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NEW PROPERTIES OF MULTIPLE HARMONIC SUMS

MODULO p AND p-ANALOGUES OF LESHCHINER’S SERIES

KH. HESSAMI PILEHROOD, T. HESSAMI PILEHROOD, AND R. TAURASO

Abstract. In this paper we present some new binomial identities for multiple
harmonic sums whose indices are the sequences ({1}a, c, {1}b), ({2}a, c, {2}b)
and prove a number of congruences for these sums modulo a prime p. The
congruences obtained allow us to find nice p-analogues of Leshchiner’s series
for zeta values and to refine a result due to M. Hoffman and J. Zhao about
the set of generators of the multiple harmonic sums of weight 7 and 9 modulo
p. As a further application we provide a new proof of Zagier’s formula for

ζ∗({2}a, 3, {2}b) based on a finite identity for partial sums of the zeta-star
series.

1. Introduction

In the last few years there has been a growing attention to the study of p-adic
analogues of various binomial series related to multiple zeta values, which are nested
generalizations of the classical Riemann zeta function ζ(s) =

∑s
n=1 1/n

s. The main
reason of interest for such p-analogues is that they are related to divisibility prop-
erties of multiple harmonic sums which can be considered as elementary “bricks”
for expressing complicated congruences. Before discussing this further we recall the
precise definitions of such objects.

For r ∈ N, s = (s1, s2, . . . , sr) ∈ (Z∗)r, and a non-negative integer n, the alter-
nating multiple harmonic sum is defined by

Hn(s1, s2, . . . , sr) =
∑

1≤k1<k2<···<kr≤n

r∏
i=1

sgn (si)
ki

k
|si|
i

and the “odd” alternating multiple harmonic sum is given by

Hn(s1, s2, . . . , sr) =
∑

0≤k1<k2<···<kr<n

r∏
i=1

sgn (si)
ki

(2ki + 1)|si|
.

If all s1, . . . , sr are positive, thenHn(s1, . . . , sr) andHn(s1, s2, . . . , sr) are called the
multiple harmonic sum (MHS) and “odd” multiple harmonic sum, respectively. For
s = (s1, . . . , sr) ∈ Nr, it is also convenient to consider the multiple star harmonic
sum (or non-strict MHS)

Sn(s1, . . . , sr) =
∑

1≤k1≤···≤kr≤n

1

ks11 · · · ksrr
.
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The integers l(s) := r and w := |s| :=
∑r

i=1 |si| are called the length (or depth) and

the weight of a multiple harmonic sum. By convention, we put Hn(s) = Hn(s) = 0
if n < r, and Hn(∅) = Hn(∅) = Sn(∅) = 1. By {s1, s2, . . . , sj}m we denote the
sequence of length mj with m repetitions of (s1, s2, . . . , sj).

MHSs occur naturally in different areas of mathematics such as combinatorics,
number theory, algebraic geometry, quantum groups and knot theory. For a long
time, MHSs have been of interest to physicists [2, 30], who realized these sums as
Mellin transforms of some functions occurring in quantum field theories. The limit
cases of MHSs give rise to multiple zeta values (MZVs):

ζ(s1, s2, . . . , sr) = lim
n→∞

Hn(s1, s2, . . . , sr),

ζ∗(s1, s2, . . . , sr) = lim
n→∞

Sn(s1, s2, . . . , sr)

defined for s1, . . . , sr−1 ≥ 1 and sr ≥ 2 to ensure convergence of the series.
The earliest results on MZVs are due to Euler who elaborated a method to reduce

double sums of small weight to certain rational linear combinations of products of
single sums. In particular, he proved the simple but non-trivial relation ζ(1, 2) =
ζ(3) and determined the explicit values of the zeta function at even integers:

ζ(2m) =
(−1)mB2m

2(2m)!
(2π)2m,

where Bk ∈ Q are the Bernoulli numbers defined by the generating function

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
.

It is easy to verify that B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and B2m+1 =
0 for m ≥ 1. The denominators of the Bernoulli numbers B2m are completely
characterized by the Clausen–von Staudt Theorem [20, p. 233], which states that

for m ∈ N, B2m +
∑

p−1|2m

1

p
is an integer.

Early results for the values modulo p of the multiple harmonic sums, when p is a
prime greater than 3, go back to the classical Wolstenholme’s Theorem [32]:

Hp−1(1) ≡ 0 (mod p2), Hp−1(2) ≡ 0 (mod p).

Glaisher [8] in 1900, and Lehmer [21] in 1938, proved that even the multiple har-
monic sums Hp−1(m) modulo a higher power of a prime p ≥ m + 3 are related to
the Bernoulli numbers:

Hp−1(m) ≡
{

m(m+1)
2(m+2) p2Bp−m−2 (mod p3) if m is odd,

m
m+1 pBp−m−1 (mod p2) if m is even.

The systematic study of MZVs began in the early 1990s with the works of Hoff-
man [16] and Zagier [33]. The set of the MZVs has a rich algebraic structure given
by the shuffle and the stuffle (harmonic shuffle or quasi-shuffle) relations. These
follow from the representation of multiple zeta values in terms of iterated integrals
and harmonic sums, respectively. There are many conjectures concerning multiple
zeta values, and despite some recent progress, lots of open questions still remain to
be answered.
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Let Zw denote the Q-vector space spanned by the set of multiple zeta values
ζ(s1, . . . , sr) with sr ≥ 2 and the total weight w = s1 + · · · + sr, and let Z denote
the Q-vector space spanned by all multiple zeta values over Q. A conjecture of
Zagier [33] states that the dimension of the Q-vector space Zw is given by the
Perrin numbers dw defined for w ≥ 3 by the recurrence

dw = dw−2 + dw−3

with the initial conditions d0 = 1, d1 = 0, d2 = 1. The upper bound dimZw ≤ dw
was proved independently by Goncharov [9] and Terasoma [28].

It is easy to see that the Perrin number dw is equal to the number of multiple
zeta values ζ(s1, . . . , sr) with s1 + · · ·+ sr = w and each sj ∈ {2, 3}. While investi-
gating the deep algebraic structure of Z, Hoffman [17] conjectured that the MZVs
ζ(s1, . . . , sr) of weight w with sj ∈ {2, 3} span the Q-space Zw. Very recently, this
conjecture was proved using motivic ideas by Brown [4]. So the main problem
which remains open is proving that the numbers ζ(s1, . . . , sr) with sj ∈ {2, 3} are
linearly independent over Q.

According to Zagier’s conjecture, a basis for Zw for 2 ≤ w ≤ 9 should be given
as follows (see [31]):

w = 2, d2 = 1, ζ(2);
w = 3, d3 = 1, ζ(3);
w = 4, d4 = 1, ζ(2, 2);
w = 5, d5 = 2, ζ(2, 3), ζ(3, 2);
w = 6, d6 = 2, ζ(2, 2, 2), ζ(3, 3);
w = 7, d7 = 3, ζ(2, 2, 3), ζ(2, 3, 2), ζ(3, 2, 2);
w = 8, d8 = 4, ζ(2, 2, 2, 2), ζ(2, 3, 3), ζ(3, 2, 3), ζ(3, 3, 2);
w = 9, d9 = 5, ζ(2, 2, 2, 3), ζ(2, 2, 3, 2), ζ(2, 3, 2, 2), ζ(3, 2, 2, 2), ζ(3, 3, 3).

Brown [4] proved that part of this conjectural basis, namely the multiple zeta values
of the form ζ({2}a, 3, {2}b), can be expressed in terms of ordinary zeta values. The
exact formulae were found and proved by Zagier [34]:

ζ({2}a, 3, {2}b) = 2
K∑
r=1

(−1)r
((

2r

2a+ 2

)
− (1− 2−2r)

(
2r

2b+ 1

))
ζ(2r+1)H(K−r)

and
(1.1)

ζ∗({2}a, 3, {2}b) = −2

K∑
r=1

((
2r

2a

)
− δr,a − (1− 2−2r)

(
2r

2b+ 1

))
ζ(2r+1)H∗(K−r),

where K = a+ b+ 1 and

H(n) = ζ({2}n) = π2n

(2n+ 1)!
, H∗(n) = ζ∗({2}n) = 2(1− 21−2n)ζ(2n), n ≥ 0.

The theory of multiple harmonic sums modulo p bears many similarities with the
theory of multiple zeta values. In the early 2000s Zhao [35,37] began to generalize
the Wolstenholme Theorem and Glaisher–Lehmer congruences to other multiple
harmonic sums with special emphasis on the cases where the sums are divisible
by a high power of a prime. Later, Hoffman [18] showed that the algebraic setup
developed in order to study MZVs can be extended to deal with MHSs as well.
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In [19], Hoffman described the possible relations modulo p between MHSs of given
weight not exceeding 9.

For a positive integer w, let cw denote the minimal number of harmonic sums of
weight w which are needed to generate all MHSs of weight w modulo p for p > w+1.
For the first few values of cw, Hoffman [19] obtained the following table:

w 1 2 3 4 5 6 7 8 9
cw 0 0 1 0 1 1 2 2 2

The value c9 = 2 was calculated conditionally under the assumption of the congru-
ence

(1.2) Sp−1(1, 1, 1, 6) ≡
1

54
B3

p−3 +
1889

648
Bp−9 (mod p),

which was first conjectured and verified for all primes 10 < p < 2000 by Zhao
[35, Prop. 3.2].

