
New Proofs for NMAC and HMAC:

Security Without Collision-Resistance

Mihir Bellare

Dept. of Computer Science & Engineering 0404, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

mihir@cs.ucsd.edu

http://www-cse.ucsd.edu/users/mihir

Abstract. HMAC was proved in [3] to be a PRF assuming that (1)
the underlying compression function is a PRF, and (2) the iterated hash
function is weakly collision-resistant. However, recent attacks show that
assumption (2) is false for MD5 and SHA-1, removing the proof-based
support for HMAC in these cases. This paper proves that HMAC is a
PRF under the sole assumption that the compression function is a PRF.
This recovers a proof based guarantee since no known attacks compro-
mise the pseudorandomness of the compression function, and it also helps
explain the resistance-to-attack that HMAC has shown even when im-
plemented with hash functions whose (weak) collision resistance is com-
promised. We also show that an even weaker-than-PRF condition on the
compression function, namely that it is a privacy-preserving MAC, suf-
fices to establish HMAC is a secure MAC as long as the hash function
meets the very weak requirement of being computationally almost uni-
versal, where again the value lies in the fact that known attacks do not
invalidate the assumptions made.

1 Introduction

HMAC [3] is a popular cryptographic-hash-function-based MAC. The basic con-
struct is actually NMAC, of which HMAC can be viewed as a derivative.

The constructions. Succinctly:

NMAC(Kout‖Kin, M) = H∗(Kout, H
∗(Kin, M))

HMAC(Kout‖Kin, M) = H(Kout‖H(Kin‖M)) .

Here H is a cryptographic hash function, eg. MD5 [28], SHA-1 [26], or RIPEMD-
160 [17]. Let h: {0, 1}c × {0, 1}b → {0, 1}c denote the underlying compression
function. (Here b = 512 while c is 128 or 160.) Let h∗ be the iterated compression
function which on input K ∈ {0, 1}c and a message x = x[1] . . . x[n] consisting of
b-bit blocks, lets a[0] = K and a[i] = h(a[i− 1], x[i]) for i = 1, . . . , n, and finally
returns a[n]. Then H∗(K, M) = h∗(K, M∗) and H(M) = H∗(IV, M), where M∗

denotes M padded appropriately to a length that is a positive multiple of b and
IV is a public c-bit initial vector that is fixed as part of the description of H .
Both NMAC and HMAC use two keys, which in the case of NMAC are of length

C. Dwork (Ed.): CRYPTO 2006, LNCS 4117, pp. 602–619, 2006.
c© International Association for Cryptologic Research 2006

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 603

c bits each, and in the case of HMAC of length b bits each and derived from a
single b-bit key. HMAC is a non-intrusive version of NMAC in the sense that it
uses the cryptographic hash function only as a black box, making it easier to
implement.

Usage. HMAC is standardized via an IETF RFC [22], a NIST FIPS [25] and
ANSI X9.71 [1], and implemented in SSL, SSH, IPsec and TLS amongst other
places. It is often used as a PRF (pseudorandom function [19]) rather than merely
as a MAC. In particular this is the case when it is used for key-derivation, as in
TLS [16] and IKE (the Internet Key Exchange protocol of IPsec) [20]. HMAC
is also used as a PRF in a proposed standard for one-time passwords [24].

What’s known. The results are for NMAC but can be lifted to HMAC. It
is shown in [3] that NMAC is a secure PRF if (1) the underlying compression
function h is a secure PRF, and also (2) that the hash function H is weakly
collision resistant (WCR). The latter, introduced in [3], is a relaxation of collision
resistance (CR) that asks that it be computationally infeasible for an adversary,
given an oracle for H∗(K, ·) under a hidden key K, to find a collision, meaning
distinct inputs M1, M2 such that H∗(K, M1) = H∗(K, M2).

The problem. HMAC is usually implemented with MD5 or SHA-1. But, due
to recent attacks [32,31], these functions are not WCR. Thus the assumption
on which the proof of [3] is based is not true. This does not reflect any actual
weaknesses in the NMAC or HMAC constructs, on which no attacks are known.
(Being iterated MACs, the generic birthday based forgery attacks of [27] always
break NMAC and HMAC in time 2c/2, but we mean no better-than-birthday
attacks are known.) But it means that we have lost the proof-based guarantees.
We are interested in recovering them.

Loss of WCR. First we pause to expand on the claim above that our main
hash functions are not WCR. Although WCR appears to be a weaker requirement
than CR due to the hidden key, in fact, for iterated hash functions, it ends up
not usually being so. The reason is that collision-finding attacks such as those on
MD5 [32] and SHA-1 [31] extend to find collisions in H∗(IV, ·) for an arbitrary
but given IV, and, any such attack, via a further extension attack, can be used
to compromise WCR, meaning to find a collision in H∗(K, ·), given an oracle for
this function, even with K hidden. This was pointed out in [3,21], and, for the
curious, we recall the attack in [2].

Main result. We show (Theorem 1) that NMAC is a PRF under the sole
assumption that the underlying compression function h is itself a PRF. In other
words, the additional assumption that the hash function is WCR is dropped.
(And, in particular, as long as h is a PRF, the conclusion is true even if H is
not WCR, let alone CR.)

The main advantage of our result is that it is based on an assumption that is
not refuted by any known attacks. (There are to date no attacks that compromise
the pseudorandomness of the compression functions of MD5 or SHA-1.) Another
feature of our result is that it is the first proof for NMAC that is based solely

604 M. Bellare

on an assumption about the compression function rather than also assuming
something about the entire iterated hash function.

Techniques. We show (Lemma 1) that if a compression function h is a PRF
then the iterated compression function h∗ is computationally almost universal
(cAU), a computational relaxation of the standard information-theoretic notion
of almost-universality (AU) of [13,33,30]. We then conclude with Lemma 2 which
says that the composition of a PRF and a cAU function is a PRF. (This can be
viewed as a computational relaxation of the Carter-Wegman paradigm [13,33].)

Related work. If h∗ were a PRF, it would imply it is cAU, but h∗ is not a PRF
due to the extension attack. It is however shown by [4] that if h is a PRF then h∗

(which they call the cascade) is a “pf-PRF” (prefix-free PRF), meaning a PRF
as long as no query of the adversary is a prefix of another query. It was pointed
out to us by Shoup after seeing an early draft of our paper that it is possible
to apply this in a black-box way to show that h∗ is cAU. However Lemma 1 is
a somewhat stronger result and bound whose proof distills and strengthens the
ideas of [4] and also involves some new ones. For comparison, we do present the
indirect proof in [2].

