L∗/106 L�) +
0.79.

Building on the combined results above, we can now con-
struct final relations for both the modified wind-momentum rate
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exponent with log(L∗/106 L�). See text for details.

and mass-loss rate of the form:
Ṁ3∞

√
R∗ = A

(
L∗

106 L�

)y ( Z∗
Z�

)n
,

Ṁ = A
(

L∗
106 L�

)y ( Z∗
Z�

)m
.

(18)

To obtain the fitting coefficients (which will be different for the
wind-momenta and mass-loss relations), we simply combine the
scalings found in Sect. 3.1 for the Galaxy (Ṁ3∞

√
R∗ ∝ L2.1

∗ and
Ṁ ∝ L2.2

∗ ) with those found above for the metallicity depen-
dence (Ṁ3∞

√
R∗ ∝ Zn(L∗)∗ and Ṁ ∝ Zm(L∗)∗ ). Moreover, we also

performed a multi-linear regression where log(Ṁ) depends on
log(Z∗), log(L∗), and log(Z∗) · log(L∗); the fitting coefficients
found using these two alternative methods are indeed identical
to the second digit. Thus the final relations are

log
(
Ṁ3∞

√
R∗

)
=−1.55 + 0.46 log

(
Z∗
Z�

)
+

[
2.07 − −0.73 log

(
Z∗
Z�

)]
log

(
L∗

106 L�

) (19)

and

log(Ṁ) =−5.55 + 0.79 log
(

Z∗
Z�

)
+

[
2.16 − −0.32 log

(
Z∗
Z�

)]
log

(
L∗

106 L�

)
,

(20)

with the wind momentum rate in units of M� yr−1 km s−1 R�0.5

and the mass-loss rate in units of M� yr−1. When the complete
model-grid sample is considered, these fitted relations give mean
values that agree with the original simulations to within 10%,
with standard deviations 0.33 and 0.39 for the wind-momentum
rate and the mass-loss rate, respectively. For none of the models
is the ratio between the actual simulation and the fit larger than
a factor 2.1 or smaller than 0.36.

Finally, we can set up the same analysis to derive the depen-
dence of the terminal wind speed on metallicity, assuming
3∞ ∝ Zp(L∗). From this we find that the exponent p also varies
approximately linearly with the log of luminosity as p(L∗) =
−0.41 log(L∗/106 L�) − 0.32. This is consistent with the results

above and indeed can be alternatively obtained by simply com-
bining the previously derived Ṁ and Dmom relations (because
p = n−m). The linear behaviour of p here causes low luminosity
stars to have a positive exponent with Z, which flattens out and
gets negative for higher luminosities. So as a general trend, stars
with log(L∗/106 L�) above roughly −0.78 tend to have slightly
decreasing 3∞ with increasing metallicity, while for stars below
−0.78 it is the other way around.

4. Discussion

4.1. General trends

The WLR results presented in the previous section show that
our results would be overall consistent with standard CAK line-
driven theory for αeff ≈ 0.5, at least for the Galactic and LMC
cases. As already mentioned, this is in reasonably good agree-
ment with various CAK and line-statistics results (see overview
in Puls et al. 2008). For the O-stars in the SMC, on the other
hand, we find a steeper relation with L∗, implying an overall
αeff ≈ 0.42 if interpreted by means of such basic CAK theory.
However, Fig. 7 shows that the WLR here exhibits significant
curvature with a steeper dependence for lower luminosities,
making interpretation in terms of a single slope somewhat prob-
lematic. The model-grid indicates that αeff decreases both with
decreasing metallicity and with decreasing luminosity, suggest-
ing that αeff generally becomes lower for lower wind densities.
This is consistent with the line-statistics calculations by Puls
et al. (2000) and may (at least qualitatively) be understood via
the physical interpretation of α as the ratio of the line-force due
to optically thick lines to the total line-force (lower wind densi-
ties should generally mean a lower proportion of optically thick
contributing lines).

We further find a quite steep dependence of mass-loss and
wind-momentum rate on metallicity. Power-law fits give average
values Ṁ3∞

√
R∗ ∝ Z0.85

∗ and Ṁ ∝ Z0.95
∗ , however the fitting also

reveals a somewhat steeper dependence for the lower-luminosity
stars in our sample. The final fit relations presented in the pre-
vious section (Eqs. (19)–(20)) take this into account and give
Ṁ ∝ Z0.92

∗ for the stars in our sample with luminosities above
the mean (log(L∗/106 L�) > −0.7) and Ṁ ∝ Z1.06

∗ for the ones
below this mean (log(L∗/106 L�) < −0.7). Again this is generally
consistent with Puls et al. (2000), who derive a scaling rela-
tion Ṁ ∝ Z(1−α)/αeff∗ . Inserting in this relation our Galactic value
αeff ≈ 0.48 and a typical O-star δ ≈ 0.1 (see previous sections)
gives Ṁ ∝ Z0.9

∗ , whereas using the lower αeff ≈ 0.42 derived for
the SMC yields Ṁ ∝ Z1.1

∗ . These values are in rather good agree-
ment with the slopes we find from the scaling relations derived
directly from the model-grid results. This tentatively suggests
that simplified line-statistics calculations such as those in Puls
et al. (2000) might perhaps be used towards further calibration
(and physical understanding) of the scaling relations derived in
this paper, provided accurate values of αeff (and Q̄, which is the
line strength normalisation factor due to Gayley 1995) can be
extracted from full hydrodynamic models.

