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Abstract  We present a mathematical formulation of the Multiple Dice Rolling (MDR) game and develop an 
adaptive computational algorithm to simulate such game over time. We use an extended version of the well-known 
Chapman-Kolmogorov Equations (CKEs) to model the state transition of the probability mass function of each side 
of the dice during the game and represent the time-dependent propensity of the game by a simple regression process, 
which enable to capture the change in the expectation over time. Furthermore, we perform a quantitative analysis on 
the outcome of the game in a framework of Average Probability Value (APV) of appearance of a side of the dice 
over trials. The power of our approach is demonstrated. Our results also suggest that in the MDR game, the APV of 
appearance of a side of a dice can be appropriately predicted independently of the number of sides and trials. 
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1. Introduction 

We consider a Multiple Dice Rolling (MDR) game in a 
theoretic-analytic prospective. Hypothetical, the model 
can be describe by N - sided dices and n trials under the 
supervision of a third party or referee; such dice may not 
be a square anymore. As mentioned in [1,2,3], MDR  
game is particularly longstanding and pervasive due to  
the infinite richness of the game. The quantitative 
understanding of dice game, both in terms of probability 
theory and statistical laws, remains difficult and unclear. 
Investigations are complex due to the shortage of reliable 
data on the one hand, and the game randomness and 
unclear interactions on the other hand. Information about 
outcome of the game is often difficult to quantify and not 
available in large numbers. While for a single unbiased 
six-side die rolling game, the probability mass function 
(pmf) and the statistic of the game could be easily 
calculated, not much is known about mechanism of 
formation of these probabilities in the case of multiple 
dice rolling (MDR) game. With the recent advances in 
computer science, and the appearance of extensive 
databases, it is now possible to make dice games with 
reasonable numbers of dice accessible to quantitative 
analysis, even for large numbers of throws [4,5], but this 
has not yet been done with multiple dice. 

 As has pointed out in [6], one of the major problems 
with the MDR game is the difficulty to simultaneously 

follow the dynamic of all sides of the dice over time. To 
overcome such a limitation, we assume without loss of 
generality that “we throw the dice and follow the dynamic 
somehow separately”. By studying the dynamic of the 
probability distribution of each side of a die over many 
throws or trials, we intend to estimate the average 
Probability Value (APV) of the appearance of each side  
of the dice at a fixed number trials. After repeated 
experiments, these values can then be used to reasonably 
predict the future outcome of the game.  

The MDR problem is subject to stochastic perturbations 
that can produce delays or change on the outcomes 
experienced by individual dice during trials. These delays 
are mainly due to the existence of random collisions 
and/or propulsions of sides in such a dynamical process. 
Additionally, we assume that the way the stochastic 
fluctuations propagate to dice is the result of the 
propensity allocation and parameterization in the model. 
In such conditions, the noise process will no longer be 
independent across dice. On this account, the effect of 
stochastic fluctuations cannot simply be understood to be 
redundant.  

As we study the distribution of dice sides subject to 
constant stochastic fluctuations and propensity that 
randomly affect the delays of individual sides, we must 
not forget about parsimony in designing the model. Our 
model is presented in detail in the next section of the 
paper, where we develop the game-theoretic machinery by 
introducing a modified version of the “dynamic 
probability” of dice sides over time and examine its 
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statistical properties. The central aim of this work is to 
formulate the dice game problem in the framework of 
Markov processes also known as stochastic games [7]. 
Authors in [4,6,8] have developed some analogue of game 
theoretic-analytical techniques to capturing relevant 
information in random dynamical systems. While many 
methods could be applied to this task, we chose a 
probabilistic approach because of its natural way to deal 
with games and ability to encode arbitrary dependencies 
between variables [5,8,9].  

In the past, many authors have dealt with stochasticity 
in game theory, [7] built the fundament of probability 
theory and developed the dynamic concept of probability 
and applications. [10,11] introduced the formulation  
of stochastic games and developed a general and 
comprehensive approach to such games. In [12,13], the 
Bellman equation of the problem and the computation of 
optimal states were formulated. Other authors such as 
[2,12] also strongly contributed in developing various 
game models. In our work, we follow the idea of A.N. 
Kolmogorov and develop a probabilistic method for the 
MDR game. We extend the Chapman-Kolmogorov 
concept of “dynamic probability” by including not only 
the random state and time variables but also the model 
parameter update. This will enable our model to adapt to 
the changing condition of the game [15,16,17]. 

