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New Product Diffusion with Two Interacting Segments or Products  

 
Abstract 

We study the diffusion of a product in two customer segments where the acceptance level in one 

segment affects the diffusion rate not only in that same segment, but also in the other. The inter-segment 

influence can be positive or negative, i.e., the acceptance level of the product in one segment can 

reinforce or impede its diffusion in the other. The model set-up also applies to the diffusion of two 

products, with independent market potential, in a single population. Since the diffusion system we study 

does not have a closed-form solution, we use phase plane analysis to identify the equilibrium points of the 

joint diffusion process and to characterize their stability properties. Further, we provide a means to 

identify the regions with different convergence behavior, i.e., to identify boundaries for regions within 

which all trajectories converge to a particular equilibrium point. For the cases of asymmetric influence 

(+/-) and mutually impeding influence (-/-), we also provide conditions under which both products can 

achieve full market potential in equilibrium. Finally, we provide managerial insights into the effectiveness 

of two strategies in the context of asymmetric (+/-) interaction between two customer segments: (1) 

“seeding,” i.e., using free samples to support the launch of a product in one segment being harmed by the 

adoption in the other, and (2) “demand control,” i.e., purposely limiting market potential for the customer 

segment harming product diffusion in the other segment. 

 

Key words: diffusion of innovations; innovation; marketing strategy; new product research; social 

contagion; word-of-mouth. 
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1. Introduction 

Product diffusion with a group of customers rarely occurs in isolation and is often influenced by the 

presence of other products or customer groups in the market. Multiproduct interactions go well beyond 

the standard argument that innovation diffusion is a substitution process from an old to a new technology, 

product or practice, and include a vast set of competitive, complementary, and asymmetric interactions 

among jointly diffusing innovations (Bayus, Kim and Shocker 2000). Examples of the joint diffusion of 

competing products are rife: gas vs. electric stove in kitchen appliances, desktop vs. laptop PCs in the 

computer industry, DSL vs. cable broadband in the telecommunications industry, and so on. Of particular 

interest, in the last ten years or so, have been cases where both competing products benefit from installed 

base effects or direct network effects, resulting in “get big first” races. More recently, indirect network 

effects such as those in the diffusion of complementary hardware and software have received considerable 

attention (e.g., Gupta, Jain and Sawhney 1999; Parker and Van Alstyne 2005; Stremersch et al. 2007). 

Examples of the joint diffusion of complementary products include that of microwave ovens and 

microwave-ready meals, that of clothes washers and dryers (Peterson and Mahajan 1978), that of legal 

and pirated software (Givon, Mahajan and Muller 1995; Nascimento and Vanhonacker 1988), and that of 

retail scanners and UPC barcodes (Bucklin and Sengupta 1993). Multiproduct interactions are not limited 

to only mutually impeding (-/-), as with substitutes, or mutually facilitating or symbiotic (+/+), as with 

complements. Various types of asymmetric interactions are possible as well, including “predator-prey” 

(+/-) and facilitating or “commensalistic” (+/0) interactions (Bauer and Castillo-Chávez 2001; Bayus et 

al. 2000).  

Interactions among diffusion processes are of interest not only in settings involving multiple products 

diffusing in one and the same population, but also in settings involving a single product diffusing in 

multiple sets of customer that interact with each other. The latter may involve the diffusion across 

multiple countries, states, or other geographical areas (e.g., Kumar and Krishnan 2002; Putsis et al. 1997) 

or the diffusion of a single product in multiple, interacting market segments (e.g., Berger and Heath 2007; 

Lehmann and Esteban-Bravo 2006; Van den Bulte and Joshi 2007). This last type of interacting diffusion 

processes has received considerable research attention lately, as it pertains to phenomena of great 

theoretical and managerial interest. These include not only opinion leader-follower dynamics and 

competition for status (e.g., Van den Bulte and Joshi 2007; Watts and Dodds 2007), but also social 

identity dynamics between segments that present important challenges to the development of brands with 

strong iconic content, including Burberry, Diesel Jeans, Porsche, Red Bull, Vans, and Tommy Hilfiger 

(e.g., Grigorian and Chandon 2004; Kumar, Linguri and Tavassoli 2005; Moon and Kiron 2002; Moon et 

al. 2003). Managing the growth of such brands has proven particularly tricky as it features asymmetric 

“predator-prey” (+/-) influences among segments. These brands first become popular among one set of 
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customers. That success in the original core segment subsequently spills over to other customers who use 

the latter as reference or aspiration group. The success among such “wannabes,” however, detracts from 

the appeal of the brand among the “originals” and may ultimately lead all of them to drop the brand and 

chose another, less “overexposed” and still “authentic,” iconic brand to signify their identity (e.g., Berger 

and Heath 2008; Clunas 2004; Thornton 1996). As aspirants imitate originals who seek to protect their 

distinctiveness, the latter disadopt the products, brands, and cultural practices they helped make popular 

in the first place (Bourdieu 1984; Simmel 1971). Mutually impeding (-/-) influences have also long been 

documented among sub-cultures, the classic example being the rivalry between “mods” and “rockers” 

affecting the diffusion of the Vespa and other scooters in Great Britain in the 1960s (Hebdige 1979; 

1988). When new products and brands diffuse in markets characterized by the existence of multiple sub-

cultures (e.g., “geeks,” “jocks” and “Goths” in US high schools) and these products or brands get picked 

as social signifiers, then their market acceptance becomes very hard to predict.  

Given their importance in the success and downfall of iconic brands and identity-related products and 

their importance in cultural dynamics more generally, negative cross-segment effects have become a topic 

of considerable interest to consumer researchers interested in social identity issues (Berger and Heath 

2007, 2008; Berger and Rand 2008; Escalas and Bettman 2005; White and Dahl 2006, 2007). The issue 

has also become the subject of analytic modeling in marketing. Amaldoss and Jain (2005a, 2005b) 

examine how desires for uniqueness and conformism affect firm strategy. Their one-period game-

theoretic framework, however, does not examine diffusion trajectories, and considers consumers who 

wish to be different from all other consumers or wish to be similar to all other consumers rather than 

group-specific attraction and repulsion. In more recent work, Amaldoss and Jain (2008) explicitly study 

asymmetric (+/-) effects between reference groups, but focus on identifying optimal price and product 

strategy in a two-period game-theoretic setting rather than on characterizing diffusion trajectories over 

time. Joshi, Reibstein and Zhang (2006) analyze the optimal timing of entry in two segments with 

asymmetric (+/-) contagion effects between them. They study the issue both in a two-period and in a 

continuous-time set-up, and can determine the optimal entry time for the latter only numerically. Hence, 

while the question how negative cross-segment interaction affects new product acceptance has emerged 

as a topic of great interest to both managers and researchers, recent research offers only limited analytic 

modeling insights about diffusion trajectories in settings with negative cross-segment effects.  

Theoretical progress in the area of new product diffusion featuring multiproduct or multisegment 

interactions has been hampered by the difficulty to develop closed-form solutions. Modeling efforts have 

eschewed formal analytics in favor of numerical analysis (e.g., Lehmann and Esteban-Bravo 2006), 

addressed only one-way influence between influentials and followers (Van den Bulte and Joshi 2007), or 

have had to make other restrictive assumptions on the nature of the inter-product or inter-market 
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interactions in order to derive closed-form solutions (Kumar and Krishnan 2002; Peterson and Mahajan 

1978). Fortunately, managerially useful analytical understanding of a multiproduct or multisegment 

diffusion process can be gained even when closed-form solutions for the full diffusion curve do not exist. 

Consider the example of a new prestige product like the iPhone diffusing across two interacting 

population segments, the “originals” and the “wannabes,” who exert an asymmetric influence on each 

other, as discussed earlier. The marketer would be interested in determining the possible equilibrium 

outcomes of the diffusion process based on current installed base and the nature of inter-segment 

interaction. For instance, will the “originals” stay with the product or will they start disadopting once the 

product becomes popular among wannbees? In the latter case, how many of the originals will be using the 

product in equilibrium? Is it possible to end up in a situation where none of the originals use the product 

yet all wannabes do? To detect possible problems early on, the marketer would also like to know which 

levels of acceptance in both segments are likely to lead to complete acceptance by both segments and 

which levels pose the risk of evolving into a situation where the full market potential is not reached. Other 

issues of interest include identifying whether and how strategies such as providing free samples to jump-

start the diffusion in the impeded segment of originals or limiting the market potential in the impeding 

segment of wannabes can influence the equilibrium outcomes and overall profits of the firm. So, even 

when closed-form solutions to the co-diffusion process cannot be derived, an analytical characterization 

of the possible equilibrium outcomes and their stability properties can be quite useful if they allow a 

manager to determine whether or not some type of intervention is required. Once this is known, optimal 

policies such as the level of sampling can be determined numerically.  

We study the diffusion system of two interacting products or segments; and apply phase plane 

analysis to a model specification that was proposed by Peterson and Mahajan (1978), Nascimento and 

Vanhonacker (1993), Bucklin and Sengupta (1993) and Geroski (2000), and that nests the model 

specification studied recently by Van den Bulte and Joshi (2007). In the model we work with, each 

product or segment has its own independent market potential, and the user base of a product or segment 

affects the diffusion rate of not only itself, but also the other product or segment. The latter effect may be 

either positive or negative. Specifically, the model consists of two interlinked differential equations: 

 ))(( 1121111
1 NmNcNba

dt
dN

−++=  (1a) 

 ))(( 2212222
2 NmNcNba

dt
dN

−++= , (1b) 

where the subscript i refers to one of two segments or products, and  ai > 0, bi > 0, mi > 0, 0 ≤ Ni ≤ mi. 