As for the dependence of the terminal wind speed on metal-
licity, the exponent seems to vary across the grid, being positive
for low-luminosity stars and negative for higher luminosity stars.
This might be a manifestation of two (or more) competing
processes. We already found that Ṁ always increases when
increasing metallicity, which means that winds of high Z∗ tend
to be denser and thus harder to accelerate to high speeds. On the
other hand, a higher metallicity also means higher abundances
of important driving lines, providing a stronger acceleration
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Fig. 9. Mass versus luminosity (from Martins et al. 2005) of all models,
both on logarithmic scale to present a linear relation.

that should increase the speed. For the low luminosity dwarfs,
the second effect might be more dominant because these stars
already have a low mass-loss rate. As a mean value we find that
3∞ depends on the metallicity as 3∞ ∝ Z−0.10± 0.18

∗ . Previous stud-
ies such as Leitherer et al. (1992) and Krtička (2006) find this
dependence to be 3∞ ∝ Z0.13

∗ and 3∞ ∝ Z0.06
∗ respectively. While

these exponents are positive, all dependencies are very shallow.
As mentioned in previous sections, we do not find any strong

trends with spectral type and luminosity class within our model-
grid. The mass-loss rates and wind-momenta follow almost the
same relations for spectroscopic dwarfs, giants, and supergiants.
The dwarfs do show some deviation from this general trend, in
particular for the SMC models, but this is mainly due to the
fact that they span a much larger stellar-parameter range than
the other spectral classes, thus reaching lower luminosities and
so also the low mass-loss rates where the SMC WLR starts to
exhibit significant curvature (see above).

The dominant dependence of Ṁ on just L∗ and Z∗ within
our O-star grid may seem a bit surprising, especially in view
of CAK theory which predicts an additional dependence Ṁ ∝
M−0.5...1

eff (see Eq. (13)). However, including an additional mass-
dependence in our power-law fits to the grid does not signifi-
cantly improve the fit-quality. Moreover, a multi-regression fit
to Ṁ ∝ La

∗M
b
∗ for the Galactic sample shows that if the mass-

luminosity relation within our grid L∗ ∝ Mc
∗ is also accounted

for, the derived individual exponents return the previously found
Ṁ ∝ La+b/c

∗ = L2.2
∗ (which means that we get the same result

as when previously neglecting any mass-dependence). Figure 9
shows this mass-luminosity relation, where a simple linear fit
yields L∗ ∝ M2.3

∗ for our model grid. We note that these results
are generally consistent with the alternative CMF models by
Krtička & Kubát (2018), who also find no clear dependence on
mass or spectral type within their O-star grid.

On the other hand, when running some additional test-
models outside the range of our O-star grid, by assuming a fixed
luminosity but changing the mass, we do find that including
an additional mass-dependence sometimes can improve the fits.
Specifically, it is clear that reducing the mass for such constant-
luminosity models generally tends to increase Ṁ. This is in
qualitative agreement with the results expected from CAK the-
ory (see above), however, we note that these test-models have
stellar parameters that no longer fall within the O-star regime
that is the focus of this paper. In any case, when extending our
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Fig. 10. Zoom in on the ‘bump’ that is notably present for the super-
giants at SMC metallicity plotted as mass-loss rate versus luminosity on
the lower axis and effective temperature on the upper axis. The dashed
line shows the reference slope of 2.37 derived from all SMC models.
Each model shows the dominant ionisation stage at the critical point
of five elements. They are connected when a transition occurs between
models.

grid towards a more full coverage of massive stars in various
phases the question regarding an explicit mass-dependency will
need to be revisited.

A notable feature for the SMC models is the bump that
occurs at log L∗

106 L�
≈ −0.3 for the supergiants. Figure 10 shows

a zoom-in on the simulations that comprise this bump. For each
of these models we examined the dominant ionisation stage at
the sonic point of a selected list of important wind-driving ele-
ments (Fe, C, N, O, and Ar). As we note above, the mass-loss
rate in our simulations is most sensitive to the conditions around
the sonic point. If the ionisation stage of an important element
changes there, the opacity and thus also the radiative accelera-
tion may also be modified. In Fig. 10 the models have increasing
effective temperature and luminosity from left to right. The sim-
ple scaling relation of Eq. (20) would then predict increasing
mass-loss rates from left to right, in contrast to what is observed
in some of these models. As illustrated in the figure, this irreg-
ularity coincides with the temperatures at which several key
driving-elements change their ionisation stages, which seem to
produce a highly non-linear effect over a restricted range in the
current model-grid. Although we have not attempted to explic-
itly account for such non-linear temperature/ionisation-effects in
the fitting-relations derived in this paper, this will certainly be
important to consider when extending our grids towards lower
temperatures (in particular the regime where Fe IV recombines
to Fe III, where this effect may become very important, e.g. Vink
et al. 1999).

4.2. Comparison to other models

A key result from the overall grid analysis is that the computed
mass-loss rates are significantly and systematically lower than
those predicted by Vink et al. (2000, 2001), which are the ones
most commonly used in applications such as stellar evolution
and feedback. Figure 5 compares the Galactic modified wind-
momenta and mass-loss rates of our models directly to these
Vink et al. predictions. Their theoretical WLR presented in the
top panel is constructed from a fit to the objects of their sam-
ple of observed stars. This sample is used to ensure realistic
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Fig. 11. Direct comparison of the mass-loss rates calculated in this
work versus those predicted by the Vink et al. recipe. The dashed line
denotes the one-to-one correspondence. The different markers show the
luminosity classes consistent with previous plots.

