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New Product Innovation with Multiple
Features and Technology Constraints

Kathy A. Paulson Gjerde • Susan A. Slotnick • Matthew J. Sobel
College of Business Administration, Butler University, 4600 Sunset Avenue,

Indianapolis, Indiana 46208-3485
School of Management, Arizona State University West, 4701 W. Thunderbird Road,

Phoenix, Arizona 85069-7100
Weatherhead School of Management, Case Western Reserve University,

10900 Euclid Avenue, Cleveland, Ohio 44106-7235
kpaulson@butler.edu • slotnick@asu.edu • mjs13@po.cwru.edu

We model a firm’s decisions about product innovation, focusing on the extent to which
features should be improved or changed in the succession of models that comprise a

life cycle. We show that the structure of the internal and external environment in which a
firm operates suggests when to innovate to the technology frontier. The criterion is maxi-
mization of the expected present value of profits during the life cycle. Computational studies
complement the theoretical results and lead to insights about when to bundle innovations
across features. The formalization was influenced by extensive interviews with managers in
a high-technology firm that dominates its industry.
(Product Development; Innovation; Technology Management)

1. Introduction
1.1. Background
The accelerating pace of technological advancement
magnifies the competitive importance of the manage-
ment of product and process innovation for manufac-
turing firms. Their profitability and viability depend
on decisions about when to initiate product develop-
ment and what development goals to set. As an exam-
ple of the intellectual puzzle, consider the different
innovation strategies pursued within the automotive
industry. At BMW, model redesign occurs relatively
infrequently, with a completely new model being
introduced approximately every eight years. Japanese
companies, in contrast, introduce redesigned or new
models approximately every four years (Clark and
Fujimoto 1991, Pisano 1992). Clearly, these automo-
bile manufacturers have developed different design
strategies. BMW may be viewed as a frontier innova-
tor, choosing not to introduce a new model until it
is very different from the previous models and is at

the leading edge of the technology frontier. In com-
parison, Japanese automobile manufacturers may be
viewed as incremental innovators, frequently introduc-
ing new models that are only slightly different from
the previous ones and do not incorporate all possi-
ble technological advances. This paper examines how
cost structures and market and industry conditions
influence the amount of innovation that a firm builds
into a new product. The characterization of product
innovation as frontier or incremental may be further
complicated in a scenario in which multiple products
share some technologies and features, and when var-
ious firms stand at different places on the continuum
of product innovation. Thus, a given innovation strat-
egy may be viewed as either frontier or incremental
depending on the context of the firm and its history
of innovation.
The specific model of innovation developed in

this paper was motivated by our interactions with
managers who were directly involved in NPD (new
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product development) in a high-technology firm that
manufactures bar code scanners and related equip-
ment. From interviews with marketing, engineering,
operations, and accounting managers, we learned
about the decision-making process involved in NPD.
Coupled with cost and sales data, these discussions
allowed us to create a model which captures the com-
plexities of the innovation decision faced by man-
agers in this industry. More importantly, our results
apply to a large number of firms which integrate com-
ponents whose basic technology is developed out-
side the firm itself. Some industries with such firms
include computers, computer peripheral equipment,
surgical and medical instruments, and automobiles.
The key market and industry characteristics captured
by our model and computational study follow.
Industry Driven by Technological Advances. Future

growth of a firm in the industry depends to a great
extent on its ability to apply technology to develop
new products and improve existing products, as well
as to expand market applications for its products. This
emphasis on technology-driven product differentia-
tion is partially the result of the highly competitive
nature of the industry. Numerous competitors fight-
ing for market share attempt to soften price compe-
tition and gain a competitive advantage by being the
first to introduce a new product or an improved ver-
sion of an existing product. Depending on the nature
of demand, such product differentiation may allow
a firm to increase its price or merely maintain its
current price. Evidence of the latter is presented by
Adner and Levinthal (2001) for the personal computer
and VCR markets in the 1990s.
Consistent with Adner and Levinthal (2001), the

NPD team and finance and accounting managers
at the scanner firm stressed that there is a con-
stant downward pressure on price, which obliges cost
reductions if there are no improvements in product
features. Taking into account the fact that the scan-
ner firm we studied has potential competitors in the
computer peripherals field with far greater financial,
marketing, and technical resources, the company’s
strategy (as delineated in its 2000 annual report) is
to compete principally on the basis of performance
and quality of its products and services. In particu-
lar, R&D projects were aimed at improving the size,

weight, reliability, quality, and readability of scan-
ners at increased distances, faster speeds, and higher-
density codes.
An emphasis on market expansion through NPD

typifies a number of other industries as well, includ-
ing the computer industry (smaller, faster machines
with greater memory), the surgical and medical
instruments industry (miniaturization in the form
of minimally invasive surgical instruments such as
laparoscopic and endoscopic devices and angioplasty
catheters), the telecommunications industry (new
data transmission technologies and fiber optic net-
works) and the automobile industry (improving fuel
efficiency, developing alternative fuels, and reducing
vehicle emissions)(Hell and Peck 1998, Tardiff 1998,
Bossong-Martines 2000).
The use of product differentiation to expand

demand and soften price competition is captured in
our model’s revenue function. Under such a strategy
of market expansion, there is a significant risk that
NPD projects may not reach fruition. The time to com-
pletion may also depend on the scope of the project.
These factors are incorporated in our model as well.
In addition, to reflect the costs of adopting a strategy
of product differentiation, we assume that the direct
cost of manufacturing is higher with greater innova-
tion, because new production processes need to be set
up and perfected. We also assume that the costs of
adverse quality are higher when new product inno-
vation is more aggressive. Members of the quality
team at the scanner firm cited high costs of auditing
and control, inspection of raw materials, final prod-
uct inspection and qualification, and costs of repairing
and replacing defective units. This is reflected in the
analytical example in §5.2 and in the numerical study
in §6.
Firm Is a Technology Taker and Is Affected by Exoge-

nous Rates of Technology Change. The scanner firm we
studied is a technology taker; i.e., it does not do basic
research on lasers or motors, but integrates “off the
shelf” subcomponents to build components for its
own product. In addition, heterogeneous rates of tech-
nological change for different product features moti-
vate the scanner firm to differentiate among features
in terms of innovation. For example, one engineering
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manager told us that the new product that we stud-
ied would not have been possible without advances
in the miniaturization of motors that are used in this
type of scanner.
Similarly, many of the technological innovations

adopted in the computer industry were developed in
other industries (e.g., microprocessors developed by
the semiconductor industry, increased memory stor-
age developed by the computer storage device indus-
try, and faster communication capabilities developed
by the telecommunications equipment industry). The
development of new surgical instruments was made
possible by the discovery of new shape-memory poly-
mers (Tardiff 1998). Automobile manufacturers are
becoming more and more dependent on suppliers
to assume greater design and engineering responsi-
bilities in creating new parts and systems (Bossong-
Martines 2000).
We incorporate the idea of the firm as a technology

taker by modeling technology change as an exoge-
nous process in §3.1. In the numerical study, we find
that the speed of technology affects innovation deci-
sions.
Economies of Scale in R&D. R&D costs of inno-

vative products exhibit economies of scale. That
is, the cost function is concave in the amount of
innovation. Concavity may be observed when the ini-
tial R&D investment allows not only for a partic-
ular improvement to be incorporated in a product,
but also suggests the exploration of new, previ-
ously unanticipated improvements. These improve-
ments may further advance the same feature, allow
superior performance on another related product
dimension, or provide additional functionality. For
example, Hewlett-Packard originally designed the
HP85 to function solely as a personal computer, but
discovered that its functionality could be expanded
such that the HP85 could also be used as an equip-
ment controller (Lynn 1998). In this paper, the idea of
synergies in R&D is reflected by economies of scale
in the R&D cost function in Theorem 1 and in the
numerical study in §6.
In some instances a feature may be “regressed”

to improve the product on another dimension. For
example, the addition of photographic capability
to the new scanner product would necessitate an

increase in unit bulk and weight. An automotive
example is a reduction in gasoline mileage to facilitate
a reduction in NO2 emissions. We allow for this pos-
sibility in the model presented in §3.1, and we find
regression in the numerical example in §6.
Increasing Returns to Successful Advances in Product

