New Primality Criteria and Factorizations of $2^{m} \pm 1$

By John Brillhart, D. H. Lehmer and J. L. Selfridge

Abstract

A collection of theorems is developed for testing a given integer N for primality. The first type of theorem considered is based on the converse of Fermat's theorem and uses factors of $N-1$. The second type is based on divisibility properties of Lucas sequences and uses factors of $N+1$. The third type uses factors of both $N-1$ and $N+1$ and provides a more effective, yet more complicated, primality test. The search bound for factors of $N \pm 1$ and properties of the hyperbola $N=x^{2}-y^{2}$ are utilized in the theory for the first time.

A collection of 133 new complete factorizations of $2^{m} \pm 1$ and associated numbers is included, along with two status lists: one for the complete factorizations of $2^{\boldsymbol{m}} \pm 1$; the other for the original Mersenne numbers.

1. Introduction. The theory of testing a given odd integer N for primality by some converse of Fermat's theorem, or by its generalization in Lucas sequences, was begun in 1876 by Lucas ([9], [10, p. 302]).

Since that time, this theory has gradually been developed by various writers (Proth [15], Lucas [11], Pocklington [14], Lehmer [6], [7], [8], Robinson [18], Brillhart and Selfridge [4], Williams and Zarnke [21], Riesel [17]) in the direction of reducing the amount of calculation needed to complete a primality test on N.

In Sections 2 through 7 of the present paper, this purpose is carried considerably further. The contents of these sections are the following:

Section 2 contains two theorems in which $N-1$ is completely factored. Theorem 1 was given earlier in [4]. Theorem 2, which is somewhat unfamiliar, is an improvement on Theorem 1 (see Kraitchik [5]). In the latter theorem, the condition $a^{(N-1) / 2} \equiv-1(\bmod N)$ is used (see [18]) rather than the usual test that N is a "pseudoprime base a."

Section 3 contains five theorems and three corollaries which use only partial factorizations of $N-1$. Theorem 3 is a strengthening of a theorem of Proth [15]. Theorem 4 and Corollary 1 are familiar. Theorem 5 is new and is an advance over the old theory in that the factored portion of $N-1$ need only be about $N^{1 / 3}$ before the primality test can be completed. Corollary 3 brings the direct search bound for factors of $N-1$ into the theory for the first time. Theorem 7 uses this bound to construct an improved version of Theorem 5. Ordinarily, representing N numerically as a difference of squares is used for

[^0]the purpose of factoring a composite N. However, this representation is used in a new way to establish the primality test in Theorem 7. It also appears indirectly in the proofs of Theorems 5, 17, and 19.

Section 4 contains a resume of properties of Lucas sequences that are needed for the theoretical developments in Sections 5-7.

Sections 5 and 6 exactly parallel Sections 2 and 3 in that they contain comparable theorems in which factors of $N+1$ are used instead of those of $N-1$. That such a parallel development is possible rests on Theorem 16, which is due to Michael Morrison [12]. The discovery of this theorem came as a surprise, since, previously, it had been thought that the theory using the factors of $N+1$ was considerably more complicated.

Section 7 contains two theorems and a corollary which utilize factorizations of both $N-1$ and $N+1$. A considerable advantage is gained thereby since the amount of factorization needed to test N for primality is substantially reduced. Theorem 21 is unusual in that it does not deal directly with the prime factors of $N \pm 1$, but rather with the primes dividing algebraic factors of these numbers.

The final section of the paper contains a discussion of numerical results, a listing of which is given in three tables. In particular, 133 complete factorizations of $2^{m} \pm 1$ and associated numbers are given, along with a status table showing which numbers of these forms have been completely factored. A current status table for the Mersenne numbers $2^{p}-1, p \leqslant 257$, is also included.

It should be noted that many of the theorems in this paper are stated in more detail and generality than may be needed for some applications. In such applications, some of the variables can be set to their minimum values, and minor terms can often be dropped. The generality in the theorems may be of use in certain cases and has been given to delimit more carefully the theoretical results.
2. Theorems Requiring a Complete Factorization of $N-1$. As it sometimes happens, a complete factorization of $N-1$ can be found without difficulty. For example, if N has a special form such as $N=3 \cdot 2^{m}+1$, or if by chance $N-1$ possesses only small prime factors which can be discovered almost immediately by direct search, the complete factorization is at hand. In these cases, because of the uncomplicated nature of the theorems in this section, as well as Theorem 3 in the next section, a simple program can be written to carry out the primality testing which does not require much memory space. Such a program, however, requires more running time than one based on later sections, but may be more suitable for use in small computers where memory space is limited (see Selfridge and Guy [20]).

By way of notation, the symbol N will denote an odd integer >1, and p, q, and n (as well as p_{i}, q_{i}, and n_{i}) will denote primes throughout the rest of this paper. The expression " N is a psp base a " will be used for a number N which
satisfies the congruence $a^{N-1} \equiv 1(\bmod N), 1<a<N-1$, i.e., N is a "pseudoprime" base a. (Since a is chosen in advance, it is extremely rare that N is composite when it is found to be a psp base a.)

Theorem 1. Let $N-1=\Pi p_{i}^{\alpha_{i}}$. If for each p_{i} there exists an a_{i} such that N is a psp base a_{i}, but $a_{i}^{(N-1) / p_{i}} \neq 1(\bmod N)$, then N is prime.

Proof. Let e_{i} be the order of $a_{i}(\bmod N)$. Since $e_{i} \mid N-1$, but $e_{i} \nmid(N-1) / p_{i}$, then $p_{i}^{\alpha} \mid e_{i}$. But for each $i, e_{i} \mid \phi(N)$, so that $p_{i}^{\alpha_{i}} \mid \phi(N)$, which implies $N-1 \mid \phi(N)$. Hence, N is prime. Q.E.D:

Remarks. 1. Theorem 1 indicates that if for any p_{i} a base a_{i} can be found for which both hypotheses are satisfied, then that p_{i} is settled once and for all. (See [4, p. 89].) This is in contrast to the somewhat less satisfactory situation in earlier theorems (see Lehmer [6] and Lucas [11]) where a single base a is used for which the hypotheses must be satisfied for all p_{i}.
2. The computations for each p_{i} can be done efficiently by calculating

$$
\begin{equation*}
a_{i}^{(N-1) / p_{i}} \equiv b_{i} \not \equiv 1 \quad(\bmod N), \quad \text { and then } b_{i}^{p_{i}} \equiv 1 \quad(\bmod N) \tag{1}
\end{equation*}
$$

3. In practice a good strategy for choosing the a_{i} is the following:
(i) Find a_{1} by the quadratic reciprocity law so that $\left(a_{1} / N\right)=-1$.
(ii) Use a_{1} for successive p_{i} as long as (1) is satisfied. (For each p_{i} for which the base is not changed, it is of course not necessary to compute the second part of (1).)
(iii) Whenever (1) is not satisfied, change the base according to (i), returning to a previous base, if possible, to avoid having to recompute the second part of (1).

The next theorem is an improvement over Theorem 1 in that slightly less calculation is required to complete the primality test.

Theorem 2. Let $N-1=\Pi p_{i}^{\alpha_{i}}$. If for each p_{i} there exists an a_{i} such that

$$
\begin{equation*}
a_{i}^{(N-1) / 2} \equiv-1(\bmod N), \tag{2}
\end{equation*}
$$

but (for $p_{i}>2$),

$$
\begin{equation*}
a_{i}^{(N-1) / 2 p_{i}} \not \equiv-1 \quad(\bmod N), \tag{3}
\end{equation*}
$$

then N is prime.
Proof. Congruence (2) implies N is a psp for each base a_{i}. For each $p_{i}>2$, if $a_{i}^{(N-1) / 2 p_{i}} \equiv b_{i}(\bmod N)$, then $a_{i}^{(N-1) / p_{i}} \equiv b_{i}^{2} \not \equiv 1(\bmod N) ;$ for, if $b_{i}^{2} \equiv 1$ $(\bmod N)$ for some i, then, since p_{i} is odd, $-1 \equiv a_{i}^{(N-1) / 2} \equiv b_{i}^{p_{i}} \equiv b_{i}(\bmod N)$, which contradicts (3). Hence, N is prime by Theorem 1. Q.E.D.
3. Theorems in Which $N-1$ is Partially Factored. In the special case where a prime factor of $N-1$ exceeds $\sqrt{N} / 2-1$, the next theorem, which is a strengthening of a theorem of Proth [15], provides a primality test involving less computing than Theorem 2.

Theorem 3. Let $N-1=m p$, where p is an odd prime such that $2 p+1>\sqrt{N}$.

If there exists an a for which $a^{(N-1) / 2} \equiv-1(\bmod N)$, but $a^{m / 2} \not \equiv-1(\bmod N)$, then N is prime.

Proof. Let e be the order of $a(\bmod N)$. Then $e \mid N-1$. But, using the same argument as in the proof of Theorem $2, a^{m} \not \equiv 1(\bmod N)$, so $e \nmid(N-1) / p$. Hence, $p \mid e$, and since $e \mid \phi(N)$, then $p \mid \phi(N)$. Also,

$$
\phi(N) \mid N \Pi\left(n_{i}-1\right)=(m p+1) \Pi\left(n_{i}-1\right)
$$

so $p \mid \Pi\left(n_{i}-1\right)$, or $p \mid n_{i}-1$ for some i, say $i=1$. Thus, $n_{1} \equiv 1(\bmod 2 p)$. But $N \equiv 1(\bmod 2 p)$, which implies $N / n_{1} \equiv 1(\bmod 2 p)$. On the other hand, since $n_{1} \geqslant$ $2 p+1>\sqrt{N}$, then $1 \leqslant N / n_{1}<\sqrt{N}<2 p+1$. Therefore, the only possibility for N / n_{1} is 1 , so N is prime. Q.E.D.

Remark. This theorem reduces the amount of testing because the prime factors of m can be ignored. Also, note that p need not be the largest prime divisor of $N-1$, as $N=31$ and $p=3$ shows.

Throughout the rest of this paper the notation $N-1=F_{1} R_{1}$ will be used, where F_{1} is the even factored portion of $N-1, R_{1}$ is >1, and $\left(F_{1}, R_{1}\right)=1$.

Theorem 4 (Pocklington [14]). If for each prime p_{i} dividing F_{1} there exists an a_{i} such that N is a psp base a_{i} and $\left(a_{i}^{(N-1) / p_{i}}-1, N\right)=1$, then each prime divisor of N is $\equiv 1\left(\bmod F_{1}\right)$.

Proof. Let n be a prime divisor of N, and e_{i} be the order of $a_{i}(\bmod n)$. Then $e_{i} \mid n-1$. Also, $a_{i}^{N-1} \equiv 1(\bmod n)$, so $e_{i} \mid N-1$. On the other hand, $\left(a_{i}^{(N-1) / p_{i}}-\right.$ $1, n)=1$, so $e_{i} \nmid(N-1) / p_{i}$, which implies $p_{i}^{\alpha} \mid e_{i}$, where $p_{i}^{\alpha} \| F_{1}$. Hence, for each $i, p_{i}^{\alpha} \mid n-1$, so that $F_{1} \mid n-1$. Q.E.D.

Remark (R. DeVogelaere). In verifying the hypotheses of this theorem, only one GCD computation is necessary: First find an a_{i} such that $a_{i}^{(N-1) / p_{i}}-1 \equiv b_{i} \not \equiv 0$ $(\bmod N)$ for each i; then calculate the product $\Pi b_{i} \equiv c(\bmod N)$; and finally, if $c \neq$ 0 , compute $d=(c, N)$.

If $d \neq 1$, then N is composite and a factor has been found. Also, if $c=0$, then some b_{i} has a prime factor in common with N.

For convenience of reference put:
(I) For each prime p_{i} dividing F_{1} there exists an a_{i} such that N is a psp base a_{i} and $\left(a_{i}^{(N-1) / p_{i}}-1, N\right)=1$.