The purpose of the present paper is to study multiple harmonic sums of the form

Sn({2}a, c, {2}b), Sn({1}a, c, {1}b), c = 1, 2, 3, . . . .

We prove some new binomial identities for these sums and apply them to obtain
congruences modulo a prime p for

(1.3) Sp−1({2}a, 1, {2}b), Sp−1({2}a, 3, {2}b), Sp−1({1}a, 2, {1}b).

This allows us to give a new proof of Zagier’s formula (1.1) for ζ∗({2}a, 3, {2}b)
based on a finite identity for Sn({2}a, 3, {2}b) and to formulate its finite p-analogue.
In addition, those congruences of the finite sums (1.3) sharpen Hoffman’s and Zhao’s
results on MHSs of small weights. Indeed, we show that in weight 7 the number of
generators c7 equals 1, and in weight 9 we prove congruence (1.2), which implies
the equality c9 = 2 unconditionally. From [19, Section 10] and Corollaries 4.3 and
4.4 below, the set of generators modulo p for multiple harmonic sums Sp−1(s) of
weight w = |s| ≤ 9 when p > w + 1 in terms of Bernoulli numbers is as follows:

w = 1, c1 = 0, 0;
w = 2, c2 = 0, 0;
w = 3, c3 = 1, Sp−1(1, 2) ≡ Bp−3;
w = 4, c4 = 0, 0;
w = 5, c5 = 1, Sp−1(1, 4) ≡ Bp−5;
w = 6, c6 = 1, Sp−1(1, 1, 4) ≡ − 1

6 B
2
p−3;

w = 7, c7 = 1, Sp−1(1, 6) ≡ Bp−7;
w = 8, c8 = 2, Sp−1(1, 1, 6), Sp−1(1, 4)Sp−1(1, 2) ≡ Bp−5Bp−3;
w = 9, c9 = 2, Sp−1(1, 8) ≡ Bp−9, Sp−1(1, 2)Sp−1(1, 1, 4) ≡ − 1

6 B
3
p−3.

Hoffman [19] conjectured that all multiple harmonic sums Sp−1(s) (or Hp−1(s)) can
be written modulo p as sums of products of “height one sums” Sp−1(1, . . . , 1, 2h) (or
Hp−1(1, . . . , 1, 2h)) with rational coefficients. Note that this conjecture has been
confirmed only for sums of weight w with w ≤ 9. Zhao [36] continued computations
of sets of generators for w = 10, 11, 12. Using reduction, stuffle and duality relations
he found that the MHSs of weight 10 can be generated by the set

Bp−3Bp−7 ≡ Sp−1(1, 2)Sp−1(1, 6), B2
p−5 ≡ S2

p−1(1, 4),

Sp−1(1, 1, 8), Sp−1(1, 1, 1, 1, 6), Sp−1(2, 2, 1, 4, 1),
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which according to Hoffman’s conjecture still contains the extra term Sp−1(2,2,1,4,1).
Zhao [38] kindly communicated to us that by using our Theorems 4.1 and 4.2 (see
below) it is possible to reduce the set of 8 generators for MHSs of weight 11 found
in [36] to the set of 5 elements:

Bp−11 ≡ Sp−1(1, 10), Bp−5B
2
p−3, Bp−3Sp−1(1, 1, 6), Sp−1(1, 1, 1, 8), Sp−1(5, 3, 2, 1).

In contrast to the corresponding conjecture for MZVs, not all “height one sums”
are claimed to be linearly independent modulo p, because they satisfy the duality
relation [19, Theorem 5.2]:

Sp−1({1}k−1, h) ≡ (−1)k+hSp−1({1}h−1, k) (mod p), p > max(h, k).

In [36, Remark 2.3], Zhao conjectured that weight-8 generators Sp−1(1, 1, 6) and
Bp−3Bp−5 should be linearly independent modulo p over Q(10), where

Q(w) := {a/b ∈ Q : a/b is reduced and if a prime q|b, then q ≤ w}.
Zhao [36] also formulated a general conjecture on linear independence modulo p of
products of Bernoulli numbers

Bp−i1Bp−i2 · · ·Bp−ir

over Q(w+2), where i1, . . . , ir are odd indices greater than 1 with i1+ · · ·+ ir = w,
which, in particular, implies the linear independence of weight-9 generators B3

p−3

and Bp−9 modulo p over Q(11).
As an application of our results to ordinary zeta values, we consider generaliza-

tions of Apéry’s famous series,

(1.4) ζ(2) = 3

∞∑
k=1

1

k2
(
2k
k

) , ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) ,

used in his irrationality proof of ζ(2) and ζ(3). Among different extensions [1,3,11,
13,22] of series (1.4), we focus on those obtained by Leshchiner [22] for values of the
Riemann zeta function ζ(s) and Dirichlet beta function β(s) =

∑∞
n=0(−1)n/(2n+

1)s. Note that the value β(2m+ 1) as well as ζ(2m+ 2) can be expressed in terms
of π,

β(2m+ 1) =
(−1)mE2m

22m+2(2m)!
π2m+1,

where m is a non-negative integer and E2m ∈ Q are Euler numbers.
Leshchiner established the following four expansions in terms of multiple har-

monic sums that generalize series (1.4):(
1− 1

22m+1

)
ζ(2m+ 2) =

3

2

∞∑
k=1

(−1)mHk−1({2}m)

k2
(
2k
k

)
+ 2

m∑
j=1

∞∑
k=1

(−1)m−jHk−1({2}m−j)

k2j+2
(
2k
k

) ,

(1.5)

(−1)m−1 · ζ(2m+ 3) =
5

2

∞∑
k=1

(−1)kHk−1({2}m)

k3
(
2k
k

)
+ 2

m∑
j=1

∞∑
k=1

(−1)k−jHk−1({2}m−j)

k2j+3
(
2k
k

) ,

(1.6)
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(
1− 1

22m+2

)
ζ(2m+ 2) =

5

4

∞∑
k=0

(−1)k+m
(
2k
k

)
Hk({2}m)

16k(2k + 1)2

+
m∑
j=1

∞∑
k=0

(−1)k+m−j
(
2k
k

)
Hk({2}m−j)

16k(2k + 1)2j+2
,

(1.7)

(1.8) β(2m+1) =
3

4

∞∑
k=0

(−1)m
(
2k
k

)
Hk({2}m)

16k(2k + 1)
+

m∑
j=1

∞∑
k=0

(−1)m−j
(
2k
k

)
Hk({2}m−j)

16k(2k + 1)2j+1
.

Indeed, if we put m = 0 in (1.5), (1.6), we get Apéry’s series (1.4).
Recently, the authors [14,15,26], showed that the series (1.5), (1.6) for m = 0, 1

and the series (1.7), (1.8) for m = 0 admit very nice p-analogues. Indeed, if we
truncate the series (1.5), (1.6) with m = 0 or 1 up to p − 1 and the series (1.7),
(1.8) with m = 0 up to (p− 3)/2, where p is an odd prime, we get congruences for
the finite sums modulo powers of p expressible in terms of Bernoulli numbers. In
this paper, we extend these results to any non-negative integer m. This is done by
showing that the finite p-analogues of the series (1.5)–(1.8) are related with MHSs
of the form

Hp−1({2}m, 3), Hp−1({2}m, 1), H p−1
2
({2}m, 3), H p−1

2
({2}m, 1).

2. Identities for multiple harmonic sums

We start with a list of binomial identities that we will need later. Note that a
generalization of (2.5) appears in [10, (4.20)].

Lemma 2.1. For any positive integers m,n and a non-negative integer l we have

(2.1)

n∑
k=l+1

(−1)k−1

(
mn

n− k

)
= (−1)l

(
mn− 1

n− l − 1

)
,

(2.2) 2
n∑

k=l+1

k
(
n
k

)
(
n+k
k

) =
n
(
n−1
l

)
(
n+l
l

) ,

(2.3) 2

n∑
k=1

(
n
k

)
k
(
n+k
k

) =

n∑
k=1

1

k
.

If l ≥ 1, then

(2.4)

n∑
k=l

(
k
l

)
k2
(
k+l
l

) =

(
n
l

)
l2
(
n+l
l

) .
If n ≥ 2, then

(2.5)
n∑

k=1

(−1)kk2
(
n
k

)
(
n+k
k

) = 0.

Proof. For the proof of our identities it is useful to consider the usual binomial
coefficient

(
r
k

)
in a more general setting, that is, to allow an arbitrary integer to

appear in the lower index of
(
r
k

)
. For this purpose we set(

r

k

)
=

{
r(r−1)···(r−k+1)

k(k−1)···1 if integer k ≥ 0,

0 if integer k < 0.
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To prove the first identity we first observe that

(2.6) (−1)k−1

(
mn

n− k

)
= G(n, k + 1)−G(n, k)

for positive integers n, k with

G(n, k) = (−1)k
(
mn− 1

n− k

)
.

Then summing both sides of equation (2.6) over k from l + 1 to n we obtain
n∑

k=l+1

(−1)k−1

(
mn

n− k

)
= G(n, n+1)−G(n, l+1) = −G(n, l+1) = (−1)l

(
mn− 1

n− l − 1

)
.

Similarly, for the proof of the second identity we have

(2.7)
2k

(
n
k

)
(
n+k
k

) = G(n, k + 1)−G(n, k)

for positive integers n, k with

G(n, k) = −
(n+ k)

(
n
k

)
(
n+k
k

) .

Summing both sides of equation (2.7) over k from l + 1 to n we easily obtain the
result.