Dodis, Gennaro, H̊astad, Krawczyk and Rabin show [18, Lemma 4] that the
cascade over a family of random functions is AU as long as the two messages
whose collision probability one considers have the same length. (In this model,
h(K, ·) is a random function for each K ∈ {0, 1}c. That is, it is like Shannon’s
ideal cipher model, except the component maps are functions not permutations.)
This does not imply Lemma 1 (showing the cascade h∗ is cAU if h is a PRF),
because we need to allow the two messages to have different lengths, and also
because it is not clear what implication their result has for the case when h is
a PRF. (A PRF does not permit one to securely instantiate a family of random
functions.) A second result [18, Lemma 5] in the same paper says that if h∗(K, M)
is close to uniformly distributed then so is h∗(K, M‖X). (Here M is chosen from
some distribution, K is a random but known key, and X is a fixed block.)
This result only assumes h is a PRF, but again we are not able to discern any
implications for the problems we consider, because in our case the last block
of the input is not fixed, we are interested in the cAU property rather than
randomness, and our inputs are not drawn from a distribution.

Another result. The fact that compression functions are underlain by block
ciphers, together with the fact that no known attacks compromise the pseudo-
randomness of the compression functions of MD5, SHA-1, may give us some
confidence that it is ok to assume these are PRFs, but it still behooves us to be
cautious. What can we prove about NMAC without assuming the compression
function is a PRF? We would not expect to be able to prove it is a PRF, but what
about just a secure MAC? (Any PRF is a secure MAC [6,9], so our main result
implies NMAC is a secure MAC, but we are interested in seeing whether this can
be proved under weaker assumptions.) We show (Theorem 2) that NMAC is a se-
cure MAC if h is a privacy-preserving MAC (PP-MAC) [8] and h∗ (equivalently,
H∗) is cAU. A PP-MAC (the definition is provided in Section 4) is stronger

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 605

than a MAC but weaker than a PRF. This result reverts to the paradigm of [3]
of making assumptions both about the compression function and its iteration,
but the point is that cAU is a very weak assumption compared to WCR and
PP-MAC is a weaker assumption than PRF.

From NMAC to HMAC. The formal results (both previous and new) we
have discussed so far pertain to NMAC. However, discussions (above and in the
literature) tend to identify NMAC and HMAC security-wise. This is explained
by an observation of [3] which says that HMAC inherits the security of NMAC
as long as the compression function is a PRF when keyed via the data input. (So
far when we have talked of it being a PRF, it is keyed via the chaining variable.)
In our case this means that HMAC is a PRF if the compression function is a
“dual-PRF,” meaning a PRF when keyed by either of its two inputs.

However, the analysis above assumes that the two keys Kout, Kin of HMAC
are chosen independently at random, while in truth they are equal to K⊕opad
and K⊕ipad respectively, where K is a random b-bit key and opad, ipad are fixed,
distinct constants. We apply the theory of PRFs under related-key attacks [7]
to extend the observation of [3] to this single-key version of HMAC, showing
it inherits the security of NMAC as long as the data-input-keyed compression
function is a PRF under an appropriate (and small) class of related key attacks.
Assuming additionally that the compression function is a PRF in the usual sense,
we obtain a (in fact, the first) security proof of the single-key version of HMAC.
These results are in Section 5.

2 Definitions

Notation. We denote by s1‖s2 the concatenation of strings s1, s2, and by |s|
the length of string s. Let b be a positive integer representing a block length,
and let B = {0, 1}b. Let B+ denote the set of all strings of length a positive
multiple of b bits. Whenever we speak of blocks we mean b-bit ones. If M ∈ B+

then ‖M‖b = |M |/b is the number of blocks in M , and M [i] denotes its i-th b-bit
block, meaning M = M [1] . . .M [n] where n = ‖M‖b. If M1, M2 ∈ B+, then M1

is a prefix of M2, written M1 ⊆ M2, if M2 = M1‖A for some A ∈ B∗. If S is a
set then s

$← S denotes the operation of selecting s uniformly at random from
S. An adversary is a (possibly randomized) algorithm that may have access to
one or more oracles. We let

AO1,...(x1, . . .)⇒ 1 and y
$← AO1,...(x1, . . .)

denote, respectively, the event that A with the indicated oracles and inputs
outputs 1, and the experiment of running A with the indicated oracles and
inputs and letting y be the value returned. (This value is a random variable
depending on the random choices made by A and its oracles.) Either the oracles
or the inputs (or both) may be absent, and often will be.

A family of functions is a two-argument map f : Keys × Dom → Rng whose
first argument is regarded as a key. We fix one such family h: {0, 1}c × B →
{0, 1}c to model a compression function that we regard as being keyed via its c-bit

606 M. Bellare

chaining variable. Typical values are b = 512 and c = 128 or 160. The iteration
of family h: {0, 1}c×B → {0, 1}c is the family of functions h∗: {0, 1}c×B+ →
{0, 1}c where h∗(K, M) (for K ∈ {0, 1}c and M ∈ B+) is defined by the following
code: n← ‖M‖b ; a[0]← K ; For i = 1, . . . , n do a[i]← h(a[i−1], M [i]) ; Return
a[n]. This represents the Merkle-Damg̊ard [23,14] iteration method used in all
the popular hash functions but without the “strengthening,” meaning that there
is no |M |-based message padding.

PRFs. A prf-adversary A against a family of functions f : Keys ×Dom → Rng
takes as oracle a function g: Dom → Rng and returns a bit. The prf-advantage
of A against f is the difference between the probability that it outputs 1 when
its oracle is g = f(K, ·) for a random key K

$← Keys , and the probability that it
outputs 1 when its oracle g is chosen at random from the set Maps(Dom ,Rng)
of all functions mapping Dom to Rng, succinctly written as

Advprf
f (A) = Pr

[
Af(K,·) ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
. (1)

In both cases the probability is over the choice of oracle and the coins of A.

cAU and collision-probability. Let F : {0, 1}k × Dom → Rng be a family
of functions. cAU is measured by considering an almost-universal (au) adversary
A against F . It (takes no inputs and) returns a pair of messages in Dom . Its
au-advantage, denoted Advau

F (A), is

Pr
[
F (K, M1) = F (K, M2) ∧ M1
= M2 : (M1, M2)

$← A ; K
$← Keys

]
.

This represents a very weak form of collision-resistance since A must produce
M1, M2 without being given any information about K. WCR [3] is a stronger
notion because here A gets an oracle for F (K, ·) and can query this in its search
for M1, M2.

For M1, M2 ∈ Dom it is useful to let CollF (M1, M2) = Pr[F (K, M1) =
F (K, M2)], the probability being over K

$← {0, 1}k.