Corollary 1. Assume (I). If $F_{1}>\sqrt{N}$, then N is prime.
Remark. Corollary 1 is an improvement over Theorem 2 in that the primality test can be completed as soon as the factored part of $N-1$ exceeds the unfactored part. This saving in time is offset only to a slight degree by the amount of computing needed to calculate the required GCD's. It will be the main goal of the rest of this paper to continue to reduce the amount of auxiliary factorization, as in this case, through the introduction of various conditions which require a small amount of computing time as compared to the factoring time eliminated. In this regard, the next theorem is a considerable improvement on Corollary 1 , since $N-1$ need only be factored to the point where $F_{1}>(N / 2)^{1 / 3}$ rather than $F_{1}>\sqrt{N}$. A further reduction is
possible if m is chosen to be >1. The cost of this reduction is at most the time needed to calculate $\left(r^{2}-8 s\right)^{1 / 2}$ and the trial division of $\lambda F_{1}+1$ into N for $m-1$ values of λ.

Theorem 5. Assume (1) and let m be $\geqslant 1$. When $m>1$, assume further that $\lambda F_{1}+1$ † N for $1 \leqslant \lambda<m$. If

$$
\begin{equation*}
N<\left(m F_{1}+1\right)\left[2 F_{1}^{2}+(r-m) F_{1}+1\right], \tag{4}
\end{equation*}
$$

where r and s are defined by $R_{1}=(N-1) / F_{1}=2 F_{1} s+r, 1 \leqslant r<2 F_{1}$, then N is prime if and only if $s=0$ or $r^{2}-8 s \neq \square .\left(r \neq 0\right.$ since R_{1} is odd. $)$

Proof. The theorem will be proved in the equivalent form: N is composite if and only if $s \neq 0$ and $r^{2}-8 s=\square$.
(i) \Leftrightarrow). From Theorem 4 it follows that all factors of N are $1\left(\bmod F_{1}\right)$. Thus, since N is composite,

$$
\begin{equation*}
N=\left(c F_{1}+1\right)\left(d F_{1}+1\right), \quad c, d \geqslant m . \tag{5}
\end{equation*}
$$

Also, R_{1} is odd and F_{1} is even, so the equation

$$
\begin{equation*}
R_{1}=(N-1) / F_{1}=c d F_{1}+c+d \tag{6}
\end{equation*}
$$

implies that $c+d$ is odd, so $c d$ is even. Hence, from

$$
\begin{equation*}
c d F_{1}+c+d=R_{1}=2 F_{1} s+r \tag{7}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
c+d \equiv r \quad\left(\bmod 2 F_{1}\right) \tag{8}
\end{equation*}
$$

where $c+d-r \geqslant 0$, since r is the least positive remainder $\left(\bmod 2 F_{1}\right)$. On the other hand, $(c-m)(d-m) \geqslant 0$ implies $c d \geqslant m(c+d)-m^{2}$, so that

$$
\begin{aligned}
\left(m F_{1}+1\right)\left[2 F_{1}^{2}+(r-m) F_{1}+1\right] & >N=c d F_{1}^{2}+(c+d) F_{1}+1 \\
& \geqslant\left[m(c+d)-m^{2}\right] F_{1}^{2}+(c+d) F_{1}+1 \\
& =\left(m F_{1}+1\right)\left\{[(c+d)-m] F_{1}+1\right\}
\end{aligned}
$$

Thus, $2 F_{1}^{2}+(r-m) F_{1}+1>[(c+d)-m] F_{1}+1$, or $c+d-r<2 F_{1}$. Combining this result with (8) gives $c+d=r$. Thus, from (7) it follows that $2 s=c d \neq 0$. Finally, $r^{2}-8 s=(c+d)^{2}-4 c d=(c-d)^{2}$.
(ii) (\Leftrightarrow). With $s \neq 0$ and, say, $r^{2}-8 s=t^{2}$, then

$$
\begin{aligned}
N & =F_{1} R_{1}+1=F_{1}\left(2 F_{1} s+r\right)+1=\left[\left(r^{2}-t^{2}\right) F_{1}^{2} / 4\right]+r F_{1}+1 \\
& =\left[\left(\frac{r-t}{2}\right) F_{1}+1\right]\left[\left(\frac{r+t}{2}\right) F_{1}+1\right],
\end{aligned}
$$

where the factors on the right are >1, since $s \neq 0$. Q.E.D.
Remarks. 1. In the factorization in (ii), if $m>1$, the two factors are prime; for if $N=\left(c F_{1}+1\right)\left(d F_{1}+1\right)\left(e F_{1}+1\right)$, where $c, d, e \geqslant m \geqslant 2$, then (4) is contradicted.

To see this, it is sufficient to consider the smallest values of the coefficients, i.e., when $c=d=e=m$. Then

$$
\begin{aligned}
N & =\left(m F_{1}+1\right)^{3}=\left(m F_{1}+1\right)\left[m^{2} F_{1}^{2}+2 m F_{1}+1\right] \geqslant\left(m F_{1}+1\right)\left[4 F_{1}^{2}+2 m F_{1}+1\right] \\
& >\left(m F_{1}+1\right)\left[2 F_{1}^{2}+(r+2 m) F_{1}+1\right]>\left(m F_{1}+1\right)\left[2 F_{1}^{2}+(r-m) F_{1}+1\right]
\end{aligned}
$$

This argument does not hold when $m=1$.
2. Note that the right side of (4) is composite, so the inequality is sharp. (Cf. [18, Theorem 10], where $F_{1}=2^{n}$.)
3. The choice of m in the hypothesis is arbitrary. It would usually be chosen large enough to ensure that (4) is satisfied. Increasing the size of m for this purpose, of course, must be weighed against further factoring of $N-1$ to try to increase the size of F_{1}. Differentiating the right side, $f(m)$, of (4) with respect to the real variable m (with F_{1} and r constant) gives the critical value $m=F_{1}+r / 2$. Thus, $1 \leqslant m \leqslant F_{1}+r / 2$ and the largest N that can be tested by Theorem 5 is less than the integer $f\left(F_{1}+r / 2\right)=$ $\left(F_{1}^{2}+r F_{1} / 2+1\right)^{2}$.
4. The coefficient 2 in (4) arises because 2 divides $c d$ in (6). In general, if it can be shown that some odd integer g also divides $c d$, then the coefficient 2 in (4) can be replaced by $2 g$. The 2 in the definition of r and s must also be replaced by $2 g$. For example, if $N \equiv-1(\bmod 3)$, then in (5) one of the factors, say $c F_{1}+1$, must be $\equiv 1(\bmod 3)$. Thus, $3 \mid c F_{1}$, and since $3 \nmid F_{1}, 3 \mid c$, i.e., $3 \mid c d$.

Also, if $N \equiv-1(\bmod 5)$, and it is known that 5 is a quadratic residue of N, then since $5 \nmid F_{1}, 5 \mid c d$. If $N \equiv-1(\bmod 8)$, and 2 is a quadratic residue of N, then $8 \mid c d F_{1}$. But since $N-1 \equiv-2(\bmod 8), 2 \| F_{1}$, which implies $4 \mid c d$ (instead of 2 dividing $c d)$. Similarly, if $N \equiv 3(\bmod 8)$, and -2 is a quadratic residue of N, then $8 \mid c d F_{1}, 2 \| F_{1}$, and $4 \mid c d$.

It should be observed that the above conditions, when they hold, can be combined to give a larger leading coefficient in (4). (These observations are due to Michael Morrison.)

Theorem 6. Let n be a prime divisor of N. If N is a psp base a, and

$$
\begin{equation*}
\left(a^{F_{1}}-1, N\right)=1 \tag{9}
\end{equation*}
$$

then $n \equiv 1(\bmod p)$, where p is some prime divisor of R_{1} depending on n.
Proof. Let e be the order of $a(\bmod n)$. Then $e \mid n-1$. Also, since N is a psp base a, it follows that $e \mid N-1=F_{1} R_{1}$. But from (9), $a^{F_{1}} \neq 1(\bmod n)$, so $e \nmid F_{1}$. Hence, $\left(e, R_{1}\right)>1$, i.e., there exists a prime p such that $p \mid e$ and $p \mid R_{1}$. Thus, $p \mid n-$ 1. Q.E.D.

For convenience of reference put:
(II) For some a, N is a psp base a and $\left(a^{(N-1) / R_{1}}-1, N\right)=1$.

Remark. The exponent in (II) has the same form as the exponent in (I), so in a program, (I) and (II) can be treated as a single test by considering R_{1} as the final "prime" factor of $N-1$.

Corollary 2. Assume (I) and (II), and let n be a prime divisor of N. Then $n \equiv$ $1\left(\bmod p F_{1}\right)$, where p is some prime divisor of R_{1} depending on n.

Proof. Since $\left(F_{1}, R_{1}\right)=1$, the corollary follows from Theorems 4 and 6. Q.E.D.
Corollary 3. Assume (I) and (II). If all the prime factors of R_{1} are $\geqslant B_{1}$ and $B_{1} F_{1}>\sqrt{N}$, then N is prime.

Proof. From Corollary $2, n-1 \geqslant p F_{1} \geqslant B_{1} F_{1}>\sqrt{N}$, which implies N is prime. Q.E.D.

Remark. The new feature on Corollary 3 is that B_{1} appears in the inequality for N. The number B_{1} is quite different from F_{1}, since F_{1} contains the "discovered" factors of $N-1$, while B_{1} gives the information (not immediately verifiable) that the prime factors of R_{1} are greater than or equal to B_{1}. (This latter assumes that no factor of $N-1$ has been overlooked, as it might be if the computer were not working properly.)

The next theorem, which improves on Corollary 3 , uses formulas relating to the hyperbola $x^{2}-y^{2}=N$, in a way similar to what was done implicitly in the proof of Theorem 5.

Lemma 1. If either $0<a \leqslant b \leqslant \sqrt{N}$ or $\sqrt{N} \leqslant b \leqslant a$, then $b+N / b \leqslant a+$ N / a.

Proof. The conclusion follows from $\left(a^{-1}-b^{-1}\right)(N-a b) \geqslant 0$. Q.E.D
Theorem 7. Assume (I) and (II), and also that the prime factors of R_{1} are $\geqslant B_{1}$. If

$$
\begin{equation*}
N<\left(B_{1} F_{1}+1\right)\left[2 F_{1}^{2}+\left(r-B_{1}\right) F_{1}+1\right] \tag{10}
\end{equation*}
$$

where r and s are defined by $R_{1}=2 F_{1} s+r, 1 \leqslant r<2 F_{1}$, then N is prime if and only if $s=0$ or $r^{2}-8 s \neq \square$.

Proof. The theorem will be proved in the equivalent form: N is composite if and only if $s \neq 0$ and $r^{2}-8 s=\square$.
(i) \Leftrightarrow). From Theorem 4 all the factors of N are $1\left(\bmod F_{1}\right)$. Since N is composite, it can be written as $N=n w=x^{2}-y^{2}=(x-y)(x+y)=\left(c F_{1}+1\right)\left(d F_{1}+1\right)$, $c, d \geqslant 1$, where n is the smallest prime factor of N and $w>1$. Then $N=c d F_{1}^{2}+(c+d) F_{1}$ +1 and $2 x=(c+d) F_{1}+2$. But $R_{1}=c d F_{1}+c+d$, and since R_{1} is odd and F_{1} is even, then $c+d$ is odd, so that $c d$ is even, say $c d=2 g$. Then $N=2 g F_{1}^{2}+2 x-1$, so $2 x=F_{1} R_{1}+2-2 g F_{1}^{2}=F_{1}\left(2 F_{1} s+r\right)+2-2 g F_{1}^{2}=(s-g) 2 F_{1}^{2}+r F_{1}+2$. Let $\lambda=s-g$. Then from $r F_{1}+2 \leqslant F_{1}\left(2 F_{1}-1\right)+2 \leqslant 2 F_{1}^{2}$ it follows, since $x>$ 0 , that $0<2 x=2 \lambda F_{1}^{2}+r F_{1}+2 \leqslant 2 F_{1}^{2}(\lambda+1)$, so that $\lambda \geqslant 0$. On the other hand, $2 x=n+w=n+N / n$, and from Corollary $2, n \equiv 1\left(\bmod p F_{1}\right)$, so $n \geqslant p F_{1}+1 \geqslant$ $B_{1} F_{1}+1$. Hence, using Lemma 1 and (10), $2 \lambda F_{1}^{2}+r F_{1}+2=2 x=n+N / n \leqslant$ $\left(B_{1} F_{1}+1\right)+N /\left(B_{1} F_{1}+1\right)<\left(B_{1} F_{1}+1\right)+2 F_{1}^{2}+\left(r-B_{1}\right) F_{1}+1=2 F_{1}^{2}+r F_{1}$ +2 . Consequently, $\lambda<1$. Thus, $\lambda=0$ and $r F_{1}+2=2 x=(c+d) F_{1}+2$, which implies $r=c+d$. Then $2 F_{1} s+r=R_{1}=c d F_{1}+c+d$ gives $2 s=c d \neq 0$.