parameters for 3∞ and R∗, which together with the theoretical
mass loss obtained from the recipe for Ṁ make up the modified
wind-momentum rate (see Vink et al. 2000, their Sect. 6.2). The
original predictions are calculated with a higher value for metal-
licity of Z� = 0.019, but this is scaled down here to our value of
Z� to remove the metallicity effect in this comparison. We note,
however, that such a simple scaling actually overestimates the
effect somewhat, since the abundance of important driving ele-
ments such as iron has not changed much (see Paper I). Although
both set of models follow rather tight power-laws with similar
exponents (x = 2.06 vs. x = 1.83), there is a very clear offset of
about 0.5 dex between the two model-relations over the entire
luminosity range. Indeed, every single one of our models lies
significantly below the corresponding one by Vink et al. This
is further illustrated in Fig. 11, showing a direct comparison
between the mass-loss rates from the full grid (that is to say for
all metallicities) and those computed by means of the Vink et al.
recipe. In addition to a systematic offset, this figure also high-
lights the very low mass-loss rates we find for low-luminosity
stars, in particular in the SMC (reflected in the final fit-relations,
Eqs. (19)–20, through the steeper metallicity dependence at low
luminosities). Regarding the metallicity scaling, the Ṁ ∝ Z0.85

∗
obtained by Vink et al. (2001) (neglecting then any additional
dependence on 3∞/3esc) is in quite good agreement with the over-
all values derived here. As discussed in Paper I, the systematic
discrepancies between our models and those by Vink et al. are
most likely related to the fact that their mass-loss predictions are
obtained on the basis of a global energy balance argument using
Sobolev theory (and a somewhat different NLTE solution tech-
nique) to compute the radiative acceleration for a pre-specified β
velocity law. By contrast, the models presented here use CMF
transfer to solve the full equation of motion and to obtain a
locally consistent hydrodynamic structure (which may strongly
deviate from a β-law in those regions where Ṁ is initiated).

The bottom panel in Fig. 5 further compares our galactic
results to those by Krtička & Kubát (2017, 2018). These authors
also make use of CMF radiative transfer in the calculation of
grad and they also find lower mass-loss rates as compared to Vink
et al. However, the dependence on luminosity derived by Krtička
& Kubát is weaker than that obtained here; this occurs primarily
because they predict higher mass-loss rates for stars with lower

luminosities, which tends to flatten their overall slope (see Fig. 5
and also Paper I). Although there are some important differences
between the modelling techniques in Krtička & Kubát (2017)
and those applied here3, the overall systematic reductions of Ṁ
found both here and by them may point towards the need for a
re-consideration of the mass-loss rates normally applied in sim-
ulations of the evolution of massive O-stars (as further discussed
in Sect. 4.6 below).

A third comparison of our results, now with those from Lucy
(2010), is shown in the bottom panel of Fig. 5. Using a theory
of moving reverse layers (MRL, Lucy & Solomon 1970), they
compute the mass flux J = ρ3 for a grid of O-stars with different
Teff and log g. The MRL method assumes a plane parallel atmo-
sphere and therefore does not yield a spherical mass-loss rate
Ṁ directly. As such, we obtained Ṁ for the Lucy (2010) simu-
lations by simply assuming the stellar parameters of the models
in our own grid, extracting the mass-loss rate from Ṁ = 4πR2

∗J.
The relation shown in the bottom panel of Fig. 5 is then com-
puted by performing a linear fit through the resulting mass-loss
rates. This relation derived from the Lucy (2010) models also
falls well below the Vink et al. curve, even predicting somewhat
lower rates than us at low luminosities. We note that in the MRL
method again no Sobolev theory is used for the Monte-Carlo
calculations determining grad and the mass flux.

4.3. Comparison to observations

Observational studies aim to obtain empirical mass-loss rates
based on spectral diagnostics in a variety of wavebands, rang-
ing from the radio domain, over the IR, optical, UV, and all the
way to high-energy X-rays. As discussed in Paper I (see also Puls
et al. 2008; Sundqvist et al. 2011, for reviews), a key uncertainty
in such diagnostics regards the effects of a clumped stellar wind
on the inferred mass-loss rate. Indeed, if neglected in the analy-
sis, such wind clumping may lead to empirical mass-loss rates
that differ by very large factors for the same star, depending
on which diagnostic is used to estimate this Ṁ (Fullerton et al.
2006). More specifically, Ṁ inferred from diagnostics depend-
ing on the square of density (for instance radio emission and
Hα) are typically overestimated if clumping is neglected in the
analysis. On the other hand, if porosity in velocity space (see
Sundqvist & Puls 2018) is neglected, this may cause underesti-
mations of rates obtained from UV line diagnostics (Oskinova
et al. 2007; Sundqvist et al. 2010; Šurlan et al. 2013). Finally,
regarding Ṁ determinations based on absorption of high-energy
X-rays (Cohen et al. 2014), these have been shown to be relatively
insensitive to the effects of clumping and porosity for Galactic
O-stars (Leutenegger et al. 2013; Hervé et al. 2013; Sundqvist &
Puls 2018).

4.3.1. The Galaxy

Considering the above issues, Fig. 12 compares the predictions
from this paper with a selected sample of observational studies of
Galactic O-star winds. The selected studies are based on X-ray
diagnostics (Cohen et al. 2014), UV+optical analyses account-
ing for the effects of velocity-space porosity (Sundqvist et al.
2011; Šurlan et al. 2013; Shenar et al. 2015), and UV+optical+IR

3 In particular, since Krtička & Kubát (2017, 2018) scale their CMF
line force to the corresponding Sobolev force, this means that their
critical point is no longer the sonic point and so that the nature of their
basic hydrodynamic steady-state solutions may be quite different from
those presented here. See also discussion in Paper I.
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Fig. 12. Observed wind-momenta for stars in the Galaxy from the stud-
ies discussed in the text are shown by different markers. The solid black
line is our derived relation (19) and the dashed line is a fit through the
observations excluding the data points with L∗/L� < 105 (see text).

