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New probabilistic public-key encryption
based on the RSA cryptosystem
Abstract:We propose a novel probabilistic public-key encryption, based on the RSA cryptosystem. We prove
that in contrast to the (standardmodel) RSA cryptosystem each user can choose his own encryption exponent
from a more extensive set of positive integers than it can be done by the creator of the concrete RSA crypto-
system who chooses and distributes encryption keys among all users. Moreover, we show that the proposed
encryption remains secure even in the case when the adversary knows the factors of the modulus n = pq,
where p and q are distinct primes. So, the security assumptions are stronger for the proposed encryption
than for the RSA cryptosystem. More exactly, the adversary can break the proposed scheme if he can solve
the general prime factorization problem for positive integers, in particular for the modulus n = pq and the
Euler functionφ(n) = (p − 1)(q − 1). In fact, theproposed encryptiondoesnot use any extra tools or functions
compared to the RSA cryptosystem.
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Introduction
The semantic security is one of the important requirements for a secure public-key cryptosystem. This notion,
introduced by S. Goldwasser and S. Micaly in [2], gives the �rst formal de�nition of security for public-key
encryption. The standard model of the RSA cryptosystem including the modulus n = pq, where p and q are
di�erent (secret) primes, and the encryption key e, as the public data, the (secret) decryption key d de�ned by
the equation ed = 1 (modφ(n)), where φ(n) is the Euler function, and the encryption and decryption func-
tions m → c = me (mod n) and c → cd = m (mod n), respectively, for a message m ∈ ℤn, is not semantically
secure.

Recall that a cryptosystem is called semantically secure if any probabilistic polynomial time algorithm
that is given the ciphertext c of a certain message m taken from any distribution set of messages, and the
message length, cannot determine any partial information on the message with probability non-negligibly
higher than all other such algorithms that only have access to the message length and not the ciphertext (see
[2]). Loosely speaking, the semantic security means that given any ciphertext c that is obtained by encryp-
tion of one of two possible messages m1 and m2, an adversary cannot determine which of the two has been
encrypted.

Our contribution. In this paper, we propose a novel probabilistic public-key encryption based on the stan-
dard model of RSA cryptosystem. Also we discuss properties and preferences of the proposed encryption.
We show that in contrast to the RSA cryptosystem the proposed encryption is not entirely based on hard-
ness of the factoring problem for the set ℤ(2) = {n = pq : p ̸= q are big primes}. Even in the case where an
adversary can recover the factors p and q of the modulus n ∈ ℤ(2), he cannot recover a message m from the
public data and the corresponding ciphertext. To do it, he has to solve an additional problem. He has to
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determine the order of a given element of the multiplicative group ℤ∗n . Note that if an adversary can deter-
mine the order t = |m| of each element m ofℤ∗n in the standard model of the RSA cryptosystem, he can e�ec-
tively recover each message m from the ciphertext c = me (mod n)with the help of the individual decryption
key dm computed from the equation edm = 1 (mod t) : cdm = m (mod n). Also note that an adversary cannot
determine the order of the given element g of a prime �eld Fp without knowing the prime factorization of
p − 1. He can �nd the order of g if he knows the factorization of p − 1 (see [4]). If one can solve the general
prime factorization problem for positive integers, in particular for n and φ(n), then he can break the proposed
scheme.

1 New probabilistic public-key encryption based on the RSA
cryptosystem

The objective of this section is to propose a novel probabilistic public-key encryption. We will analyze its
security in Section 3.

Let n = pq ∈ ℤ(2), where p and q are di�erent odd primes. We take the residue ringℤn as the platform for
the proposed encryption.

Alice chooses subgroups M and H of the multiplicative group Gn = ℤ∗n of ℤn under the assumption that
their orders r and t, respectively, are coprime: gcd(r, t) = 1. She presents these subgroups by their generating
elements as: M = gp(u1, . . . , ui) and H = gp(v1, . . . , vj), or in a di�erent e�ective way.