Table 1 summarizes the notation, using the terminology for two segments rather than two products.  
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Table 1. Glossary of Terms 

Ni number of users in segment i at time t (shorthand for Ni(t)) 

mi market potential for segment i 

ai coefficient of innovation for segment i 

bi coefficient of imitation or contagion for segment i 

ci coefficient of inter-segment interaction (contagion effect from segment j on 

segment i) 

 

The c parameters capture the interaction between the two segments and can be positive, zero, or 

negative. We assume that the rate )( jiiii NcNba ++ can be negative, i.e., that the product can be 

disadopted. However, the constraints 01 ≥N and 02 ≥N  ensure that disadoptions cannot reduce the 

number of current users to less than zero. Allowing for disadoption is a feature that is absent from most 

diffusion models but that is important to appropriately representing the full consequences of negative 

cross-segment effects (Berger and Heath 2008). The system of equations does not explicitly model the 

impact of disadoptions in a segment on the rate of diffusion in the same segment beyond the effect of 

having a lower user base. This is because, in our setting, the reason for disadoption in segment i is the 

negative influence exerted by segment j (when ci is strictly negative) rather than any negative word of 

mouth within segment i. Our model captures the antecedent detrimental cross-segment effect but ignores 

any additional mediating effect of negative within-segment word-of-mouth. Since this system of 

simultaneous differential equations does not have a closed-form solution when both cross-effects are at 

work (Peterson and Mahajan 1978), we investigate the equilibrium values and trajectories of N1 and N2 by 

phase plane analysis. 

Our research makes three contributions. First, we analytically determine equilibrium points of the 

joint diffusion process and characterize their stability properties. We find that irrespective of the nature 

(positive or negative) of inter-segment interaction in a two-segment diffusion model, the stable 

equilibrium outcomes belong to the set { )0,(),,0( 12 mm , ),( 21 mm }, where m1 and m2 are the market 

potential for segments 1 and 2 respectively. Candidate equilibrium outcomes with intermediate values of 

market penetration do arise, but are always found to be unstable.  

Second, we show how to clearly demarcate regions within which all trajectories converge to a 

particular equilibrium point, which in turn can be used to identify the need for early managerial 

interventions. The boundaries of these regions are referred to as separatrices. We also point the readers to 

a computational approach to plot the separatrices. An important implication of identifying the separatrix 
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is that, in the region in the vicinity of the separatrix, small shifts in the installed base can lead to 

dramatically different equilibrium outcomes of the diffusion process. 

Finally, we illustrate the insight-generating potential of this methodology by assessing the 

effectiveness of two strategies in the context of asymmetric (+/-) interaction between customer segments: 

(1) “seeding,” i.e., using free samples to support the launch of a product in a customer segment that is 

being harmed by product adoption in another customer segment, and (2) “demand control,” i.e., purposely 

limiting product distribution in the customer segment that is harming the diffusion of the product in the 

other segment. The analyses reveal several counter-intuitive results and demonstrate that ignoring joint 

diffusion in environments with strong inter-segment interactions can generate incorrect policy 

recommendations. For example, while prior research has revealed that the optimal sampling level is non-

decreasing with the coefficient of imitation, we find that the optimal sampling level is decreasing in the 

coefficient of imitation when there is a strong impeding influence from the other segment. 

The rest of the paper is organized as follows. Section 2 contains a description of our research strategy 

which is mainly centered on the use of phase plane analysis. Section 3 deals with the Asymmetric 

Influence (+/-) Model, and includes an illustrative discussion of managerial implications in this setting 

which is of particular interest to marketers of products with strong status or social identity value. Section 

4 describes the Mutually Impeding (-/-) Model; and Section 5 deals with the Symbiotic Influence (+/+) 

Model. Finally, Section 6 discusses our main results and their implications. 

 

2. Research Strategy 

Since the model does not have a closed-form solution when both cross-effects are at work, we study 

its behavior by identifying the possible equilibrium outcomes and trajectories of N1 and N2. We do so 

using phase plane analysis. The key tool in such analysis is the phase diagram, which is the path of 

diffusion process in the (t, N1, N2) space projected onto the N1-N2 plane. In other words, it plots N1(t) 

versus N2(t) and is what one would see if one stood high on the time axis and looked down upon on the 

N1-N2 plane, sometimes referred to as the phase plane (Hubbard and West 1995).  Such phase diagrams 

provide a convenient visual tool for studying the properties of a dynamical system. We adopt the 

convention (without loss of generality) that N1 is measured along the horizontal axis and N2 on the vertical 

axis of the phase diagram. Other papers in marketing that have used phase diagrams include Heiman et al. 

(2001) and Muller (1983). 

We illustrate the technique of phase plane analysis by applying it to the system of equations described 

in (1a) and (1b), subject to the conditions c1 < 0, c2 ≥ 0. The properties of the same system are analyzed 

and interpreted more comprehensively in Section 3.1. There are five main steps in the phase plane 

analysis (Hubbard and West 1995), as required for our purposes: 
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1. Identify the isoclines, i.e., the curves in the phase plane representing points at which 

0'1
1 ==N

dt
dN

 or 0'2
2 == N

dt
dN

. The isoclines for N1 are identified by the condition 

0'1 =N . Substituting this into equations (1a) and (1b), we get 

       11 mN =           (2) 

                  and 

      0)( 21111 =++ NcNba         (3) 

                  Since c1 < 0, equation (3) can be rewritten as 

       ||/)( 11112 cNbaN +=         (4) 

                  The isoclines for N2 are identified by the condition 02 =′N . Since c2 ≥ 0, the only isocline 

satisfying the required condition is 22 mN = . 

2. Sketch the trajectories to visually illustrate the behavior of the dynamical system. Any point 

on the isoclines represented by equations (2) and (4) cannot undergo a change in 1N  

(since 0'1 =N ). Thus, from any point on those isoclines, the 21NN trajectory must either 

remain at that point (if 0'2 =N ), move up (if 0'2 >N ), or move down (if 0'2 <N ) in the 

phase plane. Further, since 02 ≥c , it follows that 0'2 >N , for all 22 mN < . Thus, from any 

point on the isoclines represented by (2) and (4), the 21NN  trajectory must move upwards as 

long as 22 mN < , as shown in Figure 1. Points on the isocline 0'2 =N  can only move to the 

right or to the left, depending on whether 01 >′N  or 01 <′N  respectively. 

3. Identify the singular points, i.e., the points where the isoclines 0'1 =N  and 0'2 =N  cross each 

other. Such points are of special interest as they may, but need not, be stable equilibrium 

outcomes of the diffusion process. The two singular points in our system are ( 21 , mm ) 

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm
. The latter can lie within the feasible region, or outside. For the 

purposes of this illustrative discussion, we focus our attention on the case in which the point 

lies within the feasible region ( 1
1

112 )||(
0 m

b
acm

<
−

< ). In Section 3.1 we consider both 

cases. The two singular points are represented as points A and B respectively in Figure 1. 

Even though the boundary points (0,m2) and (m1,0) are not singular points as they do not lie at 
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the intersection of isoclines, they can nevertheless be candidate equilibrium outcomes due to 

the impact of the constraints 11 mN ≤  and 22 mN ≤ . 

4. Formally characterize the stability properties of the relevant singular and boundary points. 

One achieves this by slightly perturbing the system in the neighborhood of the point of 

interest, and then checking the sign of the derivatives 1N ′  and 2N ′  to determine if the system 

returns to the same point (stable), or not (unstable). For the cases dealt with in this paper, a 

singular point is either a stable sink or an unstable saddle point. Sinks are stable singular 

points into which infinitely many trajectories converge. A sink represents a stable equilibrium 

because a small perturbation will cause the system to return to the same equilibrium. Saddle 

points, in contrast, are unstable singular points into which precisely two trajectories will 

converge. A saddle point represents an unstable equilibrium because a small perturbation can 

change the resulting equilibrium. In Section 3.1 we show rigorously that ( 21 , mm ) is stable 

while ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm
is unstable. The boundary point (0,m2) is a stable equilibrium 

outcome also.  

5. Finally, the phase plane is segmented into regions within which all trajectories converge to 

the same stable equilibrium outcome. We provide an algorithm to plot the boundary between 

any two such adjacent regions (also known as the separatrix) in Appendix C. The following 

is a heuristic explanation for the observed convergence behavior. Consider the 

isocline ||/)( 11112 cNbaN += . Points on this line have 01 =′N . We know that 02 >′N  

for all 22 mN < . Thus, from points on this line, the 21NN  curve will move vertically 

upwards as shown by the arrows in Figure 1. Points to the left of this isocline have 01 <′N  

and 02 >′N  (see step 2) and thus the 21NN  curve passing through points in this region will 

move left and upwards as shown by the arrows. Thus, if we start at any point in this region, 

then 1N  will keep decreasing and 2N  increasing until we reach the boundary ),0( 2m . Thus, 

all trajectories passing through points to the left of the isocline ||/)( 11112 cNbaN +=  or on 

the isocline itself, will eventually converge to ),0( 2m . For points to the right of the isocline 

we have 01 >′N  and 02 >′N . Thus, the trajectory will move right and upwards as shown 

by the arrows. Points that are close to point A will converge to ),( 21 mm . However, that 

cannot be said of all points to the right of the isocline because a trajectory can potentially 



 10

cross the isocline. The curve which separates the trajectories into two regions, depending on 

the final equilibrium outcome, is the separatrix (see Figure 1). 