(Najarro et al. 2011) and UV+optical (Bouret et al. 2012) stud-
ies accounting for optically thin clumping (but neglecting the
effects of velocity-space porosity4). The figure shows the modi-
fied wind-momentum rate from the selected observations (using
different markers) together with our relation Eq. (19) (the solid
line). Simple visual inspection of this figure clearly shows that
our newly calculated models seem to match these observa-
tions quite well. More quantitatively, the dashed line is a fit
through the observed wind-momenta, excluding the two stars
with L∗/L� < 105 but otherwise placing equal weights for all
observational data points (also for those stars that are included in
several of the chosen studies). For the observed stars with lumi-
nosities L∗/L� > 105, there is an excellent agreement with the
theoretically derived relation Eq. (19), although there is also a
significant scatter present in the data (quite naturally considering
the difficulties in obtaining empirical Ṁ, see above).

Regarding the two excluded low-luminosity stars, these seem
to indicate a weak wind effect also at Galactic metallicity. Also
observational studies of Galactic dwarfs (Martins et al. 2005;
Marcolino et al. 2009) and giants (de Almeida et al. 2019) find
that the onset of the weak wind problem seems to lie around
log(L∗/L�) ≈ 5.2, where such an onset was already indicated in
the data provided by Puls et al. (1996). Although our mass-loss
rates in this regime are significantly lower than those of Vink
et al. (2000), they are still not as low as those derived from these
observational studies. Further work would be required extending
our current Milky Way grid to even lower luminosities, in order
to examine if such an extension would yield a similar downward
curvature in the WLR (albeit at a lower onset luminosity) as sug-
gested by the observational data. Based on our results for SMC
stars, we do expect that such a grid-extension might eventually
start to display a significant curvature in the WLR also for Galac-
tic objects. Nonetheless, the mismatch in the onset-luminosity
between theory and observations would then still need to be

4 Although these two last studies indeed do not account for velocity-
porosity, they do attempt to adjust their studies accordingly; Najarro
et al. (2011) by analysis of IR lines that should be free of such effects
and Bouret et al. (2012) by scaling down the phosphorus abundance,
thus mimicking the effect velocity–porosity would have on the forma-
tion of the unsaturated UV PV lines. As such, we opt here to include also
these two studies in our selected sample for observational comparisons.

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
log( L

106L )

9

8

7

6

lo
g (

M
M

yr
1
)

Vink et al. 2001
This paper
fit to Bouret et al. 2013

Fig. 13. Observations of SMC stars from Bouret et al. (2013) are shown
with black squares. Both the relation as predicted by Vink et al. (2001)
and from Eq. (20) are shown as comparison together with a linear fit
through the observational data.

explained. On the other hand, further work is also needed to
confirm the very low empirical mass-loss rates at these low lumi-
nosities, as none of the UV-based analyses cited above account
for velocity-porosity.

4.3.2. Low metallicity

The comparison above focused exclusively on Galactic O-stars,
since similar analyses including adequate corrections for clump-
ing are, to this date, scarce for Magellanic Cloud stars. However,
a few such studies do exist, for example the one performed by
Bouret et al. (2013) for O dwarfs in the SMC. Again, poros-
ity in velocity space has not been accounted for in deriving
Ṁ from the observations in this study. Nonetheless, a compar-
ison of our predicted rates to the empirical ones derived by
Bouret et al. is shown in Fig. 13. The figure displays our fit
relation found for the SMC stars together with the results from
Bouret et al. (2013). Additionally the figure shows a fit to this
observed sample of stars (dash-dotted line) and again the rela-
tion for the same stars as would be predicted by the Vink et al.
recipe. It is directly clear from this figure that, again, our rela-
tion matches these observations of SMC O dwarfs significantly
better than previous theoretical predictions. Indeed, since no
big systematic discrepancies are found here between our predic-
tions and the observations, the previously discussed mismatch
for low-luminosity Galactic O-dwarfs (“weak wind problem”)
does not seem to be present here for SMC conditions. This
effect is also reflected through the significantly higher overall
WLR slope we find for SMC models as compared to Galac-
tic ones, xSMC = 2.56± 0.44 versus xGal = 2.07± 0.32. In terms
of line-statistics, a quite natural explanation for this behaviour
is that αeff decreases with wind density (see previous sections)
which produces a steeper slope both for decreasing metallicity
and decreasing luminosity. Another consequence of the found
agreement could be that velocity porosity effects are negligible
in the observations of SMC stars.

Moreover, we may also (in a relative manner) compare our
predicted scaling relations to observations in different galactic
environments, as long as we assume that clumping proper-
ties do not vary significantly between the considered galax-
ies (and so does not significantly affect the relative obser-
vational results). In a large compilation-study of O-stars in
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the Galaxy, LMC, and SMC, Mokiem et al. (2007) obtain
observationally inferred values of Dmom. Specifically, Mokiem
et al. (2007) used the Hα emission line to derive the mass-
loss rate. This diagnostic is highly dependent on the clumping
factor, but comparison with our scaling results will still be
reasonable if the clumping in the Hα forming region does
not vary too much between the different metallicity envi-
ronments. Neglecting such potential clumping effects, Mok-
iem et al. derived the empirical WLR slopes xGal = 1.86± 0.2,
xLMC = 1.87± 0.19, and xSMC = 2.00± 0.27. Within the 1σ
errors, this is in agreement with the theoretical values
xGal = 2.07± 0.32, xLMC = 2.12± 0.34, and xSMC = 2.56± 0.44
obtained here (although the general trend is that we find some-
what steeper relations). In this respect, we note also that the tight
1σ limits in the empirical relations obtained by Mokiem et al.
(2007) only reflect their fit-errors and not additional systematic
errors due to uncertainties in, such as stellar luminosities and
adopted metallicities. As such, the overall agreement between
their empirical relations and the theoretical WLR slopes pre-
sented in this paper is encouraging. Moreover, by considering
their results at a fixed luminosity log L∗/L� = 5.75, Mokiem et al.
(2007) also derived an empirical mass-loss vs. metallicity rela-
tion Ṁ ∝ Z0.83± 0.13

∗ ; again this is in rather good agreement with
the theoretical Ṁ ∝ Z0.87

∗ obtained at such a log L∗/L� = 5.75
from Eq. (20) of this paper.