3 Security of NMAC

Let h: {0, 1}c × {0, 1}b → {0, 1}c be a family of functions that represents the
compression function, here assumed to be a PRF. Let pad denote a padding func-
tion such that s∗ = s‖pad(|s|) ∈ B+ for any string s. (Such padding functions
are part of the description of current hash functions. Note the pad depends only
on the length of s.) Then the family NMAC: {0, 1}2c ×D → {0, 1}c is defined
by NMAC(Kout‖Kin, M) = h(Kout, h

∗(Kin, M
∗)‖fpad) where fpad = pad(c) ∈

{0, 1}b−c and h∗ is the iterated compression function as defined in Section 2.
The domain D is the set of all strings up to some maximum length, which is 264

for current hash functions.
It turns out that our security proof for NMAC does not rely on any properties

of pad beyond the fact that M∗ = M‖pad(|M |) ∈ B+. (In particular, the Merkle-
Damg̊ard strengthening, namely inclusion of the message length in the padding,
that is used in current hash functions and is crucial to collision resistance of

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 607

the hash function, is not important to the security of NMAC.) Accordingly, we
will actually prove the security of a more general construct that we call gen-
eralized NMAC. The family GNMAC: {0, 1}2c × B+ → {0, 1}c is defined by
GNMAC(Kout‖Kin, M) = h(Kout, h

∗(Kin, M)‖fpad) where fpad is any (fixed)
b−c bit string. Note the domain is B+, meaning inputs have to have a length that
is a positive multiple of b bits. (But can be of any length.) NMAC is nonetheless
a special case of GNMAC via NMAC(Kout‖Kin, M) = GNMAC(Kout‖Kin, M

∗)
and thus the security of NMAC is implied by that of GNMAC. (Security as a
PRF or a MAC, respectively, for both.)

3.1 The Results

Main Lemma. The following says that if h is a PRF then its iteration h∗ is
cAU.

Lemma 1. Let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c be a family of func-
tions, and let A∗ be an au-adversary against h∗. Assume that the two messages
output by A∗ are at most n1, n2 ≥ 1 blocks long, respectively. Then there exists
a prf-adversary A against h such that

Advau
h∗(A∗) ≤ (n1 + n2 − 1) ·Advprf

h (A) +
1
2c

. (2)

Furthermore, A has time-complexity at most O((n1 + n2)Th), where Th is the
time for one evaluation of h, and makes at most 2 oracle queries.

The proof is in Section 3.3. The quality of the reduction is good because the
time-complexity of the constructed adversary A is small and in particular inde-
pendent of the time-complexity of A∗ (the proof shows how this is possible) and
furthermore A makes only two oracle queries.

One might ask whether stronger results hold. For example, assuming h is a
PRF, (1) Is h∗ a PRF? (2) Is h∗ WCR? (Either would imply that h∗ is cAU.)
But the answer is NO to both questions. The function h∗ is never a PRF due to
the extension attack. On the other hand it is easy to give an example of a PRF h
such that h∗ is not WCR. Also MD5 and SHA-1 are candidate counter-examples,
since their compression functions appear to be PRFs but their iterations are not
WCR.

Prf(cAU)=Prf lemma. The composition of families h: {0, 1}c × {0, 1}b →
{0, 1}c and F : {0, 1}k ×D → {0, 1}b is the family hF : {0, 1}c+k ×D → {0, 1}c
defined by hF (Kout‖Kin, M) = h(Kout, F (Kin, M)). The following lemma says
that if h is a PRF and F is cAU then hF is a PRF.

Lemma 2. Let B = {0, 1}b. Let h: {0, 1}c×B → {0, 1}c and F : {0, 1}k×D →
B be families of functions, and let hF : {0, 1}c+k ×D → {0, 1}c be defined by

hF (Kout‖Kin, M) = h(Kout, F (Kin, M))

for all Kout ∈ {0, 1}c, Kin ∈ {0, 1}k and M ∈ D. Let AhF be a prf-adversary
against hF that makes at most q ≥ 2 oracle queries, each of length at most n,

608 M. Bellare

and has time-complexity at most t. Then there exists a prf-adversary Ah against
h and an au-adversary AF against F such that

Advprf
hF (AhF) ≤ Advprf

h (Ah) +
(

q

2

)
·Advau

F (AF) . (3)

Furthermore, Ah has time-complexity at most t and makes at most q oracle
queries, while AF has time-complexity O(TF (n)) and the two messages it outputs
have length at most n, where TF (n) is the time to compute F on an n-bit input.

This extends the analogous Prf(AU)=Prf lemma by relaxing the condition
on F from AU to cAU. (The Prf(AU)=Prf lemma is alluded to in [4,11], and
variants are in [11,12].) A simple proof of Lemma 2, using games [10,29], is in [2].

GNMAC is a PRF. We now combine the two lemmas above to conclude that
if h is a PRF then so is GNMAC.

Theorem 1. Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c
be a family of functions and let fpad ∈ {0, 1}b−c be a fixed padding string. Let
GNMAC: {0, 1}2c ×B+ → {0, 1}c be defined by

GNMAC(Kout‖Kin, M) = h(Kout, h
∗(Kin, M)‖fpad)

for all Kout, Kin ∈ {0, 1}c and M ∈ B+. Let AGNMAC be a prf-adversary against
GNMAC that makes at most q oracle queries, each of at most m blocks, and
has time-complexity at most t. Then there exist prf-adversaries A1, A2 against
h such that

Advprf
GNMAC(AGNMAC) ≤ Advprf

h (A1) +
(

q

2

) [
2m ·Advprf

h (A2) +
1
2c

]
. (4)

Furthermore, A1 has time-complexity at most t and makes at most q oracle
queries, while A2 has time-complexity at most O(mTh) and makes at most 2
oracle queries, where Th is the time for one computation of h.

Proof (Theorem 1). Let F : {0, 1}c × B+ → {0, 1}b be defined by F (Kin, M) =
h∗(Kin, M)‖fpad. Then GNMAC = hF . Apply Lemma 2 (with k = c, D = B+

and AhF = AGNMAC) to get prf-adversary A1 and au-adversary AF with the prop-
erties stated in the lemma. Note that Advau

F (AF) = Advau
h∗(AF). (Because a

pair of messages is a collision for h∗(Kin, ·)‖fpad iff it is a collision for h∗(Kin, ·).)
Now apply Lemma 1 to A∗ = AF to get prf-adversary A2.

3.2 Tightness of Bound

The best known attack on GNMAC is the birthday one of [27]. They show that
it is possible to break NMAC with about 2c/2/

√
m queries of at most m blocks

each. We now want to assess how close to this is the guarantee we can get from
Theorem 1 gets. If t is a time-complexity then let t = t/Th. Assume that the best
attack against h as a PRF is exhaustive key search. (Birthday attacks do not
apply since h is not a family of permutations.) This means that Advprf

h (A) ≤
t · 2−c for any prf-adversary A of time complexity t making q ≤ t queries.
Plugging this into (4) and simplifying, the upper bound on the prf-advantage of

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 609

any adversary against GNMAC who has time-complexity t and makes at most q
queries is O(t + m2q2Th) · 2−c. If we ignore the Th term, then this hits 1 when
q ≈ 2c/2/m. This means that the bound justifies NMAC up to roughly 2c/2/m
queries, off from the number in the above-mentioned attack by a factor of

√
m.