Finally, $r^{2}-8 s=(c+d)^{2}-4 c d=(c-d)^{2}$.
(ii) (\Leftrightarrow). The proof is the same as Theorem 5(ii). Q.E.D.

Remark. If it happens that R_{1} is a pseudoprime but B_{1} is not large enough for (10) to be satisfied, then a primality investigation can be carried out on R_{1} itself (see Brillhart [3, p. 448]). If it can be shown that R_{1} is prime, then the theorems of Section 2 can be used to show N is prime. If, however, it is difficult to show that R_{1} is prime, Theorem 4 can at least be used (with the factors of $\boldsymbol{R}_{\mathbf{1}}-1$) to establish a lower bound for the prime factors of R_{1}, which, if it exceeds B_{1}, can replace B_{1} in Theorem 7.
4. Lucas Sequences. The primality theory which was established in the preceding sections was based on factoring $N-1$. In this section and the two that follow, a primality theory is developed which depends on factoring $N+1$.

Central to the $N+1$ theory are the divisibility properties of certain second order recurring sequences known as Lucas sequences. These properties, which contain Fermat's theorem as a special case, will be reviewed here along with several other results that apply to the later development. Some of the more familiar results will be given without proof (see Lucas [10]).

The Lucas sequences $\left\{U_{k}\right\}$ and $\left\{V_{k}\right\}$ are defined recursively by the formulas:

$$
\begin{array}{lll}
U_{k+2}=P U_{k+1}-Q U_{k}, & k \geqslant 0, & U_{0}=0, \\
V_{k+2}=P V_{k+1}-Q V_{k}, & k \geqslant 0, & V_{0}=2,
\end{array}, V_{1}=P, ~ l
$$

where P and Q are integers such that $D=P^{2}-4 Q \neq 0$. (In case several sequences, defined by P_{i} and Q_{i}, are used, the notation $\left\{U_{k}^{(i)}\right\}$ and $\left\{V_{k}^{(i)}\right\}$ will be employed.)

If α and β are the (unequal) roots of $x^{2}-P x+Q=0$, then the members of these sequences can be expressed in terms of α and β by the equations:

$$
U_{k}=\left(\alpha^{k}-\beta^{k}\right) /(\alpha-\beta) \quad \text { and } \quad V_{k}=\alpha^{k}+\beta^{k}, \quad k \geqslant 0 .
$$

From these formulas four useful identities can be derived:

$$
\begin{align*}
U_{2 k} & =U_{k} V_{k}, \tag{11}\\
D U_{k}^{2} & =V_{2 k}-2 Q^{k}, \tag{12}\\
V_{k}^{2}-D U_{k}^{2} & =4 Q^{k}, \tag{13}\\
2 V_{r+s} & =V_{r} V_{s}+D U_{r} U_{s} . \tag{14}
\end{align*}
$$

In what follows the notation ϵ_{t} will be used for the value of the Jacobi symbol (D / t).

The main divisibility properties of these sequences are contained in the theorems and corollaries which follow.

Theorem 8. (a) If $p \nmid 2 Q$, then $U_{p-\epsilon_{p}} \equiv 0(\bmod p)$.
(b) If $p \nmid 2 Q D$, then $V_{p-\epsilon_{p}} \equiv 2 Q^{\left(1-\epsilon_{p}\right) / 2}(\bmod p)$.

Remark. Theorem 8(a) is the generalization of Fermat's theorem mentioned earlier. As such, it could also be used as a test for compositeness: If $N \nmid Q$ and $N \nmid U_{N-\epsilon_{N}}$, then N is composite. (Fermat's theorem can be obtained from Theorem 8(a) in the following way: Let p be an odd prime such that $p \nmid a(a-1)$. Consider the Lucas sequence with $\alpha=a$ and $\beta=1$, so $D=(a-1)^{2}$. Then $\epsilon_{p}=1$ and $a^{p-1}-1=(a-1) U_{p-1} \equiv 0$ $(\bmod p)$.

Theorem 9. If $p \nmid 2 Q D$, then $p \mid U_{\left(p-\epsilon_{p}\right) / 2}$ if and only if $(Q / p)=1$.
Proof. Identity (12), Theorem 8(b), and Euler's criterion give

$$
\begin{aligned}
D U_{\left(p-\epsilon_{p}\right) / 2}^{2} & =V_{p-\epsilon_{p}}-2 Q^{\left(p-\epsilon_{p}\right) / 2} \equiv 2 Q^{\left(1-\epsilon_{p}\right) / 2}-2(Q / p) Q^{\left(1-\epsilon_{p}\right) / 2} \\
& =2 Q^{\left(1-\epsilon_{p}\right) / 2}\{1-(Q / p)\} \quad(\bmod p)
\end{aligned}
$$

from which the theorem immediately follows. Q.E.D.
Corollary 4. If $p \nmid 2 Q D$, then $p \mid V_{\left(p-\epsilon_{p}\right) / 2}$ if and only if $(Q / p)=-1$.
Proof. This follows from Theorem 8, (11), Theorem 9, and (13). Q.E.D.
From Corollary 4 a test for compositeness can also be obtained.
Corollary 5. Suppose $N \nmid Q D$ and that $(Q / N)=-1$. If $N \nmid V_{\left(N-\epsilon_{N}\right) / 2}$, then N is composite.

Remark. The residues of U_{m} and $V_{m}(\bmod N)$, which must be computed in these theorems, can be computed with about triple the work of computing a power $(\bmod N)$. An efficient method for calculating $V_{m}(\bmod N)$ is discussed in detail in Lehmer [8, p. 129]. To compute $U_{m}(\bmod N)$ one can use the formulas: $U_{2 k}=$ $U_{k} V_{k}$ and $V_{2 k}=V_{k}^{2}-2 Q^{k}$ for doubling the subscript, and $U_{2 k+1}=$ $\left(P U_{2 k}+V_{2 k}\right) / 2$ and $V_{2 k+1}=\left(D U_{2 k}+P V_{2 k}\right) / 2$ for a "side-step" of 1 . The sequence of doublings and side-steps to be followed is easily obtained from the binary expansion of m.

Theorem 8 shows that an odd prime p, not dividing Q, will divide at least one term of $\left\{U_{k}\right\}$, namely $U_{p-\epsilon_{p}}$. The least positive k such that $p \mid U_{k}$ is called the "rank of apparition" of p (or just "rank") and is denoted here by $\rho(p)$. (If several Lucas sequences $\left\{U_{k}^{(i)}\right\}$ are being employed, then $\rho_{i}(p)$ will denote rank in $\left\{U_{k}^{(i)}\right\}$.) This notation will also designate the rank of a composite number.

Theorem 10. Suppose $p \nmid 2 Q$ and that $p^{\alpha} \| U_{\rho(p)}, \alpha \geqslant 1$. Then $p^{\alpha+\beta} \| U_{m \rho(p)}$ if and only if $p^{\beta} \| m$.

Remark. If a prime p divides Q but does not divide P, then $p \nmid U_{k}, k \geqslant 1$.
When (N, Q) =1, the following formula for $\rho(N)$ can be obtained from Theorems 8(a) and 10:

$$
\rho(N)=\underset{1 \leqslant i \leqslant s}{\operatorname{LCM}}\left[\rho\left(n_{i}\right) n_{i}^{\max \left(\gamma_{i}-\alpha_{i}, 0\right)}\right]
$$

where $N=\Pi_{i=1}^{s} n_{i}^{\gamma_{i}}$ and $n_{i}^{\alpha_{i}} \| U_{\rho\left(n_{i}\right)}$.
Theorem 11. Suppose $(N, Q)=1$. Then
(a) $\rho(N)$ exists.
(b) $N \mid U_{k}$ if and only if $\rho(N) \mid k$.

It will be convenient to introduce a function, similar to the Euler ϕ function, which will be of use in deriving the primality theorems.

Definition. If $(N, D)=1$ and $N=\Pi_{i=1}^{s} n_{i}^{\gamma_{i}}$, let

$$
\psi(N, D)=2^{1-s} \prod_{i=1}^{s}\left(n_{i}-\epsilon_{n_{i}}\right) n_{i}^{\gamma_{i}-1}
$$

(This function is not a generalization of the Euler function, because of the power of 2 in front of the product.)

Theorem 12. If $(N, D)=1$, then $\psi(N, D)=N-\epsilon_{N}$ if and only if N is prime.
Proof. $\quad(\Leftrightarrow)$. Clear from the definition of ψ.
(\Rightarrow). The statement will be proved in the equivalent form:
If N is composite, then $\psi(N, D) \neq N-\epsilon_{N}$.
Case 1. $s=1$, i.e., $N=n^{\gamma}, \gamma \geqslant 2$. Then

$$
\psi(N, D)=\left(n-\epsilon_{n}\right) n^{\gamma-1}=N-N \epsilon_{n} / n \neq N-\epsilon_{N} .
$$

Case 2. $s \geqslant 2$. In this case

$$
\begin{aligned}
\psi(N, D) & =2 \prod_{i=1}^{s} 112\left(n_{i}-\epsilon_{n_{i}}\right) n_{i}^{\gamma_{i}-1} \leqslant 2 \prod_{i=1}^{s} 112\left(n_{i}+1\right) n_{i}^{\gamma_{i}-1} \\
& =2 N \prod_{i=1}^{s} 1 / 2\left(1+\frac{1}{n_{i}}\right) \leqslant 2 N\left(\frac{2}{3}\right)\left(\frac{3}{5}\right) \cdots \leqslant \frac{4 N}{5}<N-1 . \quad \text { Q.E.D. }
\end{aligned}
$$

Corollary 6. If $(N, D)=1$, then $N-\epsilon_{N} \mid \psi(N, D)$ implies that N is prime.
Proof. If N is composite, then $\psi(N, D)<N-1$ in Case 2 of the above proof. In Case $1, N-\epsilon_{N} \mid N-N \epsilon_{n} / n$ implies $\epsilon_{n}=-1$. However, in that case $n^{\gamma} \pm 1 \mid n^{\gamma}+$ $n^{\gamma-1}$, which is impossible when $\gamma \geqslant 2$. Q.E.D.

Corollary 7. If $(N, Q D)=1$, then $\rho(N) \mid \psi(N, D)$.
Proof. The condition ($N, Q D$) $=1$ implies N has a rank. Thus

$$
\rho(N)=\underset{1 \leqslant i \leqslant s}{\operatorname{LCM}}\left[\rho\left(n_{i}\right) n_{i}^{\max \left(\gamma_{i}-\alpha_{i}, 0\right)}\right]
$$

which divides

$$
\underset{1 \leqslant i \leqslant s}{\operatorname{LCM}}\left[\left(n_{i}-\epsilon_{n_{i}}\right) n_{i}^{\gamma_{i}-1}\right]=2 \underset{1 \leqslant i \leqslant s}{\operatorname{LCM}}\left[1 / 2\left(n_{i}-\epsilon_{n_{i}}\right) n_{i}^{\gamma_{i}-1}\right],
$$

which divides

$$
2 \prod_{i=1}^{s} 1 / 2\left(n_{i}-\epsilon_{n_{i}}\right) n_{i}^{\gamma_{i}-1}=\psi(N, D) . \quad \text { Q.E.D. }
$$

5. Theorems Requiring a Complete Factorization of $N+1$. With the preparation in the last section it is now possible to prove a collection of theorems based on the factorization of $N+1$. These theorems, which are proved in this and the next section, exactly parallel Theorems 1-7.

Lemma 2. Let $\left\{U_{k}\right\}$ be a Lucas sequence for which $(D / N)=-1$ and $N \mid U_{N+1}$.