4.3.3. Terminal wind speed

As can be seen in Fig. 6, 3∞/3esc ratios range between approx-
imately 2.5 to 5.5 for our Galactic models. Similar values are
found for the Magellanic Cloud simulations, but the scatter is
significant and it is difficult to draw general conclusions from
the model data. A significant scatter in 3∞/3esc is however quite
consistent with observational compilations such as the one pre-
sented by Garcia et al. (2014; see in particular their Fig. 9)
and Lamers et al. (1995). Overall though, our mean values are
somewhat higher than observations generally suggest (see also
Kudritzki & Puls 2000), in particular for low-luminosity objects
in the Galaxy. This issue was also addressed in Paper I, where
it was argued that the high 3∞ for such low-density winds might
be naturally reduced as a consequence of inefficient cooling of
shocks in the supersonic wind (see also Lucy 2012). Namely, if
a significant portion of the supersonic wind were shock-heated,
this would lower grad in these layers and so also potentially
reduce 3∞. Moreover, if the wind is shock-heated, empirical esti-
mates of 3∞ might be misinterpreted as it may no longer be
possible to accurately derive this quantity from observations of
UV wind lines. Tailored radiation-hydrodynamical simulations
of line-driven instability (LDI) induced shocks in low-density
winds are underway in order to examine this in detail and will
be presented in an upcoming paper (Lagae et al., in prep.). For
now we study how a reduced wind driving in supersonic layers
may affect 3∞ and Ṁ in our steady-state simulations by running
a few additional models where grad in layers with speeds above
1000 km s−1 simply is reduced by an ad-hoc factor of two. While
these models then indeed converged to a significantly lower 3∞
than previously, Ṁ was only marginally affected. This suggests
that (at least within the steady-state simulation set-up used here)
a reduction of the outer wind driving does not necessarily lead
to an increased mass-loss rate, because in our simulations Ṁ is
mostly sensitive to the conditions at the sonic point and is not
as much affected by the reduction of grad in the highly super-
sonic regions. Although shock-heating in the outer winds in
low-luminosity objects might explain the high predicted values

of the low luminosity objects, it is unclear to what degree the
increasing trend in 3∞/3esc for decreasing L∗ might still persist
in such models. Similarly, it is also somewhat unclear how this
matches with observations, as Lamers et al. (1995) do not find
such a trend while Garcia et al. (2014) do show a similar trend,
at least for dwarf stars. All these observations show significant
scatter though, such that a clear prediction is difficult to obtain
from the present data. To a major part, the scatter in 3∞ is under-
standable though, since in the outer wind only a few dozen strong
resonance lines are responsible for the acceleration (mostly from
C, N, O, Ne, and Ar). Thus, with only a few lines, a certain dif-
ference in the abundances (for example because of different ages
and mixing) can have a significant effect on 3∞, leading to the
observed scatter.

4.4. Influence of 3turb

As discussed in Paper I, the turbulent velocity 3turb can have a
significant effect on grad around the sonic point and so also affect
the predicted Ṁ. In general, increasing 3turb tends to decrease
Ṁ (Lucy 2010; Krtička & Kubát 2017; Paper I), mostly because
then higher velocities are required to Doppler shift line profiles
out of their own absorption shadows, reducing grad in the critical
layers. To study the behaviour of our grid with 3turb, we ran a set
of additional simulations where, for each of our previous models,
we increased 3turb to 12.5 km s−1 and decreased it to 7.5 km s−1.
This way a slope of log Ṁ with log 3turb could be found for each
model in the grid. The mean value obtained is

∂ log Ṁ
∂ log 3turb

=−1.06± 0.40, (21)

where the error is derived from the 1σ spread of the slope for all
models. Also Lucy (2010) studied the behaviour of the mass flux
J with 3turb. Similar to this study, he finds an inverse dependence,
but with a somewhat steeper slope −1.46. We note, however, that
this slope was derived from a single model at Teff = 40 000 K and
log g= 3.75 whereas we here consider an average across our full
grid. Indeed, inspection of a single model similar to the one used
in Lucy (2010), with Teff = 40 062 K and log g= 3.92, reveals a
slope −1.49 that is in good agreement with their result. Further-
more, considering the large scatter on the slope that we find, with
values between a maximum of -0.07 and a minimum of −1.88,
the result of Eq. (21) is also still in agreement with that of Lucy
(2010). But although the scatter around our derived mean-slope
thus is significant, there are no clear trends within the grid. As
such, to obtain a first-order approximation accounting for a 3turb
that deviates from the standard value 10 km s−1, the Ṁ relations
in Sect. 3.3 may simply be scaled according to Eq. (21).

4.5. Comparison to β velocity law

Most wind models of hot, massive stars used for spectroscopic
studies actually do not solve the e.o.m. for the outflow. Instead,
these models assume an empirical ‘β-type’ wind velocity-law
that connects to a quasi-hydrostatic photosphere. This is the
case also for the “standard” version of FASTWIND, used here
as a starting condition for our self-consistent simulations (see
Sect. 2). For the prototypical simulation presented in Sect. 2.2,
Fig. 4 illustrates a fit to the self-consistent calculated velocity
using such a β-law. More specifically, a “double” β-law similar
to that presented in Sect. 5.2 of Paper I is used, however in order
to obtain a better fit to the very steep acceleration of the transition
region we have also included a modification-term in dependence
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on the photospheric scale-height. The full expression used to
match the velocity structure is

3(r) =
(3∞ − 3exp)

(
1 − rtr

r

)β
+ 3exp

1 +
(
3exp

3tr
− 1

)
exp

(
rtr−r

H

) , (22)

where

β= β1 + (β2 − β1)
(
1 − rtr

r

)
. (23)

In this relation, the parameters 3∞, β1, β2, 3exp, and H are
obtained by fitting to the numerically derived velocity structure
above the transition radius rtr, defined according to 3(rtr) = 3tr.
Introduced here is the parameter 3exp, which is roughly the veloc-
ity at which 3(r) has its biggest curvature and thus controls how
far the exponential behaviour of the velocity holds in the inner
wind. Also introduced is H, which is the scale height setting
the stratification in the photosphere, controlled by the density
structure of the model.