It is an interesting open problem to improve our analysis and fill the gap.

3.3 Proof of Lemma 1

Proofs of claims below are omitted and may be found in [2].

Some definitions. In this proof it will be convenient to consider prf-adversaries
that take inputs. The advantage of A against h on inputs x1, . . . is defined as

Advprf
h (A(x1, . . .)) = Pr

[
Ah(K,·)(x1, . . .)⇒ 1

]
− Pr

[
A$(x1, . . .)⇒ 1

]
,

where in the first case K
$← {0, 1}c and in the second case the notation means

that A is given as oracle a map chosen at random from Maps({0, 1}b, {0, 1}c).
Overview. To start with, we ignore AhF and upper bound CollF (M1, M2) as
some appropriate function of the prf-advantage of a prf-adversary against h that
takes M1, M2 as input. We consider first the case that M1 ⊆M2 (M1 is a prefix of
M2) and then the case that M1
⊆M2, building in each case a different adversary.

The case M1 ⊆ M2. We begin with some high-level intuition. Suppose M1 ⊆
M2 with m2 = ‖M2‖b ≥ 1 + m1, where m1 = ‖M1‖b. The argument to upper

Game G1(M1, M2, l)

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
a[l]

$← {0, 1}c
For i = l + 1 to m2 do

a[i]← h(a[i− 1], M2[i])
If a[m1] = a[m2] then return 1

else return 0

Adversary Ag
3(M1, M2)

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
l

$← {1, . . . , m1 + 1}
If l = m1 + 1 then return Ag

2(M1, M2)
Else return Ag

1(M1, M2, l)

Adversary Ag
1(M1, M2, l)

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
a[l]← g(M2[l])
For i = l + 1 to m2 do

a[i]← h(a[i− 1], M2[i])
If a[m1] = a[m2] then return 1

else return 0

Adversary Ag
2(M1, M2)

m1 ← ‖M1‖b ; m2 ← ‖M2‖b
a[m1 + 1]← g(M2[m1 + 1])
For i = m1 + 2 to m2 do

a[i]← h(a[i− 1], M2[i])

y
$← B \ {M2[m1 + 1]}

If h(a[m2], y) = g(y) then return 1
else return 0

Fig. 1. Games and adversaries taking input distinct messages M1, M2 such that M1 ⊆
M2. The adversaries take an oracle g: {0, 1}b → {0, 1}c. For Game G1(M1, M2, l),
the input l is the range 0 ≤ l ≤ ‖M1‖b while for adversary A1 it is in the range
1 ≤ l ≤ ‖M1‖b.

610 M. Bellare

bound Collh∗(M1, M2) has two parts. First, a hybrid argument is used to show
that a[m1] = h∗(K, M1) is computationally close to random when K is drawn
at random. Next, we imagine a game in which a[m1] functions as a key to h.
Let a[m1 + 1] = h(a[m1], M2[m1 + 1]) and a[m2] = h∗(a[m1 + 1], M2[m1 +
2] . . .M2[m2]). Now, if a[m2] = a[m1] then we effectively have a way to recover
the “key” a[m1] given a[m1+1], amounting to a key-recovery attack on h(a[m1], ·)
based on one input-output example of this function. But being a PRF, h is also
secure against key-recovery.

In the full proof that follows, we use the games and adversaries specified in
Figure 1. Adversaries A1, A2 represent, respectively, the first and second parts
of the argument outlined above, while A3 integrates the two.

Claim 1. Let M1, M2 ∈ B+ with M1 ⊆ M2 and 1 + ‖M1‖b ≤ ‖M2‖b. Suppose
1 ≤ l ≤ ‖M1‖b. Then

Pr
[
A$

1(M1, M2, l)⇒ 1
]

= Pr [G1(M1, M2, l)⇒ 1]

Pr
[
A

h(K,·)
1 (M1, M2, l)⇒ 1

]
= Pr [G1(M1, M2, l − 1)⇒ 1] .

Recall the notation means that in the first case A1 gets as oracle g
$← Maps

({0, 1}b, {0, 1}c) and in the second case K
$← {0, 1}c.

Claim 2. Let M1, M2 ∈ B+ with M1 ⊆M2 and 1 + ‖M1‖b ≤ ‖M2‖b. Then

Pr
[
A$

2(M1, M2)⇒ 1
]

= 2−c

Pr
[
A

h(K,·)
2 (M1, M2)⇒ 1

]
≥ Pr [G1(M1, M2, m1)⇒ 1] .

Claim 3. Let M1, M2 ∈ B+ with M1 ⊆ M2 and 1 + ‖M1‖b ≤ ‖M2‖b. Let
m1 = ‖M1‖b. Then

Advprf
h (A3(M1, M2)) ≥ 1

m1 + 1
(
Collh∗(M1, M2)− 2−c

)
.

The case M1
⊆ M2. For M1, M2 ∈ B+ with ‖M1‖b ≤ ‖M2‖b and M1
⊆
M2, we let LCP(M1, M2) denote the length of the longest common blockwise
prefix of M1, M2, meaning the largest integer p such that M1[1] . . . M1[p] =
M2[1] . . .M2[p] but M1[p+1]
= M2[p+1]. We consider the games and adversaries
of Figure 2.

Claim 4. Let M1, M2 ∈ B+ with M1
⊆ M2, and ‖M1‖b ≤ ‖M2‖b. Suppose
1 ≤ l ≤ ‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1. Then

Pr
[
A$

4(M1, M2, l)⇒ 1
]

= Pr [G2(M1, M2, l)⇒ 1]

Pr
[
A

h(K,·)
4 (M1, M2, l)⇒ 1

]
= Pr [G2(M1, M2, l − 1)⇒ 1] .