Then $(N, Q D)=1, \psi(N, D)$ is defined, and N has a rank which divides $N+1$.
Proof. Since the Jacobi symbol $(D / N) \neq 0$, it follows that $(N, D)=1$. If there were a prime n dividing both N and Q, it would follow from $D=P^{2}-4 Q$ that $n+P$, since $n \nmid D$. But then the remark following Theorem 10 would imply n, and therefore N, has no rank, contrary to the fact that $N \mid U_{N+1}$. Therefore, $(N, Q)=1$. The remainder of the conclusion follows from the definition of $\psi(N, D)$ and Theorem 11. Q.E.D.

Theorem 13. Let $N+1=\Pi q_{i}^{\beta_{i}}$, and consider the set U of Lucas sequences $\left\{U_{k}^{(i)}\right\}$ with the given discriminant D for which the Jacobi symbol $(D / N)=-1$. If for each q_{i} there exists a Lucas sequence in U such that $N \mid U_{N+1}^{(i)}$, but $N \nmid U_{(N+1) / q_{i}}^{(i)}$, then N is prime.

Proof. It is clear from Lemma 2 that $\rho_{i}(N) \mid N+1$. But $\rho_{i}(N) \nmid(N+1) / q_{i}$, so $q_{i}^{\beta_{i}} \mid \rho_{i}(N)$. By Corollary $7, \rho_{i}(N) \mid \psi(N, D)$ for all i. This implies $q_{i}^{\beta_{i}} \mid \psi(N, D)$. Thus, $N+1 \mid \psi(N, D)$, so N is prime by Corollary 6. Q.E.D.

Remarks. 1. This theorem corresponds to Theorem 1 in that it allows for a change to another sequence with the same discriminant if $N \mid U_{(N+1) / q_{i}}^{(i)}$ for some q_{i}. As such, it constitutes an improvement over the earlier theorem in which a single sequence with $P=1$ was employed (see [8, p. 128]).
2. From one Lucas sequence with P_{1}, Q_{1}, and D, another with the same D can be obtained by setting $P_{2}=P_{1}+2$ and $Q_{2}=P_{1}+Q_{1}+1$. (It is necessary to check that $\left(N, Q_{i}\right)=1$.)

The next theorem improves on Theorem 13 in that only V 's (with smaller subscripts) are calculated in the primality test (see the remark following Corollary 5), (also see Theorem 3, p. 128 in [8]).

Theorem 14. Let $N+1=\Pi q_{i}^{\beta_{i}}$ and consider the set V of Lucas sequences $\left\{V_{k}^{(i)}\right\}$ with the given discriminant D for which the Jacobi symbol $(D / N)=-1$. If for each q_{i} there exists a sequence in V such that

$$
\begin{equation*}
N \mid V_{(N+1) / 2}^{(i)} \tag{15}
\end{equation*}
$$

but (for $q_{i}>2$)

$$
\begin{equation*}
N+V_{(N+1) / 2 q_{i}}^{(i)} \tag{16}
\end{equation*}
$$

then N is prime.
Proof. From (11) and (15) it follows for each i that $N \mid U_{N+1}^{(i)}$, so $\rho_{i}(N)$ exists and $\rho_{i}(N) \mid N+1$ by Theorem $11(\mathrm{~b})$. Also, for each $q_{i}>2, N \nmid U_{(N+1) / q_{i}}^{(i)}$; for, if $N \mid U_{(N+1) / q_{i}}^{(i)}$ for some i, then from Theorem 11 (b),

$$
\begin{equation*}
N \mid U_{s(N+1) / q_{i}}^{(i)} \tag{17}
\end{equation*}
$$

where $s=\left(q_{i}-1\right) / 2$. But then, using.(15), (14), and (17), it follows that

$$
\begin{aligned}
0 & \equiv 2 V_{(N+1) / 2}^{(i)}=2 V_{\left[s(N+1) / q_{i}+(N+1) / 2 q_{i}\right]}^{(i)} \\
& =V_{s(N+1) / q_{i}}^{(i)} V_{(N+1) / 2 q_{i}}^{(i)}+D U_{s(N+1) / q_{i}}^{(i)} U_{(N+1) / 2 q_{i}}^{(i)} \\
& \equiv V_{s(N+1) / q_{i}}^{(i)} V_{(N+1) / 2 q_{i}}^{(i)}(\bmod N)
\end{aligned}
$$

Now, $\left(N, V_{s(N+1) / q_{i}}^{(i)}\right)=1$; for, if a prime divided both numbers, it would divide $U_{s(N+1) / q_{i}}^{(i)}$ by (17), and so by (13) would divide Q. But by Lemma 2, $(N, Q)=1$. Hence, $N \mid V_{(N+1) / 2 q_{i}}^{(i)}$, which contradicts (16). Thus, N is prime by Theorem 13. Q.E.D.

6. Theorems in Which $N+1$ is Partially Factored.

Theorem 15. Let $N+1=m q$, where q is an odd prime such that $2 q-1>$ \sqrt{N}. If there exists a Lucas sequence $\left\{V_{k}\right\}$ of discriminant D with $(D / N)=-1$ for which $N \mid V_{(N+1) / 2}$, but $N \nmid V_{m / 2}$, then N is prime.

Proof. From (11) it follows that $N \mid U_{N+1}$, so $\rho(N)$ exists and $\rho(N) \mid N+1$ by Theorem $11(\mathrm{~b})$. Also, using the same argument as in the proof of Theorem $14, N \nmid$ $U_{(N+1) / q}$, so $\rho(N) \nsucc(N+1) / q$. Hence, $q \mid \rho(N)$, and since $\rho(N) \mid \psi(N, D)$ by Corollary $7, q \mid \psi(N, D)$. But

$$
\psi(N, D) \mid N \prod_{i=1}^{s}\left(n_{i}-\epsilon_{n_{i}}\right)=(m q-1) \prod_{i=1}^{s}\left(n_{i}-\epsilon_{n_{i}}\right)
$$

so $q \mid \Pi_{i=1}^{s}\left(n_{i}-\epsilon_{n_{i}}\right)$, or $q \mid n_{i}-\epsilon_{n_{i}}$ for some i, say $i=1$. Thus $n_{1} \equiv \epsilon_{n_{1}}(\bmod 2 q)$. Also, $N \equiv-1(\bmod 2 q)$, so $N / n_{1} \equiv-\epsilon_{n_{1}}(\bmod 2 q)$. But $n_{1} \geqslant 2 q-1>\sqrt{N}$, which implies $1 \leqslant N / n_{1}<\sqrt{N}<2 q-1$. Thus, the only possibility in the interval $[1,2 q-1)$ is that $N / n_{1}=1$, i.e., N is prime. Q.E.D.

Throughout this section the notation $N+1=F_{2} R_{2}$ will be used, where F_{2} is the even factored portion of $N+1, R_{2}$ is >1, and $\left(F_{2}, R_{2}\right)=1$.

Theorem 16 (Morrison [12]). Consider the set U of Lucus sequences $\left\{U_{n}^{(i)}\right\}$ with the given discriminant D for which $(D / N)=-1$. If for each prime q_{i} dividing F_{2} there exists a Lucas sequence in U such that $N \mid U_{N+1}^{(i)}$ and $\left(U_{(N+1) / q_{i}}^{(i)}, N\right)=1$, then each prime divisor n of N is $\equiv \epsilon_{n}\left(\bmod F_{2}\right)$.

Proof. It is clear from Lemma 2 that $\rho_{i}(N) \mid N+1$, which implies $\rho_{i}(n) \mid N+1$. Since $n \nmid U_{(N+1) / q_{i}}^{(i)}$, Theorem $11(\mathrm{~b})$ implies $\rho_{i}(n) \nmid(N+1) / q_{i}$. Thus, $q_{i}^{\beta_{i}} \mid \rho_{i}(n)$, where $q_{i}^{\beta_{i} \| F_{2}}$. Also, $\rho_{i}(n) \mid n-\epsilon_{n}$, so $q_{i}^{\beta_{i}} \mid n-\epsilon_{n}$ for all i, that is, $F_{2} \mid n-\epsilon_{n}$. Q.E.D.

For convenience of reference put:
(III) For each prime q_{i} dividing F_{2} there exists a Lucas sequence $\left\{U_{k}^{(i)}\right\}$ with discriminant D for which $(D / N)=-1, N \mid U_{N+1}^{(i)}$, and $\left(U_{(N+1) / q_{i}}^{(i)}, N\right)=1$.

Corollary 8. Assume (III). If $F_{2}>\sqrt{N}+1$, then N is prime.
Proof. $n+1 \geqslant n-\epsilon_{n} \geqslant F_{2}>\sqrt{N}+1$, which implies N is prime. Q.E.D.
In what follows the notation $\bar{F}_{1}=F_{1} / 2$ and $\bar{F}_{2}=F_{2} / 2$ will be used.
Theorem 17. Assume (III) and let m be $\geqslant 1$. When $m>1$, then assume further
that $\lambda F_{2} \pm 1 \nmid N, 1 \leqslant \lambda<m$. If

$$
N<\left(m F_{2}-1\right)\left[2 F_{2}^{2}+(m-|r|) F_{2}+1\right]
$$

where r and s are defined by $R_{2}=2 F_{2} s+r,|r|<F_{2}$, then N is prime if and only if $s=0$ or $r^{2}+8 s \neq \square$.

Proof. The theorem will be proved in the equivalent form: N is composite if and only if $s \neq 0$ and $r^{2}+8 s=\square$.
(i) $\quad \Rightarrow$. Since $N \equiv-1\left(\bmod F_{2}\right)$, it follows from Theorem 16 that $N=$ $\left(c F_{2}-1\right)\left(d F_{2}+1\right), c, d \geqslant m$. Also, R_{2} is odd and F_{2} is even, so the equation $R_{2}=$ $(N+1) / F_{2}=c d F_{2}+c-d$ implies that $c-d$ is odd, so $c d$ is even. Hence, from

$$
\begin{equation*}
c d F_{2}+c-d=R_{2}=2 F_{2} s+r \tag{18}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
c-d \equiv r \quad\left(\bmod 2 F_{2}\right) \tag{19}
\end{equation*}
$$

On the other hand, $(c-m)(d+m) \geqslant 0$ implies that $c d \geqslant(d-c) m+m^{2}$, so that

$$
\begin{gathered}
\left(m F_{2}-1\right)\left[2 F_{2}^{2}+(m-r) F_{2}+1\right] \geqslant\left(m F_{2}-1\right)\left[2 F_{2}^{2}+(m-|r|) F_{2}+1\right] \\
> \\
N=c d F_{2}^{2}+(c-d) F_{2}-1 \geqslant\left[(d-c) m+m^{2}\right] F_{2}^{2} \\
+(c-d) F_{2}-1=\left(m F_{2}-1\right)\left[(d-c+m) F_{2}+1\right]
\end{gathered}
$$

Thus, $2 F_{2}^{2}+(m-r) F_{2}+1>(d-c+m) F_{2}+1$, or

$$
\begin{equation*}
-2 F_{2}+r<c-d \tag{20}
\end{equation*}
$$

Also, $(c+m)(d-m) \geqslant 0$ implies $c d \geqslant(c-d) m+m^{2}$, so that

$$
\begin{aligned}
\left(m F_{2}+1\right) & {\left[2 F_{2}^{2}+(m+r) F_{2}-1\right] \geqslant\left(m F_{2}-1\right)\left[2 F_{2}^{2}+(m-|r|) F_{2}+1\right] } \\
& >N=c d F_{2}^{2}+(c-d) F_{2}-1 \geqslant\left[(c-d) m+m^{2}\right] F_{2}^{2}+(c-d) F_{2}-1 \\
& =\left(m F_{2}+1\right)\left[(c-d+m) F_{2}-1\right]
\end{aligned}
$$

Thus, $2 F_{2}^{2}+(m+r) F_{2}-1>(c-d+m) F_{2}-1$, or $c-d<r+2 F_{2}$.
Combining this result with (19) and (20) gives $c-d=r$.
Thus, from (18) it follows that $2 s=c d \neq 0$. Finally, $r^{2}+8 s=(c-d)^{2}+$ $4 c d=(c+d)^{2}$.
(ii) \Leftrightarrow. With $s \neq 0$ and, say, $r^{2}+8 s=t^{2}$, then

$$
\begin{aligned}
N & =F_{2} R_{2}-1=F_{2}\left(2 F_{2} s+r\right)-1 \\
& =\left[(t-r) \bar{F}_{2}+1\right]\left[(t+r) \bar{F}_{2}-1\right]
\end{aligned}
$$

where the factors on the right are >1, since $s \neq 0$. Q.E.D.
Remark. The value of r in Theorem 17 is chosen to be the absolutely least remainder because $c-d$ may well be negative.

