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Abstract

We consider a problem where a company must decide the order in which to launch new

products within a given time horizon and budget constraints, and where the parameters of the

adoption rate of these new products are subject to uncertainty. This uncertainty can bring

significant change to the optimal launch sequence. We present a robust optimization approach

that incorporates such uncertainty on the Bass diffusion model for new products as well as on

the price response function of partners that collaborate with the company in order to bring its

products to market. The decision-maker optimizes his worst-case profit over an uncertainty set

where nature chooses the time periods in which (integer) units of the budgets of uncertainty

are used for worst impact. This leads to uncertainty sets with binary variables. We show that

the robust problem can nonetheless be reformulated as a mixed integer linear programming

problem, is therefore of the same structure as the deterministic problem and can be solved in

a tractable manner. Finally, we illustrate our approach on numerical experiments. Our model

also incorporates contracts with potential commercialization partners. The key output of our

work is a sequence of product launch times that protects the decision-maker against parameter

uncertainty for the adoption rates of the new products and the response of potential partners to

partnership offers.
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1 Introduction

We consider the introduction of a set of innovative products or services in a national market within

a finite time horizon. Our goal is to determine the optimal launch time for each product when the

parameters of the products’ adoption curves are not known precisely and the company is assumed

to have a limited marketing budget at each period. The products or services under consideration can

be durable goods with different purposes, drugs for different diseases or a single product or service

launched sequentially in multiple geographic markets. We neglect the substitution effect among

the products and assume that the adoption processes of the products are not affected by each other.

Examples include a car-sharing company launching its service in certain cities, an innovative retail

kiosk service aiming at providing customers with health care information or an express courier

service launching new pickup or delivery options in various metropolitan areas.

We use the product growth model introduced by Bass (1969) to estimate the adoption rate

of the customers for each product. The Bass diffusion model and its revised versions have been

used for forecasting the diffusion of innovation in durable goods, pharmaceutical, and industrial

technology markets, among others. It considers two types of potential adopters, namely innovators

and imitators, and assumes that two communication channels are used to influence the potential

adopters: mass media and word of mouth. The innovators are affected by the external influence

(mass media), whereas the imitators’ motivation to adopt the innovation comes from the internal

influence of the customers who have already adopted the innovation. The Bass model can estimate

the long term sales patterns of an innovative product in the following two cases (Lilien et al, 2007):

• The new product has already been introduced to the market and the first few periods’ sales

amounts have been observed,

• The new product has not been introduced to the market; however, an existing product’s

diffusion process can be used as a proxy for the product of interest.

Using the basic Bass model requires estimating three parameters for each product: m, p, and q

for each product, which stand for the potential number of ultimate adopters in the market, the
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coefficient of external influence, and the coefficient of internal influence, respectively.

Srinivasan and Mason (1986) show that reliable estimates for the parameters can be obtained

when the available data set is large enough to cover the rate peak of the product’s adoption curve.

The estimates for the coefficients of internal and external influence are subject to uncertainty and

might depend on time. On the other hand, the parameter mi (the ultimate number of adopters of

product i, or steady-state market size) is not expected to be time-dependent; however, it is subject

to estimation errors, and it can be forecast more accurately after the first few periods’ sales amounts

are revealed and analyzed.

For each new product, the company seeks a partner in commercialization, whose willingness to

enter a partnership depends on the proposed unit payments for the service it will provide. The part-

ner might help the innovative company establish the infrastructure to disseminate the new product,

such as providing space to park the cars in the car-sharing service, space to install the self-service

kiosks, or the provision of services such as shipping and handling or customer service. For in-

stance, a bank may seek partnerships with information technology firms or a manufacturer with

brick-and-mortar retailers for product placement. A potential partner’s probability to accept an of-

fer is modeled as a logit model with the unit payment amount as the main variable. In other words,

the innovative company offers the partner company a specific payment amount per new adopter for

its collaboration starting from the period when the product is launched until the end of the time

horizon. For a potential partner j, given the logit model parameters aj and bj , the probability of

this potential partner agreeing to collaborate with the innovative company when the unit payment

offered by the company is Rj is represented as:

Pj(Yes) =
e(aj+bjRj)

1 + e(aj+bjRj)
=

1

1 + e−(aj+bjRj)

The parameters aj and bj of the logit functions are estimated based on available data or man-

agerial judgments. Therefore, they are subject to uncertainty as well.

Our main goal in this paper is to propose a tractable mathematical framework that incorporates

parameter uncertainty in the new product introduction problem with partnership and answers the
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following questions for the innovative company:

• How should it schedule the launch of each innovative product/service?

• Which partner should it select for each product so that the total expected profit over a specific

time horizon is maximized?

The main example we use to motivate our approach is that of a new service launched sequen-

tially in multiple geographic areas, when the launch requires partnerships with other companies,

providing for instance warehouse space or retail capabilities that the innovative company does not

have. Those partnership contracts provide a fee to the partner in exchange for agreed-upon services,

such as providing the infrastructure for the launch.

We assume that the unit price of the product is determined and constant. Therefore, we calculate

the present value of the revenue obtained from new products’ sales by discounting the number of

adopters in each period by a constant discount factor.

1.1 Literature Review

1.1.1 Diffusion of Innovations and the Bass Model

The diffusion of innovation is achieved by propagation through certain communication channels

over time in a social system (Rogers, 1983). The adoption of new technologies over time usually

follows an S-curve, with four main classes of models: epidemic models, probit models, models of

density dependence, and models of information cascades (Geroski, 2000). Epidemic models gen-

erally assume that the diffusion of innovation occurs by means of direct contact with the previous

adopters or by imitating them. In addition, they depend on the premise that the potential adopters

form a homogeneous population in terms of their needs and willingness to adopt innovation. The

probit models address the fact that different potential adopters have heterogeneous preferences and

abilities to adopt the new technologies at different times. The density dependence models capture

the balance of the impacts of legitimation and competition in adopting innovation. Finally, the

main idea behind the information cascade models is that the adopters make sequential decisions
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rationally based on the information they have. In addition, the subsequent speed of the diffusion of

the new technology depends on the initial choice of the adopter.

The diffusion of innovation was first introduced in the marketing community in the 1960s

(Frank et al (1964), Arndt (1967) and Bass (1969)). A review of new product diffusion models up to

1990 is provided in Mahajan et al (1990), which reviews the Bass (1969) model and its extensions to

various markets including the retail services, pharmaceutical industry, consumer durables market,

and industrial technology. As explained earlier, potential adopters are divided between innovators

and imitators. Tidd (2006) suggests that the diffusion process occurs in an epidemic form for

imitators; however, the innovators are not subject to social emulation. Therefore, the adoption of

the innovators in early periods is followed by that of the imitators in later periods. This leads to a

skewed S-curve for the adoption rate for the whole population. The Bass model also assumes that

a member of the population can adopt the product only once and that the probability of an adoption

at time t can be modeled as a hazard rate. Specifically, let us denote the density function of time to

adoption as f(t) and the cumulative fraction of adopters at time t as F (t). Then the hazard function

leads to the following equality:

f(t)

1− F (t)
= p+ qF (t),

where the parameter p stands for the external influence and the parameter q reflects the internal

influence resulting from earlier adopters. The function F (t) is assumed to be a non-decreasing

function and approaches 1 as t gets larger. In addition, it assumes that the process starts with no

initial adopters (F (0) = 0 and f(0) = 0.)