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 611

Game G2(M1, M2, l) // 0 ≤ l ≤ ‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1

200 m1 ← ‖M1‖b ; m2 ← ‖M2‖b ; p← LCP(M1, M2)
210 If 0 ≤ l ≤ m1 then

220 a1[l]
$← {0, 1}c ; For i = l + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])

230 If m1 + 1 ≤ l ≤ m1 + m2 − p then a1[m1]
$← {0, 1}c

240 If 0 ≤ l ≤ p then n← l ; a2[n]← a1[n]

250 If p + 1 ≤ l ≤ m1 then n← p + 1 ; a2[n]
$← {0, 1}c

260 If m1 + 1 ≤ l ≤ m1 + m2 − p then n← l −m1 + p + 1 ; a2[n]
$← {0, 1}c

270 For i = n + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
280 If a1[m1] = a2[m2] then return 1 else return 0

Adversary Ag
4(M1, M2, l) // 1 ≤ l ≤ ‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1

a00 m1 ← ‖M1‖b ; m2 ← ‖M2‖b ; p← LCP(M1, M2)
a10 If 1 ≤ l ≤ m1 then
a20 a1[l]← g(M1[l]) ; For i = l + 1 to m1 do a1[i]← h(a1[i− 1], M1[i])

a30 If m1 + 1 ≤ l ≤ m1 + m2 − p then a1[m1]
$← {0, 1}c

a40 If 1 ≤ l ≤ p then n← l ; a2[n]← a1[n]
a50 If l = p + 1 then n← p + 1 ; a2[n]← g(M2[n])

a51 If p + 2 ≤ l ≤ m1 then n← p + 1 ; a2[n]
$← {0, 1}c

a60 If m1 + 1 ≤ l ≤ m1 + m2 − p then n← l −m1 + p + 1 ; a2[n]← g(M2[n])
a70 For i = n + 1 to m2 do a2[i]← h(a2[i− 1], M2[i])
a80 If a1[m1] = a2[m2] then return 1 else return 0

Fig. 2. Games and adversaries taking input distinct messages M1, M2 ∈ B+ such that
M1 �⊆ M2 and ‖M1‖b ≤ ‖M2‖b. For Game G2(M1, M2, l), the input l is the range
0 ≤ l ≤ ‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1 while for adversary A4 it is in the range
1 ≤ l ≤ ‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1.

We now define prf adversary Ag
5(M1, M2) against h as follows. It picks l

$←
{1, . . . , ‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1} and returns Ag

4(M1, M2, l).

Claim 5. Let M1, M2 ∈ B+ with M1
⊆ M2 and ‖M1‖b ≤ ‖M2‖b. Let m =
‖M1‖b + ‖M2‖b − LCP(M1, M2)− 1. Then

Advprf
h (A5) ≥ 1

m
· (Collh∗(M1, M2)− 2−c

)
.

Putting it together. The final step to construct the prf-adversary A against
h, claimed in the lemma, is to appropriately combine A3, A5. We assume wlog
that the two messages M1, M2 output by A∗ are always distinct, in B+, and
satisfy ‖M1‖b ≤ ‖M2‖b. We first define

Adversary Ag
6(M1, M2)

If M1 ⊆M2 then return Ag
3(M1, M2)

Else return Ag
5(M1, M2)

Adversary Ag
7

(M1, M2)
$← A∗

Return Ag
6(M1, M2)

Claim 6. Advau
h∗(A∗) ≤ 2−c + (n1 + n2 − 1) ·Advprf

h (A7)

612 M. Bellare

Prf-Adversary A7 achieves the prf-advantage we seek, but has time-complexity
that of A∗ since it runs the latter. We now use a standard “coin-fixing” argument
to reduce this time-complexity. Note that

Advprf
h (A7) = EM1,M2

[
Advprf

h (A6(M1, M2))
]

where the expectation is over (M1, M2)
$← A∗. Thus there must exist distinct

M1, M2 ∈ B+ (‖M1‖b ≤ ‖M2‖b) such that Advprf
h (A6(M1, M2)) ≥ Advprf

h (A7).
Let A be the prf-adversary that has M1, M2 hardwired as part of its code and,
given oracle g, runs Ag

6(M1, M2). Since the latter has time complexity O(mTh),
the proof of Lemma 1 is complete.

4 MAC-Security of NMAC Under Weaker Assumptions

Since any PRF is a secure MAC [6,9], Theorem 1 implies that NMAC is a secure
MAC if the compression function is a PRF. Here we show that NMAC is a
secure MAC under a weaker-than-PRF assumption on the compression function
—namely that it is a privacy-preserving MAC— coupled with the assumption
that the hash function is cAU. This is of interest given the still numerous usages
of HMAC as a MAC (rather than as a PRF). This result can be viewed as
attempting to formalize the intuition given in [3, Remark 4.4].

MAC forgery. Recall that the mac-advantage of mac-adversary A against a
family of functions f : Keys ×Dom → Rng is

Advmac
f (A) = Pr

[
Af(K,·),VFf (K,·,·) forges : K

$← Keys
]

.

The verification oracle VFf (K, ·, ·) associated to f takes input M, T , returning 1
if f(K, M) = T and 0 otherwise. Queries to the first oracle are called mac
queries, and ones to the second are called verification queries. A is said to forge
if it makes a verification query M, T the response to which is 1 but M was not
previously a mac query. Note we allow multiple verification queries [9].

Privacy-preserving MACs. The privacy notion for MACs that we use adapts
the notion of left-or-right indistinguishability of encryption [5] to functions that
are deterministic, and was first introduced by [8] who called it indistinguishabil-
ity under distinct chosen-plaintext attack. An oracle query of an ind-adversary
A against family f : {0, 1}k × {0, 1}l → {0, 1}L is a pair of l-bit strings. The
reply is provided by one or the other of the following games:

Game Left

K
$← {0, 1}c

On query (x0, x1):
Reply f(K, x0)

Game Right

K
$← {0, 1}c

On query (x0, x1):
Reply f(K, x1)

Each game has an initialization step in which it picks a key; it then uses this key
in computing replies to all the queries made by A. The ind-advantage of A is

Advind
f (A) = Pr

[
ARight ⇒ 1

]− Pr
[
ALeft ⇒ 1

]
.

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 613

However, unlike for encryption, the oracles here are deterministic. So A can
easily win (meaning, obtain a high advantage), for example by making a pair of
queries of the form (x, z), (y, z), where x, y, z are distinct, and then returning 1
iff the replies returned are the same. (We expect that h(K, x)
= h(K, y) with
high probability over K for functions h of interest, for example compression
functions.) We fix this by simply outlawing such behavior. To be precise, let
us say that A is legitimate if for any sequence (x1

0, x
1
1), . . . , (x

q
0, x

q
1) of oracle

queries that it makes, x1
0, . . . , x

q
0 are all distinct l-bit strings, and also x1

1, . . . , x
q
1

are all distinct l-bit strings. (As a test, notice that the adversary who queried
(x, z), (y, z) was not legitimate.) It is to be understood henceforth that an ind-
adversary means a legitimate one. When we say that f is privacy-preserving, we
mean that the ind-advantage of any (legitimate) practical ind-adversary is low.

Privacy-preservation is not, by itself, a demanding property. For example, it
is achieved by a constant family such as the one defined by f(K, x) = 0L for all
K, x. We will however want the property for families that are also secure MACs.