Again, to support the choice of our approach, it is 
important to mention that, although in many studies, we 
are generally more concerned with obtaining the entire 
cumulative distribution of the outcomes of the game view 
as a stochastic process, here, we are interested in the 
marginal distribution of each random variable which is 
precisely a side of the die. While the computation of  
the marginal probability distribution of a die is useful  
in evaluating the stochastic model, we believe that 
information regarding such distribution may not be good 
enough for predicting individual side of a dice over trials. 
In this respect, when the game is incomplete, we need to 
develop an approach, which will evaluate the average 
probability of appearance of each side of all dice  
over trials in terms of min–max average value. This 
information is crucial as we specifically want to predict 
the outcome of the overall game. In the next section, we 
will present the model specification. 

2. Model Specifications 

2.1. Nearly Gaussian Process for the MDR 
Game 

Let ( )kf n  be the ‘probability’ function that the k – th 
side of a die appears after n trials. This function is  
discrete with continuous analogue ( ).kf t  We assume such 
functions as nearly Gaussian process with probability 
distribution or probability mass function (p.m.f) that a 
given side k - appears after the n-th trials given as ( );P x t . 
This analogous of Gaussian distribution is fully 
characterized by the mean, standard deviation (mean 

( )kf tΕ     and covariance  

 ( ) ( ) ( ) ( ) ( )' 'cov , ' ' 'k k k kk k f t f t f t f t= Ε − Ε Ε             

where ( ).Ε  is the expectation value). Furthermore, we 

assume that the functions ( )kf t  are stationary, 
differentiable and bounded.  
A. Chapman-Kolmogorov Equations (CKEs) 

The collection of all outcomes of the MDR game, 
which is an n-dimensional stochastic process can be 
captured by the mean of Chapman-Kolmogorov Equations 
(CKEs). In the next section, we further consider a new 
version of these equations for the dynamic of ( )kf n  over 
time. Based on the computed probabilities, the game-
theoretic model is formulated in terms of the Chapman-
Kolmogorov Equations (CKEs), sometimes called the 
Master equation, where the transition state reflects the 
change in the outcome after each throw. Until now, such 
modelling approaches used in many problems do not take 
into account the random change in the allocation of 
propensity over time; such a change might be efficiently 
captured by the change in propensity of the game.  
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This formulation has some linear algebra interpretation. 
To go from the probability distribution of nx  to the 
probability distribution of 1nx + , we need the adjoint of the 

matrix ( ). .p  
B. Extended Chapman-Kolmogorov Equations 

In this section, we propose and describe a new version 
of the Chapman-Kolmogorov Equations. We assume that 
the drift term also has an independent dynamic, which 
may be captured with a simple regression model, and that 
each dynamic is conditioned on the initial state and time. 
The model is called the Extended Chapman-Kolmogorov 
Equations (ECKEs) for the MDDR game and is formulated 
as follows: 
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Where 
:N  Total number of dice 

:n  Total number of throws (rolling) 
k : Number of sides of a die 

:j  j-th Number of throws 

( )kx x n= : Event “side k appears after n throws” 

( ) ( ). .kf f= : Probability mass function of side k 

( ).f ⊥ : Transpose of ( ).f  

( )ja x : Propensity for side k of the j-th throw; 
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( )0a x : Initial propensity for side k 

( )j xν : State change associated with a single event at the 
j-th throw  

( )ja x dt : Probability that k-th side appears in the interval 

[ ],t t dt+  at the j-th throw 

( )( ), jx a kρ : Correlation between events (sides) at the j-

th throw and propensity. We assume for convenience that 
each side of a die is strongly correlated with the parameter 
of the game for each iteration, and we set the following: 
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As the choice of the propensity will closely depend on 
the related event, we assume that the absence of restriction 
on the correlations will affect the probability value as well, 
but yet, we cannot confirm whether it will decrease or 
increase. This will be investigated in our next work. 
Further, we know that in some situations, the function 

( ).f  could be too hard to explicitly obtain. Hence, we 

propose an approximation of ( ).f  assuming that the 
random variable x has a negative exponential distribution: 

( )~ exp kx λ−  and ( ), kf x t e λ−∼  for every t, where 
0kλ > is the parameter of the distribution. Additionally, 

without loss of generality, we apply some consideration of 
the Fréchet derivative (refer to the subsections 2.2. and 
2.3. below). We can, without loss of generality, 
approximate the first derivative of f (.) to kk e λλ − and the 
equation (2) becomes:  

  (4) 

After simplification, this system of equations becomes  

  (5) 

From the above equations, we compute as a function 
of the side number k and the iteration period j; that is 

. We have that  and  are the constant 
parameters of the game, which are assumed to be known. 
In our particular case, we set and  for 
convenience. Also we assume that the initial propensity

 is known and  is a vector with a finite number of 
elements which represents the delay of all sides. This 
setup leads us to the following algorithm. 