Technology. Some business purchases of evolving mod-
erately durable products, such as bar code scanners,
are replacements of damaged or deteriorating items,
and other purchases are driven by expanding uses
which have been made possible by product inno-
vations. Sales to new customers and for new uses
depend significantly on the amount of innovation in
the product. For example, the scanner firm told us
that the innovation effect displayed increasing returns
to scale. That is, small innovations had negligible mar-
ket impacts and customers would not tolerate any
price increases for slightly improved products. Larger
innovations, in contrast, had disproportionately great
market impacts and could sustain higher prices. So
net revenue, not including costs of R&D, showed
increasing returns to the scale of product innovation.
Consistent with the market and industry character-

istics outlined above, in this paper we model a single
firm’s innovation decisions within the life cycle of one
product with multiple features (which may have dif-
ferent innovation characteristics). We use “features”
for the product dimensions on which innovation may
occur. For example, a notebook computer’s features
might include its weight, hard drive storage, screen
brightness, etc. A product’s “bundle” specifies the lev-
els of its features. We consider a number of factors:
the bundle of features incorporated in the previous
version, how close the current product is to the fron-
tier of technology, the costs of setting up production
for the new or enhanced product, and the risk that
the development effort may fail.
The model combines attributes that have only been

analyzed in isolation previously, including multiple
product features, costs of R&D, and revenue struc-
tures. Most of the literature on innovation focuses on
either the movement of the technology frontier or the
decision by individual firms to move directly to the
technology frontier in terms of a single product fea-
ture. In contrast, we develop a model that analyzes
the product development process once a discovery
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has been made, emphasizing the interrelated nature
of the innovation decision across product features.
One of the reasons why these disparate factors have

not previously been integrated is that the resulting
optimization model, the dynamic program in §4, suf-
fers from the “curse of dimensionality.” It becomes
impractical to solve it as the number of features
increases and the discretization becomes finer. Our
model has properties that permit a dramatic reduc-
tion of dimensionality and acceleration of computa-
tion (Proposition 1 and Theorem 1).
We employ the dynamic program to analyze the

structure of optimal decisions. Frontier innovation
(here meaning a jump to the technology frontier
if there is any innovation at all) is optimal when
there are increasing returns to successful advances
in product technology and R&D cost has increasing
returns to scale with respect to the magnitude of
innovation (Theorem 1). The assumptions underly-
ing these conclusions are satisfied by reasonably real-
istic specific models, as is illustrated by an analyt-
ical example (§5.2). A numerical example (§6) with
two features has a frontier innovation policy under
more general conditions then are assumed in Theo-
rem 1, and provides additional insights as to when
it is advisable to bundle innovative features (i.e.,
one feature is improved only when the other feature
can be improved at the same time). The model in
the example is too large to solve without exploiting
Proposition 1.
The remainder of the paper is structured as fol-

lows. Section 2 reviews related research on prod-
uct development and innovation. In §3 we formulate
the model, and in §4 we formulate and streamline a
dynamic program that is utilized in §5 to investigate
conditions for frontier innovation. In §6 we describe
the numerical study, and §7 presents our conclusions.

2. Related Work
Product and process innovation, time to market,
and the quality implications of product development
and enhancement have been modeled in a num-
ber of settings. The literature on technological inno-
vation is reviewed by Bayus (1995), Kamien and
Schwartz (1982), and Reinganum (1989). We sum-
marize below those areas of the literature that are

most closely related to our model, indicating how our
approach differs.
Analytical studies of innovation can be divided into

those that focus on discovery—i.e., the initial break-
through in the research phase of R&D—and those that
focus on process or product development. Discov-
ery models are typically presented as one-shot patent
races in which competing firms try to be the first to
reach the technological frontier. These models often
focus on the trade-off between time to market and
total resources spent as well as the effect of competi-
tion on the supply of new technology. See, for exam-
ple, Reinganum (1982), Fudenberg and Tirole (1984),
Tirole (1990), and Hendricks (1992). Our model differs
from traditional supply-of-innovation models in that
we focus on how product development progresses
after a technological breakthrough has occurred.
Innovation may also be viewed from the demand

side in terms of the diffusion of new technology. This
innovation diffusion process can be modeled from the
perspective of the time at which a customer purchases
a new product (Chatterjee and Eliashberg 1990) or
from the perspective of the firm in terms of when an
innovation is adopted within the organization (Rein-
ganum 1981, McCardle 1985). Our framework dif-
fers from these demand-for-innovation models in that
we allow a firm to adopt multiple innovations over
time and to operate on a continuum bounded by
the technological frontier. Adner and Levinthal (2001)
explicitly consider the interaction between technol-
ogy change and demand; our model differs in that
we consider multiple features and include an explicit
cost structure. In the literature on technology adop-
tion, Balcer and Lippman (1984) is particularly ger-
mane to our work because they too have a model with
multiple sequential innovations. However, our model
differs significantly from theirs in that (i) our exoge-
nous technology and R&D goals are vector-valued
to reflect multiple product features, (ii) net revenue
in our model is a function of more than the level
of exogenous technology, and (iii) our model allows
for (vector-valued) incremental innovation as well as
frontier innovation.
The discovery models discussed above focus pri-

marily on the adoption of a single innovation. In real-
ity, however, innovation is induced by a sequence
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of discoveries. The repeated-innovation strand of
the R&D literature focuses on this modification of
the traditional discovery model. See, for example,
Grossman and Helpman (1991b, 1991a), Aghion and
Howitt (1992), and Segerstrom et al. (1991). Like the
models of repeated innovation, we focus on multiple
product or process improvements which occur over a
period of time. However, we assume that the current
state of technology is exogenous and applies to all
firms within the industry. Instead of focusing only on
the movement of the technological frontier, we also
consider movements of products or processes toward
the frontier. In this regard, our model is similar to the
analytical models of innovation which deal primarily
with product or process development.
The product development models are based on the

idea that after a breakthrough in R&D, a new tech-
nology must be further improved before it can be
brought to market. In this context, the central issue is
determining the length of the development stage. The
longer the development stage, the higher the quality
of the product and the greater the returns. However, a
longer development stage delays the commencement
of these higher profits. For examples of these models,
see Dutta et al. (1995), Reinganum (1982), Cohen et al.
(1996b, 1996a), Bayus et al. (1997), and Bayus (1998).
Although these models focus on the development and
marketing aspects of innovation, they incompletely
address the dynamic nature of this process. Our work
builds on the previous development models in that
we incorporate repeated product developments which
move the firm closer to the evolving technological
frontier. Moreover, we allow for the fact that different
features can be developed simultaneously.
There are a few papers that explicitly consider dif-

ferent types of innovation. Lynn et al. (1996) find
from their case-study interviews that one difference
between incremental and frontier (here called discon-
tinuous) innovation is that market research is exper-
imental (“probe and learn”) rather than analytical.
Lambe and Spekman (1997) use historical sources to
examine the correlation between discontinuous tech-
nological change and alliances between firms, find-
ing that alliances are more likely at the beginning
of the innovation life cycle. Veryzer (1998) explores

the differences between the incremental and discon-
tinuous innovation in the NPD process using eight
in-depth case studies. Chandy and Tellis (1998) use
survey results to examine the importance of the will-
ingness to “cannibalize” its own products in order to
introduce more innovations. These papers provide a
backdrop for our work by defining the two types of
innovative processes and by sketching the external
(market forces, alliances) and internal (NPD process,
cannibalization) aspects. We go on to specify quan-
tifiable characteristics (demand and cost functions)
in order to understand their influence on innovation
decisions.