With this, the model displayed in Fig. 4 can be fitted down to
a transition velocity 3tr ≈ 0.1a, for a primary beta-factor β1 = 0.8.
We note though, that in particular the more low-density winds
in our sample typically require much higher transition veloci-
ties in order to be well fit, often values well above 3tr ≈ 0.5a
are found (see also discussion in Paper I). Moreover, most of
the best-fit β1-values lie between 0.5–0.8, indicating a steep
acceleration of the inner wind across our grid. A more detailed
study aiming to develop an improved velocity-parametrisation
for spectroscopic studies is underway and will be presented in an
upcoming paper. There, we also plan to examine in detail what
effects the predicted steep acceleration in the transition region
may have upon the formation of various strategic spectral lines
used for diagnostic work.

4.6. Implications for stellar evolution

The stellar mass is the most important parameter defining the
evolution of a star and accurate mass-loss rates are crucial to
determine the corresponding evolutionary pathways. Codes for
stellar structure and evolution use prescribed recipes calculat-
ing the change in stellar mass in between time steps. Many
codes, such as MESA (Paxton et al. 2019, and references therein),
offer the Vink et al. recipe as an option to calculate Ṁ for
hot, hydrogen-rich stars (excluding then the classical Wolf-Rayet
(WR) stars which require different prescriptions for Ṁ). As
clearly illustrated by Fig. 11, the results presented here sug-
gest that the O-star mass-loss rates should be significantly lower.
In addition, this is also supported by the comparison to obser-
vations in Sect. 4.3. Even though the calculations here are
performed for massive stars in their early phases of evolution
(mostly on the main-sequence), the lower rates will not only
affect the stars there, but also impact the properties of post-
main-sequence stages. One consequence is that the luminosity
at which the stars end their main-sequence evolution and cross
the Hertzprung gap is changed, as seen directly in our evolution
calculations of a 60 M� star using MESA (where we have simply
reduced the amount of mass loss on the main sequence to be in
accordance with the models presented here). Another effect is
that a lower mass loss means that angular momentum is lost less
rapidly so that the star keeps a higher surface rotation. Keszthelyi
et al. (2017) computed models with reduced mass-loss rates
(factor 2 to 3) and find the surface rotation speeds at the end of
the main-sequence to remain rather high, possibly requiring an

additional source of angular momentum loss to reconcile with
observed values.

Moreover, Belczynski et al. (2010) studied the masses of
compact objects originating from single stars. Here, the adopted
mass loss during the life of the progenitor star is crucial in deter-
mining the maximum black hole mass that can be achieved.
The determinations of the black hole masses in Belczynski
et al. (2010) were done assuming the Vink et al. rates; adopt-
ing lower rates would reduce the amount of mass lost and thus
possibly increase the resulting black hole mass. Getting direct
measurements of these black hole masses is not straightforward.
However, by taking advantage of gravitational wave astronomy,
detections such as GW150914 (Abbott et al. 2016) provide obser-
vational constraints. Derived black-hole masses turn out to be
relatively high, '25 M�, which, with current wind prescriptions,
can only be created in low metallicity environments. With lower
values of the mass-loss rate during the evolution of the star,
such as proposed here in this paper (or as in magnetic massive
stars, Petit et al. 2017), the ‘heavy’ black holes as detected by
gravitational waves might in principle also be produced in high-
metallicity environments (Belczynski et al. 2020). So far though,
in the Galaxy, no observations of such heavy mass black holes
(from single stars) exist as all of them have a mass less than
15 M� (as found in studies such as Shaposhnikov & Titarchuk
2007; Torres et al. 2020). Depending on the initial mass of the
progenitor stars, these values can be explained both by our pro-
posed mass-loss rates as well as with those predicted by Vink
et al. (2001).

Significant mass loss is further necessary to create the naked
Helium core that is a classical WR-star through wind-stripping.
In low metallicity environments such as the SMC, this is gener-
ally considered to be difficult because of the strong metallicity
dependence resulting in low mass-loss rates. Considering our
results here of lower O-star mass-loss rates, such (steady) wind-
stripping would be more difficult to obtain also in the Galaxy,
potentially leading to an increase of the lower limit for the ini-
tial mass of WR-stars created by this channel. In order to explain
the observed number of WR-stars, alternative pathways might
thus be necessary. In this respect, a straightforward option is
binarity where the outer layers of stars can be removed through
binary interaction such as Roche-lobe overflow (e.g. Götberg
et al. 2018). Recent studies have shown that a large majority of
massive stars reside in such binary systems (Sana et al. 2014). On
the other hand, a second possible channel is eruptive mass loss
in the luminous blue variable stage (LBV; Smith 2014). Indeed,
significant fractions of the stellar mass can be removed in such
eruptive events; the LBV η-Carina, for example, lost 10 M� in
just 10 yr in the 19th century. Also considering that the (so far
confirmed) binary fraction of WR-stars in the SMC is lower than
that of the Galaxy, or at least similar (Foellmi et al. 2003), this
latter pathway might prove to be of increased importance.

5. Summary and future prospects

We calculated a grid of steady-state wind models of O-stars
by varying fundamental stellar parameters in three metallicity
regimes corresponding to the Galaxy, the Small, and the Large
Magellanic Clouds. The models provide predictions of global
wind parameters such as mass-loss rate and wind-momentum
rate, allowing us to analyse how these quantities depend on fun-
damental stellar parameters such as luminosity and metallicity.