If q is zero, f(t) follows a negative exponential distribution (Mahajan et al, 1990). Lilien

et al (2007) provide the following additional insights: if q ≥ p, then the innovation influence is

dominated by the imitation influence and the plot of f(t) versus time has an inverted U shape. Oth-

erwise, the innovation influence prevails over the imitation influence, the highest sales are observed

at the onset and the rate of adoption decreases as time passes. In addition, a decrease in p leads to

a longer time to realize the sales growth for the innovation. Furthermore, if both p and q are large,
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the adoption rate takes off rapidly and falls off quickly after reaching its peak point (Mahajan et al,

1990).

With the parameter m denoting the potential number of ultimate adopters, the number of (new)

adopters at time t, S(t), and the cumulative number of adopters at time t, C(t), are represented as:

S(t) = mf(t), and C(t) = mF (t).

It can be shown that the following expressions hold for f(t), F (t), S(t), and C(t):

f(t) =
(m+ q)2

p

e−(p+q)t(
1 + q

pe
−(p+q)t

)2 ,

S(t) = m
(m+ q)2

p

e−(p+q)t(
1 + q

pe
−(p+q)t

)2 ,

F (t) =
1− e−(p+q)t

1 + q
pe
−(p+q)t

,

C(t) = m
1− e−(p+q)t

1 + q
pe
−(p+q)t

. (1)

In addition, the period when the sales amount peaks (T ∗) and the marginal sales at peak time are

given by:

T ∗ =
1

p+ q
ln

(
q

p

)
and S(T ∗) =

m

2

(
1− p

q

)
(2)

In our paper, we will use these equations in a discrete-time setting for notational convenience and

clarity.

This model has been the focus of multiple extensions. In particular, Kalish and Lilien (1986)

address the impacts of perceived product quality and information level in the market place (adver-

tisement) in a period on the number of new adopters in that period. Bass et al (1994) incorporate

pricing and advertising decisions in their formulation. Kamrad et al (2005) propose a stochastic

model of innovation diffusion and determine the optimal advertisement and pricing policies using

a stochastic dynamic programming approach. Finally, Kumar and Krishnan (2002) reformulate
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the adoption rate so that one country’s diffusion process impacts the other, and capture the lag-

lead, lead-lag, and lag-lag (simultaneous) impacts of inter-country interactions on the diffusion

processes.

1.1.2 Parameter Estimation

Using the Bass model requires the estimation of the three parameters m, p, and q. If the product

has already been introduced to the market and some sales observations are available, historical data

sets are used for estimating the parameters with ordinary least squares (OLS) methods (Young and

Ord, 1985) and maximum likelihood estimation procedures (Schmittlein and Mahajan, 1982). The

quality of the estimation results depends on the number of data points available (Hyman, 1988).

Srinivasan and Mason (1986) show that reliable estimates for the parameters can be obtained when

the available data set is large enough to cover the rate peak of the adoption curve. Time-varying es-

timation procedures have also been proposed including Bayesian estimation and adaptive-filtering

methods. Sultan et al (1990) update the initial estimates of the parameters p and q after obtaining

new estimates by taking the weighted sum of these two estimates. Bretschneider and Mahajan

(1980) propose a time-varying parameter estimation method based on a feedback filter. When no

historical data is available, parameters can be estimated by expert judgments or using historical

observations of the diffusion process of a similar product. In both settings, though, estimation

errors are a concern and we will discuss their impact below. Uncertainty on the values of the p

and q parameters, which we will assume to be time-dependent, will be approached using robust

optimization with budgets-of-uncertainty-type uncertainty sets because it is unlikely that all the

parameters will reach their worst-case values over the whole time horizon. The uncertainty on the

m parameter will best be approached using a real options approach, since there is only a single

m per product. Future work beyond the scope of this paper includes using robust optimization to

mitigate uncertainty on the market-size m parameters when multiple products are considered. We

first discuss robust optimization in Section 1.2 and then real options in Section 1.3.
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1.2 Robust Optimization

1.2.1 Motivation for Robust Optimization with the Bass Model

In this section, we show on a small example how estimation errors affect the optimal product

launch schedule, to make the case for a robust optimization approach. Let us consider a case where

a company plans to launch five new products so that only one product is introduced in each period

during five consecutive periods. In this setting, one can compute 120 different launch sequences

(5 · 4 · 3 · 2 = 120), numbered 1 through 120. (Knowing the specific strategy corresponding to a

given index is not particularly insightful for this example and we omit this information here, but

the reader can re-derive the list of strategies by looping on the index of the products launched first,

second, third and fourth.) We will use the Bass model parameter values provided in Table 1 and

assume that the discount rate is 0.001. For this small example, we assume that each product is

identical in terms of potential partners and their choice models, in order to show the impact of the

parameter uncertainty on the optimal strategy.

In the context of innovation adoption, we are particularly interested in robust solutions, because

the choice of a specific metropolitan area to be first (or among the first) to have a new service, for

instance, has an impact in the public’s perception of this metropolitan area as an innovation hotbed.

Hence, in this paper we will highlight changes in the optimal launch sequence when the parameters

change. In practice, the decision-maker may also consider a more classical approach, comparing

the objective achieved in the true model with uncertainty by the optimal launch sequence in the

nominal model and that in the robust model.

Table 1: Nominal values of the Bass model parameters for each product
p q m

0.045 0.44 1000
0.044 0.42 1000
0.047 0.4 1000
0.043 0.43 1000
0.042 0.44 1000
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Table 2 provides the optimal strategies for the cases where the q parameter of only one product

changes (its new value is the nominal value multiplied by the coefficient in the first column, which

varies from 0.6 to 1.4 and thus represents a change of at most ±40%) while the other parameters

take their nominal values. Table 3 summarizes the outcomes of the same analysis repeated for the

p parameters. Note that the strategy shown when the coefficient is 1 represents the optimal strategy

in the nominal case, which is Strategy 7 or 1-3-2-4-5. Both Products 1 and 5 have the same q

value; Product 1 has the highest p value and Product 5 the smallest. We observe for instance that

a change of ±4% in q1 or q4 is sufficient to make the optimal strategy change. This is also true of

upward changes by 4% in p1 and downward changes by 4% in p5. More generally, Tables 2 and 3

show the sensitivity of the optimal strategy to the parameters q and p of each product, respectively;

the results show that small changes in the parameters can change the strategy substantially. As

an example, Strategy 112 represents the launch order 5-3-2-4-1, launching last the product that

was initially launched first and first the product that was initially launched last, and is optimal

for upward changes in q1, downward changes in p1 and upward changes in p5 as small as 4%.

(As further examples, Strategy 107 corresponds to 5-2-4-1-3, 111 to 5-3-2-1-4, 112 to 5-3-2-4-1

and 113 to 5-3-4-1-2.) We thus observe that when the coefficient qi becomes slightly higher than

the nominal case of 1, the corresponding product i launches last. While there are only a dozen

different optimal strategies in each case, the precise launch sequence can vary a lot and there is

no discernible commonalities among the sequences, which highlights the benefit of an analytical

approach to determine the order launch.

Therefore, we believe that it is important for the decision maker to address uncertainty on the

parameter estimates in the Bass diffusion model with partnership. In what follows, we present

robust optimization as a technique to achieve that goal.

1.2.2 Mathematical Modeling of Uncertainty

The parameters of the Bass model and the logit choice model are estimated through different pro-

cesses, and are subject to different sources of uncertainty. For instance, the uncertainty affecting
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the logit choice parameters mostly results from the difficulty in predicting potential partners’ re-

sponses to the company’s offer. On the other hand, the uncertainty involved in the parameters of

the Bass diffusion model is generally caused by the uncertainty in the potential customers’ willing-

ness to adopt the innovative product through mass media or word-of-mouth. Therefore, we model

uncertainty for those two groups of parameters separately.