3. The Model
3.1. Formulation
Suppose that a product line has J features which are
relevant for purposes of R&D. Let K be an integer
upper bound on the number of models which could
be developed during the life of the product. Devel-
opment is initiated at an epoch (moment in chrono-
logical time) Tk and continues for an elapsed time of
�k between the kth and �k+ 1�st epochs, where k =
1�2� 	 	 	 �K indexes the development epochs. There-
fore, the clock time of the kth development epoch
is Tk =

∑k−1
j=1 �j , and T0 = 0. The subsequent develop-

ment epoch occurs when the product being developed
either reaches market or development terminates
prematurely.
The state of technology during development and

production influences the resulting costs. Let ��t� ∈
�J be the state of technology at epoch t; we assume
that ��t�� t ≥ 0� is a J -dimensional continuous-time
Markov chain with nonnegative increments on each
dimension. We consider a firm with a product line
in which it is a technology taker; i.e., the firm’s own
R&D does not significantly advance the technologies
relevant to the product line, so we assume that ��t��
is not affected by the firm’s decisions. Let �jk be the
state of technology in feature j at epoch Tk (j = 1� 		� J ),
and let �̂k = ��jk� j = 1� 	 	 	 � J ) be the vector of tech-
nology levels at epoch Tk. Let Ik be the increment to
the technology between epochs Tk and Tk+1, and so
�̂k+1 = ��Tk+1�= ��Tk�+ ���Tk+1�−��Tk��= �̂k+ Ik	
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At epoch Tk−1 the firm chooses the kth bundle of
product features Bk = �Bjk� j = 1� 	 	 	 � J � for the next
generation of the product, where Bjk is the level of
feature j selected for the kth bundle. The kth bundle
of features reaches market or is shelved at Tk. The
improved bundle is constrained to lie within the cur-
rent limits of technology; i.e., 0 ≤ Bk ≤ �̂k−1 (i.e., 0 ≤
Bjk ≤ �j�k−1, j = 1� 	 	 	 � J ). The lower vector inequal-
ity is 0 ≤ Bk instead of Bk−1 ≤ Bk in order to admit
trade-offs among features which lead to the diminu-
tion of one feature to facilitate an increase in another.
However, in the case of a single feature, i.e., J = 1,
this trade-off cannot occur; so we constrain Bk−1 ≤
Bk ≤ �̂k−1.
The random variable �k = 1 if the kth bundle Bk

eventually reaches market, and �k = 0 if the kth bun-
dle is shelved. Let �̂k−1 and �̂k−2 denote the vectors
of feature levels which are marketed starting at epochs
Tk and Tk−1, respectively. Then �̂k−1 = Bk if �k = 1, and
�̂k−1 = �̂k−2 if �k = 0. So �̂k−1 = �̂k−2+�k�Bk− �̂k−2�. We
assume that the time span �k until the next generation
can be brought to market (or shelved) is a random
variable. Except in §5 we let P�k = 1� and the prob-
ability distribution of �k−1 depend on k�Bk, �̂k−2, and
�̂k−1. So, the probability that a product reaches mar-
ket, and the elapsed time until it does, may depend on
timing, the current state of technology, and the previ-
ous and current choices of bundle (Cohen et al. 1996a,
1996b; Griffin 1997).

3.2. Costs and Revenues
We model the firm’s costs and revenues with three
terms. Let c�Bk+1� �̂k−1� be the expected present value
of the cost of R&D for product and process develop-
ment which is charged to epoch Tk and incurred dur-
ing �Tk�Tk+1�. This cost depends on the current and
previous bundles, since presumably a larger “jump”
in features would incur a larger R&D expenditure.
Let rk+1��̂k−1� �̂k−2� �̂k−1� be the expected present

value of the firm’s net revenue during �Tk�Tk+1�,
exclusive of R&D costs, and credited to epoch Tk. In
the numerical example in §6, rk+1�·� is the value func-
tion of a pricing optimization that includes revenues
from market demand offset by costs of production
and adverse quality.

Let s��̂K� be the salvage value of the product line,
evaluated at epoch TK , where �̂K is the bundle being
marketed during �TK�TK+1�. Let �> 0 be the instanta-
neous (continuous-time) discount factor, and let � be
the present value of net profits over the life cycle of
the product.
Let Rk and Ck be the respective present values of

the net revenue and R&D cost during �Tk�Tk+1�. Then
the expected present value of net profits over the life
cycle of the product is

E���= E

[
K∑
k=1

e−�Tk �Rk−Ck�+ e−�TK s��̂K�

]
	 (1)

We maximize the expected present value of the net
profits, that is, maximize E���, given the initial val-
ues: �̂0� �̂1� �̂0 and �̂−1.
In summary, for accounting purposes the following

sequence of events occurs “at” epoch Tk: Observe the
new state of technology (�̂k� and the bundle being
marketed now (�̂k−1), choose the bundle to develop
now (Bk+1), incur cost c�Bk+1� �̂k−1�, and receive net
revenue rk+1��̂k−1� �̂k−2� �̂k−1�. The probability distri-
bution of the duration of the development effort (�k)
and the probabilities that the effort succeeds or fails
(P�k+1 = 1� and P�k+1 = 0�) depend on the bundle
being developed (Bk+1), the bundle being marketed
(�̂k−1), and the current technology frontier (�̂k).

4. Dynamic Programming
In this section we formulate and analyze a dynamic
program that corresponds to maximizing the expected
present value of net profit and we begin the investi-
gation of optimal feature selection policies that con-
tinues in §5.
The dynamic program corresponds to maximizing

the expected present value of net profits (1). In the
argument of the following dynamic program value
function, �k−1 and �k−2 are respective bundles which
will be marketed during �Tk�Tk+1� and were mar-
keted during �Tk−2�Tk−1�, respectively; i.e., they are
the potential values of �̂k−1 and �̂k−2. Similarly, �k

and �k−1 are the potential technology frontier vectors
at Tk and Tk−1; i.e., they are potential values of �̂k

and �̂k−1, respectively. For each k= 1� 	 	 	 �K the value
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function for epoch Tk, denoted vk�·�, satisfies the fol-
lowing recursion with vK+1��k−1� · · · �≡ s��k−1�:

vk��k−1��k−2��k��k−1�

=maxrk
(
�k−1��k−2��k−1�− c�B��k−1�

+E�e−���B��k−1��k�vk+1��k−1+�k+1�B−�k−1��

�k−1��k+ Ik��k��
)
! 0≤ B ≤ �k�	 (2)

It is apparent in (2) that the value function (vk)
depends on the previous development cycle’s bundle
and technology frontier (�k−2 and �k−1, respectively)
because the expected net revenue term rk depends
on them. Because that term is completely determined
by previous choices and previous state variables, it
does not depend on the current choice of bundle (B)
and it can be transferred out of the maximization
operation. That is, the controllable portion of the net
present value of the time stream of revenues and costs
depends only on the state variables �k−1 and �k. This
observation is intuitive and is the basis for the follow-
ing property, which leads in §5 to sufficient conditions
for the optimality of innovations that go to the fron-
tier. Also, the proposition accelerates the numerical
solution of the dynamic program. In (3), wk��k−1��k�

is a controllable component of the maximal expected
present value of the net profits. Let rK+1�·� ·� ·�≡ 0 and
wK+1��� ·�≡ s���.