To prove identity (2.3) we set

f(m, k) :=

(
m
k

)
k
(
m+k
k

) and G(m, k) := −
(
m+1
k

)
2(m+ 1)

(
m+k
k

) , m ≥ 0, k ≥ 1.

Then it is easy to see that

(2.8) f(m+ 1, k)− f(m, k) = G(m, k + 1)−G(m, k).

Summing both sides of equation (2.8) over m from 0 to n− 1 we have

f(n, k) =

n−1∑
m=0

(G(m, k + 1)−G(m, k)).

Now summing the above equation once again over k from 1 to n we obtain

n∑
k=1

f(n, k) =
n−1∑
m=0

n∑
k=1

(G(m, k + 1)−G(m, k)) =
n−1∑
m=0

(G(m,n+ 1)−G(m, 1))

= −
n−1∑
m=0

G(m, 1) =
1

2

n−1∑
m=0

1

m+ 1
,

as required.
For proving identity (2.4), it is easy to see that

(2.9)
l2
(
k
l

)
k2
(
k+l
l

) = G(k + 1, l)−G(k, l)

for positive integers k, l with

G(k, l) =
(k2 − l2)

(
k
l

)
k2
(
k+l
l

) .
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Then summing both sides of equation (2.9) over k from l to n we get

l2
n∑

k=l

(
k
l

)
k2
(
k+l
l

) = G(n+ 1, l)−G(l, l) = G(n+ 1, l) =

(
n
l

)
(
n+l
l

) .
To prove (2.5) we note that for integers n ≥ 2, k ≥ 0,

(2.10)
(−1)kk2

(
n
k

)
(
n+k
k

) = G(n, k + 1)−G(n, k),

with

G(n, k) =
(−1)k−1k(k − 1)(n+ k)

(
n
k

)
2(n− 1)

(
n+k
k

) .

Then summing both sides of equation (2.10) over k from 1 to n we obtain

n∑
k=1

(−1)kk2
(
n
k

)
(
n+k
k

) = G(n, n+ 1)−G(n, 1) = 0,

and the lemma is proved. �

Lemma 2.2. Let k,m, n be positive integers, A
(m)
n,k = (−1)k

(
mn
n−k

)
c
(m)
n where c

(m)
n

is an arbitrary sequence independent of k, and a be a non-negative integer. Then
for each c ∈ N,

1

nc

n∑
k=1

Hk−1(b)A
(m)
n,k

ka
=

n∑
k=1

Hk−1(b)A
(m)
n,k

ka+c
+

∑
j+|s|=a+c

j≥0,s1>a

ml(s)
n∑

k=1

Hk−1(b, s)A
(m)
n,k

kj
,

(2.11)

where s = (s1, s2, . . . , sr) ∈ Nr for r ≥ 1, and |s| =
∑r

i=1 si, l(s) = r.

Proof. We first note that by (2.1),

m

l

n∑
k=l+1

A
(m)
n,k =

(
1

n
− 1

l

)
A

(m)
n,l .(2.12)

We prove (2.11) by induction on c. By (2.12), we have that

m

n∑
k=1

Hk−1(b, a+ 1)A
(m)
n,k = m

n∑
l=1

Hl−1(b)

la+1

n∑
k=l+1

A
(m)
n,k

=
n∑

l=1

Hl−1(b)A
(m)
n,l

la

(
1

n
− 1

l

)

=
1

n

n∑
l=1

Hl−1(b)A
(m)
n,l

la
−

n∑
l=1

Hl−1(b)A
(m)
n,l

la+1
,
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which is (2.11) for c = 1. Now let c > 1. Then by induction, we have

1

nc

n∑
k=1

Hk−1(b)A
(m)
n,k

ka
=

1

nc−1

(
1

n

n∑
k=1

Hk−1(b)A
(m)
n,k

ka

)

=
1

nc−1

n∑
k=1

Hk−1(b)A
(m)
n,k

ka+1
+

m

nc−1

n∑
k=1

Hk−1(b, a+ 1)A
(m)
n,k

=

n∑
k=1

Hk−1(b)A
(m)
n,k

ka+c
+

∑
j+|s|=a+c

j≥0,s1>a+1

ml(s)
n∑

k=1

Hk−1(b, s)A
(m)
n,k

kj

+m
n∑

k=1

Hk−1(b, a+ 1)A
(m)
n,k

kc−1
+m

∑
j+|s|=c−1

j≥0,s1>0

ml(s)
n∑

k=1

Hk−1(b, a+ 1, s)A
(m)
n,k

kj

=

n∑
k=1

Hk−1(b)A
(m)
n,k

ka+c
+

∑
j+|s|=a+c

j≥0,s1>a+1

ml(s)
n∑

k=1

Hk−1(b, s)A
(m)
n,k

kj

+
∑

j+|s|=a+c

j≥0,s1=a+1

ml(s)
n∑

k=1

Hk−1(b, s)A
(m)
n,k

kj
.

�

Theorem 2.3. For a positive integer n and non-negative integers a, b, and c ≥ 2,

Sn({2}a, c, {2}b) = 2

n∑
k=1

(−1)k−1
(
n
k

)
k2a+2b+c

(
n+k
k

)
+ 4

∑
i+j+|s|=c

i≥1,j≥2,|s|≥0

2l(s)
n∑

k=1

Hk−1(2a+ i, s)(−1)k−1
(
n
k

)
k2b+j

(
n+k
k

) ,
(2.13)

where s = (s1, s2, . . . , sr) ∈ Nr for r ≥ 0, and |s| =
∑r

i=1 si, l(s) = r.

Proof. The proof is by induction on n. For n = 1 we have S1({2}a, c, {2}b) = 1,
and the formula is true. For n > 1 we proceed as follows. If c = 2, then we should
prove that

(2.14) Sn({2}m) = 2

n∑
k=1

(−1)k−1
(
n
k

)
k2m

(
n+k
k

) ,

where m = a+ b+ 1. First note that

Sn({2}m) =
∑

1≤k1≤k2≤···≤km≤n

1

k21k
2
2 · · · k2m

=

m∑
l=0

1

n2(m−l)
Sn−1({2}l).
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Then by the induction hypothesis, we have that

Sn({2}m) = 2
n∑

l=0

1

n2(m−l)

n−1∑
k=1

(−1)k−1
(
n−1
k

)
k2l

(
n+k−1

k

) =
2

n2m

n−1∑
k=1

(−1)k−1
(
n−1
k

)
(
n+k−1

k

) m∑
l=0

n2l

k2l

=
2

n2m+2

n∑
k=1

(−1)k−1
(
n
k

)
(n2m+2 − k2m+2)

k2m
(
n+k
k

)
= 2

n∑
k=1

(−1)k−1
(
n
k

)
k2m

(
n+k
k

) − 2

n2m+2

n∑
k=1

(−1)k−1k2
(
n
k

)
(
n+k
k

)
and formula (2.14) easily follows by the equation (2.5).

To prove (2.13) for c > 2 we note that for n > 1,

Sn({2}a, c, {2}b) =
∑

1≤k1≤···≤ka≤ka+1≤ka+2≤···≤ka+b+1≤n

1

k21 · · · k2akca+1k
2
a+2 · · · k2a+b+1

=

b∑
l=0

1

n2(b−l)
Sn−1({2}a, c, {2}l) +

1

n2b+c
Sn({2}a).

Then by the induction hypothesis and formula (2.14), we have

Sn({2}a, c, {2}b) = 2
b∑

l=0

1

n2(b−l)

n−1∑
k=1

(−1)k−1
(
n−1
k

)
k2(a+l)+c

(
n+k−1

k

)
+ 4

b∑
l=0

1

n2(b−l)

∑
i+j+|s|=c

i≥1,j≥2,|s|≥0

2l(s)
n−1∑
k=1

Hk−1(2a+ i, s)(−1)k−1
(
n−1
k

)
k2l+j

(
n−1+k

k

)

+
2

n2b+c

n∑
k=1

(−1)k−1
(
n
k

)
k2a

(
n+k
k

) .

Changing the order of summation and summing the inner sum(
n−1
k

)
(
n−1+k

k

) b∑
l=0

n2l

k2l
=

n2b+2 − k2b+2

(n2 − k2)k2b

(
n−1
k

)
(
n−1+k

k

) =

(
n2b

k2b
− k2

n2

) (
n
k

)
(
n+k
k

) ,
we obtain

Sn({2}a, c, {2}b) = 2

n∑
k=1

(−1)k−1
(
n
k

)
k2a+2b+c

(
n+k
k

)
+ 4

∑
i+j+|s|=c

i≥1,j≥2,|s|≥0

2l(s)
n∑

k=1

Hk−1(2a+ i, s)(−1)k−1
(
n
k

)
k2b+j

(
n+k
k

)

+
2

n2b+c

n∑
k=1

(−1)k−1
(
n
k

)
k2a

(
n+k
k

) − 2

n2b+2

n∑
k=1

(−1)k−1
(
n
k

)
k2a+c−2

(
n+k
k

)
− 4

n2b+2

∑
i+j+|s|=c

i≥1,j≥2,|s|≥0

2l(s)
n∑

k=1

Hk−1(2a+ i, s)(−1)k−1
(
n
k

)
kj−2

(
n+k
k

) .
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The final result follows as soon as we show that

1

nc−2

n∑
k=1

A
(2)
n,k

k2a
=

n∑
k=1

A
(2)
n,k

k2a+c−2
+ 2

∑
i+j+|s|=c

i≥1,j≥2,|s|≥0

2l(s)
n∑

k=1

Hk−1(2a+ i, s)A
(2)
n,k

kj−2
,

where A
(2)
n,k = (−1)k−1

(
n
k

)
/
(
n+k
k

)
. This identity holds by Lemma 2.2 because

2
∑

i+j+|s|=c

i≥1,j≥2,|s|≥0

2l(s)
n∑

k=1

Hk−1(2a+ i, s)A
(2)
n,k

kj−2
=

∑
j+|s|=2a+c−2

j≥0,s1>2a

2l(s)
n∑

k=1

Hk−1(s)A
(2)
n,k

kj
.