Revenue management under demand parameter uncertainty has for instance been studied in

Rusmevichientong and Topaloglu (2012). Their setting focuses on assortment decisions given

uncertainty in the multinomial logit model, which determines customers’ preferences for products.

The authors find an assortment that maximizes the worst-case expected revenue over a compact

uncertainty set, both in the static and dynamic cases, leading to a 10% improvement in worst-case

revenue over benchmark approaches. While this case is not directly applicable to our problem

because (i) we do not decide whether to launch products or enter a geographic area (the equivalent

of including a product in the assortment) but when in a finite horizon context, and (ii) our products

are not substitutable (in the example of a new product being introduced successively in a series of

geographic markets, the customer cannot change the city she resides in), Rusmevichientong and

Topaloglu (2012) represents one of the earlier examples of robust revenue management applied to

nonlinear optimization models, an area that the present paper also falls into.

The key methodological tools we will use in modeling uncertain parameters consist of (i) range

forecasts (or confidence intervals) centered at their nominal values and (ii) a budget-of-uncertainty

constraint that limits the number of parameters that can deviate from their nominal value (also

known as the Bertsimas-Sim model of uncertainty in robust optimization, first presented in Bertsi-

mas and Sim (2004)). Due to the nonlinearities of the problem, we will constrain the parameters

to be either equal to their nominal values or to one of the extremities of their confidence inter-

vals. This use of a discrete budget of uncertainty is in line with the description of uncertainty in

Bienstock and Ozbay Bienstock and Ozbay (2008) and is motivated by the need to balance a mean-

ingful description of uncertainty with computational tractability. Classical robust optimization is

preferred here to distributionally robust optimization due to the difficulty in estimating probabili-
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ties for model coefficients and tractability issues.

Bass model parameters

To mitigate the risk of over-conservatism in the approach, we make the following key modeling

decisions. First, we allow the p’s and q’s to vary with time and by product. At each time period,

each parameter pit and qit (driving the marginal adoption rate at that time period) belong to an

interval [pi− p̂i, pi+ p̂i] and [qi− q̂i, qi+ q̂i], respectively. This is motivated as follows. As the two

graphs in Figure 1 indicate, the diffusion process with the smallest p parameter value results in the

lowest adoption rates from the beginning of the process until the 14th period in the example, but

the process with the highest p parameter value leads to the smallest adoption rates after the 14th

period. Similarly, the diffusion process with the smallest q parameter value provides the smallest

adoption rates until the 21st period; however, the one with the largest q parameter value leads to

the smallest adoption rates thereafter. Therefore, the worst-case values of parameters pi and qi can

be their smallest or highest values depending on the time elapsed since the start of the diffusion

process.
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Figure 1: The impact of q and p on marginal adoption rates
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The model we devise will identify the worst-case values of the parameters at each time period

among three possible choices (high/nominal/low) for each p and q. In particular, in this model,

nature as a “malicious adversary to the decision-maker” will decide whether two units of the budget

of uncertainty (one for p and one for q) should be spent to protect against uncertainty at a given

time period for a given product, or only one (and if so, which parameter it should be spent on), and

whether the unit of uncertainty budget should be spent on the parameter being higher or smaller

than expected in that time interval. Note that at each time period and for each product, this leads

to 9 possible configurations: 1 for the all-nominal case, 4 for the 1-unit case (either on p or on q,

either to the maximum value or the minimum), 4 for the 2-unit cases (4 combinations of maximum

or minimum values for the two parameters).

In mathematical terms, the marginal adoption rate for product i at time period t takes one of

the following 9 values:

• f0
i (t) = f(t, q̄i, p̄i)

• f1
i (t) = f(t, q̄i − q̂i, p̄i)

• f2
i (t)= f(t, q̄i + q̂i, p̄i)

• f3
i (t)= f(t, q̄i, p̄i − p̂i)

• f4
i (t)= f(t, q̄i, p̄i + p̂i)

• f5
i (t)= f(t, q̄i − q̂i, p̄i + p̂i)

• f6
i (t)= f(t, q̄i + q̂i, p̄i + p̂i)

• f7
i (t)= f(t, q̄i − q̂i, p̄i − p̂i)

• f8
i (t)= f(t, q̄i + q̂i, p̄i − p̂i)

Note that this means that the Bass parameters p and q will not remain constant over the whole

time horizon in this setting. Hence, the robust model will not be equivalent to a deterministic model
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with modified parameters, in contrast with other applications of the classical robust optimization

methodology.

Continuing our modeling of uncertain parameters, we observe that them’s, which represent the

final or steady-state market size of the new products, do not lend themselves to such a time-varying

representation: in the worst case, the mi’s, when assumed to lie in a given range or confidence

interval, will take their smallest possible value independently from the values of pi’s and qi and

this value will remain constant throughout the time horizon. Therefore, to avoid over-conservatism

in the number of product adopters, we address the uncertainty involved in the parameters pi and qi

of each product i using robust optimization techniques but initially assume that the parameter mi

of each product is constant, and later extend our original framework to handle the uncertainty in

the m’s using a real options approach.

Logit choice model parameters

We assume that the parameters aij and bij defining the response function of the potential partner

j for the product i belong to the intervals [āij − âij , āij ] and [b̄ij − b̂ij , b̄ij ], respectively. For

the logit choice model we do not need to consider the case where the parameters are higher than

their nominal values because (it is easy to show using simple mathematical computations that)

this always results in improved acceptance probabilities, so the worst case is never attained for the

parameters being equal to their upper bound. Figure 2 shows an example of acceptance probability

varying with the parameters.

Allowing again only deviations to the bounds of the interval (so a parameter takes either its

nominal value or its lower bound, for the reasons above), we find that the probability of the potential

partner j accepting the collaboration offer when the offered unit payment is Rj can take one of the

following four values:

• P 0
ij(Rj) = P (āij , b̄ij , Rj)

• P 1
ij(Rj) = P (āij − âij , b̄ij , Rj)
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Figure 2: The impact of aj and bj on the probability of acceptance

• P 2
ij(Rj) = P (āij , b̄ij − b̂ij , Rj)

• P 3
ij(Rj) = P (āij − âij , b̄ij − b̂ij , Rj)

The company seeks a partner whose probability to accept the collaboration offer exceeds a

specified probability level, α, for the payment offer Rj .

1.3 Real options

Cetinkaya and Thiele (2014) provide a general introduction to real options. In the problem con-

sidered here, the size parameter mi does not change during the diffusion process in contrast with

the other parameters of the Bass model, pi and qi for product i. It is estimated before the process

starts by using similar products that have already been brought to market or based on managerial

judgment. However, the company will have a more educated estimate for the parameter mi once it

has observed the adoption rates or sales in the first few periods after the product is launched. The

real option considered here provides the company with the right to reduce the size of the contract

(reserved capacity) with the partner by a given fraction at a certain time period. In the absence

of the real option, the company sets the size of the contract according to the highest possible new
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adoption rates considering the parameters p̄i, q̄i, p̂i, and, q̂i and the estimate for mi. For the pe-

riod that is s periods after the process starts, f+
i (s)mi units of capacity are reserved at the partner

company. This corresponds to a case where the partner company of a new shared-car service has to

agree to have a certain number of parking spots available for users of the car service. In other possi-

ble examples, the retailer must develop a specific infrastructure to house the new products, such as

storage space for parcel delivery, and is compensated for the electrical bill incurred in operating the

storage space. Although this strategy protects against underestimated mi, it might result in extra

payments made to the partners in the case of overestimated mi. The option to update the contract

size mitigates the risk of over-paying the retailer. This real option can be viewed as a European

type option to shrink the size of the contract while keeping the payment per unit constant.