Theorem 18. Let n be a prime divisor of N. If for some Lucas sequence $\left\{U_{k}\right\}$ for which $(D / N)=-1, N \mid U_{N+1}$ and

$$
\begin{equation*}
\left(U_{F_{2}}, N\right)=1 \tag{21}
\end{equation*}
$$

then $n \equiv \epsilon_{n}(\bmod q)$, where q is some prime divisor of R_{2} depending on n.
Proof. By Lemma 2 and Theorem 8(a), $\rho(n) \mid n-\epsilon_{n}$ and $\rho(n) \mid N+1=F_{2} R_{2}$. But (21) implies $\rho(n) \nmid F_{2}$, so $\left(\rho(n), R_{2}\right)>1$, i.e., there exists a prime q such that $q \mid \rho(n)$ and $q \mid R_{2}$. Hence, $q \mid n-\epsilon_{n}$. Q.E.D.

As a further abbreviation put:
(IV) For some Lucas sequence $\left\{U_{k}\right\}$ for which $(D / N)=-1, N \mid U_{N+1}$ and $\left(U_{(N+1) / R_{2}}, N\right)=1$.

Remark. As in (II), the subscript of U is written to suggest (III) and (IV) can be computed together, R_{2} being treated as the final "prime" factor of $N+1$.

Corollary 9. Assume (III) and (IV), and let n be a prime divisor of N. Then $n \equiv \epsilon_{n}\left(\bmod q F_{2}\right)$, where q is some prime divisor of R_{2} depending on n.

Proof. Since $\left(F_{2}, R_{2}\right)=1$, the corollary follows from Theorems 16 and 18. Q.E.D.

Corollary 10. Assume (III) and (IV). If all the prime factors of R_{2} are $\geqslant B_{2}$ and $B_{2} F_{2}>\sqrt{N}+1$, then N is prime.

Proof. $n+1 \geqslant n-\epsilon_{n} \geqslant q F_{2} \geqslant B_{2} F_{2}>\sqrt{N}+1$, which implies N is prime. Q.E.D.
Theorem 19. Assume (III) and (IV), and also that the prime factors of R_{2} are $\geqslant B_{2}$. If

$$
\begin{equation*}
N<\left(B_{2} F_{2}-1\right)\left[2 F_{2}^{2}+\left(B_{2}-|r|\right) F_{2}+1\right] \tag{22}
\end{equation*}
$$

where r and s are defined by $R_{2}=2 F_{2} s+r,|r|<F_{2}$, then N is prime if and only if $s=0$ or $r^{2}+8 s \neq \square$.

Proof. The theorem will be proved in the equivalent form: N is composite if and only if $s \neq 0$ and $r^{2}+8 s=\square$.
(i) \Leftrightarrow). Let n be a prime factor of N, and write $N=n w, w>1$. Then from Corollary $9, n \equiv \epsilon_{n}\left(\bmod q F_{2}\right)$, and since $N \equiv-1\left(\bmod q F_{2}\right), w \equiv-\epsilon_{n}\left(\bmod q F_{2}\right)$. Then $N=\left(c F_{2}+\epsilon_{n}\right)\left(d F_{2}-\epsilon_{n}\right)$, where $c, d \geqslant B_{2}$. Also, R_{2} is odd and F_{2} is even, so

$$
R_{2}=(N+1) / F_{2}=c d F_{2}+\epsilon_{n}(d-c)
$$

implies $d-c$ is odd, so $c d$ is even. Hence, from

$$
\begin{equation*}
c d F_{2}+\epsilon_{n}(d-c)=R_{2}=2 F_{2} s+r \tag{23}
\end{equation*}
$$

it follows that

$$
\epsilon_{n}(d-c) \equiv r \quad\left(\bmod 2 F_{2}\right) .
$$

On the other hand,

$$
\left(c-B_{2}\right)\left(d+B_{2}\right) \geqslant 0 \quad \text { implies } c d \geqslant(d-c) B_{2}+B_{2}^{2}
$$

and

$$
\left(c+B_{2}\right)\left(d-B_{2}\right) \geqslant 0 \quad \text { implies } c d \geqslant(c-d) B_{2}+B_{2}^{2}
$$

These together imply $c d \geqslant \pm \epsilon_{n}(d-c) B_{2}+B_{2}^{2}$. Now using (22),

$$
\begin{aligned}
\left(B_{2} F_{2}\right. & -1)\left[2 F_{2}^{2}+\left(B_{2}-r\right) F_{2}+1\right] \\
& \geqslant\left(B_{2} F_{2}-1\right)\left[2 F_{2}^{2}+\left(B_{2}-|r|\right) F_{2}+1\right] \\
& >N=c d F_{2}^{2}+\epsilon_{n}(d-c) F_{2}-1 \\
& \geqslant\left[-\epsilon_{n}(d-c) B_{2}+B_{2}^{2}\right] F_{2}^{2}+\epsilon_{n}(d-c) F_{2}-1 \\
& =\left(B_{2} F_{2}-1\right)\left\{\left[-\epsilon_{n}(d-c)+B_{2}\right] F_{2}+1\right\}
\end{aligned}
$$

Therefore,

$$
2 F_{2}+B_{2}-r>-\epsilon_{n}(d-c)+B_{2}, \text { or }-2 F_{2}+r<\epsilon_{n}(d-c) .
$$

Also,

$$
\begin{aligned}
\left(B_{2} F_{2}+1\right) & {\left[2 F_{2}^{2}+\left(B_{2}+r\right) F_{2}-1\right] } \\
& \geqslant\left(B_{2} F_{2}-1\right)\left[2 F_{2}^{2}+\left(B_{2}-|r|\right) F_{2}+1\right] \\
& >N=c d F_{2}^{2}+\epsilon_{n}(d-c) F_{2}-1 \\
& \geqslant\left[\epsilon_{n}(d-c) B_{2}+B_{2}^{2}\right] F_{2}^{2}+\epsilon_{n}(d-c) F_{2}-1 \\
& =\left(B_{2} F_{2}+1\right)\left\{\left[\epsilon_{n}(d-c)+B_{2}\right] F_{2}-1\right\}
\end{aligned}
$$

Thus,

$$
2 F_{2}+B_{2}+r>\epsilon_{n}(d-c)+B_{2}, \quad \text { or } \quad 2 F_{2}+r>\epsilon_{n}(d-c) .
$$

Hence, $r=\epsilon_{n}(d-c)$ and from (23), $2 s=c d \neq 0$. Also,

$$
r^{2}+8 s=(d-c)^{2}+4 c d=(c+d)^{2}
$$

(ii) (\Leftrightarrow). Same as Theorem 17 (ii). Q.E.D.
7. Combined Theorems. As was mentioned in the introduction, a considerable advantage is gained by combining the information obtained from factoring both $N-1$ and $N+1$. This advantage lies as usual in reducing the total amount of factoring time by a trade-off with less time-consuming, nontentative tests (such as a GCD) (see [8]).

Of the two theorems given here, Theorem 20 and its corollary have proven to be quite useful when other primality tests could not be applied. Theorem 21 treats the case in which $N \pm 1$ can be factored algebraically into possibly rather large pieces, each of which has been factored to a certain extent (see [6, p. 329]).

Theorem 20. Assume (I)-(IV), and suppose the prime factors of R_{1} and R_{2} are respectively $\geqslant B_{1}$ and B_{2}. Define r and s by $R_{1}=\bar{F}_{2} s+r, 0 \leqslant r<\bar{F}_{2}$, and let

$$
G=\max \left(B_{1} F_{1}+1, B_{2} F_{2}-1, m F_{1} \bar{F}_{2}+r F_{1}+1\right), \quad m \geqslant 1 .
$$

Further, in the case that $G=m F_{1} \bar{F}_{2}+r F_{1}+1$, assume $\left(\lambda F_{1} \bar{F}_{2}+r F_{1}+1\right) \nmid N$, $\delta_{0}^{r} \leqslant \lambda<m$, where δ_{0}^{r} is the Kronecker delta. (Note: When $r=0$ and $m=1$, the λ interval is empty.)

If $N<G\left(B_{1} B_{2} F_{1} \bar{F}_{2}+1\right)$, then N is prime.
Proof (by contradiction). Assume N is composite, say $N=n w, n$ prime and $w>1$. Then Corollary 2 gives

$$
\begin{equation*}
n \equiv 1 \quad\left(\bmod p F_{1}\right) \tag{24}
\end{equation*}
$$

where $p \mid R_{1}$, and $w \equiv n w=N=F_{1} R_{1}+1 \equiv 1\left(\bmod p F_{1}\right)$. Thus,

$$
\begin{equation*}
w \geqslant p F_{1}+1 \geqslant B_{1} F_{1}+1 \tag{25}
\end{equation*}
$$

Similarly, Corollary 9 gives

$$
\begin{equation*}
n \equiv \epsilon_{n} \quad\left(\bmod q F_{2}\right) \tag{26}
\end{equation*}
$$

where $q \mid R_{2}$, and $w \equiv w n \epsilon_{n}=N \epsilon_{n}=\left(F_{2} R_{2}-1\right) \epsilon_{n} \equiv-\epsilon_{n}\left(\bmod q F_{2}\right)$. Also,

$$
\begin{equation*}
n w=N=F_{1} R_{1}+1=F_{1}\left(s \bar{F}_{2}+r\right)+1 \equiv r F_{1}+1 \quad\left(\bmod F_{1} \bar{F}_{2}\right) \tag{27}
\end{equation*}
$$

where $r F_{1}+1<F_{1} \bar{F}_{2}+1$, or more sharply, $r F_{1}+1 \leqslant F_{1} \bar{F}_{2}-1$, i.e., $r F_{1}+1$ is the least positive remainder $\left(\bmod F_{1} \bar{F}_{2}\right)$.

Case 1. $\cdot \epsilon_{n}=1$. Combining (24) and (26) gives

$$
\begin{equation*}
n \equiv 1 \quad\left(\bmod p q F_{1} \bar{F}_{2}\right) \tag{28}
\end{equation*}
$$

since $\left(F_{1}, F_{2}\right)=2$. Hence,

$$
n \geqslant p q F_{1} \vec{F}_{2}+1 \geqslant B_{1} B_{2} F_{1} \tilde{F}_{2}+1 .
$$

Also, $n \equiv 1\left(\bmod F_{1} \bar{F}_{2}\right)$ from (28). Combining this with (27) gives $w \equiv n w \equiv r F_{1}+$ $1\left(\bmod F_{1} \bar{F}_{2}\right)$, which implies $w \geqslant m F_{1} \bar{F}_{2}+r F_{1}+1$. On the other hand, $w \equiv-1$ $\left(\bmod q F_{2}\right)$ implies

$$
w \geqslant q F_{2}-1 \geqslant B_{2} F_{2}-1 .
$$

These results with (25) give $w \geqslant G$. Thus finally, $N=w n \geqslant G\left(B_{1} B_{2} F_{1} \bar{F}_{2}+1\right)$, which is a contradiction. Hence, N is prime.

Case 2. $\epsilon_{n}=-1$. This case is the same as Case 1 with the roles of n and w reversed and (25) changed to read: $n \geqslant B_{1} F_{1}+1$. Q.E.D.