We suppose thatM is the message space, i.e., each message m is presented as an element ofM, and vice
versa. Now we �x public and secret data that are established o�-line as follows.

Public data: n (and thereforeℤn andGn = ℤ∗n), u1, . . . , ui (and thereforeM), v1, . . . , vj (and thereforeH).
Secret data: p, q, φ(n) = (p − 1)(q − 1), r, t.
Alice chooses public key e ∈ ℤ such that gcd(e, r) = 1. Then she computes the secret key d = td1 from

the equation (te)d1 = 1 (mod r). This is possible because gcd(t, r) = gcd(e, r) = 1 by our assumption. Then
ted1 = 1 + rk for some integer k. Thus, Alice has the following keys:

Public key: e.
Secret key: d.
To send amessagem ∈ M to Alice, the other correspondent Bob chooses a random element h ∈ H (secret

session key) and acts as follows:
Encryption: m → c = (hm)e (mod n).
Alice recovers m as follows:
Decryption: c → m = cd (mod n).
Correctness: cd = (ht)ed1m(mr)k = m (mod n).
Choice ofM and H: Alice chooses a cyclic subgroup L of Gn of a prescribed order l when she generates p

and q.
Suppose she constructs pwith primality testing using the factorization of p − 1. She seeks for pwritten in

the form p = 2lx + 1 taking x randomly. Then she checks the primality of p with some of the known primality
tests.

Recall the following primality test from [4].
Let p ≥ 3 be an integer. Then p is prime if and only if there exists an integer a satisfying:

(i) ap−1 = 1 (mod p) and
(ii) ap−1/s ̸= 1 (mod p) for each prime divisor s of p − 1.

This result follows from the fact that Gn has an element a of order p − 1 if and only if p is a prime. If p is
a prime, the number of elements a satisfying conditions (i) and (ii) has order p − 1.

When Alice gets a prime p = 2lx + 1, she �nds an element g of order l. She takes randomly elements
f ∈ F∗p and checks whether or not f 2x = 1. With probability at least 1 − 1/l she �nds f of order l.
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By the Chinese Remainder Theorem, Alice gets a solution y of the set of equations

y = f (mod p), y = 1 (mod q).

Thus she succeeds in determining L by setting L = gp(y). This way Alice can present the (cyclic) subgroups
M = gp(u) and H = gp(v) of the prescribed coprime orders r and t. The generators u and v can be chosen
simultaneously with the construction of p and q. The corresponding orders t and r can both divide p − 1 or
q − 1, or we can take one of them as divisor of p − 1, and the other as divisor of q − 1. For security reasons
these numbers t and r should be su�ciently big.

Alice can take H as a subgroup generated by a tuple of cyclic groups gp(u1), . . . , gp(uk) of orders
t1, . . . , tk, respectively, that are coprime to a given set of primes r1, . . . , rl, and then construct the sub-
group M as the product of cyclic groups gp(v1), . . . , gp(vl) of orders r1, . . . , rl, respectively. These primes
t1, . . . , tk, r1, . . . , rl have to be divisors of p − 1 or q − 1. Thus, the primes p and q are to be obtained with
regard to these conditions.

Choice of e: The only assumption on e is its relative primality with r. When r is a big prime, Bob can
choose randomly e by himself. The probability that e is divided by r is negligible in many senses. Anyway it
can be done practically.

Another option is to choose e not so big as r. Alice announces that r ≥ z where z is public. Then Bob can
take any e such that 2 ≤ e ≤ a − 1. Obviously, in this case gcd(e, a) = 1.

2 Some decision problems for Gn = ℤ∗n
Let n be a product of two di�erent primes p and q, i.e., n ∈ ℤ(2). Let Qn be the subgroup of Gn = ℤ∗n consisting
of all quadratic residues. The followingproblem is oneof themost knowndecisionproblems innumber theory
and cryptography.