The partner firm (the writer of the option) has to honor the innovative company’s (the buyer of

the option) wish to decrease the contract size by a fraction 1 − κi as stated in the contract at the

specified date for product i. This specified date is the option’s expiration date, which is ηi periods

after the product is launched. Therefore, the innovative firm pays an option premium Ωi to the

partner in exchange for his commitment to the terms of the real option for the product i. If the

innovative company exercises the real option for product i, the selected partner for this product has

to give up the profit that it could have gained by conducting business for 1− κi units of product.

The real options formulation will combine expected value optimization and robust optimiza-

tion because stochasticity is required in order for the problem not to be trivial. (If there is no

stochasticity, there is no need for a real option to begin with.)

2 New Product Launch Decisions with Robust Optimization

2.1 Problem Setup

In this section, we provide a tractable robust optimization formulation for an innovative company

that:

• maximizes its total (Net Present Value of) profit considering:
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· the worst-case total number of adopters of each product,

· the minimum unit payments to partners that ensure that the worst-case probability of

accepting the offer is no less than a specific target,

· the present value of each product’s cash flow,

· product-specific sets of potential partners with different choice model parameters, and

· product-specific setup cost and available investment budget limits per time period,

• decides on:

· the sequence of the products to be launched,

· the product-specific potential partner to launch the product with,

• by incorporating the uncertainty structure presented in Section 1.2.2 with:

· the uncertainty budget for the Bass model parameters,

· the uncertainty budget for the logit choice model parameters, and

· the estimation errors for the market sizes of each product.

We assume launch decisions are static or here-and-now, i.e., all determined at the beginning of

the time horizon by the decision-maker. This is because product demands are independent from

each other. If product demands are correlated, so that information from a launch can be used to

narrow down uncertainty regarding subsequent launches, we recommend an open-loop approach

combined with the updating of the confidence intervals for the uncertain parameters. Such an

approach, however, is outside the scope of the present paper.

We will use the following notation:

General Parameters
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N : the total number of new products,

Ki : the maximum number of time periods (over all the values of pi and qi considered)

until adoption of product i reaches steady-state,

T : the end of the time horizon considered,

S : the last time period when a product can be launched,

r : the discount rate,

µi : the price of new product i,

mi : the estimated number of ultimate adopters of product i,

Ai : the set of potential partners for product i,

α : the specified probability level for the partner selection process,

Bt : the available investment budget for the time period t,

Di : the setup cost of launching the product i.

Further, when we introduce the real options framework to update the parameter mi, we will use:

ηi : the number of periods between the time period when product i is launched

and the time period when the real option on the product i can be exercised,

κi : the fraction by which the capacity at the partner can be decreased if the real option

on product i is exercised ηi periods after the start of product i’s diffusion process.

The Bass Model and Logit Choice Model Parameters

fki (t) : adoption rate of product i, t periods after the start of diffusion process

when the parameters of the Bass model belong to case k, k ∈ {0, .., 8}

f+
i (t) : the maximum possible adoption rate of the product i over {0, . . . , t},

P kij(R) : the probability of potential partner j for product i accepting the unit payment offer R

when the parameters of the logit choice model belong to case k, k ∈ {0, .., 3},

Qkij(α) : the minimum payment accepted (inverse logit probability function) by potential partner j for

product i and probability level α when parameters of the logit choice model belong to case k,
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m̃l
i : (in the real options model) the updated market-size estimate for product i in scenario l

when ηi periods have passed since product i was launched,

πli : (in the real options model) the probability that the updated market-size estimate

for product i is m̃l
i, in scenario l.

Robust Optimization Parameters and Decision Variables

ΓB : the uncertainty budget (parameter) for the Bass model parameters restricting the number of

parameters whose values deviate from the nominal value,

ΓL : the uncertainty budget (parameter) for the logit choice model parameters restricting the number of

parameters whose values deviate from the nominal value,

xiτ : a binary variable (chosen by decision-maker (DM)) =1 if product i is launched at time τ , 0 o.w.,

yij : a binary variable (chosen by DM) =1 if the potential partner j is selected for product i, 0 o.w.,

vkis: a binary variable (chosen by nature) =1 if the adoption rate of product i is fki (s) s time periods

after the diffusion process starts, 0 o.w.,

wkij : a binary variable (chosen by nature) =1 if the probability of acceptance by potential partner j

for product i is P kij , 0 o.w.

Note that the budgets of uncertainty ΓB and ΓL are selected by the decision maker to reflect his

aversion to risk, rather than to guarantee probabilities of constraint violation as in Bertsimas and

Sim (2004). This is because the problem structure, with uncertain parameters inside exponentials,

does not satisfy the assumptions required to use the results in Bertsimas and Sim (2004).

Let us now consider the deterministic problem for an instant. Let Φi(α) be the optimal objective

in the partner selection problem for product i, i.e., the smallest payment the company must offer

the partner for its partnership offer to be accepted with probability α. We have:

Φi(α) = min
j∈Ai, Ri,j

{
Ri,j : P 0

ij(Rij) ≥ α
}
. (3)
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Equivalently, we have, using the definition of the inverse probability function:

Φi(α) = min
j∈Ai

Q0
ij(α), ∀i.

It is easy to check that the following holds.

Lemma 1 (Inverse Logit Probability Function) For a given probability level α, the optimal pay-

ment offer by the company is given by:

Φi(α) = min
j∈Ai

{
1

b̄ij

(
−āij + ln

(
α

1− α

))}
, ∀i. (4)

Proof. Follows directly from the fact thatP 0
ij(Rij) = 1

1+e−(āj−b̄jRij )
so thatQ0

ij(α) = 1
b̄ij

(
−āij + ln

(
α

1−α

))
.

2

The deterministic product launch problem where each product can be launched at most once and

the partner is paid per unit of total capacity he has to install is formulated as:

max
x

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s
[µif

0
i (s)− f+

i (s)Φi(α)]

)]

s.t.
S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτDi ≤
Bτ

(1 + r)τ−1
, ∀τ,

xiτ ∈ {0, 1}, ∀i, ∀τ.

(5)

The available budget in time period τ is divided by (1+r)τ−1 to capture that a budget representing

the same marketing power at each time period would need to grow by 1 + r at each time period.

Alternatively, this could be incorporated into the definition of Bτ .

Note that in this model, the innovative company pays the partner for the maximum adoption

rate summed over the time horizon (equal to the maximum number of products sold) because this

determines the capacity that must be available at the partner. The partner is not allowed to change
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capacity over time except through the real options framework described later. For instance, in the

case of a new shared-car service, the partner must agree to have space to park the maximum number

of cars. While the specifics of the payment model to the partners in Problem (5) are motivated by

the company’s desire not to sell out of its new products before their full sales potential has been

realized, other payment schemes can easily be incorporated by changing the objective coefficients

appropriately. In particular, the extension to a model where the partner must pay the actual (rather

than maximum) adoption rate is immediate.

Therefore, the deterministic product launch problem can be solved by first determining Φi(α)

using Eq.(4) for each product i and then solving Problem (5).

2.2 Robust Product Launch

2.2.1 Partner Selection Subproblem

As explained in Section 1.2.2, the uncertainty involved in the logit choice parameters results in four

possible acceptance probability values, for each potential partner, each product and a given periodic

payment offer. This is under the budget-of-uncertainty constraint restricting the total number of

logit choice parameters taking their worst-case values. The company selects partners with the aim

of minimizing its worst-case total payment across all products. We will denote y a binary decision

matrix capturing the partner choice for each product andw a parameter matrix indicating the worst-

case uncertainty outcome. Let Y be the feasible set for the partner selection vector:

Y =

y | ∑
j∈Ai

yij = 1, ∀i, yij ∈ {0, 1}, ∀i, j

 .