2.2. Definition 
Let V and W be Banach spaces and  be an open 

subset of V. A function  is called Frechet 
differentiable at  if there exists a bounded operator 

 such that . 

2.3. Consequence 
The consequence of having the limit of a function 

defined on metric spaces (U and W) is that, there exists a 
sequence  of non-zero element V, which converges 

to zero vector 0.nh →  Thus  

and  is called Frechet derivative of  f  at  x. 

3. Our Algorithm 

As the analytical solution to (1) is hard to obtain, even 
for a moderate number of throws, a numerical algorithm 
using an adapted stochastic simulation approach on 
equation (4) is proposed in this paper. In our algorithm, 
two random variables determine the temporal evolution of 
the game. The variable kτ  is the time for the next event to 
occur (next appearance a side of dice) and k, as before, is 
the side of the dice. Further, the probability density of an 
event kx x=  is then evaluated based on the propensity of 
the game on the event involved.  

Overall, this will give a better flexibility and 
applicability of the algorithm in some sense. The main 
purpose of creating such an algorithm is to simultaneously 
simulate the game and predict the online probability mass 
functions of each event using model (1). One important 
remark here is that the probability mass function f at each 
throw is a vector, because we throw many dice at once and 
each side has a certain probability of appearance. We shall 
use f transpose instead of f to ensure better readability of 
our outputs, but all properties remain the same. Finally, 
our algorithm facilitates the evaluation of the Average 
Probability Value (APV) of each side after a certain 
number of throws; this is important if we want to study the 
general trend of the game too. Our algorithm is presented 
as follows: 
 
Start 
Input: Initial data  
Outputs:  

1.  Set . 

2.  For t = 1:  ( = number of iterations) do 
a.  Let  be the time until the next event, 

which changes over time. 
b.  Let ( )~ 2,0.05j Nν  be the change associated 

to a single event. 
c.  Compute  and . 

d.  Compute the value of the pmf  based 
upon eq (4). 

e.  Compute . 
3.  Output  

End 
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In the next section, we will show some limitations of 
the MDR game. 
B. Limitations 

The main concern with the Multiple Dice Rolling game 
is the lack of robust test data in which the dynamic 
interactions are known in advance. We need the data in 
which the true correlations are known if we want to 
compare our approach with the existing methodology. It is 
not possible to find the exact values for these probabilities, 
first because the source of noise is not unique and also 
because of the noise error measurements in the system is 
not easy to obtain. One way to relax this requirement is to 
introduce additional parameters, which will influence the 
computation of probabilities. Afterward build a new 
generation of flexible algorithms, which create test data 
sets and accurately predict outcomes of the game over time.  

Here, we proposed a propensity allocation based approach 
in order for our model to generate and predict the state of 
the game, but other researchers may prefer more complex 
function. Finally, we present the test datasets created by our 
technique, which can be used to assess the performance of 
algorithms that attempt to determine the underlying 
predicted state. Our algorithm is available for download, 
and the test datasets are also available in additional files 
and may be used to repeat the experiment if desired. 

3.1. Test Dataset 
The main motivation for creating a Test Dataset was to 

have an initial dataset for which we may presume to know 
certain regulatory rules. This dataset will be necessary to 
compare outcomes of games with various other datasets 
and the accuracy being used. This is because until now 
there is no existent data for multiple dice rolling games for 
which the true underlying interaction and propensity 
allocation are exactly known. We, therefore, create a 
sample data set by permuting in a random manner the 
numbers 1 to 6 as many times as we need.  