�

Corollary 2.4. For a positive integer n and non-negative integers a, b,

Sn({2}a) = 2

n∑
k=1

(−1)k−1
(
n
k

)
k2a

(
n+k
k

) ,

Sn({2}a, 3, {2}b) = 2

n∑
k=1

(−1)k−1
(
n
k

)
k2(a+b)+3

(
n+k
k

) + 4

n∑
k=1

Hk−1(2a+ 1)(−1)k−1
(
n
k

)
k2b+2

(
n+k
k

) .

(2.15)

Theorem 2.5. For a positive integer n and non-negative integers a, b, c,
(2.16)

Sn({1}a, c, {1}b) =
n∑

k=1

(−1)k−1
(
n
k

)
ka+b+c

+
∑

i+j+|s|=c

i≥1,j≥1,|s|≥0

n∑
k=1

Hk−1(a+ i, s)(−1)k−1
(
n
k

)
kb+j

.

Proof. Note that the case c = 1 is well known (see [6, Corollary 3]). It also follows
from the polynomial identity

∑
1≤k1≤···≤km≤n

(1 + x)k1 − 1

k1 · · · km
=

n∑
k=1

(
n

k

)
xk

km

which appeared in [27, Lemma 5.5]. For c > 1 the identity can be proved by
induction on n. By a similar argument as in the proof of Theorem 2.3, we have

Sn({1}a, c, {1}b) =
b∑

l=0

1

nb−l
Sn−1({1}a, c, {1}l) +

1

nb+c
Sn({1}a)

=
1

nb+c

n∑
k=1

(−1)k−1
(
n
k

)
ka

+

b∑
l=0

1

nb−l

n−1∑
k=1

(−1)k−1
(
n−1
k

)
ka+c+l

+

b∑
l=0

1

nb−l

∑
i+j+|s|=c

i≥1,j≥1,|s|≥0

n−1∑
k=1

Hk−1(a+ i, s)(−1)k−1
(
n−1
k

)
kl+j

.

Changing the order of summation and summing the inner sum(
n− 1

k

) b∑
l=0

nl

kl
=

(
nb

kb
− k

n

)(
n

k

)
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we obtain

Sn({1}a, c, {1}b) =
n∑

k=1

(−1)k−1
(
n
k

)
ka+b+c

+
∑

i+j+|s|=c

i≥1,j≥1,|s|≥0

n∑
k=1

Hk−1(a+ i, s)(−1)k−1
(
n
k

)
kb+j

+
1

nb+c

n∑
k=1

(−1)k−1
(
n
k

)
ka

− 1

nb+1

n∑
k=1

(−1)k−1
(
n
k

)
ka+c−1

− 1

nb+1

∑
i+j+|s|=c

i≥1,j≥1,|s|≥0

n∑
k=1

Hk−1(a+ i, s)(−1)k−1
(
n
k

)
kj−1

.

Now the result easily follows from Lemma 2.2 with A
(1)
n,k = (−1)k−1

(
n
k

)
and the

equality

∑
i+j+|s|=c

i≥1,j≥1,|s|≥0

n∑
k=1

Hk−1(a+ i, s)(−1)k−1
(
n
k

)
kj−1

=
∑

j+|s|=a+c−1

j≥0,s1>a

n∑
k=1

Hk−1(s)(−1)k−1
(
n
k

)
kj

.

�

Theorem 2.6. Let a, b be integers satisfying a ≥ 1, b ≥ 0. Then for any positive
integer n,

Sn(1, {2}b) = 2

n∑
k=1

(
n
k

)
k2b+1

(
n+k
k

) ,(2.17)

Sn({2}a, 1, {2}b) = 2

n∑
k=1

(−1)k−1
(
n
k

)
k2(a+b)+1

(
n+k
k

) − 4

n∑
k=1

Hk−1(−2a)
(
n
k

)
k2b+1

(
n+k
k

) .(2.18)

Proof. To prove the first identity we proceed by induction on b. For b = 0 its
validity follows from (2.3). Assume the formula holds for b > 0. Then we easily
obtain from (2.4),

Sn(1, {2}b+1) =
n∑

k=1

Sk(1, {2}b)
k2

= 2
n∑

k=1

1

k2

k∑
l=1

(
k
l

)
l2m+1

(
k+l
l

)
= 2

n∑
l=1

1

l2m+1

n∑
k=l

(
k
l

)
k2
(
k+l
l

) = 2
n∑

l=1

(
n
l

)
l2m+3

(
n+l
l

) ,
as required. To prove the second identity of our theorem we proceed by induction
on n. Obviously, it is valid for n = 1. For n > 1 we use the equality

Sn({2}a, 1, {2}b) =
b∑

l=0

1

n2(b−l)
Sn−1({2}a, 1, {2}l) +

1

n2b+1
Sn({2}a)

and apply the same arguments as in the proof of Theorem 2.3. Then with the help
of formula (2.2) we may easily deduce the result. �

Remark 2.7. Note that the identities for the finite multiple harmonic sums found
in Theorems 2.3 and 2.6 can be used for evaluating multiple zeta-star values. For
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example, letting n tend to infinity in (2.15), (2.17), (2.18) we get expressions for
ζ∗({2}a, 3, {2}b), ζ∗({2}a, 1, {2}b) in terms of alternating Euler sums:

ζ∗({2}a, 3, {2}b) = 2ζ(2a+ 2b+ 3) + 4

∞∑
k=1

(−1)k−1Hk−1(2a+ 1)

k2b+2
,(2.19)

ζ∗({2}a, 1, {2}b) = 2ζ(2a+ 2b+ 1)− 4

∞∑
k=1

Hk−1(−2a)

k2b+1
, a, b ≥ 1,(2.20)

ζ∗(1, {2}b) = 2ζ(2b+ 1), b ≥ 1,(2.21)

where

ζ(s) :=
∞∑
k=1

(−1)k−1

ks
= (1− 21−s)ζ(s),

with ζ(1) = log 2, is the alternating zeta function. Formula (2.21) was proved
previously by several authors (see [23, p. 292, Ex. b], [39], [29]). Evaluations for
length 2 Euler sums of odd weight appearing on the right-hand sides of (2.19) and
(2.20) in terms of zeta values are well known (see, for example, [7, Theorem 7.2]).
Therefore by [7, Theorem 7.2], we obtain

ζ∗({2}a, 3, {2}b) = 4

K∑
r=1

((
2r

2b+ 1

)(
1− 1

22r

)
+ δr,a −

(
2r

2a

))
ζ(2r+1)ζ(2K−2r),

where ζ(0) := 1, K = a+ b+1, which gives another proof of Zagier’s formula (1.1)
for the zeta-star value ζ∗({2}a, 3, {2}b), and
(2.22)

ζ∗({2}a, 1, {2}b) = 4

a+b∑
r=1

((
2r

2b

)
−
(

2r

2a− 1

)(
1− 1

22r

))
ζ(2r + 1)ζ(2a+ 2b− 2r)

for a, b ≥ 1. Note that formula (2.22) was also proved in [25, Theorem 1.6] by
another method.

3. Auxiliary results on congruences

In this section we collect several congruences that will be required later in this
paper.

(i) ([35, Theorem 1.6]) for positive integers a, r and for any prime p > ar + 2,

Hp−1({a}r) ≡
{
(−1)r a(ar+1)

2(ar+2) p
2 Bp−ar−2 (mod p3) if ar is odd,

(−1)r−1 a
ar+1 pBp−ar−1 (mod p2) if ar is even;

(ii) ([35, Theorems 3.1, 3.2]) for positive integers a1, a2 and for any prime p ≥
a1 + a2,

Hp−1(a1, a2) ≡
(−1)a2

a1 + a2

(
a1 + a2

a1

)
Bp−a1−a2

(mod p);

moreover, if a1 + a2 is even, then for any prime p > a1 + a2 + 1,

Hp−1(a1, a2) ≡ p

[
(−1)a1a2

(
a1 + a2 + 1

a1

)
− (−1)a1a1

(
a1 + a2 + 1

a2

)
− a1 − a2

]

× Bp−a1−a2−1

2(a1 + a2 + 1)
(mod p2);
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(iii) ([35, Theorem 3.5]) if a1, a2, a3 ∈ N and w := a1 + a2 + a3 is odd, then for
any prime p > w, we have

Hp−1(a1, a2, a3) ≡
[
(−1)a1

(
w

a1

)
− (−1)a3

(
w

a3

)]
Bp−w

2w
(mod p);

(iv) ([24, Theorem 5.2]) for a positive integer a and for any prime p ≥ a+2, we
have

H p−1
2
(a) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−2qp(2) + pq2p(2)− p2