Remarks. 1. In practice $N-1$ and $N+1$ can be factored simultaneously; for if a trial divisor d for $N+1$ leaves a remainder $t \neq 0$, then d will divide $N-1$ if and only if $t=2$.
2. Usually $B_{1}=B_{2}$ when the factoring of $N-1$ and $N+1$ is done by the method of Remark 1. These factoring bounds may be different, however, if the form of N permits algebraic factorization, and the algebraic factors are investigated separately.
3. If the main inequality of the hypothesis is not satisfied at some point in the factorization of $N \pm 1$, there are three ways to increase the size of the product on the right of the inequality: increase B_{1} and B_{2}; find more factors of $N \pm 1$ (thereby increasing F_{1} or F_{2}); increase the size of m. What strategy is adopted will, of course, depend on the amount of increase needed to satisfy the inequality. An excellent example of the use of this theorem will be found in the next section where the factorizations of three Mersenne numbers M_{167}, M_{197}, and M_{241} are shown to be complete. From these examples, it becomes clear that none of the other hypotheses of Theorem 20 need to be verified until the inequality on N has been satisfied, i.e., the auxiliary testing, which is needed to complete the primality test, is done only after enough factoring data have been obtained. (This, of course, is true for the other theorems in this paper.) Thus, conditions (I)-(IV) are usually referred to as "final tests."
4. The special case when $r=0$ occurs when $\bar{F}_{2} \mid R_{1}$, which implies \bar{F}_{2} is odd. Also, $\bar{F}_{2} \mid N-1$, and since $\bar{F}_{2} \mid N+1$, then $\bar{F}_{2} \mid 2$. Thus, $\bar{F}_{2}=1$. This case will occur if and only if $N=4 k+1$ and $N+1$ has no "small" odd prime factors.

Corollary 11. Assume (I)-(IV) and that the prime factors of both R_{1} and R_{2} are $\geqslant B=B_{1}=B_{2}$.
(a) If $B>\left(N / F_{1}^{2} \bar{F}_{2}\right)^{1 / 3}$, then N is prime.
(b) If $B>\left(N / \bar{F}_{1} F_{2}^{2}\right)^{1 / 3}$, then N is prime.

Proof. (a) $N<B^{3} F_{1}^{2} \bar{F}_{2}<B F_{1}\left(B^{2} F_{1} \bar{F}_{2}+1\right)<G\left(B^{2} F_{1} \bar{F}_{2}+1\right)$. (Note here that only the first argument in the definition of G is used. Since the third argument in this definition is not used at all in this theorem, no divisibility testing is needed in the hypothesis of the corollary.)
(b) First observe in the proof of Theorem 20 that p and q are both $\geqslant B$, and since $p \neq q, p q \geqslant B(B+2)$. Thus, the inequality following (28) can be written $n \geqslant$ $B(B+2) F_{1} \bar{F}_{2}+1$. Consequently, when $B=B_{1}=B_{2}$, the inequality in the theorem can be strengthened to read $N<G\left[B(B+2) F_{1} \bar{F}_{2}+1\right]$. Then

$$
\begin{aligned}
N & <B^{3} \bar{F}_{1} F_{2}^{2}<\left(B F_{2}-1\right)\left[B(B+2) \bar{F}_{1} F_{2}+1\right] \\
& \leqslant G\left[B(B+2) F_{1} \bar{F}_{2}+1\right] . \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem 21. Let $N-1=\Pi_{i=1}^{r} R_{i}^{\alpha} i_{i}$ and $N+1=\Pi_{i=1}^{s} S_{i}^{\beta_{i}}$, where R_{i} and S_{i} are not necessarily prime, and $\left(R_{i}, R_{j}\right)=\left(S_{i}, S_{j}\right)=1, i \neq j$. Suppose the prime factors of R_{i} and S_{i} are respectively greater than B_{i} and C_{i}. Let $B=\prod_{i=1}^{r} B_{i}^{\alpha}$ and $C=$ $\Pi_{i=1}^{s} C_{i}^{\beta_{i}}$. Assume (II) and (IV) are satisfied respectively for each R_{i} and S_{i} (where not necessarily the same base or Lucas sequence is used). Let $G=\max (B+1, C-1)$. If $N<G(B C / 2+1)$, then N is prime.

Proof. If N is not prime, then $N=n w$, where n is prime and $w>1$. Let a_{i} be the base used for R_{i} in (II) and suppose the order of $a_{i}(\bmod n)$ is e_{i}. Then $e_{i} \mid N-1$, but $e_{i} \dagger(N-1) / R_{i}$. Hence, theré is a prime divisor p_{i} of R_{i} which divides e_{i} to R_{i} 's full power in $N-1$; i.e., $p_{i}^{\alpha_{i}} \mid e_{i}$. But $e_{i} \mid n-1$. Thus, since $\left(R_{i}, R_{j}\right)=1, i \neq j$, $\Pi_{i=1}^{r} p_{i}^{\alpha} \mid n-1$. Also, $w \equiv n w=N \equiv 1\left(\bmod \Pi_{i=1}^{r} p_{i}^{\alpha_{i}}\right)$. On the other hand, if
$\left\{U_{k}^{(i)}\right\}$ is the sequence used for S_{i} in (IV) and $\rho_{i}(n)$ is the rank of n in $\left\{U_{k}^{(i)}\right\}$, then by Lemma $2, \rho_{i}(n) \mid N+1$, but $\rho_{i}(n) \nmid(N+1) / S_{i}$. Thus there is a prime divisor q_{i} of S_{i} which divides $\rho_{i}(n)$ to S_{i} 's full power in $N+1$; i.e., $q_{i}^{\beta_{i}} \mid \rho_{i}(n)$. But $\rho_{i}(n) \mid n-\epsilon_{n}$, so since $\left(S_{i}, S_{j}\right)=1, \Pi_{i=1}^{s} q_{i}^{\beta_{i}} \mid n-\epsilon_{n}$. Also,

$$
w \equiv \epsilon_{n} n w=\epsilon_{n} N \equiv-\epsilon_{n} \quad\left(\bmod \prod_{i=1}^{s} q_{i}^{\beta_{i}}\right)
$$

Case 1. $\epsilon_{n}=1$. In this case

$$
n \equiv 1 \quad\left(\bmod \prod_{i=1}^{s} q_{i}^{\beta_{i}}\right)
$$

so since $(N-1, N+1)=2$,

$$
2 n \equiv 2 \quad\left(\bmod \prod_{i=1}^{r} p_{i}^{\alpha_{i}} \prod_{i=1}^{s} q_{i}^{\beta_{i}}\right) \quad \text { and } \quad w \equiv 1 \quad\left(\bmod \prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)
$$

(Note: p_{i} and q_{i} may be odd for all i.) Hence,

$$
n \geqslant \frac{1}{2}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) \prod_{i=1}^{s} q_{i}^{\beta_{i}}+1 \geqslant \frac{1}{2}\left(\prod_{i=1}^{r} B_{i}^{\alpha_{i}}\right) \prod_{i=1}^{s} C_{i}^{\beta_{i}}+1=\frac{B C}{2}+1
$$

and

$$
w \geqslant \prod_{i=1}^{r} p_{i}^{\alpha_{i}}+1>\prod_{i=1}^{r} B_{i}^{\alpha_{i}}+1=B+1
$$

Also, $w \equiv-1\left(\bmod \Pi_{i=1}^{s} q_{i}^{\beta_{i}}\right)$, so

$$
w \geqslant \prod_{i=1}^{s} q_{i}^{\beta_{i}}-1 \geqslant \prod_{i=1}^{s} C_{i}^{\beta_{i}}-1=C-1
$$

Thus, $N=n w \geqslant(B C / 2+1) \max (B+1, C-1)=G(B C / 2+1)$, a contradiction.
Case 2. $\epsilon_{n}=-1$. This case is the same as Case 1 with the roles of n and w reversed. Q.E.D.

Remark. An example for which Theorem 21 might be of use is:
Let N be a pseudoprime of the form $\left(a^{128}+1\right) / 257$. Then

$$
\begin{aligned}
N-1 & =\left(a^{128}-256\right) / 257 \\
& =\left(a^{16}-2\right)\left(a^{16}+2\right)\left(a^{16}-2 a^{8}+2\right)\left(a^{16}+2 a^{8}+2\right)\left(a^{64}+16\right) / 257
\end{aligned}
$$

8. Numerical Results. The 131 complete factorizations given in Table 1 are the results obtained by the authors over the last seven years on numbers of the form 2^{m} $\pm 1,2^{2 r} \pm 2^{r}+1$, and $2^{2 r-1} \pm 2^{r}+1$ (see [4, p. 87]). (Note that facturizations of both the primitive and algebraic parts of $2^{447}-1$ and $2^{471}-1$ appear in Table 1 and Section 9.)

In Table 1, all factors listed are prime. Those preceding a colon are algebraic; those following a colon are primitive. An asterisk indicates the factor was first discovered by R. M. Merson.

TABLE 1. Complete Factorizations

1. $2^{94}+2^{47}+1=7: 4375578271 \cdot 646675035253258729$
2. $2^{101}-2^{51}+1=5: 9491060093 \cdot 53425037363873248657$
3. $2^{101}+2^{51}+1=: 809.5218735279937 .600503817460697$
4. $2^{102}-2^{51}+1=3 \cdot 19: 123931 \cdot 26159806891 \cdot 27439122228481$
5. $2^{103}+1=3: 415141630193.8142767081771726171$
6. $2^{104}-2^{52}+1=241: 84159375948762099254554456081$
7. $2^{106}-2^{53}+1=3: 6043 \cdot 4475130366518102084427698737$
8. $2^{109}-2^{55}+1=5: 74323515777853 \cdot 1746518852140345553$
9. $2^{112}-2^{56}+1=97 \cdot 673: 2017 \cdot 25629623713 \cdot 1538595959564161$
10. $2^{114}-2^{57}+1=3 \cdot 19^{2}: 19177458387940268116349766612211$
11. $2^{118}-2^{59}+1=3: 13099 \cdot 4453762543897 \cdot 1898685496465999273$
12. $2^{118}+2^{59}+1=7: 184081 \cdot 27989941729 \cdot 9213624084535989031$
13. $2^{119}+1=3 \cdot 43.43691: 823679683 \cdot 143162553165560959297$
14. $2^{119}+2^{60}+1=5 \cdot 29 \cdot 26317: 9521 \cdot 18292898984156916156396101$
15. $2^{120}-2^{60}+1=433 \cdot 38737: 168692292721 \cdot 469775495062434961$
16. $2^{121}-2^{61}+1=2113: 3389 \cdot 91961 \cdot 4036962584010807014809213$
17. $2^{121}+1=3.683: 117371 \cdot 11054184582797800455736061107$
18. $2^{121}+2^{61}+1=5 \cdot 397: 1339272539833668386958920468400193$
19. $2^{122}-2^{61}+1=3: 1772303994379887829769795077302561451$
20. $2^{122}+2^{61}+1=7: 367 \cdot 55633 \cdot 37201708625305146303973352041$
21. $2^{124}+1=17: 290657 \cdot 3770202641 \cdot 1141629180401976895873$
22. $2^{125}-1=31 \cdot 601 \cdot 1801: 269089806001 \cdot 4710883168879506001$
23. $2^{125}+1=3 \cdot 11 \cdot 251.4051: 229668251.5519485418336288303251$
24. $2^{126}-2^{63}+1=3 \cdot 87211: 379 \cdot 119827 \cdot 127391413339$

- 56202143607667

25. $2^{127}+1=3: 56713727820156410577229101238628035243$
26. $2^{127}+2^{64}+1=5: 18797 \cdot 72118729 \cdot 2792688414613$. 8988357880501
27. $2^{128}-2^{64}+1=: 769.442499826945303593556473164314770689$
28. $\quad 2^{129}-2^{65}+1=13 \cdot 173 \cdot 101653 \cdot 500177$:
: 5951631966296685834686149
29. $2^{131}-2^{66}+1=5: 642811237 \cdot 2745098189 \cdot 308544695409769427309$
30. $2^{131}+1=3: 1049.4744297^{*} .182331128681207781784391813611$
[^1]TABLE 1 (Continued)
31. $2^{131}+2^{66}+1=: 269665073 \cdot 810791440841 \cdot 12450751815271172041$
32. $2^{133}-2^{67}+1=5 \cdot 29 \cdot 229 \cdot 457: 1597$
-449329386292232535250647435097
33. $2^{133}+1=3 \cdot 43 \cdot 174763: 4523 \cdot 106788290443848295284382097033$
34. $2^{133}+2^{67}+1=113 \cdot 525313: \underset{ }{2} \underset{ }{2129 \cdot 126848469231149}$
35. $2^{136}-2^{68}+1=241: 8161 \cdot 40932193 * \cdot 1467129352609$