 

Figure 1. Phase Diagram 

 
We now introduce some terminology which is helpful in classifying the different types of inter-

segment interaction that we will be studying in this paper. We define the concept of a limiting hazard rate 

(LHRi) for product i, where i,j }2,1{∈  and i≠ j: 

)(lim
)(

1lim jiiii
mN
mN

i

iimN
mNi NcNba

dt
dN

Nm
LHR

jj
ii

jj
ii

++=
−

=
→
→

→
→

 

LHRi is the hazard rate of the diffusion process at the upper extreme of the feasible region, i.e., (Ni, 

Nj)→ (mi, mj). In the limit (Ni, Nj)→ (mi, mj), a negative value for LHRi is indicative of a very strong 

negative influence of segment j on segment i, while a positive LHRi is indicative of a mild negative 

influence of segment j. In all future reference to LHRi, it is implied that the term is defined in the limit.   

Table 2 provides definitions of the main analytical concepts used in this paper. 

 

 

SEPARATRIX
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Table 2. Definitions of Technical Terms 

Technical Term Definition 

Phase Diagram For a mathematical system which describes how two variables N1(t) and N2(t) evolve 

with time, the phase diagram is the solution in the (t, N1, N2) space projected onto the N1-

N2 plane. The plot is what one would see if one stood high on the time axis and looked 

down upon on the N1-N2 plane. 

Isoclines For a mathematical systems evolving with time, isoclines are curves representing points 

at which 0=
dt

dNi , or the time rate of change of variable Ni is 0. 

Singular Points Points at which the time rate of change of all variables in a mathematical system is equal 

to 0. 

Sinks Stable singular points into which infinitely many trajectories converge. A sink represents 

a stable equilibrium because a small perturbation will once again result in the same 

equilibrium outcome. 

Saddle Points Unstable singular points into which precisely two trajectories converge. A saddle point 

represents an unstable equilibrium because a small perturbation can change the resulting 

equilibrium. 

Separatrices Boundaries for regions in the phase plane that display different convergence behavior, 

i.e., regions within which all trajectories converge to a particular singular point. 

Limiting Hazard 

Rate 

For the system of differential equations in R2, as described in (1a) & (1b), the limiting 

hazard rate is the rate of decrease (percentage) in the population yet to adopt product i, at 

the upper extreme of the feasible region, i.e.,(Ni, Nj)→ (mi, mj). 

 

In the next three sections, we present phase plane analyses of the following three cases: Asymmetric 

influence ( 0,0 21 ≥< cc ), Mutually impeding influence ( 0,0 21 << cc ), and Symbiotic influence 

( 0,0 21 ≥≥ cc ). A special case of symbiotic (one-way) influence (c1 = 0, c2 > 0) for which closed-form 

solutions do exist, has been analyzed recently by Van den Bulte and Joshi (2007). 

 

3. Asymmetric Influence Model (+ / -) 

We first consider an asymmetric influence model in which the success in segment 1 fosters the 

diffusion in segment 2, but success in segment 2 adversely affects the diffusion in segment 1 

( 0,0 21 ≥< cc ). The case with 0,0 21 <≥ cc  is analogous in its treatment. These cases correspond to 

the situation faced by many brands with high status or reference group appeal, like Burberry, Red Bull 
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and Vans. Another instance, in which product form and segment status are intertwined, is that of the 

interactions between Porsche sports cars bought by driving enthusiasts and Porsche SUVs bought by 

more mainstream drivers, including soccer moms. While the SUV sales in all likelihood benefited from 

the success of the Porsche 911 and 959 as high performance cars, the latter’s drivers were frustrated by 

seeing soccer moms on the road in Porsche Cayenne SUVs (Joshi, Reibstein and Zhang 2007). We 

analyze the various equilibrium outcomes that might be attained under such cross-segment dynamics, and 

identify conditions under which both segments can achieve their full market potential.  

The two singular points for our system, identified by determining the points of intersection of the 

isoclines (as represented by (2), (4), and 22 mN = ) , are ( 21 , mm ) and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm
. When 

LHR1 is positive (i.e., 1 1 1 1 2a b m c m+ + > 0, which corresponds to mild negative influence of segment 2 on 

segment 1) then 2 1 1
1

1

( | | )m c a m
b

−
<  and thus the singular point ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,)||( m
b

acm
 lies within the 

feasible region. Conversely, when LHR1 is negative (which corresponds to strong negative influence of 

segment 2 on segment 1), the point lies outside the feasible region. Accordingly, we consider two cases 

below.  

 

3.1.  Mild Negative Influence (Positive LHR1) 

When 1
1

112 )||(0 m
b

acm
<

−
<  (i.e., mild negative influence of segment 2 on 1, or positive LHR1), there 

are two singular points within the feasible region. These are labeled A and B in Figure 1. In addition, 

),0( 2m  is a boundary point of interest. 

As described in Section 2, ( 21 , mm ) is a sink or a stable equilibrium and the other singular point  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm
 is a saddle point. Therefore, the system has only two long-term stable outcomes, 

namely ),0( 2m  and ( 21 , mm ). This result is formally stated in Proposition 1.  

Proposition 1: For the Asymmetric Influence model with a positive value for LHR1, the only stable 

equilibrium outcomes possible are ),0( 2m  and ( 21 , mm ). 

Proof: See Appendix B. 

Proposition 1 states that all trajectories in the phase plane converge to either ),0( 2m  or ( 21 , mm ). 

Given the two equilibrium outcomes, it is additionally possible to separate the phase plane into two 
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regions, one within which all trajectories converge to ),0( 2m  and another within which all trajectories 

converge to ( 21 , mm ).  

A powerful result to this end is that the trajectories that converge to the saddle point, the so-called 

separatrices, separate the phase plane into regions demonstrating different convergence behavior 

(Hubbard and West 1995). These separatrices can be computed numerically for any system as described 

in detail in Appendix C. A spreadsheet implementation of the algorithm for computation of the Separatrix 

for the scenario described in this section is also available.. 

Figure 2 shows a plot of the phase diagram with the separatrix and several sample trajectories for the 

following system: 

1000
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dt
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NNN
dt
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       (5) 

Figure 2. Phase Diagram with Separatrix for the diffusion system in (5) 

 
The order of magnitude of the parameters in (5) is consistent with prior research (e.g., Bucklin and 

Sengupta 1993; Joshi et al. 2006; Van den Bulte and Stremersch 2004). 

SEPARATRIX
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The trajectories to the left of the separatrix lie in a region where the relative size of the installed base 

in segment 2 to that in segment 1 is such that the negative influence exerted by segment 2 is dominant in 

segment 1’s diffusion rate. As a result, the users in segment 1 will eventually disadopt, leading to a final 

equilibrium outcome ),0( 2m . 

The identification of the stable equilibrium outcomes and the separatrix can together answer several 

questions. For example, starting from (0,0), can the system converge to ( 21 , mm )? For the system in (5), 

this is clearly impossible. However, distributing free samples of the product in segment 1 can help jump-

start the diffusion from an initial point to the right of the separatrix. How many free samples are needed to 

change the long-term equilibrium? This can also be determined for a system with known diffusion 

parameters. We discuss some of these managerial implications in greater detail in Section 3.3. However, 

before doing so, we first proceed to analyze the second case for the Asymmetric Influence model, where 

1
1

112 )||( m
b

acm
>

− . ( The degenerate case in which 1
1

112 )||(
m

b
acm

=
−  leads to a line of unstable 

equilibria.) 

 

3.2 Strong Negative Influence (Negative LHR1 ) 

When 1
1

112 )||( m
b

acm
>

−
(i.e., strong negative influence of segment 2 on 1, or negative LHR1), the 

singular point ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm
 is outside the feasible region and thus, is not of interest. The only 

singular point in the feasible region is ( 21 , mm ). A small perturbation of the system around the singular 

point ( 21 , mm ) will result in a negative value for dtdN /1  (by virtue of negative LHR1), and thus the 

trajectory will not return to ( 21 , mm ). This suggests that the singular point ( 21 , mm ) may not be a stable 

equilibrium point.  

The phase diagram for this case can be constructed following the steps described in Section 2, and is 

shown in Figure 3. Since 02 >′N  for all 22 mN < , a trajectory starting from any point in the feasible 

region will eventually be above the isocline ||/)( 11112 cNbaN += . Once the trajectory is above the 

isocline, we have 01 <′N . Thus, 1N  will decrease until it reaches zero. The only possible long-term 

outcome is ( 2,0 m ). In the long-term, segment 1 consumers will disadopt completely. This is stated 

formally in our next result. 
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Figure 3: Phase diagram for Strong Negative Influence (Asymmetric Interaction) 

 
Proposition 2: For the Asymmetric Influence model with a negative value for LHR1, the only stable 

equilibrium outcome possible is ),0( 2m . 