Proposition 1. The dynamic program value function
satisfies

vk��k−1��k−2��k��k−1�

= rk��k−1��k−2��k−1�+wk��k−1��k�� (3)

where

wk����� = max
{−c�B���

+E
[
e−��k�B������rk+1��+�k+1�B−�������

+wk+1��+�k+1�B−����+Ik��
]
!

0≤B≤�
}
	 (4)

Proof. To initiate an inductive proof, vK+1��k−1� ·�
·� ·� ≡ s��k−1� in (2) yields (3) at k = K. If vk+1��k−1,
�k−2��k��k−1�= rk+1��k−1��2��k−1�+wk+1��k−1��k� for

all arguments; i.e., if (3) is valid at k+ 1, then a sub-
stitution in (2) yields

vk��k−1��k−2��k��k−1�

=rk��k−1��k−2��k−1�+max
{−c�B��k−1�

+E
[
e−��k�B��k−1��k��rk+1��k−1+�k�B−�k−1���k−1��k

]
+wk+1��k−1+�k�B−�k−1���k+Ik��� !0≤B≤�k

}
=rk��k−1��k−2��k−1�+wk��k−1��k��

where wk��k−1��k� satisfies (4). �

If c�·��� is nondecreasing and s�·� ≡ 0, then it is
optimal not to engage in any product development
at the end of the planning horizon, so wK����� =
−c�����.
We exploit Proposition 1 in the remainder of the

paper and in §6 we comment on its role in dramat-
ically reducing the computational effort in Dynamic
Program (2).

5. Frontier Innovation
5.1. Sufficient Conditions for Optimality of

Frontier Innovation
In this section we identify sufficient conditions which
make it optimal to innovate to the frontier. That is, a
feature is improved maximally if it is improved at all.
The feasibility set for the dynamic program in (4)

is the multidimensional rectangle �0���. The forth-
coming Theorem 1 gives sufficient conditions for the
optimization to be restricted to a small discrete sub-
set, namely the extreme points of a collection of rect-
angles that cover �0���. These extreme points have
the property that each coordinate is at the technol-
ogy frontier if that coordinate exceeds the level of the
currently marketed feature. Therefore, an innovation
policy moves to the frontier if it is based only on these
extreme points. Also, each iteration of (4) is greatly
accelerated by restricting the optimization to extreme
points.
It is convenient to regard �0��� as the union of

J -dimensional rectangles Ri constructed as follows.
Let Ri = �a� b�, and let the respective jth components
of a� b��, and � be aj� bj��j , and �j . For j = 1� 	 	 	 � J ,
aj and bj are elements of 0��j��j� with aj ≤ bj . Let
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Figure 1 Feasibility Set for J = 2
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������ be the set of the extreme points of Rk�. For
example, if J = 2 and 0< �j < �j for j = 1�2, Figure 1
shows that there are four rectangles and nine extreme
points. Generally, if 0< �j < �j for all j, then ������
has 3J extreme points. We represent each e ∈ ������
as the following linear combination. For j = 1� 	 	 	 � J ,
let 'j1 and 'j2 be zero or unity, with 'j1'j2 = 0, and
let ej be the jth unit vector. Let ' = �'j1�'j2�� and let
e�'�����=∑J

j=1 ej�'j1�
j +'j2�

j�. For each e ∈ ������
there exists ' such that e = e�'�����.
In this section we exploit the fact that a convex

function achieves its maximum at an extreme point of
its convex domain (if it achieves the maximum at all).
Let Yk�B����� denote the maximand in (4):

Yk�B����� = −c�B���
+E

{
e−��k�B������rk+1��+�k+1�B−�������

+wk+1��+�k+1�B−����+ Ik��
}
	 (5)

It follows from Proposition (1) and the preceding
discussion that frontier innovation would be implied
by convexity (with respect to B) in (5) on each Ri. If
the distribution of � does not depend on B, it is appar-
ent that a sufficient condition for (5) to be convex with
respect to B is convexity of rk+1�·�����, concavity of
c�·���, and convexity of wk+1�·��� (on each Ri).

In a multifeature model, suppose 0 < �j < � for
each j. If the assumptions merely yielded convexity
of Yk�·����� on �0���, then the 2J extreme points of
this set would not include �. However, B=� occurs in
reality in conjunction with frontier innovation. So the
convexity of Yk�·����� on �0��� is too weak to yield
solutions that are consistent with salient features of
reality. On the other hand, it is violated by the plau-
sible numerical example in §6, so Yk�·����� on �0���
is too strong. Theorem 1 illuminates real NPD strate-
gies partly because it resolves this paradox. The 3J

elements of ������ are a strategically richer set of ele-
ments than the extreme points of �0���. Not only does
3J /2J grow rapidly with J (e.g., �3/2�4 = 5	0625), but
� ∈ ������. The computational value of Theorem 1 is
that 3J is minuscule compared to realistic discretiza-
tions of �0��� for most �. So it dramatically reduces
the effort to solve (2), which rapidly becomes pro-
hibitive as J grows.
In the notation of (4) and (5),

wk�����=maxYk�B����� !0≤B≤��� k=1�			 �K	
(6)

Theorem 1. Suppose s�·� is a convex function on its
domain and that the following assumptions are valid for
each k and i:

P�k+1 = 1� and the distribution of �k depend only on

�k−1 and �k (but not on Bk+1�* (7)

for all ��c�·��� is concave on Ri* (8)

for all ' and ��c�e�'��������
is concave with respect to � ∈ �0���* (9)

for all ���� and k� rk+1�·�����
is convex on Ri* (10)

for all ' and �� rk+1�e�'����������
is convex with respect to � ∈ �0���	 (11)

Then for each k, �, and �,

wk�����=maxYk�B����� ! B ∈ �������	 (12)

Proof. To begin an inductive proof, the convexity
of s�·� and the definition wK+1�����≡ s��� imply con-
vexity of wK+1�·��� on �0��� for all � ≥ 0. Suppose for
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some k≤K that wk+1�·��� is convex on �0��� for all �.
Then (7) implies that the third term of Yk in (5) is con-
vex with respect to B ∈ �0���. Also, (8) and (10) imply
that the first and second terms in (5) are convex in B
on each Ri. Therefore, Yk�·����� is convex on each Ri

and

wk����� = max
i

max
B∈Ri

Yk�B�����

= max
e∈������

Yk�e�����

Since the maximum of convex functions is a convex
function, wk�·��� is convex on �0��� if Yk�e����� is a
convex function of � for each e ∈ ������. This is true
if and only if Yk�e�'����������� is a convex function
of � ∈ �0��� for each ' and �. This property follows
from (9), (11), and the inductive assumption. So, for
all k and � , wk�·��� is convex and there exists B ∈
������, which is optimal in (2) and (4). �

Theorem 1 states that frontier innovation (maximal
improvement of a feature if it is improved at all) is
optimal under the following conditions. First, the sal-
vage value function is convex. Second, the duration
of R&D and the likelihood that the model with the
bundle under development reaches market, i.e., the
probability distribution of �k and P�k = 1�, do not
depend on the bundle under development. However,
in our numerical study we relax this assumption, and
still find that frontier innovation is always optimal.
Third, the R&D cost function is concave in the sense

specified by (8) and (9). Economies of scale in R&D
costs can occur for various reasons mentioned in §1.
The R&D cost in the numerical example in §6 satis-
fies (8) and (9). There are two features, and c�B���=∑2

j=1C
j
1 ln�1+ �Bj − �j�+�. In Figure 1, in the rectan-

gle that is furthest northeast, for example, c�B��� =∑2
j=1C

j
1 ln�1+ �Bj − �j� (because �j ≤ Bj for each j)

which satisfies (9). However, this function would not
satisfy a more stringent version of (9) in which c�·���
is obliged to be concave on �0���. Although ln�1+
�Bj −�j�+� is concave with respect to Bj on �0��j� and
��j��j�, it is not concave on �0��j�= �0��j�∪ ��j��j�.
Fourth, the revenue function is convex in the sense

specified by (10) and (11). In the analytical example in
§5.2 and the numerical examples with two features in
§6.1, the revenue functions (15) and (17) satisfy (10)
and (11).

5.2. Analytical Example with One Feature
In this example, we demonstrate that there are rea-
sonably realistic revenue functions that satisfy the
assumptions in Theorem 1. Suppose that (a) the vol-
ume demanded is a linear function of price plus the
squared difference between �k−1 and �k−2, (b) produc-
tion cost is directly proportional to the level of tech-
nology in the bundle now going to market, and (c)
the cost of adverse quality rises as the marketed level
of technology gets closer to the technology frontier.
The revenue during �Tk�Tk+1�, exclusive of R&D

costs, consists of sales at price p, a decision variable,
offset by costs of production and adverse quality.
A more detailed discussion of the relevant pric-
ing results is available from the authors. Suppose
that the expected present value of the number of
units sold during �Tk�Tk+1� is a− bp+ ��k−1 −�k−2�2,
where the factor a− bp describes consumer response
to price, and the factor ��k−1 −�k−2�2 describes con-
sumer response to product innovation. Let the unit
costs of production and adverse quality, respectively,
be c22�k−1 + c22��k−1 − �k−2� and d − e��k−1i − �k−1�.
All parameters are assumed to be nonnegative. The
unit production cost c22�k−1+c22��k−1−�k−2�is propor-
tional to the level of technology in the bundle now
going to market (�k−1), and proportional to the tech-
nology improvement ��k−1−�k−2�.
Therefore, the maximal net profit is

rk��k−1��k−2��k−1�

=max
p≥0

{
�a− bp+ ��k−1−�k−2�

2�

× �p−d+ e�k−1+ c22�k−2− �c21+ c22+ e��k−1�
}
	

(13)

Straightforward calculus shows that the optimal
price is

p = 1
2b

�a+ ��k−1−�k−2�
2�+ 1

2

[
d− e�k−1− c22�k−2

+ �c21+ c22+ e��k−1
]
� (14)

and that the maximal net profit is

rk��k−1��k−2��k−1�

= {
a+ ��k−1−�k−2�

2+ b�d− e�k−1− c22�k−2

+ �c21+ c22+ e��k−1�
}2
/�4b�	 (15)
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Constraining 0 ≤ �k−2 ≤ �k−1 ≤ �k−1 ≤ U for all
U <�,

2b
.2rk��k−1��k−2��k−1�

.�2
k−1

= �2��k−1−�k−2�−b�c21+c22+e��2+2��k−1−�k−2�
2

+2b�a/b−d+e�k−1−c22�k−2−�c21+c22+e��k−1�

≥2b�a/b−d−�c21+c22+e�U �

which is nonnegative, hence rk�·��k−1��k−1� convex,
for sufficiently large values of a. Also, the maximal
net profit is convex in �k−2 because

2b
.2rk��k−1��k−2��k−1�

.�2
k−2

= �bc22−2��k−1−�k−2��
2

+2b
[
a/b−d+ e�k−1− c22�k−2− �c21+ c22+ e��k−1�

+2��k−1−�k−2�
2 ≤ 2b�a/b−d− �c21+ c22�U �	

Why is rk a convex function of the new feature level
�k−1? A technical reason is that the maximand in
(13) is the product of two factors, and each one
is convex in �k−1, so the product is convex for
appropriate parameters. Since the pointwise maxi-
mum of a collection of convex functions is itself
convex, rk�·��k−2��k−1� is convex. An intuitive expla-
nation of convexity stems from the factor ��k−1 −
�k−2�2 in (13) which models consumer response to
product innovation. This factor is consistent with
a negligible response to a small innovation but a
disproportionately large response to a greater inno-
vation. For example, in high-tech industries such as
personal computers, a product must meet a certain
level of performance to be competitive, and so there
is a substantial penalty associated with falling slightly
short of the technology frontier, while the marginal
impact of falling even further behind the frontier is
proportionately smaller (Ward et al. 1999).

5.3. Lower R&D Costs Accelerate Innovation
The next result shows that for a univariate technology,
lower costs of R&D or process development induce
more aggressive product innovation because the gain
from frontier innovation is relatively larger. Although
this result is intuitive, there are counterexamples if the

assumptions of Theorem 1 are relaxed, or if there are two or
more features in the model. We consider the effects dur-
ing �Tk�Tk+1� of replacing the R&D cost function c�·� ·�
with c#�·� ·�; let B# and Y #

k and denote a corresponding
optimal bundle and optimand defined by (5). Recall
that we constrain Bk+1 ∈ �B/

k � xk� when J = 1.

Corollary 1. Under the assumptions of Theorem 1
with J = 1 (so that � ≤ B ≤ � in (4)), suppose that
c�����= c#�����= 0 and c#�B��� ≤ c�B��� for all � ≤
B. If B = � is optimal, then B# = � is optimal in (2)
and (4), and Yk�������− Yk������� ≤ Y #

k �������−
Y #
k �������.