(
2
3 q

3
p(2) +

7
12 Bp−3

)
(mod p3) if a = 1,

a(2a+1−1)
2(a+1) pBp−a−1 (mod p2) if a is even,

− 2a−2
a Bp−a (mod p) if a > 1 is odd,

where qp(2) = (2p−1 − 1)/p is the so-called Fermat quotient;
(v) ([15, Lemma 1]) if a, b are positive integers and a + b is odd, then for any

prime p > a+ b,

H p−1
2
(a, b) ≡ Bp−a−b

2(a+ b)

(
(−1)b

(
a+ b

a

)
+ 2a+b − 2

)
(mod p);

(vi) by (i) and (iv), for any positive integer a and any prime p ≥ a+2, we have

Hp−1(−a) = 21−aH p−1
2
(a)−Hp−1(a)

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−2qp(2) + pq2p(2)− p2

(
2
3 q

3
p(2) +

1
4 Bp−3

)
(mod p3) if a = 1,

a(1−2−a)
a+1 pBp−a−1 (mod p2) if a is even,

− 2(1−21−a)
a Bp−a (mod p) if a > 1 is odd;

(vii) ([27, Theorem 3.1]) for positive integers a, b of distinct parity and a prime
p ≥ a+ b+ 1,

Hp−1(−a, b) ≡ Hp−1(a,−b) ≡ 1− 21−a−b

a+ b
Bp−a−b (mod p),

Hp−1(−a,−b) ≡ 21−a−b − 1

a+ b
(−1)b

(
a+ b

b

)
Bp−a−b (mod p);

(viii) ([27, Theorem 4.1]) if a, b, c ∈ N and w := a + b + c is odd, then for any
prime p > w,

2Hp−1(a,−b,−c) ≡ Hp−1(c+ b, a) +Hp−1(−c,−b− a)

−Hp−1(−c)Hp−1(−b, a) (mod p),

2Hp−1(−a, b,−c) ≡ Hp−1(−c)Hp−1(b,−a)−Hp−1(−c, b)Hp−1(−a)

+Hp−1(−c− b,−a) +Hp−1(−c,−b− a) (mod p).

In [5, Lemma 6.2] it was proved that for positive integers a, b and a prime p >
2a+ 2b+ 1,

Hp−1(−2a,−2b) ≡ 0 (mod p).

However, we will need a stronger version of this congruence.
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Lemma 3.1. Let a, b be positive integers and a prime p > 2a + 2b + 1. Then the
following congruence holds modulo p2 :

Hp−1(−2a,−2b) ≡
(
(a− b)(1− 2−2a−2b)

(2a+ 1)(2b+ 1)

(
2a+ 2b

2a

)
− a+ b

2a+ 2b+ 1

)
pBp−2a−2b−1.

Proof. Clearly (see [27, Lemma 7.1]),

Hp−1(−2a,−2b) =
∑

1≤j<k≤p−1

(−1)j+k

j2ak2b
=

∑
1≤k<j≤p−1

(−1)p−j+p−k

(p− j)2a(p− k)2b

≡
∑

1≤k<j≤p−1

(−1)k+j

k2bj2a

(
1 +

2bp

k

)(
1 +

2ap

j

)
≡ Hp−1(−2b,−2a)

+ 2bpHp−1(−2b− 1,−2a) + 2apHp−1(−2b,−2a− 1) (mod p2).

Therefore by (vii), we obtain

Hp−1(−2a,−2b) ≡ Hp−1(−2b,−2a)

+
2p(a− b)(1− 2−2a−2b)

(2a+ 1)(2b+ 1)

(
2a+ 2b

2a

)
Bp−2a−2b−1 (mod p2).

(3.1)

On the other hand, we have

Hp−1(−2a,−2b) +Hp−1(−2b,−2a)

≡ Hp−1(−2a)Hp−1(−2b)−Hp−1(2a+ 2b) (mod p2),

and therefore by (vi) and (i),

Hp−1(−2a,−2b) +Hp−1(−2b,−2a) ≡ −Hp−1(2a+ 2b)

≡ − (2a+ 2b)p

2a+ 2b+ 1
Bp−2a−2b−1 (mod p2).

(3.2)

Now from (3.1) and (3.2) we obtain the required congruence. �

Lemma 3.2. For positive integers a, b and a prime p > 2a+ 2b+ 1, the following
congruence holds modulo p :

H p−1
2
(−2a,−2b− 1) ≡ 22a+2b − 1

2a+ 2b+ 1

(
1

22a+2b+1

(
2a+ 2b+ 1

2a

)
+ 1

)
Bp−2a−2b−1.

Proof. It is easily seen that

Hp−1(−2a,−2b− 1)−H p−1
2
(−2a,−2b− 1) =

p−1∑
k= p+1

2

(−1)kHk−1(−2a)

k2b+1

=

(p−1)/2∑
k=1

(−1)p−kHp−k−1(−2a)

(p− k)2b+1
≡

(p−1)/2∑
k=1

(−1)kHp−k−1(−2a)

k2b+1
(mod p).

(3.3)

For the harmonic number Hp−k−1(−2a), by (vi) we have

Hp−k−1(−2a) =

p−k−1∑
j=1

(−1)j

j2a
=

p−1∑
j=k+1

(−1)p−j

(p− j)2a
≡ −

p−1∑
j=k+1

(−1)j

j2a

= −(Hp−1(−2a)−Hk(−2a)) ≡ Hk(−2a) (mod p).
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Substituting the above congruence in (3.3) we obtain

Hp−1(−2a,−2b− 1)−H p−1
2
(−2a,−2b− 1) ≡

(p−1)/2∑
k=1

(−1)kHk(−2a)

k2b+1

= H p−1
2
(−2a,−2b− 1) +H p−1

2
(2a+ 2b+ 1) (mod p),

which by (iv) and (vii) implies the required result. �

4. New congruences for multiple harmonic sums

In this section we state and prove our main results on multiple harmonic sums.

Theorem 4.1. Let a, b be non-negative integers and p be a prime such that p >
2a+ 2b+ 3. Then

Sp−1({2}a, 3, {2}b) ≡
b− a

(a+ 1)(b+ 1)

(
2a+ 2b+ 2

2a+ 1

)
Bp−2a−2b−3 (mod p),

Hp−1({2}a, 3, {2}b) ≡
(−1)a+b(a− b)

(a+ 1)(b+ 1)

(
2a+ 2b+ 2

2a+ 1

)
Bp−2a−2b−3 (mod p).

Proof. From Theorem 2.3 we have

Sp−1({2}a, 3, {2}b) = 2

p−1∑
k=1

(−1)k−1
(
p−1
k

)
k2a+2b+3

(
p−1+k

k

) + 4

p−1∑
k=1

Hk−1(2a+ 1)(−1)k−1
(
p−1
k

)
k2b+2

(
p−1+k

k

) .

Since (
p−1
k

)
(
p−1+k

k

) =
(p− 1)(p− 2) · · · (p− k)

p(p+ 1) · · · (p+ k − 1)
=

(−1)kk

p

k∏
j=1

(
1− p

j

) k−1∏
j=1

(
1 +

p

j

)−1

≡ (−1)kk

p
(1− pHk(1))(1− pHk−1(1))

≡ (−1)kk

p

(
1− 2pHk−1(1)−

p

k

)
(mod p),

(4.1)

we obtain

Sp−1({2}a, 3, {2}b) ≡ −2

p

p−1∑
k=1

1

k2a+2b+2

(
1− 2pHk−1(1)−

p

k

)

− 4

p

p−1∑
k=1

Hk−1(2a+ 1)

k2b+1

(
1− 2pHk−1(1)−

p

k

)

= −2

p
Hp−1(2a+ 2b+ 2) + 4Hp−1(1, 2a+ 2b+ 2)

− 4

p
Hp−1(2a+ 1, 2b+ 1) + 8Hp−1(2a+ 1, 1, 2b+ 1)

+ 8Hp−1(1, 2a+ 1, 2b+ 1) + 8Hp−1(2a+ 2, 2b+ 1)

+ 4Hp−1(2a+ 1, 2b+ 2) (mod p).

Now by (i)–(iii), we easily obtain the required congruence for Sp−1({2}a, 3, {2}b).
To prove the corresponding congruence for the H-sum, we apply the following
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identity which relates S-version and H-version multiple harmonic sums (see [18,
Theorem 6.8]):

(4.2) (−1)l(s)Sn(s) =
∑

⊔l
i=1 si=s

(−1)l
l∏

i=1

Hn(si),

where
⊔l

i=1 si is the concatenation of s1 to sl and the vector s = (sr, . . . , s1) is
obtained from s = (s1, . . . , sr) by reversing its coordinates. We substitute s =
({2}b, 3, {2}a) and n = p− 1 in (4.2) and note that if l ≥ 2, then one of si = ({2}c)
for some positive c and therefore Hp−1(si) ≡ 0 (mod p). Thus

(4.3) (−1)a+b+1Sp−1({2}a, 3, {2}b) ≡ −Hp−1({2}b, 3, {2}a) (mod p).

On the other hand, we have (see [19, Theorem 4.5])

(4.4) Hp−1({2}a, 3, {2}b) ≡ −Hp−1({2}b, 3, {2}a) (mod p).