Proof: See Appendix B. 

Using the technique described above, a manager can determine early on, whether or not the product 

will diffuse to its market potential in both consumer segments. If the diffusion parameters result in a 

phase diagram as in Figure 3, the full-diffusion outcome ( 21 , mm ) will never materialize. If, in contrast, 

the situation is as in Figure 2, full diffusion is possible but not guaranteed. For example, a process that 

starts at (10,0) will achieve full diffusion but one that starts at (0,0) will not. So, phase plane analysis can 

determine whether or not some intervention, such as seeding the process using free samples, will be 

necessary to achieve full diffusion. Phase plane analysis may also avoid managers becoming lulled in a 

false sense of complacency. Consider the diffusion path of the product as captured in Figure 3. For a 

trajectory in the region below the isocline (where 01 >′N ), diffusion in segment 1 may seem to be 

proceeding quite smoothly early on, but will reverse once adoption in segment 2 is sufficiently high. 

Thus, initial diffusion data can mislead managers into believing that the product adoption will continue in 

a smooth manner. Under such circumstances, managers and analysts may need to explore other options, 

such as reducing the impeding contagion effect ( 1c ) from segment 2 by launching different product 
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variants or brands in the two segments or restricting the potential market size of segment 2. We 

investigate and assess some managerial interventions next. 

 

3.3.  Managerial Implications for the Asymmetric Influence case 

In this section we illustrate the ability of phase plane analysis to generate managerial insights, by 

studying the following two strategies: (1) “seeding,” i.e., using free samples to support the launch of a 

product in a consumer segment being harmed by the adoption in another consumer segment, and (2) 

“demand control,” i.e., purposely limiting market potential for the customer segment harming product 

diffusion in the other segment.  

 

3.3.1. Optimal Seeding 

The phase diagram in Figure 1 shows that a diffusion process starting with zero initial penetration in 

both segments will naturally evolve to an equilibrium in which segment 2 reaches full penetration but 

segment 1 has no adopters. However, if the process were to start to the right side of the separatrix, full 

penetration would be achieved in both segments. One way to achieve this outcome is for the marketer to 

seed segment 1 with enough samples at launch. 

Product sampling is usually recommended when product benefits cannot be fully conveyed by 

advertising, the product has new features that need to be appreciated to overcome adoption risks, or when 

WOM effects play a critical role in product diffusion. Jain, Mahajan and Muller (1995) have investigated 

the optimal sampling level to offer in a single product, single segment setting and found that optimal 

sampling levels are high for products with a low coefficient of innovation, or a high coefficient of 

imitation. Lehman and Esteban-Bravo (2006) investigated a setting with one-way (+/0) influence, and 

found that the optimal sampling level in the affected segment decreases as its coefficient of innovation 

increases but first decreases and then increases as its coefficient of imitation increases. We extend these 

analyses by investigating the problem of optimal sampling for a two-segment diffusion model with 

asymmetric negative (-/0) interaction between the segments.  

The firm chooses the optimal number of free samples for consumers in segment 1 (whose diffusion is 

impeded by adoption in segment 2), in order to maximize its total discounted profit. The decision problem 

is: 

)()/()()/()(maxmax 112
1

22
1

1
1

11
1
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NsdtdtdNupdtdtdNup

SS
−−+−= ∑∑

∞

=

−
∞

=

− δδπ        (6) 

where SN1  is the number of free samples of product offered in segment 1, ip  is the price charged to 

segment i, iu  is the unit cost of manufacturing the product, δ is a discount factor, and s1 is the unit cost of 
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offering a free sample of the product to segment 1. Note that the above formulation is the same as in Jain, 

Mahajan and Muller (1995), with the exception that there are two consumer segments in our formulation. 

We investigate the solution numerically using parameters within the same range as those used in Jain, 

Mahajan and Muller (1995). We assume that c2 = 0, in order to focus on the impact of c1. The parameter 

settings are summarized in Table 2. The discount factor is δ  = 1/1.08 = 0.926, and si = ui. Even though ui 

is set to 0 (for convenience, and without loss of generality since ip  can be interpreted as profit margin 

instead of price) in our numerical computations, sampling is still expensive due to the lost revenue of the 

sampled product. In order to evaluate the value of dtdN /1  and dtdN /2 we use the Euler approximation 

with step size 1.1  

 

 

 

Table 2: Parameter Settings 

Parameter Segment 1 Segment 2 

Coefficient of Innovation (a) 0.005:0.03 0.03 

Coefficient of Imitation (b) 0.002 0.0018 

Coefficient of Inter-product 

  Interaction (c) 

0:-0.002 0 

Market Potential (m) 100 100 

Price (p) 1 1 

Unit Cost (u) 0 0 

 

 

 

 

 

 

 

 

                                                 
1 Even though more sophisticated numerical techniques are available, they do not change the 
qualitative nature of our results. Some representative calculations in the parameter range of 
interest show that a 90% reduction in step size lead to less than 1.75% change in undiscounted 
revenue. 
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Table 3: Optimal Sampling levels 

 

c1 Parameters 

0 -0.0005 -0.001 -0.0015 -0.002

0.005 6 11 16 26 0 

0.006 6 10 16 25 0 

0.007 5 10 15 24 0 

0.00766 5 9 15 24 0 

0.00767 5 9 15 24 21 

0.008 5 9 15 24 21 

0.009 4 9 14 23 21 

0.01 4 8 14 22 21 

0.015 1 6 11 19 19 

0.02 0 3 8 16 17 

0.025 0 1 6 13 15 

 

 

 

 

 

a1 

0.03 0 0 3 10 14 

 

Table 3 provides the results for the optimal sampling level for various values of a1 and c1. For any 

coefficient of innovation (a1), we observe that the optimal number of samples initially increases as c1 

becomes more negative. This is because more samples are needed in order for the diffusion trajectory to 

cross the separatrix in Figure 2. However, if the impeding influence of segment 2 is very strong and the 

coefficient of innovation for segment 1 is very low, sampling becomes prohibitively expensive and the 

optimal number of samples can drop to zero (for example, see top row of Table 3).  

For c1 = 0, we find that the optimal sampling levels decrease with the coefficient of innovation, as 

reported in Jain, Mahajan and Muller (1995). However, for highly negative values of c1 shown in the far 

right column of Table 3, optimal sampling levels may initially be zero, when the coefficient of innovation 

is low, then jump quite markedly to a high level beyond a threshold value for the coefficient of 

innovation, and finally decline again as the coefficient of innovation increases further. This occurs 

because, initially (for low values of a1, and highly negative values of c1), a large number of free samples 

may be needed in order to change the equilibrium outcomes. As a result, it may be prohibitively 

expensive to use seeding to attain market potential for both products. Hence, it may be suboptimal to seed 

the product in segment 1. However, beyond a certain threshold value for a1, we find that it is once again 

profitable to provide free samples targeted at consumers in segment 1. In summary, unlike the findings 
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reported in Jain, Mahajan and Muller (1995) in the single product case and Lehmann and Esteban-Bravo 

(2006) in the (+/0) case, optimal samples need not always decrease with the coefficient of innovation in 

settings with negative interaction. 

Next, we investigate the impact of the coefficient of imitation (b1) on the optimal number of samples. 

The parameters for the simulation are in Table 4 and the results are in Table 5. For a given value of the 

coefficient of imitation, the optimal number of samples initially increases as c1 becomes more negative. 

However, if the negative influence from segment 2 is strong and the word-of-mouth (WOM) effect within 

segment 1 is weak, then sampling is undesirable. This observation is consistent with the results in Table 3 

also. For c1 = 0, the optimal sampling level is non-decreasing with the coefficient of imitation, as reported 

by Jain, Mahajan and Muller (1995). This is because the initial samples help seed the market and WOM 

then helps speed the diffusion. However, the optimal number of samples is decreasing in the coefficient of 

imitation when there is an impeding influence from segment 2. When WOM effects are weak and the 

coefficient of inter-segment interaction is negative and significant, a large number of samples are needed 

to overcome the negative influence from segment 2. For example, the number of samples needed to cross 

the separatrix in Figure 2 can be very high when c1 is highly negative but b1 is small. However, when 

WOM effects are strong, the negative inter-segment interaction is less relevant once the installed base 

attains a certain level of market penetration. Thus, the firm no longer needs a large sampling level. Unlike 

the results reported by Lehmann and Esteban-Bravo (2006) for the (+/0) case, we find that the optimal 

level of sampling may be decreasing smoothly, or show abrupt upward jump points followed by smooth 

declines, as the coefficient of imitation increases. 