Let W be the uncertainty set for the payoffs:

W =

w |
3∑

k=1

wkij ≤ 1,∀i, ∀j,
N∑
i=1

∑
j∈Ai

(
2∑

k=1

wkij + 2w3
ij

)
≤ ΓL, w

k
ij ∈ {0, 1}, ∀i, j, k

 .
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The problem becomes:

min
y∈Y

max
w∈W

N∑
i=1

∑
j∈Ai

yij

(
Q0
ij +

3∑
k=1

(
wkij [Q

k
ij −Q0

ij ]
))

(6)

where we have dropped, for notational convenience, the argument in α for the Qkij (minimum

payment the innovative company would pay retailer j in uncertainty scenario k in order for that

retailer to accept the partnership offer for product i with probability at least α).

The constraints in Problem (6) can be explained as follows. For each product and retailer, the

worst-case uncertainty can be either case 0, or 1, or 2, or 3. This is modeled by stating that at

most one among the cases 1, 2, 3 can be selected for each (product, retailer) pair (i, j). Recall

that case 0 is the benchmark using zero unit of the uncertainty budget, cases 1 and 2 each use

one unit and case 3 uses two units, because both parameters a and b are equal to their lowest

values in that case. Hence, each (product, retailer) pair (i, j) uses w1
ij + w2

ij + 2w3
ij units of the

budget of uncertainty, taking into account that at most one of the wkij among k = 1, 2, 3 will be

1 and the others 0. The total amount of budget used cannot exceed ΓL, which is selected by the

manager and measures his degree of aversion to uncertainty. An intuition behind this budget-of-

uncertainty constraint is that, if unfavorable independent parameter values have been realized for

many periods, favorable parameters will materialize in the future. In other words, it is unlikely that

the decision-maker will observe unfavorable parameter values throughout the whole time horizon.

The constraint
∑

j∈Ai yij = 1, ∀i ensures that exactly one partner is selected per new product.

The objective is calculated, for each (product, retailer) pair (i, j), by first considering the

benchmark payment Q0
ij and adding to it the complement Qkij − Q0

ij if (i, j) is in uncertainty

scenario k = 1, 2, 3, of which 1 at most can be chosen. The part of the payment about product

i,
∑

j∈Ai yij(Q
0
ij +

∑3
k=1(wkij [Q

k
ij − Q0

ij ])), is then denoted Θ∗i (α,ΓL). Our approach for the

partner payment subproblem remains, as in the deterministic case, to compute the payments offline

in a tractable manner before incorporating the resulting values into the optimization problem that

determines the launch sequence.
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2.2.2 Robust Launch Master Problem

As explained above, the uncertainty involved in the Bass model’s parameters leads to nine possible

adoption rates for each product and each time period under the budget-of-uncertainty constraint.

We model again the changes in objective by isolating the nominal rate f0
i (s) as benchmark and

adding the changes in marginal adoption rate from that benchmark fki (s) − f0
i (s) using binary

variables vkis, equal to 1 if the adoption rate of product i is fki (s) s time periods after the diffusion

process starts and 0 otherwise. We also subtract the payment to the chosen retailer for that time

period, for each product. Recall that one unit of uncertainty is used from the budget when selecting

k = 1, . . . , 4 and two units when selecting k = 5, . . . , 8. The budget of uncertainty ΓB is again

selected by the decision-maker to reflect his degree of aversion to uncertainty. An intuition be-

hind this budget-of-uncertainty constraint is that it is unlikely that the decision-maker will observe

unfavorable values for all parameters throughout the whole time horizon.

Let X be the feasible set for the launch decision vector:

X =

{
S∑
τ=1

xiτ ≤ 1, ∀i,
N∑
i=1

Dixiτ ≤
Bτ

(1 + r)τ−1
, ∀τ, xiτ ∈ {0, 1}, ∀i, τ

}
.

Let V be the uncertainty set vector for the Bass curves:

V =

{
8∑

k=1

vkis ≤ 1,∀i, ∀s,
N∑
i=1

Ki∑
s=1

(
4∑

k=1

vkis + 2
8∑

k=5

vkis

)
≤ ΓB, v

k
is ∈ {0, 1}, ∀i, s, k

}
.

The robust product launch problem is then formulated as:

max
x∈X

min
v∈V

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s

[
µi

(
f0
i (s) +

8∑
k=1

vkis[f
k
i (s)− f0

i (s)]

)
− f+

i (s)Θ∗i (α,ΓL)

])]
(7)
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2.3 Problem Solution Approach

The tractability of Problem (6) (respectively, Problem (7)) above depends on the decision maker’s

ability to transform the inner maximization (minimization) problem into a minimization (maxi-

mization) problem that can then be incorporated into the outer problem of the same type. Bertsi-

mas and Sim (2004) use strong duality to obtain a tractable formulation for the robust optimization

model when the inner problem is a linear program. However, the inner problems of Problem (6)

and Problem (7) have integer variables, which complicates the use of strong duality. Therefore,

we seek ways of expressing the inner problems as linear programming models and only then us-

ing strong duality for those new problems. Specifically, we follow Duzgun and Thiele (2010) and

investigate total unimodularity of the constraint matrices of the inner problems. While neither con-

straint matrix, in the problems above, satisfies the total unimodularity property, we show that we

can reformulate the problems as a series of problems with totally unimodular constraint matrices,

which will allow us to conclude.

Let us define the relevant inner problems as follows. For a given feasible decision vector y, the

inner maximization problem of Problem (6), which addresses the uncertainty in the logit choice

model parameters, is given by:

max
w∈W

N∑
i=1

∑
j∈Ai

yij

(
Q0
ij +

3∑
k=1

(
wkij [Q

k
ij −Q0

ij ]
))

. (8)

For a given feasible x decision, the inner minimization problem of Problem (7), which addresses

the uncertainty in the Bass model parameters, is given by:

min
v∈V

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s

[
µi

(
f0
i (s) +

8∑
k=1

vkis[f
k
i (s)− f0

i (s)]

)
− f+

i (s)Θ∗i (α,ΓL)

])]
.

(9)

Neither Problem (8) nor Problem (9) has a totally unimodular constraint matrix. However,

they have a similar structure allowing us to reformulate the budget-of-uncertainty constraint by

introducing two new integer parameters Γ′L (to be enumerated between 0 and b0.5ΓLc) and Γ′B
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(to be enumerated between 0 and b0.5ΓBc). We then decompose the original uncertainty budget

constraints so that the constraint matrices of both problems become totally unimodular, we can

relax the integrality constraints and then use strong duality to reformulate the master problems in a

tractable manner.

Lemma 2 (Inner robust problems) (i) Problem (8) is equivalent to solving the series of prob-

lems:

max
w

N∑
i=1

∑
j∈Ai

yij

(
Q0
ij +

3∑
k=1

(
wkij [Q

k
ij −Q0

ij ]
))

s.t.
3∑

k=1

wkij ≤ 1,∀i,∀j ∈ Ai,

N∑
i=1

∑
j∈Ai

2∑
k=1

wkij ≤ ΓL − 2Γ′L,

N∑
i=1

∑
j∈Ai

w3
ij ≤ Γ′L,

wkij ∈ {0, 1}, ∀i, ∀j, ∀k.