Now from (4.3) and (4.4) we get the required congruence and the proof is complete.
�

Theorem 4.2. Let a, b be non-negative integers and a prime p > 2a+2b+1. Then

Sp−1({2}a, 1, {2}b) ≡
4(b− a)(1− 4−a−b)

(2a+ 1)(2b+ 1)

(
2a+ 2b

2a

)
Bp−2a−2b−1 (mod p),

Hp−1({2}a, 1, {2}b) ≡
4(−1)a+b(a− b)(1− 4−a−b)

(2a+ 1)(2b+ 1)

(
2a+ 2b

2a

)
Bp−2a−2b−1 (mod p).

Proof. We begin by considering the case a ≥ 1. Then from identity (2.18) with
n = p− 1 and congruence (4.1) we have

Sp−1({2}a, 1, {2}b) ≡ −2

p

p−1∑
k=1

1

k2a+2b

(
1− 2pHk−1(1)−

p

k

)

− 4

p

p−1∑
k=1

Hk−1(−2a)(−1)k

k2b

(
1− 2pHk−1(1)−

p

k

)
(mod p).

By the obvious equality

(4.5) Hn(a)Hn(b) = Hn(a, b) +Hn(b, a) +Hn

(
sgn(ab)(|a|+ |b|)

)
, a, b ∈ Z \ {0},

we obtain

Sp−1({2}a, 1, {2}b) ≡− 2

p
Hp−1(2a+ 2b) + 4Hp−1(1, 2a+ 2b)− 4

p
Hp−1(−2a,−2b)

+ 8Hp−1(−2a, 1,−2b) + 8Hp−1(1,−2a,−2b)

+ 8Hp−1(−2a− 1,−2b) + 4Hp−1(−2a,−2b− 1) (mod p).

Applying (viii), (4.5), (vi) and simplifying, we deduce that

Sp−1({2}a, 1, {2}b) ≡ −2

p
Hp−1(2a+ 2b)− 4

p
Hp−1(−2a,−2b) (mod p).

Now the required congruence follows from (i) and Lemma 3.1. The case a = 0
is handled in the same way with the help of identity (2.17) and congruences (vi),
(vii). The corresponding congruence for Hp−1({2}a, 1, {2}b) easily follows from
relation (4.2). �
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Corollary 4.3. Let p be a prime greater than 7. Then

(4.6) Sp−1(1, 1, 1, 4) ≡ Sp−1(1, 2, 2, 2) ≡
27

16
Bp−7 (mod p),

(4.7) Sp−1(1, 1, 1, 6) ≡
1

54
B3

p−3 +
1889

648
Bp−9 (mod p).

Proof. The first congruence in (4.6) follows from [19, Theorem 7.3] and the second
one is a consequence of Theorem 4.2 with a = 0, b = 3. To prove congruence (4.7)
we set a = 0, b = 4 in Theorem 4.2 to obtain

(4.8) Sp−1(1, {2}4) ≡
85

48
Bp−9 (mod p).

On the other hand, using [19, Theorem 6.4] we can rewrite the length 5 sum
Sp−1(1, {2}4) in terms of length 4 sums and Sp−1(1, 8) as

2Sp−1(1, {2}4) ≡Sp−1(1, 2, 2, 4) + Sp−1(1, 2, 4, 2) + Sp−1(1, 4, 2, 2)

+ Sp−1(3, 2, 2, 2)−
255

18
Sp−1(1, 8) (mod p).

Now applying [19, Theorem 7.5] and expressing all length 4 sums in the congru-
ence above in terms of the three quantities Sp−1(1, 1, 1, 6), Sp−1(1, 8) ≡ Bp−9, and
Sp−1(1, 2)Sp−1(1, 1, 4) ≡ − 1

6B
3
p−3 (mod p), we obtain

(4.9)

2Sp−1(1,{2}4) ≡ 3Sp−1(1, 1, 1, 6)+
1

3
Sp−1(1, 2)Sp−1(1, 1, 4)−

281

54
Sp−1(1, 8) (mod p).

Comparing congruences (4.8) and (4.9) we conclude that

Sp−1(1, 1, 1, 6) ≡ −1

9
Sp−1(1, 2)Sp−1(1, 1, 4) +

1889

648
Sp−1(1, 8)

≡ 1

54
B3

p−3 +
1889

648
Bp−9 (mod p).

�

From Corollary 4.3, [19, Theorems 7.3, 7.5], and [36, Section 2] we obtain the
following description of multiple harmonic sums of weight 7 and 9.

Corollary 4.4. Let p be a prime greater than 7. Then

(i) all multiple harmonic sums Sp−1(s), Hp−1(s), of weight |s| = 7 belong to
Q(2)Bp−7 modulo p;

(ii) all multiple harmonic sums Sp−1(s), Hp−1(s) of weight |s| = 9 can be writ-
ten modulo p as linear combinations of the two quantities Bp−9 and B3

p−3

with coefficients in Q(3).

In [35, Theorem 3.16], Zhao proved that

Sp−1({1}a, 2, {1}b) ≡ Hp−1({1}a, 2, {1}b) ≡ 0 (mod p)

if a + b is even and a prime p > a+ b + 3. In the next theorem we prove a deeper
result on the above sums.
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Theorem 4.5. For non-negative integers a, b and a prime p > a+ b+ 3,

Sp−1({1}a, 2, {1}b) ≡

⎧⎨
⎩

(−1)b

a+b+2

(
a+b+2
a+1

)
Bp−a−b−2 (mod p) if a+ b is odd,

pBp−a−b−3

2(a+b+3)

(
1 + (−1)a

(
a+b+3
a+2

))
(mod p2) if a+ b is even;

Hp−1({1}a, 2, {1}b) ≡

⎧⎨
⎩

(−1)b

a+b+2

(
a+b+2
a+1

)
Bp−a−b−2 (mod p) if a+ b is odd,

pBp−a−b−3

2(a+b+3)

(
1 + (−1)a

(
a+b+3
b+2

))
(mod p2) if a+ b is even.

Proof. From Theorem 2.5 for c = 2 we have

Sn({1}a, 2, {1}b) =
n∑

k=1

(−1)k−1
(
n
k

)
ka+b+2

+
n∑

k=1

Hk−1(a+ 1)(−1)k−1
(
n
k

)
kb+1

.

Setting n = p− 1 and observing that(
p− 1

k

)
=

(p− 1)(p− 2) · · · (p− k)

k!
≡ (−1)k(1− pHk(1)) (mod p2),

we have

Sp−1({1}a, 2, {1}b) ≡ −
p−1∑
k=1

1− pHk(1)

ka+b+2
−

p−1∑
k=1

Hk−1(a+ 1)(1− pHk(1))

kb+1

= −Hp−1(a+ b+ 2) + pHp−1(1, a+ b+ 2) + pHp−1(a+ b+ 3)

−Hp−1(a+ 1, b+ 1) + pHp−1(a+ 1, b+ 2) + pHp−1(a+ 1, 1, b+ 1)

+ pHp−1(1, a+ 1, b+ 1) + pHp−1(a+ 2, b+ 1) (mod p2).

(4.10)

If a+ b is odd, then by (ii) we obtain

Sp−1({1}a, 2, {1}b)≡−Hp−1(a+1, b+1)≡ (−1)b

a+ b+ 2

(
a+ b+ 2

a+ 1

)
Bp−a−b−2 (mod p).

If a + b is even, then from (4.10) and (i)–(iii) after simplifying we get the second
congruence for Sp−1({1}a, 2, {1}b).

Considering equality (4.2) with n = p− 1, s = ({1}a, 2, {1}b) modulo p we find

(−1)a+b+1Sp−1({1}b, 2, {1}a) ≡ −Hp−1({1}a, 2, {1}b) (mod p)

and therefore

Hp−1({1}a, 2, {1}b) ≡
{
−Sp−1({1}b, 2, {1}a) (mod p) if a+ b is odd,

0 (mod p) if a+ b is even.
(4.11)

Similarly, from identity (4.2) considered modulo p2 we obtain

(−1)a+bSp−1({1}b, 2, {1}a)

≡ Hp−1({1}a, 2, {1}b)−
∏

s1
⊔

s2=

({1}a,2,{1}b)

Hp−1(s1)Hp−1(s2) (mod p2).(4.12)

It is clear that the product Hp−1(s1)Hp−1(s2) has one of the forms

Hp−1({1}m)Hp−1({1}a−m, 2, {1}b), 1 ≤ m ≤ a,
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or

Hp−1({1}a, 2, {1}l)Hp−1({1}b−l), 0 ≤ l ≤ b.

If a + b is even, then by (i) and (4.11), it easily follows that both products are
congruent to zero modulo p2. Thus in this case from (4.12) we obtain

Sp−1({1}b, 2, {1}a) ≡ Hp−1({1}a, 2, {1}b) (mod p2),

and the proof is complete. �

Remark 4.6. It is worth mentioning that there is a notion of duality for multiple
harmonic sums: given s = (s1, s2, . . . , sr) we define the power set P (s) to be the
partial sum sequence (s1, s1+s2, . . . , s1+ · · ·+sr−1) as a subset of {1, 2, . . . , |s|−1}.
Then s∗ is the composition of weight |s| corresponding to the complement subset
of P (s) in {1, 2, . . . , |s| − 1}, namely,

s∗ = P−1({1, 2, . . . , |s| − 1} \ P (s)).