From our grid, we find steep dependencies of the mass-loss
rate with both luminosity and metallicity, with mean values Ṁ ∼
L2.2
∗ and Ṁ ∼ Z0.95

∗ . The metallicity dependence is further found
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to vary across the luminosity range. Accounting for this, results
in the final fit relations for the wind-momentum rate and mass-
loss rate presented in Sect. 3.3. Additionally, a clear change in
the slope for the predicted WLR for dwarfs in the SMC is found,
pointing towards the occurrence of weak winds in the models.

Our computed mass-loss rates are significantly lower for all
models than those predicted by Vink et al. (2000, 2001), which
are the ones usually implemented in evolution calculations of
massive stars. Such lower O-star wind-momenta and mass-loss
rates are also in general accordance with observational studies
in the Galaxy that properly account for the effects of clumping
upon the diagnostics used to infer the empirical mass-loss rates.
Regarding the metallicity dependence, our scaling predictions
are (within the errors) in agreement with the larger empirical
study by Mokiem et al. (2007).

The systematically reduced mass-loss rates for all models
strengthens the claim that new rates might be needed in evo-
lution simulations of massive stars. Namely, adopting different
rates can significantly affect the evolution of the massive star,
for example by changing its spin-down time and altering the
initial mass needed in order to produce a wind-stripped Wolf-
Rayet star. As such, a key follow-up work to this study will be
to now extend the grid presented here to include massive stars
outside the O-star domain, to incorporate our new models into
simulations of massive-star evolution, and to analyse in detail
the corresponding effects.
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Appendix A: Model parameters

Table A.1. Input parameters of all models in the grid together with the resulting mass-loss rate and terminal wind speed.

log(L∗/L�) M (M�) R∗ (R�) Teff (K) Z∗ (Z�) Γe log(Ṁ) (M� yr −1) 3∞ (km s−1)

5.50 30.18 23.11 28 430 0.2 0.27 −7.3839 3686.28
5.50 30.18 23.11 28 430 0.5 0.27 −7.0341 3387.06
5.50 30.18 23.11 28 430 1.0 0.27 −6.7385 2972.76
5.55 31.65 22.60 29 569 0.2 0.29 −7.3288 3437.10
5.55 31.65 22.60 29 569 0.5 0.29 −6.9958 3473.92
5.55 31.65 22.60 29 569 1.0 0.29 −6.5934 2439.75
5.13 21.11 13.37 30 231 0.2 0.17 −8.0491 3387.11
5.13 21.11 13.37 30 231 0.5 0.17 −7.6460 3603.45
5.13 21.11 13.37 30 231 1.0 0.17 −7.3292 2865.80
4.63 16.57 7.39 30 488 0.2 0.07 −9.2680 2995.31
4.63 16.57 7.39 30 488 0.5 0.07 −8.5506 3609.03
4.63 16.57 7.39 30 488 1.0 0.07 −8.2760 3976.81
5.59 34.27 22.20 30 504 0.2 0.30 −7.4192 3687.45
5.59 34.27 22.20 30 504 0.5 0.30 −6.6778 2092.16
5.59 34.27 22.20 30 504 1.0 0.30 −6.6745 2608.41
5.18 23.17 13.69 30 737 0.2 0.17 −8.0130 3566.44
5.18 23.17 13.69 30 737 0.5 0.17 −7.4590 3091.28
5.18 23.17 13.69 30 737 1.0 0.17 −7.3701 3716.56
5.61 37.00 22.03 31 009 0.2 0.29 −7.4455 3762.63
5.61 37.00 22.03 31 009 0.5 0.29 −6.8865 2936.07
5.61 37.00 22.03 31 009 1.0 0.29 −6.5546 2349.45
4.73 18.14 7.73 31 524 0.2 0.08 −9.2122 2925.22
4.73 18.14 7.73 31 524 0.5 0.08 −8.4926 4140.30
4.73 18.14 7.73 31 524 1.0 0.08 −8.1367 3740.38
5.24 24.94 13.88 31 689 0.2 0.19 −7.9754 3951.62
5.24 24.94 13.88 31 689 0.5 0.19 −7.4511 3263.31
5.24 24.94 13.88 31 689 1.0 0.19 −7.2669 3392.29
5.64 39.33 21.69 31 913 0.2 0.30 −7.3891 3921.73
5.64 39.33 21.69 31 913 0.5 0.30 −6.8835 3144.53
5.64 39.33 21.69 31 913 1.0 0.30 −6.6351 2735.57
4.82 19.96 8.11 32 522 0.2 0.09 −8.9941 2892.27
4.82 19.96 8.11 32 522 0.5 0.09 −8.4004 4461.07
4.82 19.96 8.11 32 522 1.0 0.09 −8.0413 3784.51
5.31 26.99 14.11 32 573 0.2 0.20 −7.9585 3564.44
5.31 26.99 14.11 32 573 0.5 0.20 −7.1971 2443.79
5.31 26.99 14.11 32 573 1.0 0.20 −7.1019 2720.15
5.70 40.96 21.14 33 326 0.2 0.32 −7.1702 4078.63
5.70 40.96 21.14 33 326 0.5 0.32 −6.6501 2592.01
5.70 40.96 21.14 33 326 1.0 0.32 −6.3665 2400.43
4.91 22.03 8.52 33 383 0.2 0.10 −8.7594 3003.33
4.91 22.03 8.52 33 383 0.5 0.10 −8.1931 4596.93
4.91 22.03 8.52 33 383 1.0 0.10 −8.1205 5411.75
5.37 29.19 14.34 33 487 0.2 0.21 −7.7219 3667.92
5.37 29.19 14.34 33 487 0.5 0.21 −7.4443 4501.69
5.37 29.19 14.34 33 487 1.0 0.21 −7.1115 3415.22
5.01 24.26 8.94 34 419 0.2 0.11 −8.3905 3215.37
5.01 24.26 8.94 34 419 0.5 0.11 −8.0308 4424.16
5.01 24.26 8.94 34 419 1.0 0.11 −7.8713 5481.06
5.44 31.30 14.51 34 638 0.2 0.23 −7.4983 3891.42
5.44 31.30 14.51 34 638 0.5 0.23 −7.2115 4251.11
5.44 31.30 14.51 34 638 1.0 0.23 −6.8466 3008.50
5.75 42.98 20.68 34 654 0.2 0.34 −6.8965 3794.50
5.75 42.98 20.68 34 654 0.5 0.34 −6.5019 2731.52
5.75 42.98 20.68 34 654 1.0 0.34 −6.1938 2377.51
5.10 26.65 9.37 35 531 0.2 0.12 −8.1450 3641.13
5.10 26.65 9.37 35 531 0.5 0.12 −7.8871 5044.18
5.10 26.65 9.37 35 531 1.0 0.12 −7.5994 5386.62
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Table A.1. continued.