(10)

parametrized over Γ′L ∈ {0, . . . b0.5ΓLc} and selecting as optimal Γ′L the one that maximizes the

optimal objective in the series of Problems (10).
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(ii) Problem (9) is equivalent to solving the series of problems:

min
v

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s

[
µi

(
f0
i (s) +

8∑
k=1

vkis[f
k
i (s)− f0

i (s)]

)
− f+

i (s)Θ∗i (α,ΓL)

])]

s.t.
8∑

k=1

vkis ≤ 1, ∀i, ∀s ≤ Ki,

N∑
i=1

Ki∑
s=1

4∑
k=1

vkis ≤ ΓB − 2Γ′B,

N∑
i=1

Ki∑
s=1

8∑
k=5

vkis ≤ Γ′B,

vkis ∈ {0, 1}, ∀i, ∀s, ∀k.
(11)

parametrized over Γ′B ∈ {0, . . . b0.5ΓBc} and selecting as optimal Γ′B the one that minimizes the

optimal objective in the series of Problems (11).

Proof. The result is immediate if the constraints
∑N

i=1

∑
j∈Ai w3

ij ≤ Γ′L and
∑N

i=1

∑Ki
s=1

∑8
k=5 v

k
is ≤

Γ′B in Problems (10) and (11) are equality constraints; however, to obtain a key result below, we

need to relax the equal sign without losing optimality. We now show how to do so. The minimum

payment under an uncertainty scenario is always greater than or equal to the minimum payment

under the nominal case, because we always have an ordering on the probability functions (the prob-

ability of yes in the nominal case is no less than the probability of yes with uncertainty) since the

coefficients of the logit function are smaller. This matches intuition since the partner must be com-

pensated for the uncertainty; otherwise he will not accept the offer. Similarly, for (ii), the adoption

rate of product i t periods after the start of the diffusion process is no greater in the case with

high-uncertainty than in the nominal case. Thus, the coefficients in front of the decision variables

wkij , resp. vkij , are always non-negative, resp. non-positive. 2

Through the parametrization above, the structure of the constraint matrix becomes one where (i)

all the decision variables are present in the first group of constraints, (ii) only the decision variables
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corresponding to scenarios using only 1 unit of uncertainty are present in the second constraint

group (which is in fact a single constraint, corresponding to the inequality with ΓL − 2Γ′L or

ΓB − 2Γ′B in the right-hand side), and (iii) only the decision variables corresponding to scenarios

using 2 units of uncertainty are present in the third constraint group. We use the following lemma

to conclude.

Lemma 3 (Nemhauser and Wolsey (1999)) Let A be a (0,−1, 1) matrix with no more than two

nonzero elements in each column. Then, A is totally unimodular if and only if the rows of A can be

partitioned into two subsets Q1 and Q2 such that if a column contains two nonzero elements, the

following statements are true:

• If both nonzero elements have the same sign, then one is in a row contained in Q1 and the

other is in a row contained in Q2.

• If the two nonzero elements have opposite sign, then both are in rows contained in the same

subset.

This result is important because the extreme points of a polyhedron with a totally unimodular con-

straint matrix and an integer right-hand side are integer, so that we are able to relax the integrality

constraints in the inner problems and obtain linear problems. This in turn allows us to invoke strong

duality in linear programming to derive a tractable reformulation.

Lemma 4 The constraint matrices of Problem (10) and Problem (11), namely P′1 and P′2, are

totally unimodular.

Proof. A totally unimodular matrix stays totally unimodular after multiplying a row by−1 (Nemhauser

and Wolsey, 1999). Therefore, we multiply the second group of constraint coefficients by −1 and

obtain the structure required to conclude, putting the rows in the first and third groups of constraints

in Q1 and those in the second group in Q2, for both problems.

In mathematical terms, let h1 =
∑N

i=1 A
i and h2 =

∑N
i=1Ki. The constraint matrices of

Problem (10) and Problem (11) have the following structures, respectively, where the decision
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matrices have been redefined as decision vectors. Ik refers to the identity k × k matrix. Similarly,

0k and 1k refer to the 1× k row vectors of all 0 and all 1.

P′1 =


Ih1 Ih1 Ih1

1h1 1h1 0h1

0h1 0h1 1h1



P′2 =


Ih2 Ih2 Ih2 Ih2 Ih2 Ih2 Ih2 Ih2

1h2 1h2 1h2 1h2 0h2 0h2 0h2 0h2

0h2 0h2 0h2 0h2 1h2 1h2 1h2 1h2


Note that the 3 column-blocks for P′1 and 8 column-blocks for P′2 reflect the 3 and 8 scenarios

(without the baseline scenario of all-nominal values), respectively, for the logit choice model and

the Bass diffusion model. Multiplying the second row-block in the matrices by −1 yields:

P′′1 =


Ih1 Ih1 Ih1

−1h1 −1h1 0h1

0h1 0h1 1h1



P′′2 =


Ih2 Ih2 Ih2 Ih2 Ih2 Ih2 Ih2 Ih2

−1h2 −1h2 −1h2 −1h2 0h2 0h2 0h2 0h2

0h2 0h2 0h2 0h2 1h2 1h2 1h2 1h2


The matrices P′′1 and P′′2 satisfy the desired property. 2

We now present the main result in this section.

Theorem 5 The robust optimization problem (7) is equivalent to solving the mixed integer pro-
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gramming problem:

max
x,σ,γ,δ,ε,Z

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s
(
µif

0
i (s)− f+

i (s)Θ∗i (α,ΓL)
))]
− Z

s.t. Z ≥

(
N∑
i=1

Ki∑
s=1

εis + σ(ΓB − 2Γ′B) + γΓ′B +
N∑
i=1

Ki∑
s=1

8∑
k=1

δkis

)
, ∀Γ′B ∈ {0, ..., b0.5ΓBc},

εis + σ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {1, .., 4},

εis + γ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {5, .., 8},

S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτDi ≤
Bτ

(1 + r)τ−1
, ∀τ,

xi,τ ∈ {0, 1}, ∀i, ∀τ

ε, γ, δ, σ ≥ 0,

(12)

where Θ∗i (α,ΓL) is the part of the company’s payment to partners for product i, with the worst-
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case total payment being the optimal objective of:

min
θ,β,χ,z,y,Y

N∑
i=1

∑
j∈Ai

yijO
0
ij + Y

s.t. Y ≥
N∑
i=1

∑
j∈Ai

βij + χΓL + (θ − 2χ)Γ′L +

N∑
i=1

∑
j∈Ai

3∑
k=1

zkij , ∀Γ′L ∈ {0, ..., b0.5ΓLc},

βij + χ+ zkij − yij [Okij −O0
ij ] ≥ 0, ∀i, ∀j ∈ Ai, ∀k ∈ {1, 2},

βij + θ + zkij − yij [O3
ij −O0

ij ] ≥ 0,∀i, ∀j ∈ Ai,∑
j∈Ai

yij = 1, ∀i,

yij ∈ {0, 1}, ∀i, j,

θ, βij , χ, z
k
ij ≥ 0.

(13)

Proof. Consider the inner problem (11). Because the left-hand side constraint matrix is totally

unimodular and the right-hand side coefficients are integer, the feasible set of the linear relaxation

has integer extreme points, therefore its optimal objective is equal to the optimal objective of the

original problem with binary variables and we can use strong duality for the linear relaxation of

the problem. This technique was first used in Duzgun and Thiele (2010). Another example of use

of robust optimization combined with limited probabilistic knowledge can be found in Mak et al

(2014). This leads to the reformulation:

max
σ,γ,δ,ε

−

(
N∑
i=1

Ki∑
s=1

εis + σ(ΓB − 2Γ′B) + γΓ′B +
N∑
i=1

Ki∑
s=1

8∑
k=1

δkis

)

s.t. εis + σ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {1, .., 4},

εis + γ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {5, .., 8},

ε, γ, δ, σ ≥ 0.