It is easy to verify that (s∗)∗ = s. Moreover, by [18, Theorem 6.7] we have that

Sp−1(s) ≡ −Sp−1(s
∗) (mod p)

for any prime p. In particular, for any positive integers a, b it follows that

Sp−1({2}a, 1, {2}b) ≡ −Sp−1(1, {2}a−1, 3, {2}b−1, 1) (mod p),

Sp−1({2}a, 3, {2}b) ≡ −Sp−1(1, {2}a, 1, {2}b, 1) (mod p),

Sp−1({1}a, 2, {1}b) ≡ −Sp−1(a+ 1, b+ 1) (mod p),

and by Theorem 4.1 and Theorem 4.2 we are able to find Sp−1(1, {2}a, 1, {2}b, 1)
and Sp−1(1, {2}a−1, 3, {2}b−1, 1) modulo a prime p in terms of Bernoulli numbers.

5. Congruences for “odd” multiple harmonic sums

In this section we prove some congruences involving “odd” multiple harmonic
sums. These results will be needed in the next sections.

Lemma 5.1. Let s ∈ Nr. Then for any prime p > 3,

H p−1
2
(s) ≡ (−1)|s|

2|s|
H p−1

2
(s) (mod p).

Proof. Changing the order of summation in the definition of Hn(s), with n = p−1
2 ,

we obtain

Hn(s1, s2, . . . , sr) =
∑

0≤k1<···<kr<n

1

(2k1 + 1)s1 · · · (2kr + 1)sr

=
∑

n>k1>···>kr≥0

1

(2(n− 1− k1) + 1)s1 · · · (2(n− 1− kr) + 1)sr

≡
∑

0≤kr<···<k1≤n−1

(−1)s1+···+sr

2s1+···+sr(k1 + 1)s1 · · · (kr + 1)sr

=
(−1)|s|

2|s|
Hn(sr, . . . , s1) (mod p).

�
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Theorem 5.2. For any positive integer m and any prime p > 2m+ 1, we have

H p−1
2
(2m) ≡ m

4m(2m+ 1)
pBp−2m−1 (mod p2),(5.1)

H p−1
2
({2}m) ≡ (−1)m−1

4m(2m+ 1)
pBp−2m−1 (mod p2).(5.2)

Proof. Let n = (p− 1)/2. It is easy to deduce (see [15, Lemma 2]) that

Hn(2m) = H2n(2m)− Hn(2m)

22m
,

which by (i) and (iv) implies the first congruence.
From [35, Section 2.4, Lemma 2.12] it follows that the “odd” multiple harmonic

sum Hn as well as Hn satisfies the following stuffle relation:

(5.3) mHn({2}m) =
m∑

k=1

(−1)k−1Hn(2k) ·Hn({2}m−k).

Now the congruence (5.2) easily follows from the above identity and (5.1) by in-
duction on m. Indeed, for m = 1 it follows from (5.1), and if m > 1, then by (5.3)
and induction hypothesis, we have

mHn({2}m) ≡ (−1)m−1Hn(2m) (mod p2),

and the theorem is proved. �

Theorem 5.3. Let a, b be non-negative integers and a prime p > 2a+2b+3. Then

S p−1
2
({2}a, 3, {2}b) ≡ −Bp−2a−2b−3

b+ 1

(
2a+ 2b+ 2

2a+ 1

)
(mod p),

H p−1
2
({2}a, 3, {2}b) ≡ (−1)a+b+1Bp−2a−2b−3

a+ 1

(
2a+ 2b+ 2

2a+ 1

)
(mod p).

Proof. Setting n = p−1
2 in identity (2.15) and observing that

(5.4)

(
n
k

)
(
n+k
k

) = (−1)k
(
1
2 − p

2

)(
3
2 − p

2

)
· · ·

(
2k−1

2 − p
2

)
(
1
2 + p

2

)(
3
2 + p

2

)
· · ·

(
2k−1

2 + p
2

) ≡ (−1)k (mod p),

we obtain

S p−1
2
({2}a, 3, {2}b) ≡ −2H p−1

2
(2a+ 2b+ 3)− 4H p−1

2
(2a+ 1, 2b+ 2) (mod p).

Now the required congruence easily follows by (iv) and (v). From Lemma 5.1 and
Theorem 5.2 it follows that

H p−1
2
({2}m) ≡ 22m H p−1

2
({2}m) ≡ 0 (mod p).

Therefore applying identity (4.2) with n = p−1
2 and s = ({2}a, 3, {2}b) we obtain

(−1)a+b+1S p−1
2
({2}b, 3, {2}a) ≡ −H p−1

2
({2}a, 3, {2}b) (mod p)

and the theorem is proved. �
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Theorem 5.4. Let a, b be non-negative integers, not both zero, and a prime p >
2a+ 2b+ 1. Then

S p−1
2
({2}a, 1, {2}b) ≡ 21−2a−2b − 2

2b+ 1

(
2a+ 2b

2a

)
Bp−2a−2b−1 (mod p),

H p−1
2
({2}a, 1, {2}b) ≡ (−1)a+b(21−2a−2b − 2)

2a+ 1

(
2a+ 2b

2a

)
Bp−2a−2b−1 (mod p).

Proof. If a ≥ 1, then from identity (2.18) with n = (p− 1)/2 and congruence (5.4)
we find

S p−1
2
({2}a, 1, {2}b) ≡ −2H p−1

2
(2a+ 2b+ 1)− 4H p−1

2
(−2a,−2b− 1) (mod p).

Now the required result easily follows by (iv) and Lemma 3.2. If a = 0, then from
(2.17) we have

(5.5) S p−1
2
(1, {2}b) ≡ 2H p−1

2
(−2b− 1) (mod p).

Moreover,

H p−1
2
(−2b− 1) =

(p−1)/2∑
k=1

(−1)k

k2b+1
=

p−1∑
k=(p+1)/2

(−1)p−k

(p− k)2b+1

≡
p−1∑

k=(p+1)/2

(−1)k

k2b+1
= Hp−1(−2b− 1)−H p−1

2
(−2b− 1) (mod p).

Therefore, since b > 0, by (vi) it follows that

(5.6) H p−1
2
(−2b− 1) ≡ 1

2
Hp−1(−2b− 1) ≡ 2−2b − 1

2b+ 1
Bp−2b−1 (mod p).

From (5.5) and (5.6) we conclude the truth of the first congruence for a = 0. From
identity (4.2) we easily obtain

(−1)a+bS p−1
2
({2}b, 1, {2}a) ≡ H p−1

2
({2}a, 1, {2}b) (mod p),

and the proof is complete. �

Lemma 5.5. Let r, a be positive integers. Then for any prime p > r + 2, we have

H p−1
2
(r) ≡ H� p

4 �(r) + (−2)r
a∑

k=0

(
r − 1 + k

k

)
H p−1

2
(r + k)pk

− (−1)r
a∑

k=0

(
r − 1 + k

k

)
H� p

4 �(r + k)

2k
pk (mod pa+1).

(5.7)

If r is a non-negative integer, then for any prime p > 2r + 3, we have

H p−1
2
(−2r − 1) ≡ (−1)

p+1
2

42r+1
H p−1

2
(2r + 1) (mod p2).

Proof. Let n = (p− 1)/2, m = �p/4�. Then the first congruence follows easily from
the equality

Hn(r) = Hm(r) + 2r
( n∑
k=1

1

(p− k)r
−

m∑
k=1

1

(p− 2k)r

)
.
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To prove the second one, we have

(−1)n
n−1∑
k=0

(−1)k

(2k + 1)2r+1
=

n∑
k=1

(−1)k

(p− 2k)2r+1

= 2

m∑
k=1

1

(p− 4k)2r+1
−

n∑
k=1

1

(p− 2k)2r+1

= 2

m∑
k=1

1

(4k)2r+1(p/(4k)− 1)2r+1
−

n∑
k=1

1

(2k)2r+1(p/(2k)− 1)2r+1

≡ − 1

24r+1

(
Hm(2r + 1) +

(2r + 1)p

4
Hm(2r + 2)

)
+

1

22r+1
Hn(2r + 1) (mod p2).

From (5.7) with a = 1 and r replaced by 2r + 1, we get

2Hm(2r + 1) +
(2r + 1)p

2
Hm(2r + 2) ≡ (1 + 22r+1)Hn(2r + 1) (mod p2),

which after substitution into the right-hand side of the above congruence implies
the result. �

6. Results on p-analogues of Leshchiner’s series

In this section, we consider finite p-analogues of zeta and beta values arising
from the truncation of Leshchiner’s series (1.5)–(1.8) and defined by the finite sums

ζp(2m+ 2) :=
3

2

p−1∑
k=1

(−1)mHk−1({2}m)

k2
(
2k
k

) + 2
m∑
j=1

p−1∑
k=1

(−1)m−jHk−1({2}m−j)

k2j+2
(
2k
k

) ,

ζp(2m+ 3) :=
5

2

p−1∑
k=1

(−1)k+m−1Hk−1({2}m)

k3
(
2k
k

)
+ 2

m∑
j=1

p−1∑
k=1

(−1)k+m−j−1Hk−1({2}m−j)

k2j+3
(
2k
k

) ,

ζp(2m+ 2) :=
5

4

(p−3)/2∑
k=0

(−1)k+m
(
2k
k

)
Hk({2}m)

16k(2k + 1)2

+

m∑
j=1

(p−3)/2∑
k=0

(−1)k+m−j
(
2k
k

)
Hk({2}m−j)

16k(2k + 1)2j+2
,

βp(2m+ 1) :=
3

4

(p−3)/2∑
k=0

(−1)m
(
2k
k

)
Hk({2}m)

16k(2k + 1)

+

m∑
j=1

(p−3)/2∑
k=0

(−1)m−j
(
2k
k

)
Hk({2}m−j)

16k(2k + 1)2j+1
.