PP-MAC < PRF. We claim that a privacy-preserving MAC (PP-MAC) is
strictly weaker than a PRF, in the sense that any PRF is (a secure MAC [6,9]
and) privacy-preserving, but not vice-versa. This means that when (below) we
assume that a compression function h is a PP-MAC, we are indeed assuming
less of it than that it is a PRF. Let us now provide some details about the claims
made above. First, the following is the formal statement corresponding to the
claim that any PRF is privacy-preserving:

Proposition 1. Let f : {0, 1}k×{0, 1}l → {0, 1}L be a family of functions, and
Aind an ind-adversary against it that makes at most q oracle queries and has
time-complexity at most t. Then there is a prf-adversary Aprf against f such
that Advind

f (Aind) ≤ 2 · Advprf
f (Aprf). Furthermore, Aprf makes at most q

oracle queries and has time-complexity at most t.

The proof is a simple exercise and is omitted. Next we explain why a PP-MAC
need not be a PRF. The reason (or one reason) is that if the output of a family
of functions has some structure, for example always ending in a 0 bit, it would
disqualify the family as a PRF but need not preclude its being a PP-MAC. To
make this more precise, let f : {0, 1}k×{0, 1}l → {0, 1}L be a PP-MAC. Define
g: {0, 1}k × {0, 1}l → {0, 1}L+1 by g(K, x) = f(K, x)‖0 for all K ∈ {0, 1}k and
x ∈ {0, 1}l. Then g is also a PP-MAC, but is clearly not a PRF.

Results. The following implies that if h is a PP-MAC and F is cAU then their
composition hF is a secure MAC.

Lemma 3. Let B = {0, 1}b. Let h: {0, 1}c×B → {0, 1}c and F : {0, 1}k×D →
B be families of functions, and let hF : {0, 1}c+k ×D → {0, 1}c be defined by

hF (Kout‖Kin, M) = h(Kout, F (Kin, M))

for all Kout ∈ {0, 1}c, Kin ∈ {0, 1}k and M ∈ D. Let AhF be a mac-adversary
against hF that makes at most qmac mac queries and at most qvf verification
queries, with the messages in each of these queries being of length at most n.

614 M. Bellare

Suppose AhF has time-complexity at most t. Let q = qmac + qvf and assume
2 ≤ q < 2b. Then there exists a mac-adversary A1 against h, an ind-adversary
A2 against h, and an au-adversary AF against F such that

Advmac
hF (AhF) ≤ Advmac

h (A1) + Advind
h (A2) +

(
q

2

)
·Advau

F (AF) . (5)

Furthermore, A1 makes at most qmac mac queries and at most qvf verification
queries and has time-complexity at most t; A2 makes at most q oracle queries
and has time-complexity at most t; and AF outputs messages of length at most
n, makes 2 oracle queries, and has time-complexity O(TF (n)), where TF (n) is
the time to compute F on an n-bit input.

The proof is in [2]. As a corollary we have the following, which says that if h is
a PP-MAC and h∗ is cAU then GNMAC is a secure MAC.

Theorem 2. Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c
be a family of functions and let fpad ∈ {0, 1}b−c be a fixed padding string. Let
GNMAC: {0, 1}2c ×B+ → {0, 1}c be defined by

GNMAC(Kout‖Kin, M) = h(Kout, h
∗(Kin, M)‖fpad)

for all Kout, Kin ∈ {0, 1}c and M ∈ B+. Let AGNMAC be a mac-adversary
against GNMAC that makes at most qmac mac queries and at most qvf verifi-
cation queries, with the messages in each of these queries being of at most m
blocks. Suppose AGNMAC has time-complexity at most t. Let q = qmac + qvf and
assume 2 ≤ q < 2b. Then there exists a mac-adversary A1 against h, an ind-
adversary A2 against h, and an au-adversary A∗ against h∗ such that

Advmac
GNMAC(AGNMAC) ≤ Advmac

h (A1) + Advind
h (A2) +

(
q

2

)
·Advau

h∗(A∗) . (6)

Furthermore, A1 makes at most qmac mac queries and at most qvf verification
queries and has time-complexity at most t; A2 makes at most q oracle queries
and has time-complexity at most t; and A∗ outputs messages of at most m blocks,
makes 2 oracle queries, and has time-complexity O(mTh), where Th is the time
for one computation of h.

We remark that Lemma 3 can be extended to show that hF is not only a MAC
but itself privacy-preserving. (This assumes h is privacy-preserving and F is cAU.
We do not prove this here.) This implies that GNMAC is privacy-preserving as
long as h is privacy-preserving and h∗ is cAU. This is potentially useful because
it may be possible to show that a PP-MAC is sufficient to ensure security in
some applications where HMAC is currently assumed to be a PRF.

5 Security of HMAC

In this section we show how our security results about NMAC lift to correspond-
ing ones about HMAC. We begin by recalling the observation of [3] as to how this
works for HMAC with two independent keys, and then discuss how to extend
this to the single-keyed version of HMAC.

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 615

The constructs. Let h: {0, 1}c × {0, 1}b → {0, 1}c as usual denote the com-
pression function. Let pad be the padding function as described in Section 3, so
that s∗ = s‖pad(|s|) ∈ B+ for any string s. Recall that the cryptographic hash
function H associated to h is defined by H(M) = h∗(IV, M∗), where IV is a
c-bit initial vector that is fixed as part of the description of H and M is a string
of any length up to some maximum length that is related to pad. (This max-
imum length is 264 for current hash functions.) Then HMAC(Kout‖Kin, M) =
H(Kout‖H(Kin‖M)), where Kout, Kin ∈ {0, 1}b. If we write this out in terms of
h∗ alone we get

HMAC(Kout‖Kin, M) = h∗(IV, Kout‖h∗(IV, Kin‖M‖pad(b+|M |))‖pad(b+c)) .

As with NMAC, the details of the padding conventions are not important to the
security of HMAC as a PRF, and we will consider the more general construct
GHMAC: {0, 1}2b ×B+ → {0, 1}c defined by

GHMAC(Kout‖Kin, M) = h∗(IV, Kout ‖ h∗(IV, Kin‖M) ‖ fpad) (7)

for all Kout, Kin ∈ {0, 1}b and all M ∈ B+. Here IV ∈ {0, 1}c and fpad ∈
{0, 1}b−c are fixed strings. HMAC is a special case, via HMAC(Kout‖Kin, M) =
GHMAC(M‖pad(b + |M |)) with fpad = pad(b + c), and thus security properties
of GHMAC (as a PRF or MAC) are inherited by HMAC, allowing us to focus on
the former.

The dual family. To state the results, it is useful to define h: {0, 1}b ×
{0, 1}c → {0, 1}c, the dual of family h, by h(x, y) = h(y, x). The assumption
that h is a PRF when keyed by its data input is formally captured by the as-
sumption that h is a PRF.