(14)
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However, while the decision maker seeks to maximize the worst-case NPV over the product launch

sequences x, we must first minimize the objective of Problem (14) over Γ′B taking integer val-

ues between 0 and b0.5ΓBc before we can maximize over x. In other words, our problem in-

volves, from left to right, a maximization over x, a minimization over Γ′B and a maximization

over the auxiliary dual variables ε, γ, δ, σ of a function that is bilinear in Γ′B and γ, σ, and linear

in all other variables. But because the minimization is over a finite set Γ′B ∈ {0, ..., b0.5ΓBc},

we can linearize this part of the problem by introducing an auxiliary variable Z ′ that will replace

minΓ′B
maxσ,γ,δ,ε−

(∑N
i=1

∑Ki
s=1 εis + σ(ΓB − 2Γ′B) + γΓ′B +

∑N
i=1

∑Ki
s=1

∑8
k=1 δ

k
is

)
and be con-

strained so thatZ ′ ≤ maxσ,γ,δ,ε−
(∑N

i=1

∑Ki
s=1 εis + σ(ΓB − 2Γ′B) + γΓ′B +

∑N
i=1

∑Ki
s=1

∑8
k=1 δ

k
is

)
for all Γ′B ∈ {0, ..., b0.5ΓBc}. Then, because of the sign of the inequality, the maximum can be

dropped and it is necessary and sufficient to find a feasible solution (σ, γ, δ, ε) that satisfies the

inequality. We then perform the change of variables Z = −Z ′ to conclude. The proof for Problem

(13) is very similar and therefore is left to the reader. 2

2.4 Robust Product Launch with a Real Option: Option to Update the Contract

Size

In this section, we address the difficulty in estimating accurately the parameter mi, the ultimate

number of adopters of product i. We build upon the setup provided in Section 1.3.

We assume that the partners are rational decision makers, and they use the NPV of the net

profit they obtain as the metric to compare the two alternatives: the business contract with the in-

novative company in the absence of the real option and in the presence of the real option. However,

the innovative company does not know the unit cost that the partner company encounters for the

product i. Therefore, we use the industry profit margin average ψi as an estimation for the profit

margin of each of the potential partners for product i. (We use the data on S&P 500 sectors and

industries profit margins in Yardeni and Abbott (2014) as a reference.) The potential partner is

expected to be paid an amount of money equal to mif
+
i (s) at the sth period of their partnership

where s ranges from 1 to Ki. Therefore, the NPV of the total payments foreseen to be made to
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partner j for product i, which is introduced to the market at time period τ when the real option is

not available, is formulated as (with τ the launch time of product i):

NPV (Total Payment) =
1

(1 + r)τ−1

Ki∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
.

Then, using the industry profit margin for the partner for product i, the NPV of the profit that

the partner obtains from this business is formulated as:

NPV (Total Profit) =
ψi

(1 + r)τ−1

Ki∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
.

If the innovative company has purchased the real option and exercises it, the partner will be

paid:

NPV (Total Payment)′ =
1

(1 + r)τ−1

Ωi +

ηi∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
+

Ki∑
s=ηi+1

f+
i (s)κimiΘ

∗
i (α,ΓL)

(1 + r)s


and the total net profit of the partner will be:

NPV (Total Profit)′ =
1

(1 + r)τ−1

Ωi + ψi

ηi∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
+ ψi

Ki∑
s=ηi+1

f+
i (s)κimiΘ

∗
i (α,ΓL)

(1 + r)s


The partner company needs to have at least the same profit when the innovative company

exercises the option in order to accept the contract with the real option. Therefore, the option

premium should be at least equal to the NPV of the profit that could have been obtained by

the decreased portion of the contract. In other words, we should have NPV (Total Profit) <=

NPV (Total Profit)′ so that the partner company accepts the requirements of the real option. This
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results in the following option premium formulation:

Ω∗i = ψi

Ki∑
s=ηi+1

f+
i (s)(1− κi)miΘ

∗
i (α,ΓL)

(1 + r)s
.

In the presence of the real option, the innovative company exercises the real option if the new

estimate m̃i is less than the amount κimi specified in the option. It is assumed that the innovative

company has a set of scenarios for the possible future estimates for the ultimate number of adopters

(m̃l
i) and their corresponding probabilities (πli). Let us define a set N i such that N i = {l : m̃l

i <

κimi}. Then, the probability that the innovative firm exercises the option (ρi) for the product i is

calculated as:

ρi =
∑
l∈N i

πli.

The expected value of the NPV of the payments foreseen to be made by the innovative company

to the prospective partner is equal to (distinguishing between the time periods 1 to ηi before the

option can be exercised and the time periods ηi + 1 onwards, with the possible size adjustment):

1
(1 + r)τ−1

(
Ω∗i +

ηi∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s

+ρi

Ki∑
s=ηi+1

f+
i (s)κimiΘ

∗
i (α,ΓL)

(1 + r)s
+ (1− ρi)

Ki∑
s=ηi+1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s

 .

Therefore, in the presence of real options, Problem (12) becomes:
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max
x,σ,γ,δ,ε,ν

N∑
i=1

S∑
τ=1

(
xiτ

(1 + r)τ−1

[
ηi∑
s=1

(
mi

(1 + r)s
(
µif

0
i (s)− f+

i (s)Θ∗i (α,ΓL)
))])

N∑
i=1

∑
l∈N i

πli

S∑
τ=1

 xiτ
(1 + r)τ−1

 Ki∑
s=ηi+1

(
1

(1 + r)s

(
ml
iµif

0
i (s)− κimif

+
i (s)Θ∗i (α,ΓL)

))
N∑
i=1

∑
l∈N i′

πli

S∑
τ=1

 xiτ
(1 + r)τ−1

 Ki∑
s=ηi+1

(
1

(1 + r)s

(
min(ml

i,mi)µif
0
i (s)−mif

+
i (s)Θ∗i (α,ΓL)

))− Z
s.t. Z ≥

(
N∑
i=1

Ki∑
s=1

εis + σ(ΓB − 2Γ′B) + γΓ′B +

N∑
i=1

Ki∑
s=1

8∑
k=1

δkis

)
, ∀Γ′B ∈ {0, ..., b0.5ΓBc},

εis + σ + δkis ≥
S∑
τ=1

xiτµi
(∑

l∈N i ml
iπ
l
i +
∑

l∈N i′ πli min(mi,m
l
i)
)

[f0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ≥ ηi + 1, ∀k = {1, .., 4},

εis + σ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ..., ηi}, ∀k = {1, .., 4},

εis + γ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ..., ηi}, ∀k = {5, .., 8},

εis + γ + δkis ≥
S∑
τ=1

xiτµi
(∑

l∈N i ml
iπ
l
i +
∑

l∈N i′ πli min(mi,m
l
i)
)

[f0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ≥ ηi + 1, ∀k = {5, .., 8},

S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτ (Di(1 + r)(τ−1) + Ω∗i (α,ΓL)) ≤ Bτ , ∀τ,

xi,τ ∈ {0, 1}, ∀i, ∀τ,

ε, γ, δ, σ ≥ 0.