Applications of our results on congruences obtained in Sections 4 and 5 allowed
us to establish the following congruences for the finite p-analogues of Leshchiner’s
series.
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Theorem 6.1. Let m be a non-negative integer and p be a prime such that p >
2m+ 3. Then

2p ζp(2m+ 2) ≡ −4m(1− 2−2m)

2m+ 1
Bp−2m−1 (mod p),

ζp(2m+ 3) ≡ − (m+ 1)(2m+ 1)

2m+ 3
Bp−2m−3 (mod p).

Note that for ζp(2), ζp(3), ζp(4), stronger congruences were proved by the authors
in [14,26]. For ζp(5), we recover the congruence ζp(5) ≡ −6/5Bp−5 (mod p) proved
in [14].

Theorem 6.2. Let m be a non-negative integer and p be a prime such that p >
2m+ 3. Then

βp(2m+ 1) ≡ (−1)(p+1)/2m(4m − 1)

16m(2m+ 1)
Bp−2m−1 (mod p),

ζp(2m+ 2) ≡ − 2m2 + 3m+ 2

22m+3(2m+ 3)
pBp−2m−3 (mod p2).

Note that for βp(1) and ζp(2), sharper congruences were proved in [15].

7. Finite identities and their formal proofs

By revisiting the combinatorial proof (due to D. Zagier) presented in Section
5 in [22], it is possible to obtain finite versions of identities (1.5)–(1.8). Here we
derive these identities in a formal unified way based on applications of appropriate
WZ pairs.

Lemma 7.1. Let m be a non-negative integer. Then for every positive integer n,
we have

n∑
k=1

(−1)k−1

k2m+2
− 1

2

n∑
k=1

(−1)n+k+mHk−1({2}m)

k2
(
n
k

)(
n+k
k

)
=

3

2

n∑
k=1

(−1)mHk−1({2}m)

k2
(
2k
k

) + 2

m∑
j=1

n∑
k=1

(−1)m−jHk−1({2}m−j)

k2j+2
(
2k
k

) ,

(7.1)

n∑
k=1

1

k2m+3
− 1

2

n∑
k=1

(−1)k+mHk−1({2}m)

k3
(
n
k

)(
n+k
k

)
=

5

2

n∑
k=1

(−1)k+m−1Hk−1({2}m)

k3
(
2k
k

) + 2
m∑
j=1

n∑
k=1

(−1)k+m−j−1Hk−1({2}m−j)

k2j+3
(
2k
k

) .

(7.2)

Proof. For non-negative integers n, k, we consider a pair of functions

F1(n, k) =
(−1)n+k(n− k − 1)!(1 + a)k(1− a)k

2(n+ k + 1)!
, n ≥ k + 1,

G1(n, k) =
(−1)n+k(n− k)!(n+ 1)(1 + a)k(1− a)k

((n+ 1)2 − a2)(n+ k + 1)!
, n ≥ k,
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where (c)k is the shifted factorial defined by (c)k = c(c + 1) · · · (c + k − 1), k ≥ 1,
and (c)0 = 1. It is easy to check that (F1, G1) is a WZ pair, i.e., it satisfies the
relation

F1(n+ 1, k)− F1(n, k) = G1(n, k + 1)−G1(n, k).

Summing the above equality first over k and then over n, we get the following
summation formula (see [14, Section 4]):
(7.3)
N∑

n=1

G1(n− 1, 0) =

N∑
n=1

(G1(n− 1, n− 1)+F1(n, n− 1))−
N∑

k=1

F1(N, k− 1), N ∈ N.

Substituting (F1, G1) in (7.3) we obtain

N∑
n=1

(−1)n−1

n2 − a2
=

1

2

N∑
n=1

1

n2
(
2n
n

) 3n2 + a2

n2 − a2

n−1∏
m=1

(
1− a2

m2

)

+
1

2

N∑
k=1

(−1)N+k

k2
(
N
k

)(
N+k
k

) k−1∏
m=1

(
1− a2

m2

)
.

(7.4)

Expanding both sides of (7.4) in powers of a2 and comparing coefficients of a2m we
derive the finite identity (7.1). Similarly, considering the WZ pair

F2(n, k) =
(−1)n

k + 1
F1(n, k), G2(n, k) =

(−1)n

n+ 1
G1(n, k)

and applying the same argument as above we obtain the second identity. �

Lemma 7.2. For any non-negative integers m,n we have

n∑
k=0

(−1)k

(2k + 1)2m+1
− 1

4

n∑
k=0

(−1)n+k+m
(
2k
k

)
Hk({2}m)

16k(2k + 1)
(
n+k+1
2k+1

)

=
3

4

n∑
k=0

(−1)m
(
2k
k

)
Hk({2}m)

16k(2k + 1)
+

m∑
j=1

n∑
k=0

(−1)m−j
(
2k
k

)
Hk({2}m−j)

16k(2k + 1)2j+1
,

(7.5)

n∑
k=0

1

(2k + 1)2m+2
+

1

4

n∑
k=0

(−1)k+m
(
2k
k

)
Hk({2}m)

16k(2k + 1)2
(
n+k+1
2k+1

)

=
5

4

n∑
k=0

(−1)k+m
(
2k
k

)
Hk({2}m)

16k(2k + 1)2
+

m∑
j=1

n∑
k=0

(−1)k+m−j
(
2k
k

)
Hk({2}m−j)

16k(2k + 1)2j+2
.

(7.6)

Proof. As in the proof of Lemma 7.1, applying summation formula (7.3) to the WZ
pairs

F1(n, k) =
(−1)n+k(n− k − 1)!

4(n+ k)!

(1 + a

2

)
k

(1− a

2

)
k
, n ≥ k + 1,

G1(n, k) =
(−1)n+k(n− k)!(2n+ 1)

(n+ k)!((2n+ 1)2 − a2)

(1 + a

2

)
k

(1− a

2

)
k
, n ≥ k,
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and

F2(n, k) =
(−1)n

2k + 1
F1(n, k), G2(n, k) =

(−1)n

2n+ 1
G1(n, k),

we get the required identities. �

8. Proofs of Theorems 6.1 and 6.2

Proof of Theorem 6.1. Setting n = p− 1 in (7.1), we get

ζp(2m+ 2) = Hp−1(−2m− 2)− 1

2

p−1∑
k=1

(−1)k+mHk−1({2}m)

k2
(
p−1
k

)(
p−1+k

k

) .

Since

(−1)k

k2
(
p−1
k

)(
p−1+k

k

) =
1

pk

k∏
m=1

(
1− p

m

)−1 k−1∏
m=1

(
1 +

p

m

)−1

≡ 1

pk
+

1

k2
+

pHk(2)

k
(mod p2),

(8.1)

we obtain

ζp(2m+ 2) ≡ −Hp−1(−2m− 2)− (−1)m

2p
Hp−1({2}m, 1)

− (−1)m

2
Hp−1({2}m+1) (mod p),

which by (i), (vi), and Theorem 4.2 implies the required congruence.
Similarly, setting n = p− 1 in (7.2) and applying (8.1), (i) and Theorem 4.1 we

get

ζp(2m+ 3) = Hp−1(2m+ 3)− 1

2

p−1∑
k=1

(−1)k+mHk−1({2}m)

k3
(
p−1
k

)(
p−1+k

k

)
≡ Hp−1(2m+ 3) +

(−1)m−1

2

(1
p
Hp−1({2}m+1) +Hp−1({2}m, 3)

)

≡ −Bp−2m−3

2m+ 3
+

(−1)m−1

2
Hp−1({2}m, 3)

≡ − (m+ 1)(2m+ 1)

2m+ 3
Bp−2m−3 (mod p).

Proof of Theorem 6.2. Setting n = (p− 3)/2 in (7.5), we get

βp(2m+ 1) = H p−1
2
(−2m− 1) +

(−1)(p−1)/2+m

4

(p−3)/2∑
k=0

(−1)k
(
2k
k

)
Hk({2}m)

16k(2k + 1)
(
(p−1)/2+k

2k+1

) .
Taking into account that
(8.2) (

2k
k

)
(−16)k

(
(p−1)/2+k

2k+1

) =
2(2k + 1)

p− 1− 2k

k−1∏
j=0

(
1− p2

(2j + 1)2

)−1

≡ −2− 2p

2k + 1
(mod p2),
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we obtain by Theorem 5.2,

βp(2m+ 1) ≡ H p−1
2
(−2m− 1) +

(−1)(p+1)/2+m

2

(p−3)/2∑
k=0

Hk({2}m)

2k + 1

(
1 +

p

2k + 1

)

≡ H p−1
2
(−2m− 1) +

(−1)(p+1)/2+m

2
H p−1

2
({2}m, 1) (mod p2),

which implies the first congruence of the theorem by Lemmas 5.5 and 5.1, and
Theorem 5.4.

Similarly, from (7.6) by (8.2), Theorem 5.2, Lemma 5.1 and Theorem 5.3, we
have

ζp(2m+ 2) ≡ H p−1
2
(2m+ 2) +

(−1)m−1

2

(
H p−1

2
({2}m+1) + pH p−1

2
({2}m, 3)

)
≡ 2m+ 1

22m+3(2m+ 3)
pBp−2m−3 +

(−1)m−1

2
pH p−1

2
({2}m, 3)

≡ − 2m2 + 3m+ 2

22m+3(2m+ 3)
pBp−2m−3 (mod p2).
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