Table 4: Parameter Setting 

Parameter Product 1 Product 2 

Coefficient of Innovation (a) 0.02 0.03 

Coefficient of Imitation (b) 0.001: 0.005 0.002 

Coefficient of Inter-product 

  Interaction (c) 

0:-0.002 0 

Market Potential (m) 100 100 

Price (p) 1 1 

Unit Cost (u) 0 0 
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Table 5: Optimal Sampling levels 

c1 Parameters 

0 -0.0005 -0.001 -0.0015 -0.002

0.001 0 7 0 0 0 

0.0015 0 4 15 0 0 

0.002 0 3 9 17 17 

0.0025 0 3 6 10 16 

0.003 1 3 5 8 11 

0.0035 1 3 4 6 8 

0.004 2 3 4 5 6 

0.0045 2 3 4 4 5 

 

 

 

 

b1 

0.005 2 3 3 4 5 

 

 

In summary, a very important potential role of sampling under negative inter-segment interaction is 

that of modifying the long term equilibrium. As a result, the optimal level of sampling can be much 

higher with inter-segment interaction, than when diffusion is analyzed in a homogeneous consumer 

population.  For example, Jain, Mahajan and Muller (1995) report that the maximum sampling level 

observed in their analysis was never higher than 9%. However, for similar parameters, we find that the 

maximum sampling levels in the presence of strong inter-segment interaction can exceed 20%. This is 

because the role of sampling is not only to encourage early adoption when innovation is low or when 

imitation is high, but also to mitigate any negative influence from the other segment.  

 

3.3.2. Demand Control 

In Section 3.2 we showed that when LHR1 is negative, the only stable equilibrium outcome is (0, m2). 

In such cases, seeding will not be helpful in achieving (m1, m2) as a stable outcome. An alternative 

strategy available to a marketing manager is to limit the diffusion ceiling for the segment exerting the 

negative influence (i.e., to restrict m2 to 2m′  , where 2m′  < m2 in order to make (m1, 2m′ ) a stable 

equilibrium outcome). Such a strategy can be implemented in many ways, including limiting the 

distribution of the product to select channels rarely patronized by the impeding segment. For instance, 

Diesel and Burberry have limited the effective access of their products to “wannabes” by setting a high 

enough price and restricting distribution to certain exclusive channels. Offering limited editions is another 
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way to control the availability of the product to the impeding segment, as noted by Amaldoss and Jain 

(2008). 

We provide a numerical illustration. Table 6 lists the parameter values for the two segments. The 

discount factor is set to δ = 0.926.  Table 7 reports the results. Segment 2 exerts a negative influence on 

segment 1. In the absence of any intervention, the only stable equilibrium is (0,100). Reducing the market 

potential for segment 2 from 100 to 50 increases the total discounted profit by 22.1% (from 54.42 to 

66.46). The new equilibrium is (100,50) and thus the consumers in segment 1 do not disadopt the product 

in the long run.  

 

Table 6: Parameter Settings 

Parameter Segment 1 Segment 2 

Coefficient of Innovation (a) 0.02 0.03 

Coefficient of Imitation (b) 0.003 0.001 

Coefficient of Inter-Product 

  Interaction (c) 

-0.002 0.002 

Market Potential (m) 100 100 

Price (p) 1 1 

Unit Cost (u) 0 0 

 

Table 7: Results for Reduced Market Potential 

 Base 

Case 

Demand

Control 

Market Potential (m2) 100 50 

Is (m1, m2) stable? No Yes 

Profit 54.42 66.46 

 

 

 

4. Mutually Impeding Influence Model (-/-) 

We now turn to the case in which 0,0 21 << cc . For example, cellular service providers often 

observe such negative interaction between the mainstream and youth segments (Maier 2003). If the brand 

is primarily perceived as one for teenagers, it draws many of the mainstream customers, especially 
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business customers, away from the service. Similarly, increased adoption by business users impedes its 

diffusion among the teenager segment.  

In the analysis that follows, we identify conditions under which the two segments (or products) can 

achieve their market potential despite the negative interaction. Intervention strategies like seeding and 

demand control are still relevant in the context of this model, though there are some differences from the 

Asymmetric Influence Model. For example, an additional decision that has to be made is whether to seed 

both segments (products) or only one, and—in the latter case—which of the two to seed. 

As before, we first identify the isoclines, or curves along which 0'1 =N  or 0'2 =N . Using the 

condition 01 =′N  and equations (1a) and (1b), we obtain the isoclines of N1 as 11 mN =  and 

||/)( 11112 cNbaN += . Similarly, the isoclines for N2 are 22 mN =  and ||/)( 22221 cNbaN += . 

The latter equation can be rewritten as 22212 /)||( bacNN −= . We refer to the isocline 

||/)( 11112 cNbaN +=  as I1 and the isocline 22212 /)||( bacNN −=  as I2.  

The isoclines 11 mN =  and 22 mN =  intersect at ( 21 , mm ). We denote this singular point as A. The 

isoclines 22 mN =  and I1 intersect at ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm , a singular point which we label B and which 

lies in the feasible region if 0<
1

112 )||(
b

acm −
< m1. The isoclines 11 mN =  and I2 intersect at 

⎟⎟
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⎛ −

2
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)||(
,

b
acm

m , a singular point which we label C and which lies in the feasible region if 0< 

2

221 )||(
b

acm −
< 2m . Finally, the isoclines I1 and I2 intersect at point D which has the coordinates 

⎟
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Based on whether or not B, C and D lie within the feasible region, one obtains six possible cases. We 

describe two of those cases below in Sections 4.1 and 4.2. The scenario described in Section 4.1 is the 

only case in which the product can stably attain its market potential in both segments, while the scenario 

in Section 4.2 is fairly representative of the kind of results obtained for the remaining four cases described 

in complete detail in Appendix A. 
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4.1. Mild Mutually Impeding Influence (Positive LHR1 and Positive LHR2) 

When LHR1 and LHR2 are both positive (i.e., 0<
1

112 )||(
b

acm −
< m1 and 0<

2

221 )||(
b

acm −
< 2m ), both 

B and C lie within the feasible region. When these conditions are satisfied, it can be verified that the two 

isoclines I1 and I2 cannot intersect in the feasible region, implying that singular point D lies outside the 

feasible region and is therefore, irrelevant to our analysis (see Figure 4).   

There exist three singular points in the feasible region: ( 21 , mm ), ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm  and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

2

221
1

)||(
,

b
acm

m  denoted by A, B and C respectively in Figure 4. Trajectories passing through points 

above isocline I1 always move up and to the left until they converge to (0, m2). Similarly, trajectories 

passing through points below I2 move down and to the right until they converge to the boundary point 

(m1, 0). Trajectories in the region between isoclines I1 and I2 move up and to the right. Thus, trajectories 

close to singular point A will eventually converge to ( 21 , mm ). Proposition 3 formalizes these 

observations. 

Figure 4.  Phase Diagram for Mild Mutually Impeding Influence 
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Proposition 3: For the Mutually Impeding Influence model with positive values for LHR1 and LHR2, the 

only stable equilibrium outcomes possible are )0,(),,0( 12 mm  and ),( 21 mm .  

Proof: See Appendix B. 

In Lemma 1 of Appendix B we show that points B and C are saddle points. Therefore there exist two 

corresponding separatrices that demarcate the phase plane into three non-overlapping regions. All 

trajectories belonging to a region will converge to the same equilibrium outcome. In Figure 5, we plot 

separatrices and sample trajectories for the system:  
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       (7) 

Figure 5. Phase Diagram with Separatrices for (7) 

 
 The separatrices are easy to compute numerically, as explained in Appendix C. Once the 

separatrices are identified, a manager can assess the need for various intervention strategies based on the 

long-term equilibrium associated with any given starting point. Interestingly, observe in Figure 5 that the 
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region wherein trajectories converge to ),( 21 mm  is very narrow initially. Even if the marketer can seed 

the market to ensure that the diffusion begins in this region, small shocks in the environment can 

potentially push the trajectory into one of the two surrounding regions. Thus, it can be rare for both 

segments (products) to reach their market potential. Considerable care will be needed during the early 

phases of product diffusion to ensure that the diffusion trajectory stays in the desirable region.  

 

4.2. Strong Mutually Negative Influence (Negative LHR1 and Negative LHR2) 

In this case, isocline I1 intersects 22 mN =  outside the feasible region. Similarly, isocline I2 

intersects 11 mN =  outside the feasible region. This implies that the two isoclines I1 and I2 necessarily 

intersect in the feasible region as shown in Figure 6. Singular point D will then lie in the feasible region. 

Thus, we get two singular points ( 21 , mm ) and 
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baac , labeled A and D 

respectively in Figure 6. If we consider the non-negativity constraints, then (m1, 0) and (0, m2) behave like 

additional sinks. The stable equilibrium points are identified below. 

Proposition 4: For the Mutually Impeding Influence model with negative values for LHR1 and LHR2, the 

only stable equilibrium outcomes possible are )0,( and ),0( 12 mm .  

Proof: See Appendix B. 

A significant implication is that the two segments (products) cannot co-exist in equilibrium in this 

case. 