log(L∗/L�) M (M�) R∗ (R�) Teff (K) Z∗ (Z�) Γe log(Ṁ) (M� yr−1) 3∞ (km s−1)

5.50 33.82 14.74 35 644 0.2 0.25 −7.2806 3988.51
5.50 33.82 14.74 35 644 0.5 0.25 −6.9815 3959.17
5.50 33.82 14.74 35 644 1.0 0.25 −6.6525 2811.78
5.78 45.54 20.33 35 747 0.2 0.35 −6.7298 3745.48
5.78 45.54 20.33 35 747 0.5 0.35 −6.3424 2517.89
5.78 45.54 20.33 35 747 1.0 0.35 −5.9907 2136.93
5.56 36.53 14.97 36 673 0.2 0.26 −7.1085 4047.17
5.56 36.53 14.97 36 673 0.5 0.26 −6.7414 3307.20
5.56 36.53 14.97 36 673 1.0 0.26 −6.4660 2671.89
5.20 29.09 9.79 36 826 0.2 0.14 −7.7563 3857.78
5.20 29.09 9.79 36 826 0.5 0.14 −7.5491 5104.77
5.20 29.09 9.79 36 826 1.0 0.14 −7.2386 4389.04
5.83 47.94 19.92 37 070 0.2 0.37 −6.5079 3189.74
5.83 47.94 19.92 37 070 0.5 0.37 −6.1263 2201.22
5.83 47.94 19.92 37 070 1.0 0.37 −5.8465 2131.97
5.63 39.07 15.13 38 003 0.2 0.29 −6.8484 3733.72
5.63 39.07 15.13 38 003 0.5 0.29 −6.5024 2880.15
5.63 39.07 15.13 38 003 1.0 0.29 −6.2001 2368.80
5.30 31.76 10.23 38 151 0.2 0.17 −7.5341 4126.77
5.30 31.76 10.23 38 151 0.5 0.17 −7.2155 4545.51
5.30 31.76 10.23 38 151 1.0 0.17 −6.9668 3881.23
5.88 51.44 19.48 38 520 0.2 0.39 −6.3332 2964.94
5.88 51.44 19.48 38 520 0.5 0.39 −5.9776 2123.92
5.88 51.44 19.48 38 520 1.0 0.39 −5.7181 2109.59
5.71 41.62 15.26 39 507 0.2 0.32 −6.5947 3369.99
5.71 41.62 15.26 39 507 0.5 0.32 −6.2538 2459.56
5.71 41.62 15.26 39 507 1.0 0.32 −5.9873 2248.02
5.42 34.17 10.61 40 062 0.2 0.20 −7.2082 4105.09
5.42 34.17 10.61 40 062 0.5 0.20 −6.8606 3905.13
5.42 34.17 10.61 40 062 1.0 0.20 −6.5964 2981.86
5.95 58.28 18.91 40 702 0.2 0.40 −6.1306 2838.93
5.95 58.28 18.91 40 702 0.5 0.40 −5.8252 2297.17
5.95 58.28 18.91 40 702 1.0 0.40 −5.6096 2302.44
5.83 49.10 15.83 41 486 0.2 0.36 −6.3146 3106.91
5.83 49.10 15.83 41 486 0.5 0.36 −6.0056 2500.96
5.83 49.10 15.83 41 486 1.0 0.36 −5.7866 2384.98
5.52 37.26 11.08 41 540 0.2 0.23 −6.9302 3845.47
5.52 37.26 11.08 41 540 0.5 0.23 −6.5930 3445.92
5.52 37.26 11.08 41 540 1.0 0.23 −6.3529 2795.81
6.00 66.85 18.47 42 551 0.2 0.40 −6.0439 3197.22
6.00 66.85 18.47 42 551 0.5 0.40 −5.7596 2715.89
6.00 66.85 18.47 42 551 1.0 0.40 −5.5630 2543.34
5.93 58.99 16.57 42 942 0.2 0.38 −6.1376 3152.19
5.93 58.99 16.57 42 942 0.5 0.38 −5.8577 2782.45
5.93 58.99 16.57 42 942 1.0 0.38 −5.6784 2647.87
5.69 45.99 12.31 43 419 0.2 0.28 −6.5800 3658.03
5.69 45.99 12.31 43 419 0.5 0.28 −6.2717 3399.20
5.69 45.99 12.31 43 419 1.0 0.28 −6.0704 3057.32
5.84 58.13 13.84 44 616 0.2 0.31 −6.3267 3667.48
5.84 58.13 13.84 44 616 0.5 0.31 −6.0451 3517.46
5.84 58.13 13.84 44 616 1.0 0.31 −5.8573 3152.44
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