- 737539985835313

36. $2^{136}+1=257 \cdot 383521: 2368179743873 \cdot 373200722470799764577$
37. $2^{137}-2^{69}+1=: 189061.921525707911840587390617330886362701$
38. $2^{137}+1=3: 1097 \cdot 15619 \cdot 32127963626435681$ - 105498212027592977
39. $2^{138}-2^{69}+1=3 \cdot 19: 6113142872404227834840443898241613032969$
40. $2^{138}+2^{69}+1=73: 79903 \cdot 634569679 \cdot 2232578641663$
. 42166482463639
41. $\quad 2^{139}-2^{70}+1=5: 1408349 \cdot 15736774913 \cdot 492717674609$ -12763660054721
42. $2^{139}-1=: 5625767248687 \cdot 123876132205208335762278423601$
43. $2^{139}+1=3: 4500937 * 51542639524661795300074174250365699$
44. $2^{139}+2^{70}+1=: 557 \cdot 1251163891299967635860272509229764287909$
45. $2^{140}+1=17.61681 .15790321: 84179842077657862011867889681$
46. $2^{141}+2^{71}+1=13 \cdot 140737471578113: 5641$
-270097268484167653999069
47. $\quad 2^{142}-2^{71}+1=3: 5113 \cdot 17467 \cdot 102241$

- 203525545766301306933226271929

48. $\quad 2^{143}-2^{72}+1=53 \cdot 157 \cdot 2113: 958673 \cdot 661521349351105339668937661297$
49. $2^{143}-1=23.89 .8191: 724153.158822951431$

- 5782172113400990737
$50.2^{143}+1=3.683 .2731: 2003.6156182033 \cdot 10425285443$
. 15500487753323

51. $2^{145}-2^{73}+1=41.536903681: 168781$
-12004541501954811085302214141
52. $2^{145}-1=31 \cdot 233 \cdot 1103 \cdot 2089:$

2679895157783862814690027494144991
53. $2^{145}+1=3 \cdot 11.59 .3033169: 7553921^{*}$
-999802854724715300883845411
54. $2^{145}+2^{73}+1=5^{2} \cdot 107367629: 17401 \cdot 244716883381$
-3902095192430070721
*Merson factor

TABLE 1 (Continued)
55. $2^{147}+2^{74}+1=13 \cdot 113 \cdot 1429 \cdot 4981857697937$:

17059410504738323992180849
56. $2^{149}+1=3: 1193.650833 \cdot 38369587^{*}$ -7984559573504259856359124657
57. $\quad 2^{150}-2^{75}+1=3 \cdot 19 \cdot 18837001: 4714696801$ -281941472953710177758647201
58. $\quad 2^{153}+2^{77}+1=5 \cdot 109 \cdot 409 \cdot 3061 \cdot 13669 \cdot 26317: 613 \cdot 318194713$ -238495197879143209
59. $2^{154}-2^{77}+1=3 \cdot 67 \cdot 5419 \cdot 20857: 14323$
60. $2^{154}+2^{77}+1=.7^{2} \cdot 337 \cdot 599479: 463$ -4982397651178256151338302204762057
61. $2^{155}-2^{78}+1=5^{2} \cdot 8681 \cdot 49477: 37201 \cdot 87421 \cdot 52597081^{*}$ -24865899693834809641
62. $2^{155}+1=3 \cdot 11 \cdot 715827883: 11161 \cdot 5947603221397891$ -29126056043168521
63. $2^{157}-1=: 852133201 \cdot 60726444167 \cdot 1654058017289$ -2134387368610417
64. $2^{158}-2^{79}+1=3: 647011 \cdot 13664473^{*}$
-13775694692898492184744709216599873
65. $2^{159}-2^{80}+1=13 \cdot 15358129 \cdot 586477649: 207973$
-30007459254393181618012897
66. $2^{159}+2^{80}+1=5 \cdot 1801439824104653: 10177$
-7971862004867103303293462593
67. $2^{160}+1=641.6700417: 3602561^{*}$

- 94455684953484563055991838558081

68. $2^{161}-2^{81}+1=113 \cdot 277 \cdot 30269: 3221 \cdot 169373 \cdot 209160253$ -27037028118448801270021
69. $2^{161}-1=47 \cdot 127 \cdot 178481: 1289 \cdot 3188767 \cdot 45076044553$ -14808607715315782481
70. $2^{161}+1=3 \cdot 43 \cdot 2796203:$

8103467492759792327149800361564410265219
71. $2^{161}+2^{81}+1=5 \cdot 29 \cdot 1013 \cdot 1657: 1933 \cdot 298817 \cdot 115927640417$
-179351574736387915177
72. $2^{165}+2^{83}+1=13 \cdot 41 \cdot 61 \cdot 2113 \cdot 312709 \cdot 415878438361:$
$391249826881 \cdot 13379250952981$
73. $2^{167}-1=: 2349023 \cdot$ prime
74. $2^{167}+1=3$: prime
75. $2^{168}-2^{84}+1=433 \cdot 38737: 1009 \cdot 21169 \cdot 2627857 * \cdot 269389009$ -1475204679190128571777
76. $2^{171}-2^{86}+1=5 \cdot 109 \cdot 229 \cdot 457 \cdot 275415303169: 4598533^{*}$
-41435606371227835355919073
*Merson factor

TABLE 1 (Continued)

77. $2^{174}+2^{87}+1=73$: prime
78. $2^{175}-2^{88}+1=41 \cdot 101 \cdot 113 \cdot 8101 \cdot 7416361: 701$ -2430065924693517198550322751963101
79. $2^{175}+1=3 \cdot 11 \cdot 43 \cdot 251 \cdot 281 \cdot 4051 \cdot 86171: 1051 \cdot 110251$ -347833278451•34010032331525251
80. $2^{175}+2^{88}+1=5^{3} \cdot 29 \cdot 268501 \cdot 47392381$: 1038213793447841940908293355871461401
81. $2^{177}-2^{89}+1=13 \cdot 5521693 \cdot 104399276341: 709 \cdot 12037$ -2995240087117909078735942093
82. $2^{177}+2^{89}+1=5 \cdot 1181 \cdot 3541 \cdot 157649 \cdot 174877: 31153 \cdot 5397793^{*}$ -94789873-20847858316750657
83. $\quad 2^{183}-2^{92}+1=13 \cdot 3456749 \cdot 667055378149: 5080081 *$. $4209508589941 \cdot 19125556519918081$
84. $2^{185}-2^{93}+1=41 \cdot 593 \cdot 231769777: 1392776941$ -4964166554103541•1258710725115650761
85. $2^{185}+1=3 \cdot 11 \cdot 1777 \cdot 25781083: 1481 \cdot 28136651^{*}$ - 778429365397887608540618330873281
86. $\quad 2^{189}-2^{95}+1=5 \cdot 29 \cdot 109 \cdot 14449 \cdot 246241 \cdot 40388473189: 757$ - 456376431053626339473533320957
87. $2^{189}+2^{95}+1=13 \cdot 37 \cdot 113 \cdot 1429 \cdot 279073 \cdot 118750098349:$ 304832756195865229284807891468769
88. $\quad 2^{190}-2^{95}+1=3 \cdot 331 \cdot 571 \cdot 160465489: 1101811$ -1565399070589631354726923722004116936
89. $2^{191}+1=3$: prime
90. $2^{195}-2^{98}+1=5 \cdot 521 \cdot 1321 \cdot 1613 \cdot 3121 \cdot 21841 \cdot 51481 \cdot 34110701$: $2341 \cdot 723447661 \cdot 8925278993793241$
91. $2^{195}+2^{98}+1=13^{2} \cdot 41 \cdot 53 \cdot 61 \cdot 157 \cdot 313 \cdot 1249 \cdot 108140989558681:$ $468781 \cdot 720453772427518446437641$
92. $2^{196}+1=17 \cdot 15790321: 7057 \cdot 273617 \cdot 1007441$ - $375327457 \cdot 1405628248417 \cdot 364565561997841$
93. $2^{197}-1=: 7487 \cdot$ prime
94. $2^{199}+1=3$: prime
95. $2^{200}-2^{100}+1=241 \cdot 4562284561$: prime
96. $2^{201}-2^{101}+1=13 \cdot 15152453 \cdot 9739278030221: 3217 \cdot 192961$ - $214473433 \cdot 71848008781 \cdot 175132692529$
97. $2^{201}+2^{101}+1=5 \cdot 269 \cdot 42875177 \cdot 2559066073: 10453$ -132661-15704900959651293774270521395753
98. $2^{203}-1=127 \cdot 233 \cdot 1103 \cdot 2089: 136417 \cdot 121793911$
-11348055580883272011090856053175361113
99. $2^{205}+1=3 \cdot 11 \cdot 83 \cdot 8831418697$: prime
*Merson factor

TABLE 1 (Continued)

```
100. 2 205 + 2 103 + 1 = 412.181549.12112549:821.269896441
    .82777720757144341.758399801407611361
101. 2207 - 2104 + 1 = 13.37\cdot277\cdot30269.5415624023749: 829
    .853669.26785337149.496817081109150685921
102. 2 207 + 2 104 + 1 = 5.109.1013\cdot1657.70334392823809: 3313
                                •18217\cdot318781•6542857•25395382141805460457
103. 2 213 - 2 207 + I = 5.569.148587949.5585522857 : 266677
                                -1396429*•18369973*.40524027877
                                -20111008087273
104. 2 213 + 2 107 + 1 = 13.4999465853.472287102421: : 853.189997
                                    .2646185328486854129693169911139349
105. 2 215 + 2 108 + 1 = 5 2. 1759217765581: 370661.1952201*
                            .4538991421•260125854015641
                            -1401345270171101
106. 2 217 - 2 109 + 1 = 113.5581.384773 : prime
107. 2 220}+1=17.353.61681.2931542417: 109121.14872
                                -3404676001•11035465708081
                                .2546717317681681
108. 2 222 + 2 111 + = = 73 : 1999•10657•169831•1238761* * 36085879*
        •199381087•698962539799•4096460559560875111
109. 2 225 + 2 113 + = = 53.109.181.1321.54001.63901.268501•13334701 :
    695701•307116398490301•6269989892198401
110. 2231 - 2 216 + 1 = 13.113\cdot1429.2113.8317.312709.76096559910757 :
    3931002956111648245378728475226109181
111. 2 231 + 2 216 + 1 = 5.29.397.14449.4327489.869467061.3019242680 :
                                    365212445341097287826412838353955921
112. 2 233 - = : 1399.135607.622577.prime
113. 2237 - 2119 + 1 = 5.317.381364611866507317969 : 151681•prime
114. 2239-1 = : 479.1913.5737.176383.134000609.prime
115. 2241 - = : 22000409.prime
116. 2 255 - 2128 + 1 = 13.41.61.137.953.1326700741
                                .7226904352843746841 : 51001.2949879781
                                    -611787251461•15455023589221
117. 2255 + = = 3'11.307.331.2857.6529.43691
                                .26831423036065352611 : 12241
                                .418562986357561.51366149455494753931
118. 2255}+\mp@subsup{2}{}{128}+1=\mp@subsup{5}{}{2}\cdot409\cdot1021\cdot1321\cdot3061\cdot4421\cdot13669\cdot2631
                            .550801•23650061 : 15571321
                                .4251553088834471719044481725601
119. \(2^{272}-2^{136}+1=97 \cdot 673\) : prime
```

[^2]
TABLE 1 (Continued)

120. $2^{273}+2^{137}+1=5 \cdot 29 \cdot 1093^{2} \cdot 1613 \cdot 3121 \cdot 14449 \cdot 21841$
-8861085190774909: 1948129

- 3194753987813988499397428643895659569

121. $2^{283}-2^{142}+1=5:$ prime
122. $2^{285}-2^{143}+1=5^{2} \cdot 229 \cdot 457 \cdot 1321 \cdot 54721 \cdot 275415303169$
-276696631250953741 : 185821-247381
-3996146881•23480412082098913326841
123. $2^{298}+2^{149}+1=7$: prime
124. $2^{313}+1=3$: prime
125. $2^{314}+2^{157}+1=7$: prime
126. $2^{315}+2^{158}+1=13 \cdot 37 \cdot 41 \cdot 61 \cdot 113 \cdot 1429 \cdot 7416361 \cdot 29247661$
-118750098349•1041815865690181 :
1711081-430839361
-17369459529909057773233442461
127. $2^{318}-2^{159}+1=3 \cdot 19$: prime
128. $2^{356}+1=17$: prime
129. $2^{563}-2^{282}+1=5$: prime
130. $2^{613}-2^{307}+1=5$: prime
131. $2^{691}-2^{346}+1=5$: prime