Proof. If B = �k is optimal, then Theorem 1
implies 0 ≤ Yk������� − Yk������� = −c����� +
Ee−��k�−������rk+1��+�k+1��−�������−rk+1�������+
wk+1�� + �k+1�� − ���� + Ik� − wk+1���� + Ik��� ≤
−c#�����+ Ee−��k�−������rk+1��+ �k+1�� − ��������−
rk+1������� + wk+1�� + �k+1�� − ���� + Ik� −
wk+1����+ Ik���= Y #

k �������−Y #
k �������. �

6. Numerical Example with
Two Features

In this section we describe the optimization and
sensitivity analysis of a numerical model with two
features. We find that (i) a frontier improvement pol-
icy is optimal under more general conditions than
are assumed in Theorem 1, including a dependence
of the probability of success and development time
on the degree of innovation; (ii) the general model
that is formulated in §3 can yield policies in which
it is optimal to bundle improvements (i.e., coordi-
nate the improvements of separate features); and (iii)
Proposition 1 enables the numerical solution of mod-
els which would otherwise be extremely difficult or
impossible to solve. We also identify conditions under
which a firm is more or less likely to innovate and to
bundle improvements in product features. The com-
putational study entails the solution of 729 dynamic
programs, each having a 10-period planning hori-
zon. Each dynamic program roughly corresponds to
a Markov decision process with 60,000 states and 130
feasible actions in each state. The study might not
have been computationally feasible without the accel-
eration provided by Proposition 1.
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6.1. Model and Parameters
The model has two features (J = 2), and the two coor-
dinates of the technology frontier ��t� ! t > 0� are
independent Poisson processes with intensities 11 and
12 (for Features 1 and 2, respectively). The salvage
value function was s ≡ 0, and each coordinate of �
was truncated at 5. The model was discretized by con-
fining each coordinate of B and � to be a nonnegative
integer no greater than the corresponding component
of � . The model was solved for a planning horizon of
K = 10 product versions in the product life cycle, so
in §6.2 we discuss the characteristics of optimal deci-
sions in period 1, i.e., when there are nine subsequent
innovation opportunities.
The unit cost rate is similar to expressions in §5.2.

Let the superscript designate the feature; so B =
�B1�B2�, �k−1 = ��1

k−1��
2
k−1�, �k−2 = ��1

k−2��
2
k−2�, and

� = ��1��2�. The demand function is �100 − Dp� ·
f ��k−1��k−2� where D parameterizes consumer sensi-
tivity to price and

f ��k−1��k−2�

=
{
1+ ��1

k−1�
2
k−2+�2

k−1�
1
k−2�/4

+
2∑

j=1
���

j
k−1−�

j
k−2�−5��j

k−2−�
j
k−1��

}+
� (16)

where 5�z�= 1 if z > 0, and 5�z�= 0 if z≤ 0. The term
−5��j

k−2−�
j
k−1� satisfies (10) and (11) but would fail

to satisfy a stronger version of (10) where rk+1�·�����
is obliged to be convex on �0���. The term ��1

k−1�
2
k−2+

�2
k−1�

1
k−2�/4 satisfies (10).

The R&D cost function is c�B��� = ∑2
j=1C

j
1 ln�1+

�Bj − �j�+�, the unit production cost is C1
2 ∗ �1

k−1 +
C2
2 ∗�2

k−1, and the unit cost of adverse quality is 3−
C1
3 ��

1−�1
k−1�−C2

3 ��
2−�2

k−1�. The continuous-time dis-
count factor is � = 0	8, and a net revenue rate func-
tion S�·� can be specified analytically as is rk�·� in §5.2
by maximizing intra-period profit not including R&D
cost:

S��k−1��k−2���

=max�100−Dp�f ��k−1��k−2��p− c2��k−1�

− c3��k−1���� ! p ≥ 0� (17)

One of our goals is to investigate numerically
whether the conclusions of Theorem 1 are valid if

some of its assumptions are violated. In order to
accommodate the greater generality of the numerical
model in this section, we alter (3) as follows (where
� denotes the expected present value of the duration
of R&D):

vk��k−1��k−2��k��k−1�

=max
{
S��k−1��k−2��k−1�� �B��k−1��k�

−c1�B��k−1�+E
(
e−���B��k−1��k�

×vk+1��k−1+�k�B−�k−1���k−1��k+Ik��k�
)
!

0≤B≤�k

}
(18)

If B = �, we let �������� be exponentially dis-
tributed with mean 1/�11+12�. In words, if there is no
innovation, then the length of time until the next R&D
opportunity is the elapsed time until the next jump in
either coordinate of the technology frontier. If B �= �,
we let the time for development ��B����� be exponen-
tially distributed with mean 8 (specified below), and
so � �B����� = E�

∫ ��B�����

0 e−�y dy� = 8/��8 + 1�. The
probability of successful completion is P� = 1� = q+
�1− q�e−8 , 0 < q < 1, and the probability of premature
termination is P� = 0�= �1− q��1− e−8�. We define

8 = ;
��1

k −�1
k−1�+ ��2

k −�2
k−1�

��1
k −B1�+ ��2

k −B2�+ <
�

which captures the property that the development
time stochastically increases and the probability of
success decreases as the ambition of the product ver-
sion increases. In other words, lower B (or higher
�k−1) decreases 8, so that mean development time
decreases and probability of success increases. The <
term precludes division by 0. For the computational
study, we set q = 0	3� <= 3, and varied ; as described
below.
There is an economic rationale for each component

of the revenue and cost functions. In (16), the coeffi-
cient 4 in the term ��1

k−1�
2
k−2+�2

k−1�
1
k−2�/4 parameter-

izes the effect on demand of the interactions among
features across time. We refer to 4 as the synergy
parameter. The difference between the �j

k−2s and �
j
k−1s

reflects the magnitude of the innovative step. So,∑2
j=1��

j
k−1−�

j
k−2� scales the benefit gained from inno-

vation, and the last factor reflects fixed costs associ-
ated with regressing and advancing a feature.
The current bundle �k−1 should clearly be a factor

in the direct cost of manufacturing per unit made and
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Table 1 Parameter Values for Computational Study

Technology Development R&D Production Consumer price
frontier time & risk cost cost sensitivity Synergy

�1 �2 � C1
1 C2

1 C1
2 C2

2 D �

0�4 0�4 0�5 50�0 20�0 10�0 5�0 5�0 0�5
0�4 0�8 1�0 50�0 50�0 10�0 10�0 10�0 5
0�8 0�8 1�5 50�0 80�0 10�0 15�0 15�0 50

sold because it is reasonable to expect that a more
aggressive current bundle would be more expensive
to produce. We could include a learning curve effect
by adding a dependence on �k−2 (the more advanced
the features in the previous period, the better the
chance that process improvements would carry over).
The unit cost of adverse quality includes the costs

of returns, repairs, and replacements. More aggressive
innovation (�k−1 larger) results in higher expected
quality costs; in addition, the closer that the current
bundle of features was to the technology frontier at
the time that it was developed, the higher the risk of
quality problems due to leading-edge features.
To consider the effects of different cost and demand

scenarios on innovation decisions, we systematically
varied the speed of technology change for both fea-
tures (11 and 12), probability distribution of devel-
opment time and risk (;), two cost coefficients for
feature 2 (C2

1 and C2
2 , considering the two features to

be symmetric), consumer sensitivity to price (D), and
the degree of synergy (4). Since Feature 2’s variable
cost of production C2

2 and variable cost of quality C2
3

are both linear in the example, the marginal total cost
can be varied with either one; we only varied the
former. Varying the first two parameters over three
combinations of values and the remaining parameters
over three values generated 729 different scenarios.
See Table 1 for the parameter values. The resulting
problem with K = 10 product versions in the life cycle
took a little more than eight minutes per scenario
(for 729 scenarios, about 97 hours) to solve coded in
FORTRAN 77 on a SUN Ultra 10 (Solaris O.S. 2.8).
Since there are no studies linking the rate of tech-

nology change and cost factors to different industrial
phenomena, we determined the range of parame-
ters through pilot tests in which we ascertained val-
ues that produced interesting results, i.e., varying a

parameter caused different policies in terms of inno-
vation and bundling behavior.