A summary of the stable equilibrium outcomes for all possible cases in the Mutually Impeding 

Influence model is provided in Table 8. Both segments can co-exist in equilibrium only when the 

impeding influences from the other customer segment are mild, i.e., if 0<
1

112 )||(
b

acm − <m1 and 

0<
2

221 )||(
b

acm − < 2m . Otherwise, adoption in only one segment will eventually reach its market potential 

and adoption in the other segment will fade away. Further, even in the case in which ( 21 , mm ) is stable, 

the region in which trajectories converge to ( 21 , mm ) can be narrow early on. Thus, it can be very 

challenging to achieve full market potential for both segments (products) under mutually impeding 

diffusion. 
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Figure 6. Phase Diagram for Strong Mutually Impeding 

Influence

 
 

 

 

Table 8. Summary of equilibrium outcomes and their stability properties: 

Mutually Impeding Influence Model 

 

 Scenario Candidate Equilibrium Outcomes 

Section LHR1 LHR2 D feasible? (m1, m2) B C D (0, m2) (m1, 0)

4.1 +ve +ve - Stable Unstable Unstable - Stable Stable 

A.1 -ve +ve Yes Unstable - Unstable Unstable Stable Stable 

A.2 -ve +ve No Unstable - Unstable - Stable Stable 

A.3 +ve -ve Yes Unstable Unstable - Unstable Stable Stable 

A.4 +ve -ve No Unstable Unstable - - Stable Stable 

4.2 -ve -ve Yes Unstable - - Unstable Stable Stable 

Note: Sections A.1 through A.4 can be found in Appendix A 

A

D 

N1 = m1 

N2 = m2 

22212 /)||( bacNN −=

 (0, m2) 

(m1, 0) 

||/)( 11112 cNbaN +=
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Due to this difficulty, firms may choose to disassociate or decouple the two segments or products 

even if it imposes additional costs (see also Amaldoss and Jain 2008). This is typically achieved by 

targeting each segment with distinct product versions or even distinct brands. For example, Nextel (now 

merged with Sprint) responded to the negative interaction between the teenager and mainstream segments 

by marketing to teenagers through a new brand. Nextel partnered with Boost, a firm that operated in 

Australia and was relatively unknown in the US at that time. “Most Boost subscribers in America likely 

don't realize that their calls are carried by Nextel … and a company whose brand name, by its own 

admission, is a total loser with the young,” (Maier 2003). Another way to decouple segments is simply to 

reduce the visibility of the product. For instance, in trying to reduce the appeal of the Burberry brand 

among British hooligans, the firm started to make its distinctive and iconic tartan check pattern much less 

prominent on its apparel and accessories.  

 

5. Symbiotic Influence Model (+/+) 

The case of symbiotic influence is equally applicable to the context of two customer segments or two 

products. The discussion here is in the context of two complementary products. Several products are 

known to have positive influence on each other. For example, consumers are more likely to adopt cellular 

data services when more content is available on the platform. Simultaneously, content developers are 

more likely to develop content for the platform when there are a large number of consumers using it. 

Similar two-sided network effects are commonly observed in a number of information markets such as 

those tied to technology platforms. When products have positive interaction (i.e., 0,0 21 ≥≥ cc ), the 

hazard rate is always positive. Thus, both products will reach their market potential in equilibrium. 

Nonetheless, marketing managers face unique issues raised by the inter-product interactions. For 

example, what is the fastest or most profitable way to reach the equilibrium ( 21, mm )? In the asymmetric 

influence model in Section 3 we discussed seeding as a strategy to help achieve (m1, m2) as a stable 

equilibrium outcome. In the symbiotic influence model, (m1, m2) is the only singular point and it is a 

stable equilibrium outcome. Nonetheless, seeding can help speed the diffusion process towards (m1, m2). 

Seeding a product not only helps speed its own diffusion but also contributes to faster diffusion of the 

other product. Hence, the analysis of optimal sampling is very relevant, the main idea being quite similar 

to that of focusing one’s marketing efforts on customers with more than average social influence to gain 

maximum leverage. Due to space constraints, we do not delve into the details. 
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6. Discussion and Conclusions 

We have studied the diffusion of a product in two customer segments where the acceptance level in 

one segment affects the diffusion rate not only in that same segment, but also in the other. In doing so, we 

have focused on the cases of asymmetric (+/-) and mutually impeding (-/-) influence. Both types of cross-

segment interaction are quite important for products and brands that act as social signifiers, and have 

become of considerable interest to both consumer researchers and marketing scientists (e.g., Amaldoss 

and Jain 2008; Berger and Heath 2007, 2008; Joshi et al. 2006). The analytical approach we use and our 

key results apply also to the diffusion of two interacting products in a single population, a more 

established area of research where analytical results have been hard to obtain (Bayus et al. 2000). Since 

the diffusion system we study does not have a closed-form solution, we use phase plane analysis to 

determine equilibrium points of the joint diffusion process and characterize their stability properties.  

A rather surprising result is that, even in situations with symmetric or asymmetric negative influence, 

stable equilibrium outcomes do not include partial penetration. In other words, in a stable equilibrium, 

each segment has adopted either entirely or not at all. This strong result, however, is likely to hinge on the 

assumption that disadoption is possible. If this were not so, then trajectories in the phase plane would 

likely “freeze” at a particular level of, say, N1, without reverting back to the origin and settling at (0,m2).  

An important practical contribution consists in using separatrices to identify, for each possible 

combination of acceptance level in each segment (or, in a two-product setting, for each level of installed 

base of each product) which particular equilibrium point the diffusion trajectory will converge to. 

Importantly, we find at most three such regions with different convergence behavior in all of our analyses, 

making it easy to make such inferences. For the cases of asymmetric influence (+/-) and mutually 

impeding influence (-/-) of central interest, we also identify the conditions under which both products can 

achieve full market potential in equilibrium. Our results indicate that considerable care is needed in the 

early stages of product launch. For instance, we analyzed a setting with mild mutually negative influence 

across segments that may easily induce a false sense of complacency. While the odds of reaching full 

penetration in both segments ( 21 , mm ) might seem high intuitively, a closer analysis (as in Figure 5) 

reveals that the “funnel” of trajectories that eventually end up at ( 21 , mm ) can be very narrow early on in 

the lifecycle of a product. Such early bifurcation-like behavior in the model may explain why predicting 

market success is especially difficult for products with strong iconic and social identity appeal (Farrell 

1998; Lieberson 2000).  

We find that for many realistic parameter combinations, full penetration in both segments will not be 

achieved without specific intervention. So, our results provide an explanation for several marketing 

practices for new products appealing to segments between which asymmetric or mutually impeding 

influence operates: (1) “seeding,” i.e., using free samples to support the launch of a product in one 
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segment being harmed by the adoption in the other, (2) “demand control,” i.e., purposely limiting market 

potential for the customer segment harming product diffusion in the other segment by making the product 

more selective or by launching targeted limited editions, and (3) “decoupling,” i.e., purposely decreasing 

the amount of (negative) cross-segment influence, typically achieved by targeting distinct offerings to 

different segments (versioning) or by decreasing the visibility of the product.  

We provide managerial insights into the effectiveness of seeding and demand control in the context of 

asymmetric (+/-) interaction. The key novel finding about seeding is that, unlike cases without negative 

cross-segment interaction studied previously, the optimal level of sampling may show abrupt jumps 

followed by smooth declines as the coefficients of innovation and imitation increase. A simple numerical 

analysis on the effectiveness of demand control confirms that, in situations with asymmetric influence, 

“less can be more”, hence validating common practices among marketers of brands with strong social 

identity value. 

Separatrix analysis can be quite valuable to firms as it allows managers to identify whether or not the 

diffusion process will evolve to full penetration in both segments without special managerial intervention. 

These separatrices can be numerically computed for any system, as described in detail in Appendix C. 

MATLAB code is available (e.g., Polking and Arnold 2003; http://math.rice.edu/~polking/odesoft/), and 

the algorithm for computing the separatrix can also be implemented in a spreadsheet. An Excel 

implementation for the scenario described in section 3.1 is available. 

The presence of symmetric and asymmetric negative cross-segment and positive cross-product 

interactions can have a critical impact on diffusion outcomes and can significantly affect the effectiveness 

of particular marketing actions. Yet, much research remains to be done.  

As already mentioned, the result that any stable equilibrium has each segment either fully adopted or 

not at all, need not hold when disadoption is not possible. This raises the managerially interesting 

question whether policies allowing for disadoption (such as leasing rather than selling equipment) may, in 

some cases not lead to more desirable equilibrium diffusion outcomes.  

Other model variations could be analyzed. For instance, we analyzed situations where cross-segment 

or cross-product interactions operate through the diffusion rate rather than through the market potential. If 

one were interested specifically in substitution effects across products rather than in cross-segment 

dynamics, then having the effect operate via the market potential might be intuitively more appealing, and 

it is not clear to what extent this would lead to results different from the ones presented here. For instance, 

the asymmetric influence (+/-) specification of such a model would be similar—though not identical—to 

the standard Lotka-Volterra predator-prey model which can produce cyclical patterns. 

Given our finding that prior results on optimal seeding may not be applicable when significant inter-

product/inter-segment interactions exist, it may be useful to investigate how pricing and advertising 
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strategies are affected by such interactions. Such research on how firms can effectively balance social 

forces of distinction and emulation across segments could prove a valuable complement to recent game-

theoretic research on the same question that does not explicitly focus on diffusion trajectories. 
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Appendix A: Four Remaining Cases: Mutually Impeding Influence Model 

A.1.  Negative LHR1 and Positive LHR2; D within feasible region. 