We anticipate that the availability of the test dataset will 
allow researchers to evaluate their own methods and 
compare their methods against commonly used algorithms. 
While the test data we provide will be useful for 
researchers who want to get started right away testing 
their algorithms, we emphasize that the real power of the 
proposed algorithm is the capability it provides to quickly 
produce necessary outcomes for a game when a good 
allocation of propensity is made. Further, interested 
researchers can also use their own test datasets to compare 
the dependency of any method on any particular parameter 
(number of sides of a dice, type of correlation among sides, 
type of data, type of propensity etc…) in an efficient 
manner. In the section that follows, we will present the 
normal unbiased game.  

3.2. Normal “Unbiased” Dice Game 
We throw 1000 six – sides dice each, 1000 times. Each 

side will randomly appear each time with some probability. 

 
Figure 1. Sample paths of the probability values for all dice sides with 
the permutation Dataset. We assign a color to each side; the blue color 
represents side 1, green side 2, red side 3, grey side 4, violet side 5 and 
finally, yellow side 6 

 
Figure 2. Histogram of each side of die in MDR game. The sample paths of probability values and the pmf of each side at each throw 
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Table 1a. Minimum and maximum average probability values for 
each side of a dice over 1000 trials are obtained by our algorithm. As 
can be seen from the table below, each side of the dice has a 
likelihood to appear in an ascending order: side 2, side 4, side 5, side 
6, side 3, side 1 or in short µord(2,4,5,6,3,1) 

Side Min Max Variance APV 
1 0.2428 0.2838 0.00004642 0.2651 
2 0.2446 0.2948 0.00004867 0.2649 
3 0.2447 0.2882 0.00004598 0.2650 
4 0.2442 0.2918 0.00004428 0.2653 
5 0.2456 0.2917 0.00004322 0.2650 
6 0.2410 0.2893 0.00004391 0.2653 

Table 1b. Variance covariance matrix of the MDR game. Here, each 
non-diagonal entry (i,j) gives the covariance between sides i and j. 
The diagonal entries are the variance of each side over all iterations. 
There is evidence of weak correlation among all sides, which is  
what should be expected due to unbiased of game and propensity 
effects. , , , , 

,  or in short  

 

4. Characterization of MRD Game 

A. Robustness 
The proposed model will not be robust against a game 

that is biased. If we assume that the roller can influence 
the throw of the dice or use any other trick to influence the 
outcome, such games will not be robust. But, if we 
consider that the rolling conditions are the same and the 
dice are identical all the time, then the game becomes 
robust. 
B. Simplicity 

The model of MDR game is extremely simple and 
straightforward. Additional constraints might slightly 
affect some properties of the game and/or even change the 
APV(K) of the MDR game over trials.  
C. Efficiency 

The model efficiency will depend on the initial 
conditions of the game, the propensity, the number of 
iterations and the number of dice rolled and the model 
parameters. When the number of dice increase infinitely, 
the game becomes more difficult to analyze. 

5. Conclusion and Discussion 

In this paper, a model of MRD game using both 
mathematical tools and computational algorithm in order 
to estimate the average probability of appearance of each 
side of a dice over trials is presented and analyzed. The 
proposed algorithm makes it possible to detect interactions 
among all dice sides as dynamic correlations and 
evaluates the p.m.f of all sides to appear over throws. We 
use the variance-covariance matrix to extract necessary 
information in the game over time.  

The input of our algorithm is associated to a matrix 
where columns represent the dice thrown and rows 
represent the side of dice. The outcome of games in terms 
of the prediction or p.m.f values greatly depends on the 
propensity and the parameters of our model. We found 
that the time complexity of the proposed algorithm was 

polynomial of order ( )2O n  ,  where n is the number throws.  

We have shown how a very simple mathematical model 
can be used to capture the stochasticity in the MDR game. 
The extended version of the Chapman-Kolmogorov 
Equations used in this paper is still a simplification, and 
could even be unrealistic for certain designs of the game, -
-but it can capture the randomness of the game if we use 
good initial conditions and reasonably stable parameters. 
The main novelty of our approach is the introduction of 
the propensity of the game and the application of our 
algorithm to predict the average probability of 
appearance of each side of a die over throws. However in 
practice, when using MDR to solve real world problems, it 
is not enough to find the average probability value. Again, 
all outcomes in our model depend on the initial inputs and 
the parameters. We then have to continuously update new 
probability values as dice are thrown.  

We face the challenge of iteratively improving the 
solution to a series of problems that change over time, and 
we must do this in light of unanticipated events with 
incomplete knowledge. The fact that uncertainty and 
inaccuracy enter into our model, the prediction must be 
accepted and even used to the great possible benefit. 
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