6.2. General Discussion of Results
In the 729 scenarios, the following outcomes were
observed (in order of frequency from most to least fre-
quent) in Period 1: (1) stays (Bj stays at �j); (2) jumps
(Bj jumps from �j to �j , i.e., innovation to the fron-
tier); (3) back to 0 (Bj regresses from �j to 0); (4) back
> 0 (Bj regresses from �j but does not regress to 0
[note that this last is an outcome that would not be
generated if the revenue function were actually con-
vex]). There were no cases of incremental innovation in
more than 87× 106 opportunities. See Table 2. Regress-
ing a feature would mean, for example, increasing the
bulk and weight of a scanner in order to add pho-
tographic capability. The cost/revenue trade-off for
regression comes from the decrease in unit produc-
tion and adverse quality costs when �k−1 regresses
and there is a concomitant decrease in revenue (the
last term in (16) is positive when �

j
k−2 > �

j
k−1).

The assumptions underlying Theorem 1 are suffi-
cient but not necessary. Therefore, the computational
results that we present below suggest managerial
insights related to the effects of costs (R&D, pro-
duction, adverse quality), demand (price elasticity),
development time and risk, speed of technology
change, and degree of demand synergy on optimal
innovation and bundling behavior. In the following
discussion, a “feature jump” is the advance of a single
feature to the technology frontier. A “bundling event”

Table 2 Innovation: General Results

Stays Jumps Back to 0 Back> 0

Total 57,361,299 24,746,209 5,215,358 193,583
% Total 65.54 28.28 5.96 0.22
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is a combination of circumstances that demonstrate
that one feature moves forward only if the other fea-
ture can move forward too.
Within the set of 729 scenarios, we can make pair-

wise comparisons between two specific scenarios that
differ in terms of only one parameter value, in order
to determine how changes in the parameter affect
innovation and bundling behavior. For example, there
are a total of 243 scenarios in which D is equal to 5
and 243 scenarios in which D is equal to 10. Pairing
these scenarios enables us to observe the effect of an
increase in D from 5 to 10 under 243 different sets of
conditions. The same comparison can be made as D

increases from 10 to 15. Thus, our set of 729 param-
eters allows us to make a total of 486 pairwise com-
parisons to determine how an increase in D affects
innovation and bundling under 486 different sets of
conditions.

6.3. Innovation Results
The frequency of jumps to the technology fron-
tier is affected by both the internal and external
environment in which a firm operates. The internal
environment includes those factors over which the
firm has some degree of control, such as the pro-
duction process. In contrast, elements of the external
environment, such as the type of market in which it
operates, are more difficult to control. We find that
the frequency of innovation is determined primarily
by the main and interaction effects of three internal
parameters and three external parameters.

Internal Conditions Encouraging Innovation to
the Technology Frontier:
Long Product Development Time and High Risk of

Failure. As indicated in Table 3 (and in all pairwise
comparisons), longer product development times and

Table 3 Innovation and Bundling as Mean Development Time and Risk
of Failure Change

�= 0�5 �= 1�0 �= 1�5

Total jumps 3,145,174 9,720,846 11,880,189
% total jumps 12.71 39.28 48.01

Total bundles 144,151 349,070 343,810
% total bundles 17.22 41.70 41.08

lower chances of success (larger ;), result in inno-
vation in more circumstances. This is the most pro-
nounced effect in terms of magnitude of increase as
the parameter in question increases. Intuitively, the
firm takes more of the available opportunities to inno-
vate when it will have to wait longer to realize results,
and there is a higher risk of failure.
Low Cost of R&D. As indicated in Table 4 (and in

99% of all pairwise comparisons), B1 and B2 jump
more frequently to the technology frontier as C2

1

decreases. This is the parameter that scales the R&D
cost for B2. When a firm faces higher R&D costs
for a feature, the economies of scale are more pro-
nounced; so it would be inclined to batch improve-
ments, scheduling them less often, in order to take
advantage of economies of scale. In contrast, when
the cost of R&D is relatively low, it is not as critical
to achieve further reductions in this cost, so more fre-
quent innovation is likely.
High Unit Cost of Production and/or Adverse Quality.

As indicated in Table 4, the main effect of an increase
in C2

2 , the unit cost of production (or adverse quality)
for B2, is an increase in the frequency with which B1

and B2 jump to the technology frontier. When a firm
faces higher unit costs of production or adverse qual-
ity, it is particularly important to exploit measures
such as product differentiation in order to increase
per-unit revenue. The magnitude of this effect, how-
ever, is influenced by two other factors. First, a longer
product development time increases the magnitude of
this effect. At the shortest product development time
(; = 0	5), an increase in the unit cost results in more
frequent innovation for both features in 28% of the
pairwise comparisons. This percentage increase rises
to 88% when ; = 1 and to 94% when ; = 1	5. As
discussed previously, when there is considerable time
between innovation opportunities and the probabil-
ity of success is low, a firm cannot afford to wait too
long to innovate nor be too cautious in terms of the
extent of innovation. Second, this effect is accelerated
by faster movement of the technology frontier. At the
slowest technology speeds (11 = 12 = 0	4), an increase
in the unit cost results in more frequent innovation
for both features in 56% of the pairwise comparisons.
However, the percentage increase rises to 65% when
11 = 0	4 and 12 = 0	8 and to 88% when 11 = 12 =
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Table 4 Innovation and Bundling as R&D and Production Costs Change

C2
1 = 20 C2

1 = 50 C2
1 = 80 C2

2 = 5 C2
2 = 10 C2

2 = 15

Total jumps 8,483,620 8,234,647 8,027,942 8,060,178 8,190,908 8,495,123
% total jumps 34.28 33.28 32.44 32.57 33.10 34.33

Total bundles 277,576 279,587 279,868 270,647 279,724 286,660
% total bundles 33.16 33.40 33.44 32.33 33.42 34.25

0	8. We see the pull of the technology frontier, with
the additional advantage that adverse quality costs
decline when the frontier moves out from the cur-
rent state of the product. Conversely, a higher risk of
adverse quality is experienced on the “bleeding edge”
of the frontier, as described to us by the quality team
of the scanner manufacturer.

External Conditions Encouraging Innovation to
the Technology Frontier:
Low Synergy Between Product Features (as Valued by

the Customer). As indicated in Table 5 (and all pairwise
comparisons), as synergy between features increases
(the parameter 4 increases), there are fewer jumps
to the technology frontier. Recall that high synergy
between product features means that an advance
in one feature now increases the return to advanc-
ing another feature. When this is not the case—i.e.,
synergy is relatively low—although customers value
advances in all features, these advances need not be
simultaneous. Since there is less incentive to wait for
another feature to be ready to innovate, there are more
jumps of a feature by itself. We elaborate on this point
in §6.4.
High Degree of Customer Price Sensitivity. As indi-

cated in Table 5, innovation occurs in more circum-
stances when customers are relatively sensitive to
price. Therefore, product differentiation as a means
of stimulating demand becomes increasingly impor-
tant (cf. Adner and Levinthal 2001). The magnitude of

Table 5 Innovation and Bundling as Synergy and Price Elasticity Changes

�= 0�5 �= 5 �= 50 D = 5 D = 10 D = 15

Total jumps 12,024,726 7,025,814 5,695,669 7,485,563 8,455,382 8,805,264
% total jumps 48.59 28.39 23.02 30.25 34.17 35.58