(15)

2.5 Numerical Experiments

We consider 10 new products and 5 potential partners for each product. All parameters are ran-

domly selected using uniform distributions. The Bass model parameters are selected so that the

value of the parameter Ki (the longest possible time period from the beginning of the diffusion

process until it terminates) varies between 12 and 15 periods. Market size is between 1200 and

1450 customers for each product. The unit price of each product is between $200 and $300. The

logit choice parameters are chosen so that the nominal unit cost of outsourcing is between $15 and

$30 for each product. The parameters ηi, κi, ρi, are taken to be 5, 0.9, and 0.6 for all the products,
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for simplicity. The random parameters can deviate from their nominal values by ±20%.

We observe in Figures 3-4, showing the marginal adoption rates in the robust model, that the

computer first selects a marginal rate lower than expected around the time of peak marginal adop-

tion and, if the budget of uncertainty in the Bass model increases so that more parameters can take

their worst-case value, the time periods for which the parameters deviate from their nominal val-

ues are those around that peak-adoption time, where the impact of unrealized sales is most acute.

(Additional figures about marginal adoption rates for higher values of ΓB , and about all cumulative

adoption rates, are omitted here due to space constraints but are available in Cetinkaya (2014).)

This translates into significant drops in the cumulative adoption rates and the ultimate market size.

The impact of increasing the budget of uncertainty ΓB decreases with time when the marginal

adoption rate becomes closer to zero, and deviations from nominal values thus have little impact.

In our example, there are 30 time periods but the adoption rate process reaches steady state after

about 15 periods and has about 6-7 time periods of high marginal adoption rates. We observe that

increasing ΓB beyond 7 does not noticeably affect the adoption curves, but that increasing ΓB from

0 to 7 significantly decrease the overall number of adopters. In fact, adoption rates reach a steady

state about 60% below their nominal values in this example for ΓB = 7.

We are particularly interested in the impact of the Bass-model budget of uncertainty ΓB on the

solution, since of the two budgets, that one is the less problem-specific and is the more likely to be

applied to other robust optimization problems in new product launch and innovation management.

Therefore, we solve the problem both without and with options for ΓL = 30 and vary ΓB from 1

to 75 in increments of 1. The problems were solved at the COR@L lab at Lehigh University using

AMPL/CPLEX 12.5 on a 64-bit computer with AMD Opteron 2.0 GHz (x16) processor and 32

GB memory. All the problems were solved within milliseconds (about 300 MIP simplex iterations

for each product launch optimization problem at given uncertainty budgets); therefore, we do not

report computational times here.

Without real options, there are 14 breakpoints in ΓB , at which which the optimal launch se-

quence x changes. All the strategies have the following in common:
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(a) ΓB = 1 (b) ΓB = 2

(c) ΓB = 3 (d) ΓB = 4

Figure 3: The Impact of the Uncertainty Budget Parameter on the Robust Marginal Adoption Rates
(1 ≤ ΓB ≤ 4)

• 1 and 8 are launched first, followed by 6.

• 9 is always launched at the 6th time period, and 4 at the 9th time period.

• All the products are always launched prior to the 10th time period, which is never used for a

launch.
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(a) ΓB = 5 (b) ΓB = 6

(c) ΓB = 7 (d) ΓB = 8

Figure 4: The Impact of the Uncertainty Budget Parameter on the Robust Marginal Adoption Rates
(5 ≤ ΓB ≤ 8)

• 2, 7 and 10 will be launched in periods 3, 4 and 5 (one in each time period), and 3 and 5 will

be launched in periods 7 and 8 (one in each time period).

· 7 is usually launched at time 3, 2 at time 4 and 10 at time 5.

· 5 is usually launched at time 7 and 3 at time 8.

· The specific sequence depends on ΓB .
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With real options, there are 17 breakpoints in ΓB , at which which the optimal launch sequence

x changes. We observe in this numerical experiment that the ith smallest breakpoint without real

options is at most the ith breakpoint with real options, for i ≤ 12, but the breakpoints without

real options for i = 13 and i = 14 are higher than their counterparts with real options. The ith

launch sequence without real options is only identical to the ith launch sequence with real options

for i ≤ 7. In other words, without real options, for small values of ΓB , the decision-maker simply

changes his strategy sooner to protect against uncertainty. As the difference between the ith ΓB

breakpoints grows, the decision-maker skips strategies that had been optimal without real options,

and in some cases implements new ones. For instance, the 8th strategy with real options is the 10th

strategy without real options, but strategies 11 to 15 in the case with real options launch product

5 at time 6, which never happened in the case without real options. All the strategies have the

following in common:

• 1 and 8 are launched first, followed by 6.

• 4 is always launched at the 9th time period.

• All the products are always launched prior to the 10th time period, which is never used for a

launch.

• 2, 7 and 10 will be launched in periods 3, 4 and 5 (one in each time period), and 3, 5 and 9

will be launched in periods 6 to 8 (one in each time period).

· 7 is usually launched at time 3, 2 at time 4 and 10 at time 5.

· 9 is usually launched at time 6 (otherwise 5 is launched at time 6) and 3 at time 8

(otherwise 5 is launched at time 8). The product launched at time 7 can be 3, 5 or 9.

· The specific sequence depends on ΓB .

A key change due to the presence of real options here is to introduce more variability on the launch

time of items 5 and 9.
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The robust optimization approach thus presents the added benefit of identifying a set of candi-

date strategies that the ambiguity-averse decision-maker can then study in more depth in the light

of the specific business environment he is in.

3 Conclusions

We have presented an approach to new product introduction under parameter uncertainty that incor-

porates robust optimization to the Bass diffusion model in order to determine the optimal product

launch sequence for the decision maker. Future work includes (i) extending our results to include

correlation between products’ success with customers through a robust dynamic optimization ap-

proach, (ii) providing an adaptive decision tool that would have the choice of the next product

launched depend on, for instance, the market size reached to date or more specific estimates of the

innovation parameters and (iii) further analyzing the impact of real options in the robust launch

sequence.
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Table 2: Sensitivity of the optimal strategy to the parameter qi
Coefficient of qi only q1 changes only q2 changes only q3 changes only q4 changes only q5 changes

0.6 87 9 3 7 88
0.64 87 9 3 7 88
0.68 87 9 3 7 88
0.72 87 9 3 7 88
0.76 85 7 3 9 90
0.8 85 7 3 9 90
0.84 85 7 1 9 90
0.88 85 1 7 9 90
0.92 85 1 7 9 90
0.96 87 7 7 9 90

1 7 7 7 7 7
1.04 112 33 7 111 7
1.08 112 113 3 111 7
1.12 112 113 107 111 7
1.16 112 113 107 111 7
1.2 112 113 107 111 7
1.24 112 113 107 111 7
1.28 112 113 107 111 7
1.32 112 113 107 111 7
1.36 112 113 107 111 7
1.4 112 113 107 111 7

Table 3: Sensitivity of the optimal strategy to the parameter pi
Coefficient of pi only p1 changes only p2 changes only p3 changes only p4 changes only p5 changes

0.6 112 7 1 9 7
0.64 112 7 1 9 7
0.68 112 7 1 9 7
0.72 112 7 1 9 7
0.76 112 7 1 9 7
0.8 112 7 1 9 7
0.84 112 7 1 9 7
0.88 112 7 7 9 7
0.92 112 7 7 9 7
0.96 112 7 7 7 7

1 7 7 7 7 7
1.04 7 7 7 7 112
1.08 7 9 7 7 112
1.12 7 9 7 7 112
1.16 7 9 7 7 112
1.2 7 9 7 87 112
1.24 7 9 7 87 112
1.28 7 9 7 87 112
1.32 7 33 7 87 112
1.36 7 33 7 87 112
1.4 7 33 7 87 112
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