In this case there are three singular points - ( 21 , mm ), ⎟⎟
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baac  in the feasible region. These are labeled A, C and D respectively 

in Figure A1. Trajectories passing through points above both isoclines I1 and I2 move up and to the left 

until they converge to (0, m2). Similarly, trajectories passing through points below both I1 and I2 move 

down and to the right until they converge to the boundary point (m1, 0). Trajectories in the remaining two 

regions cross over into one of the two regions described above (see Figure A1). The equilibrium 

outcomes can be characterized as follows: 

Proposition 5: For the Mutually Impeding Influence model with a negative value for LHR1, but positive 

LHR2, and D lying within the feasible region, the only stable equilibrium outcomes 

are )0,( and ),0( 12 mm . 

Proof: See Appendix B. 

Thus, in this system, both products cannot exist in equilibrium.  
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Figure A1. Phase Diagram with A, C and D as singular points 

(Mutually Impeding Influence) 

 
 

A.2.  Negative LHR1 and Positive LHR2; D outside feasible region. 

We now consider the case in which there are two singular points - ( 21 , mm ) and ⎟⎟
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the feasible region. These are labeled A and C respectively in Figure A2.  The intersection of isclines I1 

and I2 (point D) lies outside the feasible region.  

 Trajectories passing through points above isocline I1 move up and to the left until the converge to 

(0, m2). Similarly, trajectories passing through points below I2 move down and to the right until they 

converge to the boundary point (m1, 0). The equilibrium outcomes can be characterized as follows: 

Proposition 6: For the Mutually Impeding Influence model with a negative value for LHR1, but positive 

LHR2, and D lying outside the feasible region, the only stable equilibrium outcomes possible 

are )0,( and ),0( 12 mm . 

Proof: See Appendix B. 

Thus, in this system, both products cannot exist in equilibrium.  
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Figure A2. Phase Diagram with A and C as singular points  

(Mutually Impeding Influence) 

 

 
A.3.  Positive LHR1 and Negative LHR2; D in feasible region. 

In this case we get three singular points - ( 21 , mm ), ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,)||( m
b

acm
 and 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+
−
+

2121

2121

1

1

1

1

2121

2121

||||
||

||||
,

||||
||

bbcc
baac

c
b

c
a

bbcc
baac . These are labeled A, B and D respectively in Figure A3.  

Thus, the equilibrium outcomes can be characterized as follows: 

Proposition 7: Under mutually negative interaction between products (i.e. c1<0, c2<0) with negative 

LHR1 and positive LHR2 and D lying within the feasible region, the only stable equilibrium outcomes 

possible are )0,( and ),0( 12 mm . 

Proof: See Appendix B. 

 Thus, in this case as well, both products cannot co-exist in equilibrium. 
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Figure A3. Phase Diagram with A, B and D as singular points 

(Mutually Impeding Influence) 

 
 

 

A.4.  Positive LHR1 and Negative LHR2; D outside feasible region. 

In this case we get two singular points - ( 21 , mm ) and ⎟⎟
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respectively in Figure A4. The equilibrium outcomes can be characterized as follows: 

Proposition 8: Under mutually negative interaction between products (i.e. c1<0, c2<0), with negative 

LHR1 and positive LHR2 and D lying outside the feasible region, the only stable equilibrium outcomes 

possible are )0,( and ),0( 12 mm . 

Proof: See Appendix B. 

 Thus, in this case as well, both products cannot co-exist in equilibrium. 
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Figure A4. Phase Diagram with A and B as singular points 

(Mutually Impeding Influence) 
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Appendix B: Proofs 

Lemma 1: For the dynamical systems described in (1a) and (1b), stability analyses of the singular points 

yield the following: 

(i) Point A, or ( 21 , mm ), is a singular point for any set of values of the diffusion parameters. It is 

stable if and only if both LHR1 and LHR2 are positive, and LHR1 ≠ LHR2. 

(ii) Point B, or  ⎟⎟
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a singular point. 

 

Proof: 

The system of equations (1a) and (1b) can be represented as: 

0;0

),(

),(

21

21
2

21
1

≥≥

=

=

NN

NNg
dt

dN

NNf
dt

dN

 

In order to study the stability properties of the singular points of this non-linear system of equations, we 

will have to linearize it in the region around the singular point. Then we can use standard techniques to 

analyze the stability of singularities in linear systems. We do this as follows. Since f and g are twice 

continuously differentiable, we can expand them in a Taylor polynomial around the singular point 

( 0
2

0
1 , NN ): 
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where P( 0
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0
11 , NNNN −−  ) and Q( 0

22
0
11 , NNNN −−  ) are functions that comprise terms that are at least 

quadratic, or higher order, in the arguments ( 0
11 NN − ) and ( 0

22 NN −  ). Near the singular point, these terms 

will be negligibly small compared to the linear terms, and hence we can study the behavior of the non-

linear system near its singular points, by making the following change of coordinates: 
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The standard form of a linear system of differential equations is dx/dt = Ax, for vector x. Then  
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Next, we compute the eigenvalues of the matrix A by solving Det(A-λI)=0. This gives us the quadratic 

equation: 
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Let the eigenvalues corresponding to a singular point be denoted by 1λ  and 2λ . A singular point is a 

saddle point if the eigenvalues are of opposite sign. The singular point is a sink if the eigenvalues are 

distinct and negative (Hubbard and West 1995). We now determine the eigenvalues associated with each 

of the 4 identified singular points. 

i) Stability analysis of A, or ( 21 , mm ): 

Solving the quadratic equation at ),(),( 21
0
2

0
1 mmNN = , we get the following eigenvalues: 

2122222

1211111
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a positive value for LHR1 and LHR2, we can easily see both eigenvalues are strictly negative, and if we 

assume them to be distinct then we can conclude that ( 21 , mm ) is a sink. (Equal eigenvalues imply a 

degenerate node.) At the same time, when either LHR1 or LHR2 is negative (at least one eigenvalue is 

positive) then ( 21 , mm ) is a saddle point. 

ii) Stability analysis of B, or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
− 2

1

121 , m
b

cma : 

When 01 >c , this singular point does not lie in the feasible region and is thus not relevant. We therefore 

focus on the case in which 01 <c . The singular point can be rewritten as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,)||( m
b

acm . 

After solving the quadratic equation, the eigenvalues are: 
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2
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211111

mca
b
c

amb

mcamb

+−++−=

−+=

λ

λ
 

Under the condition 1
1

112 ||0 m
b

acm
<

−
<  (i.e., singular point B is in the feasible region), we can clearly 

see that 12 0 λλ << .  The condition for B to lie in the feasible region is also implied by a positive LHR1. 

Hence, the singular point, if it exists in the feasible region, is always a saddle point. 

iii) Stability analysis of C, or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−

2

122
1 ,

b
mca

m  
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When 02 >c , this singular point does not lie in the feasible region and is thus not relevant. We therefore 

focus on the case in which 02 <c . The singular point can be rewritten as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

2

212
1

||
,

b
amc

m . Solving the 

quadratic equation, the eigenvalues corresponding to this singular point are: 
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λ
 

Under the condition 2
2

221 ||0 m
b

acm
<

−
<  (i.e., singular point C is in the feasible region), we can 

clearly see that 12 0 λλ << .  The condition for C to lie in the feasible region is also implied by a positive 

LHR2. Hence, the singular point C, if it exists in the feasible region, is always a saddle point. 

iv) Stability analysis of D, or 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+
−
+

2121

2121

1

1

1

1

2121

2121

||||
||

||||
,

||||
||

bbcc
baac

c
b

c
a

bbcc
baac  

For this singular point to take on positive coordinate values we necessarily require that 

0|||| 2121 >− bbcc .  The quadratic equation that is to be solved to determine the eigenvalues, takes on the 

form: 

0))()(()]()([ 0
22

0
112121

0
222

0
111

2 =−−−+−+−− NmNmccbbNmbNmbλλ  

We observe that the coefficient of 2λ  is 1 and the independent term in the equation is negative. The 

basics of the theory of quadratic equations then imply that the eigenvalues (or roots of the quadratic 

equation) are real and of opposite sign. Hence, this singular point is a saddle point. QED. 

 

Lemma 2: For the asymmetric influence model, if ( ) 21111 || mabmc +< , then ( 21 , mm ) is a stable 

equilibrium point (a sink) and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,
)||(

m
b

acm
 is an unstable equilibrium point (a saddle point) for 

the dynamic system represented by (1a) and (1b). 

Proof: Follows from Lemma 1-(i) and Lemma 1-(ii). QED. 

 

Lemma 3: For asymmetric interaction between the segments (i.e., 0,0 21 ≥< cc ), if 

( ) 21111 || mabmc +< , then 
⎭
⎬
⎫

⎩
⎨
⎧ −

∈
∞→

),
)||(

(),,0(),,())(),((lim 2
1

112
22121 m

b
acm

mmmtNtN
t

. Further, 
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because ( )21112 ,/)||( mbacm −  is a saddle point, the only stable equilibrium outcomes are ),0( 2m  and 

( 21 , mm ). 

Proof: At ),0( 2m , and in its vicinity, the sign of dtdN /1  is negative and that of dtdN /2  is positive. As 

a result, a slight perturbation in location from ),0( 2m to a nearby location in within the feasible region on 

the phase plane will result in the trajectory returning to ),0( 2m . So even though ),0( 2m is not a singular 

point, the constraints N1 ≥ 0 and N2 ≤ m2, ensure that it behaves like one. All trajectories in the 

neighborhood of ),0( 2m  will converge to it in the limit as ∞→t . This observation, along with Lemma 

2 proves the result. QED. 