Security of GHMAC. Let K ′
out = h(IV, Kout) and K ′

in = h(IV, Kin). The
observation of [3] is that

GHMAC(Kout‖Kin, M) = h(K ′
out, h

∗(K ′
in, M)‖fpad)

= GNMAC(K ′
out‖K ′

in, M) . (8)

This effectively reduces the security of GHMAC to GNMAC. Namely, if h is a PRF
and Kout, Kin are chosen at random, then K ′

out, K
′
in will be computationally close

to random. Now (8) implies that if GNMAC is a PRF then so is GHMAC. The
formal statement follows.

Lemma 4. Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c
be a family of functions. Let fpad ∈ {0, 1}b−c be a fixed padding string and
IV ∈ {0, 1}c a fixed initial vector. Let GHMAC: {0, 1}2b × B+ → {0, 1}c be
defined by (7) above. Let A be a prf-adversary against GHMAC that has time-
complexity at most t. Then there exists a prf-adversary Ah against h such that

Advprf
GHMAC(A) ≤ 2 ·Advprf

h
(Ah) + Advprf

GNMAC(A) .

Furthermore, Ah makes only 1 oracle query, this being IV, and has time-
complexity at most t.

616 M. Bellare

The proof is simple and can be found in [2]. Combining this with Theorem 1
yields the result that GHMAC is a PRF assuming h, h are both PRFs. Note that
the PRF assumption on h is mild because Ah makes only one oracle query.

Single-keyed HMAC. HMAC, GHMAC as described and analyzed above above
use two keys that are assumed to be chosen independently at random. However,
HMAC is in fact usually implemented with these keys derived from a single b-
bit key. Here we provide the first security proofs for the actually-implemented
single-key version of HMAC.

Specifically, let opad, ipad ∈ {0, 1}b be distinct, fixed and known constants.
(Their particular values can be found in [3] and are not important here.) Then
the single-key version of HMAC is defined by

HMAC-1(K, M) = HMAC(K⊕opad‖K⊕ipad, M) .

As before, we look at this as a special case of a more general construct, namely
GHMAC-1: {0, 1}b ×B+ → {0, 1}c, defined by

GHMAC-1(K, M) = GHMAC(K⊕opad‖K⊕ipad, M) (9)

for all K ∈ {0, 1}b and all M ∈ B+. We now focus on GHMAC-1. We will show
that GHMAC-1 inherits the security of GNMAC as long as h is a PRF against
an appropriate class of related key attacks. In such an attack, the adversary can
obtain input-output examples of h under keys related to the target key. Let us
recall the formal definitions following [7].

A related-key attack on a family of functions h: {0, 1}b × {0, 1}c → {0, 1}c
is parameterized by a set Φ ⊆ Maps({0, 1}b, {0, 1}b) of key-derivation functions.
We define the function RK: Φ× {0, 1}b → {0, 1}b by RK(φ, K) = φ(K) for all
φ ∈ Φ and K ∈ {0, 1}b. A rka-adversary Ah may make an oracle query of the
form φ, x where φ ∈ Φ and x ∈ {0, 1}c. Its rka-advantage is defined by

Advrka
h,Φ

(Ah) = Pr
[
A

h(RK(·,K),·)
h

⇒ 1
]
− Pr

[
A

G(RK(·,K),·)
h

⇒ 1
]

.

In the first case, K is chosen at random from {0, 1}b and the reply to query φ, x

of Ah is h(φ(K), x). In the second case, G
$← Maps({0, 1}b×{0, 1}c, {0, 1}c) and

K
$← {0, 1}b, and the reply to query φ, x of Ah is G(φ(K), x). For any string

s ∈ {0, 1}b let Δs: {0, 1}b→ {0, 1}b be defined by Δs(K) = K⊕s.

Lemma 5. Assume b ≥ c and let B = {0, 1}b. Let h: {0, 1}c × B → {0, 1}c
be a family of functions. Let fpad ∈ {0, 1}b−c be a fixed padding string, IV ∈
{0, 1}c a fixed initial vector, and opad, ipad ∈ {0, 1}b fixed, distinct strings. Let
GHMAC-1: {0, 1}b × B+ → {0, 1}c be defined by (9) above. Let Φ = {Δopad,
Δipad}. Let A be a prf-adversary against GHMAC-1 that has time-complexity at
most t. Then there exists a rka-adversary Ah against h such that

Advprf
GHMAC-1(A) ≤ Advrka

h,Φ
(Ah) + Advprf

GNMAC(A) .

Furthermore, Ah makes 2 oracle queries, these being Δopad, IV and Δipad, IV,
and has time-complexity at most t.

The proof is simple and can be found in [2]. Combining this with Theorem 1
yields the result that GHMAC-1 is a PRF assuming h is a PRF and h is a PRF

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 617

under Φ-restricted related-key attacks, where Φ is as in Lemma 5. We remark
that Φ is a small set of simple functions, which is important because it is shown
in [7] that if Φ is too rich then no family can be a PRF under Φ-restricted
related-key attacks. Furthermore, the assumption on h is rendered milder by the
fact that Ah makes only two oracle queries, in both of which the message is the
same, namely is the initial vector.

Lifting the results of Section 4. The procedure above to lift the NMAC
results of Section 3 to HMAC applies also to lift the results of Section 4 to
HMAC. Specifically, if h is a PP-MAC, h∗ is AU and h is a PRF then GHMAC
is a (privacy-preserving) MAC. Also if h is a PP-MAC, h∗ is AU and h is a PRF
under Φ-restricted related-key attacks, with Φ as in Lemma 5, then GHMAC-1
is a (privacy-preserving) MAC. Note that the assumption on h continues to be
that it is a PRF or PRF against Φ-restricted related-key attacks. (Namely, this
has not been reduced to its being a PP-MAC.) This assumption is however mild
in this context since (as indicated by Lemmas 5 and 4) it need only hold with
respect to adversaries that make very few queries and these of a very specific
type.

Remarks. Let h: {0, 1}128×{0, 1}512 → {0, 1}128 denote the compression func-
tion of MD5 [28]. An attack by den Boer and Bosselaers [15] finds values x0, x1, K
such that h(x0, K) = h(x1, K) but x0
= x1. In a personal communication, Rij-
men has said that it seems possible to extend this to an attack that finds such
x0, x1 even when K is unknown. If so, this might translate into the following
attack showing h is not a PRF when keyed by its data input. (That is, h is not
a PRF.) Given an oracle g: {0, 1}128 → {0, 1}128, the attacker would find x0, x1

and obtain y0 = g(x0) and y1 = g(x1) from the oracle. It would return 1 if
y0 = y1 and 0 otherwise. How does this impact the above, where we are assum-
ing h is a PRF? Interestingly, the actual PRF assumptions we need on h are so
weak that even such an attack does not break them. In Lemma 4, we need h to
be a PRF only against adversaries that make just one oracle query. (Because Ah

makes only one query.) But the attack above makes two queries. On the other
hand, in Lemma 5, we need h to be a related-key PRF only against adversaries
that make two related-key queries in both of which the 128-bit message for h
is the same, this value being the initial vector used by the hash function. Fur-
thermore, the related key functions must be Δopad, Δipad. The above-mentioned
attack, however, uses two different messages x0, x1 and calls the oracle under
the original key rather than the related keys. In summary, the attack does not
violate the assumptions made in either of the lemmas.