Total bundles 261,167 284,359 291,001 259,791 283,877 293,363
% total bundles 31.26 33.97 34.77 31.03 33.92 35.05

this effect, however, is influenced by the speed of the
exogenous technology frontier. When 11 = 12 = 0	4, an
increase in price sensitivity results in more frequent
innovation for both features in 78% of the pairwise
comparisons. This percentage increases to 85% when
11 = 0	4 and 12 = 0	8 and to 98% when 11 = 12 = 0	8.
In short, a fast-moving technology frontier increases
the opportunities for innovation.
Fast-Moving Exogenous Technology Frontier. As indi-

cated in Table 6 (and over 99% of all pairwise com-
parisons), faster-moving technology frontiers result
in innovation in more circumstances. In short, when
technology frontiers move forward at a relatively
faster rate, a firm has more to lose from missing inno-
vation opportunities. It is interesting to note that an
increase in the speed of the technology frontier for
one feature results in more innovation for both fea-
tures. In other words, coordination of advances across
features exists. For example, when 11 < 12, advances
in B2 are constrained by the now relatively slow-
moving technology frontier for B1, as B2 “waits” for B1

so that both can jump to a new frontier. An increase
in 11 eliminates this bottleneck and allows both fea-
tures to jump to their respective frontiers. We discuss
coordination and this bottleneck phenomenon more
extensively in §6.4.
Diminishing returns is an attribute of some R&D

settings that we do not model in this paper. If the
R&D cost function were convex instead of concave,
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Table 6 Innovation and Bundling as Speed of Technology Frontier
Changes

�1 = 0�4, �1 = 0�4, �1 = 0�8,
�2 = 0�4 �2 = 0�8 �2 = 0�8

Jumps/Feature 1 2,927,195 4,227,330 5,209,836
Jumps/Feature 2 2,923,455 4,236,492 5,221,901
Total jumps 5,850,650 8,463,822 10,431,737
% total jumps 23.64 34.20 42.15

Total bundles 236,724 276,725 323,582
% total bundles 28.28 33.06 38.66

both incremental innovation and innovation to the
frontier would occur. Details are available from the
authors.

6.4. Bundling Results
Just as with innovation to the technology frontier,
the frequency of bundling is influenced by internal
and external factors; there are primarily three model
parameters that drive this behavior. In particular, the
main effects of the speed of the technology frontier
and the synergy between product features, and inter-
action effects with product development time and
risk, together suggest when coordination of improve-
ments among features is advantageous. Recall that
when improvements in product features are bundled,
one feature moves forward only if the other fea-
ture can move forward as well. For bundling to take
place, the return to coordinating advances across fea-
tures must outweigh the opportunity cost associated
with waiting. When this is the case, we may think
of the feature with the slower-moving technology as
the bottleneck (as discussed previously). The main
effects are:

Significant Synergies Between Product Features
(as Valued by the Customer). When there are sig-
nificant synergies between product features as val-
ued by the customer, the return to coordinating
advances between features (and delaying advance-
ment of individual features) is greater. We find that as
synergy between features increases (4 increases), the
frequency of bundling behavior over all other param-
eter values increases from 31% (4= 0	5) to 34% (4= 5)
to 35% (4= 50). This result is also consistent with the
discussion in §6.3 (see Table 5).

Fast-Moving Exogenous Technology Frontier.
When technology advances rapidly, coordinating
advances between features becomes less costly since
the time spent waiting for features to catch up is
reduced. Looking at the frequency of bundling behav-
ior over all other parameter values as 11 and/or 12

rise, it increases from 28% (11 = 12 = 0	4) to 33% (11 =
0	4 and 12 = 0	8) to 39% (11 = 12 = 0	8). See also
Table 6.
The magnitude of each of the main effects is mit-

igated by interaction effects. Consider increases in
the speed of the technology frontier, for example,
which typically increase the frequency of bundling.
This effect holds as long as the product development
time is sufficiently short. In particular, at the stochas-
tically shortest product development time (; = 0	5),
an increase in the speed of the technology frontier
results in more frequent bundling behavior in 100% of
the pairwise comparisons. This percentage decreases
to 60% when ; = 1 and to 2% when ; = 1	5. In
this case, even if technology is advancing rapidly,
bundling behavior is less likely because coordination
of advances simply adds more time to an already long
and risky product development process.
Similarly, the main effect of the speed of the tech-

nology frontier is also reduced if the level of synergies
between features is sufficiently low. At the greatest
level of synergy (4 = 50), an increase in the speed
of the technology frontier results in more frequent
bundling behavior in 58% of the pairwise compar-
isons. This percentage decreases to 54% when 4 = 5
and to 49% when 4 = 0	5. This example illustrates
how the return from waiting diminishes as the degree
of synergy decreases. As a result, a firm “chases”
the technology frontier to increase demand instead of
waiting to coordinate advances across features.

7. Conclusion
Our model of product innovation shows that deci-
sions about enhancing product features should be
influenced by both the internal and external envi-
ronment in which a firm operates. This study
was motivated by differential innovation strategies
in a number of industries, and was influenced
by interviews with decision makers in a scanner
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manufacturing firm. The model considers interactions
among revenues and costs, stage of product life cycle,
features of the previous product release, and the exter-
nally propelled frontier of technology.
We begin by considering a product with multi-

ple features, each of which may be enhanced by
the current development effort. The decision about
which bundle of features to include in the version of
the product now being prepared for market depends
on costs, projected revenues, and the external fron-
tier of technology. The results include characteristics
of optimal feature selection and dynamic programs
to compute optima. We use a dynamic program to
deduce the structure of an optimal policy for innova-
tion, present conditions that permit the dynamic pro-
gram to be streamlined dramatically, and employ the
streamlined program to solve a large numerical exam-
ple with two features under more general conditions.
In the computational study the development time

and probability of success depend on the scope of
product improvement. We find additional insights
into the impact of specific internal and external con-
ditions on both the frequency of innovation to the
technology frontier and the degree of coordination of
advancement activities across features. Innovation to
the frontier is more likely when the internal environ-
ment of a firm is characterized by long product devel-
opment times, low cost of R&D, and high unit cost
of production and/or adverse quality. Such innova-
tion may also be driven externally by price-sensitive
customers who value innovation, and the innova-
tion need not be coordinated across features. We also
find that a fast-moving exogenous technology frontier
increases the frequency of innovation.
Also, bundling behavior is more likely when tech-

nology frontiers advance rapidly, particularly when
development times are relatively short and risks low.
We also find more bundling when customers value
features that advance together. In these instances, the
relative return to waiting increases, so the frequency
of coordination increases. It is important to note that
there are significant interaction effects among the
internal and external parameters driving innovation
and bundling activity.
These structural and computational results rein-

force and elucidate what we learned from the scanner

firm. First, aggressive innovation is most favorable
when there is a good chance of expanding the market
with the new product, and when costs of research and
development yield increasing returns to successful
advances in product technology, for example, when
larger innovations (such as a drastically miniatur-
ized scanner system) have the potential to open a
new market, i.e., innovation is expected to expand
demand. Smaller innovations are not as interesting to
customers, and in fact there are annual price decreases
on products that do not have significant innovation.
This demonstrates a firm’s sensitivity to the trade-
off between demand elasticity and customer response
to new product features. Innovations are likely to be
combined in new versions or products when the state
of technology is progressing relatively rapidly, and
less likely to be bundled when there is less return to
such synergies, compared to the time and risk of long
development periods.
These results apply to firms with the following

characteristics: technology driven, technology tak-
ers, integrators of components, competitive markets
where price or feature improvement is needed to
expand the market, quality affects the bottom line
because of commitment to customer satisfaction via
warranties as well as internal quality control, and
ability to absorb high R&D costs in order to remain
market leaders.
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