 

Proposition 1: For the Asymmetric Influence model with a positive value for LHR1, the only stable 

equilibrium outcomes possible are ),0( 2m  and ( 21 , mm ). 

Proof: Follows immediately from Lemma 2 and Lemma 3. QED. 

Here, and in the subsequent analyses, we don’t go into the details of the degenerate boundary case, i.e., 

when 
1

1

112 )||(
m

b
acm

=
− . This is because it leads to a zero eigenvalue at the singular point ( 21 , mm ). This 

is a degenerate case because it results in a line of equilibria. With the slightest perturbation, this whole 

line of equilibria disappears, and new equilibrium points are obtained (Hubbard and West 1995). 

 

Lemma 4: For asymmetric influence between the segments or products (i.e., 0,0 21 ≥< cc ), if 

( ) 21111 || mabmc +> , then ( 21 , mm ) is a saddle point for the system represented by (1a) and (1b). 

Proof:  Follows from Lemma 1-(i). QED. 

 

Lemma 5: For asymmetric influence between the segments or products (i.e., 0,0 21 ≥< cc ), if 

( ) 21111 || mabmc +>  , then { }),0(),,())(),((lim 22121 mmmtNtN
t

∈
∞→

. Further, because ),( 21 mm  is a 

saddle point, the only stable equilibrium outcome is ),0( 2m . 

Proof: All trajectories in neighborhood of ),0( 2m  will converge to it in the limit as ∞→t , by a 

reasoning similar to the one presented in the proof of Lemma 3. This observation, along with Lemma 4, 

proves the result. QED. 

 

Proposition 2: For the Asymmetric Influence model with a negative value for LHR1, the only stable 

equilibrium outcome possible is ),0( 2m . 
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Proof: Follows immediately from Lemma 4 and Lemma 5. QED. 

 

Lemma 6: For the case with mutually negative interaction between segments or products (i.e. c1<0, 

c2<0), if the conditions 0<
1

112 )||(
b

acm −
< m1 and 0< 

2

221 )||(
b

acm −
< 2m are satisfied, then ( 21 , mm ) is a 

sink while 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

1

112 ,)||( m
b

acm  and 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

2

221
1

)||(,
b

acmm  are saddle points. 

Proof:  Follows from Lemma 1-(i), (ii) and (iii). 

 

Lemma 7: When there is mutually negative interaction between segments or products (i.e. c1<0, c2<0), 

and the conditions on parameters: 0<
1

112 )||(
b

acm − <m1 and 0<
2

221 )||(
b

acm − < 2m  are satisfied, then: 
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Further, the only stable equilibrium outcomes are )0,(),,0( 12 mm  and ),( 21 mm . 

Proof: All trajectories in neighborhood of ),0( 2m  will converge to it in the limit as ∞→t , by a 

reasoning similar to the one presented in the proof of Lemma 3. Also all trajectories in neighborhood of 

)0,( 1m  will converge to it in the limit as ∞→t . This is because at )0,( 1m , and in its vicinity, the sign 

of dtdN /1  is positive and that of dtdN /2  is negative. Even though )0,( 1m is not a singular point, the 

constraints N1 ≤ m1 and N2 ≥ 0, ensure that it behaves like one. These observations along with Lemma 6 

prove the result. QED. 

 

Proposition 3: For the Mutually Impeding Influence model with positive values for LHR1 and LHR2, the 

only stable equilibrium outcomes possible are )0,(),,0( 12 mm  and ),( 21 mm .  

Proof: Follows directly from Lemma 6 and Lemma 7. QED. 

Lemma 8: If the conditions 
1

112 )||(
b

acm −
> m1 and 

2

221 )||(
b

acm −
> 2m  are satisfied, then ( 21 , mm ) and 

⎟
⎟
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⎞
⎜
⎜
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−
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||

||||
,
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||

bbcc
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c
b

c
a

bbcc
baac  are saddle points. 

Proof: Follows from Lemma 1 – (i) and (iv). QED. 
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Lemma 9: Under mutually negative interaction between products (i.e. c1<0, c2<0), if the conditions on 

diffusion parameters: 
1

112 )||(
b

acm − >m1 and 
2

221 )||(
b

acm − > 2m  are satisfied, then 
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t
. Further the only stable 

equilibrium outcomes are )0,( and ),0( 12 mm . 

Proof: Follows from Lemma 8 and the logic described in Lemma 7. QED. 

 

Proposition 4: For the Mutually Impeding Influence model with negative values for LHR1 and LHR2, the 

only stable equilibrium outcomes possible are )0,(),,0( 12 mm .  

Proof: Follows immediately from Lemma 8 and Lemma 9. QED. 

 

Lemma 10: If the conditions 
1

112 )||(
b

acm −
> m1 and 0< 

2

221 )||(
b

acm −
< 2m are satisfied, and D is in the 

feasible region (i.e., 0<
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Proof: Follows from Lemma 1 – (i), (iii) and (iv). QED. 

 

Lemma 11: For segments or products which exert a mutually negative influence on each other during the 

diffusion process (i.e. c1<0, c2<0), if 
1

112 )||(
b

acm − >m1 ; 0<
2

221 )||(
b

acm − < 2m , and D is in the feasible 

region (i.e., 0<
⎟⎟
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Further the only stable equilibrium outcomes are )0,( and ),0( 12 mm . 

Proof: Follows from Lemma 10 and the logic described in Lemma 7. QED. 

 

Proposition 5: For the Mutually Impeding Influence model with a negative value for LHR1, but positive 

LHR2, and D lying within the feasible region, the only stable equilibrium outcomes are )0,(),,0( 12 mm . 
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Proof: Follows immediately from Lemma 10 and Lemma 11. QED. 

 

Proposition 6: For the Mutually Impeding Influence model with a negative value for LHR1, but positive 

LHR2, and D lying outside the feasible region, the only stable equilibrium outcomes possible 

are )0,(),,0( 12 mm . 

Proof: The proof is identical to that for Proposition 4, with segments 1 and 2 interchanged. 

 

Proposition 7: Under mutually negative interaction between products (i.e. c1<0, c2<0) with negative 

LHR1 and positive LHR2 and D lying within the feasible region, the only stable equilibrium outcomes 

possible are )0,(),,0( 12 mm . 

Proof: The proof is identical to that for Proposition 5, with products 1 and 2 interchanged. 

 

Lemma 12: If the conditions 
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Proof: Follows from Lemma 1-(i) and (ii). QED. 

 

Lemma 13: For segments or products which exert a mutually negative influence on each other during the 

diffusion process (i.e. c1<0, c2<0), if 
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Further the only stable equilibrium outcomes are )0,( and ),0( 12 mm . 

Proof: Follows from Lemma 12 and the logic described in Lemma 7. QED. 
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Proposition 8: Under mutually negative interaction between products (i.e. c1<0, c2<0), with negative 

LHR1 and positive LHR2 and D lying outside the feasible region, the only stable equilibrium outcomes 

possible are )0,(),,0( 12 mm . 

Proof: Follows immediately from Lemma 12 and 13. 
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Appendix C.  Numerical Computation of the Separatrix 

Exactly two 21NN  trajectories pass through a saddle point, which is an unstable singular point. The paths 

traced out by the incoming trajectories corresponding to the negative eigenvalues are the Separatrices for 

the dynamical system under study. Below, we outline an algorithm to plot the Separatrices associated 

with a given saddle point. We also illustrate the steps for the following dynamical system corresponding 

to the Asymmetric Influence Model described in Section 3.1: 

1
1 2 1

2
2 1 2

(0.02 0.002 0.001 )(100 )

(0.03 0.002 0.001 )(100 )

dN N N N
dt

dN N N N
dt

= + − −

= + + −

 

The complete implementation is in the attached spreadsheet. 

1. Calculate the eigenvalues associated with the saddle point, ( 0
2

0
1 , NN ), being analyzed, using the 

quadratic equation described in the proof of Lemma 1: 

0))(()2)(2(

])2()2([
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21111

0
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0
112222111

2
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NbcNbcambambλλ
 

For the above system, the saddle point is (40,100). The two eigenvalues are 0.12 and -0.27 and 

the corresponding eigenvectors are (1,0) and (0.1, 0.65).  

2. Identify a ‘starting point’ which is slightly displaced from the saddle point in the direction of the 

eigenvector corresponding to the negative eigenvalue. Recall that for a saddle point 21 0 λλ >> . 

For the above system, we identify a starting point which is slightly displaced from (40,100) in the 

direction (0.1, 0.65) while ensuring we are within the feasible region. This gives us the starting 

point (39.9,99.35) 

3. Using the discretized version of the system of equations described in (1a) and (1b), and the 

‘starting point’ identified in step 2, trace out the path ( 21NN  trajectory) obtained by moving in 

positive time, as well as that obtained by moving in negative time. For the former, the 

displacement of the starting point should be along the direction of the eigenvector obtained in 

step 2, while for the latter the displacement should be in the opposite direction. The path obtained 

is the Separatrix of interest. 

The accompanying spreadsheet demonstrates the detailed implementation of these steps for the above 

dynamical system. MATLAB code is available as well (e.g., Polking and Arnold 2003; 

http://math.rice.edu/~polking/odesoft/). 
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