Acknowledgments

Thanks to Ran Canetti, Hugo Krawczyk, Mridul Nandi, Vincent Rijmen, Phillip
Rogaway, Victor Shoup, Paul Van Oorschot and the Crypto 2006 PC for com-
ments and references. Author supported in part by NSF grants ANR-0129617,
CCR-0208842 and CNS-0524765 and by an IBM Faculty Partnership Develop-
ment Award.

618 M. Bellare

References

1. American National Standards Institution. ANSI X9.71, Keyed hash message au-
thentication code, 2000.

2. M. Bellare. New Proofs for NMAC and HMAC: Security without Collision-
Resistance. Full version of this paper. Cryptology ePrint Archive: Report
2006/043, 2006.

3. M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message au-
thentication. Advances in Cryptology – CRYPTO ’96, Lecture Notes in Computer
Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

4. M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions revis-
ited: The cascade construction and its concrete security. http://www-cse.ucsd.
edu/users/mihir. (Preliminary version in Proceedings of the 37th Symposium
on Foundations of Computer Science, IEEE, 1996.)

5. M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A concrete security treatment
of symmetric encryption. Proceedings of the 38th Symposium on Foundations of
Computer Science, IEEE, 1997.

6. M. Bellare, J. Kilian and P. Rogaway. The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences, Vol. 61,
No. 3, Dec 2000, pp. 362–399.

7. M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. Advances in Cryptology – EUROCRYPT
’03, Lecture Notes in Computer Science Vol. 2656, E. Biham ed., Springer-Verlag,
2003.

8. M. Bellare, C. Namprempre and T. Kohno. Authenticated Encryption in
SSH: Provably Fixing the SSH Binary Packet Protocol. ACM Transactions on
Information and System Security (TISSEC), Vol. 7, Iss. 2, May 2004, pp. 206–
241.

9. M. Bellare, O. Goldreich and A. Mityagin. The power of verification queries
in message authentication and authenticated encryption. Cryptology ePrint
Archive: Report 2004/309, 2004.

10. M. Bellare and P. Rogaway. The game-playing technique and its application to
triple encryption. Cryptology ePrint Archive: Report 2004/331, 2004.

11. J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway.
UMAC: Fast and Secure Message Authentication. Advances in Cryptology –
CRYPTO ’99, Lecture Notes in Computer Science Vol. 1666, M. Wiener ed.,
Springer-Verlag, 1999.

12. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-
key constructions. Advances in Cryptology – CRYPTO ’00, Lecture Notes in
Computer Science Vol. 1880, M. Bellare ed., Springer-Verlag, 2000.

13. L. Carter and M. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, Vol. 18, No. 2, 1979, pp. 143–154.

14. I. Damg̊ard. A design principle for hash functions. Advances in Cryptology –
CRYPTO ’89, Lecture Notes in Computer Science Vol. 435, G. Brassard ed.,
Springer-Verlag, 1989.

15. B. den Boer and A. Bosselaers. Collisions for the compression function of MD5.
Advances in Cryptology – EUROCRYPT ’93, Lecture Notes in Computer Science
Vol. 765, T. Helleseth ed., Springer-Verlag, 1993.

16. T. Dierks and C. Allen. The TLS protocol. Internet RFC 2246, 1999.

http://www-cse.ucsd.edu/users/mihir
http://www-cse.ucsd.edu/users/mihir

New Proofs for NMAC and HMAC: Security Without Collision-Resistance 619

17. H. Dobbertin, A. Bosselaers and B. Preneel. RIPEMD-160: A strengthened version
of RIPEMD. Fast Software Encryption ’96, Lecture Notes in Computer Science
Vol. 1039, D. Gollmann ed., Springer-Verlag, 1996.

18. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extrac-
tion and key derivation using the CBC, Cascade, and HMAC modes. Advances
in Cryptology – CRYPTO ’04, Lecture Notes in Computer Science Vol. 3152,
M. Franklin ed., Springer-Verlag, 2004.

19. O. Goldreich, S. Goldwasser and S. Micali. How to construct random func-
tions. Journal of the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

20. D. Harkins and D. Carrel. The Internet Key Exchange (IKE). Internet RFC 2409,
1998.

21. S. Hirose. A note on the strength of weak collision resistance. IEICE Transactions
on Fundamentals, Vol. E87-A, No. 5, May 2004, pp. 1092–1097.

22. H. Krawczyk, M. Bellare and R. Canetti. HMAC: Keyed-hashing for message
authentication. Internet RFC 2104, 1997.

23. R. Merkle. One-way hash functions and DES. Advances in Cryptology – CRYPTO
’89, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag,
1989.

24. D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, O. Ranen. HOTP: An HMAC-
based one time password algorithm. Internet RFC 4226, December 2005.

25. National Institute of Standards and Technology. The keyed-hash message authen-
tication code (HMAC). FIPS PUB 198, March 2002.

26. National Institute of Standards and Technology. Secure hash standard. FIPS PUB
180-2, August 2000.

27. B. Preneel and P. van Oorschot. On the security of iterated message authentication
codes. IEEE Transactions on Information Theory, Vol. 45, No. 1, January 1999,
pp. 188–199. (Preliminary version, entitled “MD-x MAC and building fast MACs
from hash functions,” in CRYPTO 95.)

28. R. Rivest. The MD5 message-digest algorithm. Internet RFC 1321, April 1992.
29. V. Shoup. Sequences of games: A tool for taming complexity in security proofs.

Cryptology ePrint Archive: Report 2004/332, 2004.
30. D. Stinson. Universal hashing and authentication codes. Designs, Codes and Cryp-

tography, Vol. 4, 1994, 369–380.
31. X. Wang, Y. L. Yin and H. Yu. Finding collisions in the full SHA-1. Advances

in Cryptology – CRYPTO ’05, Lecture Notes in Computer Science Vol. 3621 ,
V. Shoup ed., Springer-Verlag, 2005.

32. X. Wang and H. Yu. How to break MD5 and other hash functions. Advances in
Cryptology – EUROCRYPT ’05, Lecture Notes in Computer Science Vol. 3494,
R. Cramer ed., Springer-Verlag, 2005.

33. M. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, Vol. 22, No. 3, 1981,
pp. 265–279.

	Introduction
	Definitions
	Security of NMAC
	The Results
	Tightness of Bound
	Proof of Lemma 1

	MAC-Security of NMAC Under Weaker Assumptions
	Security of HMAC
	References