The Quadratic Residuosity Problem (QRP) with parameter n. Given an element f ∈ Gn, determine if f ∈ Qn.

This problem is considered by many authors as intractable. A number of cryptographic schemes are based
on this intractability, and the famous Goldwasser–Micaly cryptosystem is one of them. It is important to note
that the semantic security property of the Goldwasser–Micaly cryptosystem is based on the intractability of
the QRP.

The QRP is a particular case of the following decision problem.

The Membership Problem (MPL) with parameters n and L. Let L be a subgroup of Gn. Given an element
f ∈ Gn, determine if f ∈ L.

We can change L and get the following decision problem.

The Membership Problem (MP) with parameter n. Given a subgroup L of Gn and an element f ∈ Gn, deter-
mine if f ∈ L.

The following problem is not so famous but is very important for the proposed RSA-type cryptographic
scheme.

The Order (of element) Problem (OP). Given an element f ∈ Gn, determine the order |f| of f .

In general, �nding the order of an element of a group Gn is at least as hard as factoring (see [3]). However,
the problem becomes signi�cantly easier, provided that the primality factorization of |Gn| = φ(n) is known.
Under these circumstances, e�cient algorithms are known [1]. Note that in the case of a prime �nite �eld Fp
one can e�ectively �nd the order |f| of a given element f ∈ F∗ if the primality factorization of |F∗| = p − 1 is
known (see [4]). Otherwise, this problem is open.
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3 Cryptanalysis of the proposed encryption
As we explained above, Alice can recover each message m ∈ M because she knows the decryption key d.
This key can be found if one knows all open data and the secret parameters φ(n), t and r. The adversary can
break the proposed scheme if he can solve the general prime factorization problem for positive integers, in
particular for the modulus n and the Euler function φ(n).

We consider the proposed encryption as a good candidate to be semantically secure if the membership
problemMPH is intractable. Indeed, suppose we have an encryptedmessage c = (hm)e (mod n), andwewant
to check if m = m� for some possible message m� ∈ M. This happens if and only if c(m�)−1 ∈ H.

When we take H = Qn, this problem reduces to QRP. Hence, if one can solve the membership problem
MP, he can solve QRP, too.

Solvability of the OP for Gn implies solvability of the RSA problem in the standard RSA cryptosystem be-
cause if one knows the order t of any ciphertext c =me, which is equal to the order |m| ofm as gcd(e, φ(n)) = 1,
he can recover m using the individual decryption key dm, computed from the equation edm = 1 (mod t).

Suppose the adversary knows the factors p and q of the modulus n, and so he knows φ(n). Then he can
get the key d1 and compute hm (mod n). If it happens that e is coprime with φ(n), then he �nds a solution
for ed1 = 1 (modφ(n)); it exists and ed1 = 1 (modφ(n)). If e is not coprime with φ(n) and gcd(φ, e) = l, then
prime factors of l donot divide r. In that case, the adversary simply removes l fromφ(n) lowering themodulus.
Finally, he solves ed1 = 1 (modφ(n)/l).

Now the adversary gets hm (mod n). To recoverm he needs to know the secret parameter t. He can �nd it
e�ectively if he knows the prime factorization of p − 1 and q − 1.

4 Advantages of the proposed encryption
The proposed encryption is based not only on hardness of the factoring problem for numbers from ℤ(2), but
also on hardness of the OP in the multiplicative group Gn = ℤ∗n . Recall, that the RSA problem is solvable if
the OP is solvable.

The encryption exponent e can be chosen from a wider key space than in RSA cryptosystem. It can be
done by each user, not only by a creator of a concrete cryptosystem.

The proposed encryption is possible semantic secure. In the particular case when H = Qn it is semanti-
cally secure under the assumptions of the semantic security of the Goldwasser–Micaly cryptosystem [2].

We believe that the proposed encryption gives new possibility to establish digital signature and authen-
tication schemes. Also the possible semantic security of the proposed encryption is a subject of future study.
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