TABLE 2. Completed Factorizations

```
2m
225,231,233,239,241,255,261,315,333,447,471,521,607,1279,2203,
2281,3217,4253,4423,9689,9941,11213,19937.
2m}+1: m = 0-150,153-156,158-162,165-168,170,171,174, 
175,177,178,180,182,183,185,186,189-192,194-196,198,199,201,202,
204-207,210,213,214,218,220,222,226,230,231,234,237,238,242,246,
250,252,254,255,258,262,266,270,278,282,285,286,290,294,300,306,
313,318,322,330,342,350,354,356,378,390,402,408,414,426,462,477,
510,566.
2m}-\mp@subsup{2}{}{r}+1,m=2r-1: m=1-147,151-155,159,161,165,167,171, 
175,177,183,185,189,195,201,207,213,217,231,237-241,255,283,285,
353,367,457,563,613,691.
2m}+\mp@subsup{2}{}{r}+1,\quadm=2r-1: m=1-135,139-147,153,157-165,171,175,
177,189,195,201,207,213,215,225,231,255,273,283,315,379.
```

TABLE 3. Mersenne Status List
$M_{p}=2^{p}-1, p$ prime, $p \leq 257$

p	Character of $2^{\mathrm{p}}-1$
$2,3,5,7,13,17,19,31,61,89,107,127$	Prime
(A11 other p under 172), $179,181,197,233,239,241$	Composite and completely factored
$173,191,193,211,223,229,251$	Cofactor is composite
$199,227,257$	Composite but no factor known

Table 2 shows which numbers of the above forms have been completely factored. (Also from Table 2 it is not difficult to discover that $2^{500}-1,2^{600}-1,2^{700}-1$, $2^{816}-1$, and $2^{1020}-1$ have been completely factored.) Table 3 gives the present status of the "original" Mersenne numbers $M_{p}=2^{p}-1, p$ a prime $\leqslant 257$.
(The eight new factorizations of M_{p} are for $p=137,139,149,157,167,197,239$, and 241.)

Several different methods were used to complete the factorization of those numbers in Table 1 whose cofactors were composite. Notable examples are:
(i) The cofactors of $2^{139}-1,2^{205}+2^{103}+1$, and $2^{255}+1$ were factored by a continued fraction method on the IBM $360 / 91$ at the Campus Computing Network at UCLA (see Morrison and Brillhart [13]). The times required for these factorizations were 80,15 , and 12 minutes respectively.
(ii) $2^{101}+2^{51}+1,2^{109}-2^{55}+1,2^{136}+1$, and $2^{137}+1$ were factored by representing their composite cofactors as a difference of squares, using the delayline sieve DLS 127 at UC, Berkeley. ($2^{136}+1$ is particularly notable, having run on DLS 127 for 2600 hours (!) before it factored.)
(iii) $2^{102}-2^{51}+1$ was factored by expressing its cofactor as a sum of two squares in two different ways on DLS 127.
(iv) $2^{131}+2^{66}+1,2^{157}-1$, and $2^{185}-2^{93}+1$ were completed on DLS 127 as in (ii) only after a new prime factor was found using idle time on the CDC 6400 at UC, Berkeley. Most surprising among these is the Mersenne number $2^{157}-1$, which split unexpectedly into four factors.

Those numbers having a pseudoprime cofactor for some base $a>2$ (see [4, p. 91]) were proved to be prime by some primality test (see Sections 2, 3, or 5). Of special interest are the Mersenne numbers $M_{167}, M_{197}, M_{239}$, and M_{241}, which were tested using Corollary 11.

To illustrate the use of this corollary, the details for M_{167} and M_{241} are given here.
(a) Let

$$
N=M_{167} / 2349023=79638304766856507377778616296087448490695649
$$ a number of 44 digits. N is a pseudoprime base 13. Also,

$$
N-1=2^{5} \cdot 11 \cdot 37 \cdot 167 \cdot R_{1}
$$

where R_{1} is composite with no factor $<2 \cdot 10^{6}$. Further, $N+1=2 \cdot 3^{3} \cdot 5^{2} \cdot$ $1381 \cdot 3167 \cdot R_{2}$, where R_{2} is composite with no factor $<2 \cdot 10^{6}$. Thus,

$$
F_{1}=2^{5} \cdot 11 \cdot 37 \cdot 167=2175008>2 \cdot 10^{6}
$$

so $\bar{F}_{1}>10^{6}$, and

$$
F_{2}=2 \cdot 3^{3} \cdot 5^{2} \cdot 1381 \cdot 3167=5904396450>5 \cdot 10^{9}
$$

Hence, with $B=2 \cdot 10^{6}$, the inequality in Corollary $11(\mathrm{~b})$ is satisfied, since $B^{3} \bar{F}_{1} F_{2}^{2}$ $>\left(2 \cdot 10^{6}\right)^{3} 10^{6}\left(5 \cdot 10^{9}\right)^{2}>10^{44}>N$.

The final tests (I)-(IV) required only a few seconds to show N was prime. The single Lucas sequence $P=1, Q=13$ was used in (III) and (IV).
(b) Let
$N=M_{241} / 22000409$
$=160619474372352289412737508720216839225805656328990879953332340439$,
a number of 66 digits. N is a pseudoprime base 13 . Also, $N-1=2 \cdot 241 \cdot 21221$. R_{1} and $N+1=2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \cdot 643 \cdot 96763 \cdot 4975177 \cdot 17944799 \cdot R_{2}$. Then $F_{1}=10228522$ and $F_{2}=45993638617007146424985960$. Hence, with $B=$ $21221, N$ is prime by Corollary 11 (b). One Lucas sequence with $P=1, Q=5$ was used in the final tests in (III) and (IV).

It is worth mentioning that the factorization of $2^{157}-1$, along with the factorizations of $2^{109} \pm 1$ in [4], finish the 3 factorizations that were left incomplete in Robinson [19]; in fact, all numbers attempted there (except F_{8}, F_{9}, \ldots) have now been completely factored.

Several final comments are in order. The cofactors of F_{9} and F_{10}, the ninth and tenth Fermat numbers, have been tested for pseudoprimality, and are both composite. The tests were run twice with complete agreement in the remainders.

In [4, p. 87], it was stated that "in general nothing but frustration can be expected to come from an attack on a number of 25 or more digits, even with the speeds available in modern computers." In view of the increase in speed of computers and the developments in factorization methodology (see [13]), a number of 40 digits can now be factored in about 50 minutes on, say, the IBM $360 / 91$. Thus, the above quote should now be changed to read " 50 or more digits."
9. Two Other Factorizations. The following "most wanted" Mersenne factorizations are due to R. Schroeppel at MIT (see [1]), who found them using essentially the continued fraction method discussed in [13].

$$
\begin{aligned}
& 2^{137}-1=32032215596496435569 \cdot 5439042183600204290159 \\
& 2^{149}-1=86656268566282183151 \cdot 8235109336690846723986161
\end{aligned}
$$

10. Acknowledgements. The authors would like to express their appreciation to Emma Lehmer, who has greatly assisted in obtaining the numerical results of this paper, and also to Michael Morrison, whose contributions to this paper have materially influenced the direction of its development and the character of its results. They would also like to thank Daniel Shanks for his valuable suggestions, Peter Weinberger and Alex Hurwitz for their programming and computing assistance, and Patrick Morton for his assistance in completing the manuscript. Finally, they would like to express their gratitude to the directors of the following computer centers, who made available the time to obtain the numerical results of this paper: Campus Computing Facility, UCLA (IBM 7094, IBM 360/91), Bell Telephone Laboratories, Holmdel, N. J. (IBM 7094), The Computer Center, UC, Berkeley (IBM 7094, CDC 6400).

Department of Mathematics
University of Arizona
Tucson, Arizona 85721
Department of Mathematics
University of California
Berkeley, California 94720

Department of Mathematics
Northern Illinois University
DeKalb, Illinois 60115

1. M. BEELER, R. W. GOSPER \& R. SCHROEPPEL, Artificial Intelligence Memo 239, MIT, Artificial Intelligence Laboratory, 1972, p. 13.
2. J. BRILLHART, "Concerning the numbers $2^{2 p}+1, p$ prime," Math. Comp., v. 16, 1962, pp. 424-430. MR 26 \#6100.
3. J. BRILLHART, "Some miscellaneous factorizations," Math. Comp., v. 17, 1963, pp. 447-450.
4. J. BRILLHART \& J. L. SELFRIDGE, "Some factorizations of $2^{n} \pm 1$ and related results," Math Comp., v. 21, 1967, pp. 87-96; Corrigendum, ibid., p. 751. MR 37 \#131.
5. M. KRAITCHIK, Théorie des Nombres, vol. 2, Gauthier-Villars, Paris, 1926, p. 135.
6. D. H. LEHMER, "Tests for primality by the converse of Fermat's theorem," Bull. Amer.

Math. Soc., v. 33, 1927, pp. 327-340.
7. D. H. LEHMER, "An extended theory of Lucas functions," Ann. of Math., v. 31, 1930, pp. 419-448.
8. D. H. LEHMER, "Computer technology applied to the theory of numbers," Studies in Number Theory, MAA Studies in Math., vol. 6, Prentice-Hall, Englewood Cliffs, N. J., 1969, pp. 117-151. MR 40 \#84.
9. E. LUCAS, "Considerations nouvelles sur la théorie des nombres premiers et sur la division géométrique de la circonference en parties égales," Assoc. Franç. Avancement Sci. C. R., v. 6, 1877, p. 162.
10. E. LUCAS, "Theorie des fonctions numériques simplement périodiques," Amer. J. Math., v. 1, 1878, pp. 184-240, 289-321.
11. E. LUCAS, "Théorie des nombres, Tome I: Le Calcul des Nombres Entiers, le Calcul des Nombres Rationnels, la Divisibilité Arithmétique, Librairie Scientifique et Technique, Albert Blanchard, Paris, 1961, pp. 423, 441. MR 23 \#A828.
12. M. A. MORRISON, "A note on primality testing using Lucas sequences," Mrith. Comp., v. 29, 1975, pp. 181-182.
13. M. A. MORRISON \& J. BRILLHART, "A method of factoring and the factorization of $F_{7}, "$ Math. Comp., v. 29, 1975, pp. 183-205.
14. H. C. POCKLINGTON, "The determination of the prime or composite nature of large numbers by Fermat's theorem, " Proc. Cambridge Philos. Soc., v. 18, 1914-16, pp. 29-30.
15. E. PROTH, "Théoremes sur les nombres premiers," C.R. Acad. Sci. Paris, v. 87, 1878, p. 926 .
16. H. RIESEL, En Bok om Primtal, Studentlitteratur, Lund, Sweden, 1968, pp. 44-65. MR 42 \#4507.
17. H. RIESEL, "Lucasian criteria for the primality of $N=h \cdot 2^{n}-1, " M a t h$. Comp., v. 23, 1969, pp. 869-875. MR 41 \#6773.
18. R. M. ROBINSON, "The converse of Fermat's theorem," Amer. Math. Monthly, v. 64, 1957, pp. 703-710. MR 20 \#4520.
19. R. M. ROBINSON, "Some factorizations of numbers of the form $2^{n} \pm 1, " M T A C, v .11$, 1957, pp. 265-268. MR 20 \#832.
20. J. L. SELFRIDGE \& R. K. GUY, Primality Testing with Applications to Small Machines, Research Paper \#121, Dept. of Math., Univ. of Calgary, Canada, 1971.
21. H. C. WILLIAMS \& C. R. ZARNKE, "A report on prime numbers of the forms $M=$ $(6 a+1) 2^{2 m-1}-1$ and $M^{\prime}=(6 a-1) 2^{2 m}-1, " M a t h$. Comp., v. 22, 1968, pp. 420-422. MR 37 \#2680.

[^0]: Received January 28, 1974.
 AMS (MOS) subject classifications (1970). Primary 10A25; Secondary 10A35.
 Key words and phrases. Primality testing, factorization of $2^{\boldsymbol{m}} \pm 1$, Lucas sequences, converse of Fermat's theorem.

 Copyright © 1975. American Mathematical Society

[^1]: *Merson factor

[^2]: *Merson factor

