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Abstract

Let C1 and C2 be strong amalgamation classes of finite structures, with disjoint
finite signatures σ and τ . Then C1∧C2 denotes the class of all finite (σ∪τ)-structures
whose σ-reduct is from C1 and whose τ -reduct is from C2. We prove that when C1

and C2 are Ramsey, then C1 ∧ C2 is also Ramsey. We also discuss variations of
this statement, and give several examples of new Ramsey classes derived from those
general results.

1 Introduction and Results

A class of relational structures is a Ramsey class if it satisfies a strong combinatorial
property that resembles the statement of Ramsey’s theorem. Surprisingly many classi-
cal classes of relational structures turned out to be Ramsey classes. Nešetřil [12] asked
whether one may classify all Ramsey classes that are closed under induced substructures
and have the joint embedding property, and he indicated a link to the model-theoretic
classification of countably infinite homogeneous structures as an approach to such a clas-
sification. This program has recently attracted attention because of a fascinating corre-
spondence between Ramsey classes and the concept of extreme amenability in topological
dynamics [10]. We would also like to mention that Ramsey classes play an important role
in classifications of first-order reducts of homogeneous relational structures [5], and for
complexity classification of infinite-domain constraint satisfaction [2]. Establishing that a
class has the Ramsey property is often a substantial combinatorial challenge, and we are
therefore interested in general transfer principles that allow to prove the Ramsey property
by reducing to known Ramsey classes; this will be the topic of this text.

∗Manuel Bodirsky has received funding from the ERC under the European Community’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement no. 257039).
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For structures A and B over the same relational signature, let
(
B
A

)
denote the set of

all embeddings of A into B. When f is such an embedding, we write f [A] for the copy of
A in B that is induced by the image of A under f in B. The partition arrow C → (B)Ar
means that for every function χ :

(
C
A

)
→ {1, . . . , r} (a colouring with r colours) there

exists g ∈
(
C
B

)
such that χ is constant on

(
g[B]
A

)
. In this case we call g[B] a monochromatic

copy of B in C. A class of finite relational structures C has the Ramsey property (with
respect to embeddings)1 if for all A,B ∈ C and r ∈ N there exists a C ∈ C such that
C → (B)Ar . It is easy to see that every class C with the Ramsey property only contains
rigid structures, that is, structures with only one automorphism, the identity. Note that
an ordered structure, that is, a structure that has a strict linear order as one of its relations,
is always rigid. A class of relational structures that is closed under isomorphisms and has
the Ramsey property is also called a Ramsey class.

Examples of Ramsey classes are

• LO, the class of all finite linear orders (this is equivalent to Ramsey’s original
theorem);

• the class of all ordered finite graphs (see [13]);

• the class of all ordered Kn-free graphs (see [13]);

• the class of all finite partially ordered sets with a linear extension (see [12]);

• the class of all finite tournaments with an additional linear order;

• the class of all finite convexly ordered binary branching C-relations on a finite set
(see [4]; this is essentially due to [11]).

It is of major interest in combinatorics to obtain a more systematic understanding of the
question which classes of structures have the Ramsey property.

Nešetřil made the important observation that Ramsey classes that are closed under
taking induced substructures are linked with the concept of amalgamation in model theory.
We say that a class of structures has the amalgamation property if for all A,B1, B2 ∈ C

and embeddings e1 : A → B1 and e2 : A → B2 there exists a C ∈ C and embeddings fi
of Bi to C such that f1(e1(a)) = f2(e2(a)) for all a ∈ A. We call (A,B1, B2, e1, e2) the
amalgamation diagram, and (C, f1, f2) an amalgam of the diagram (A,B1, B2, e1, e2) (in
C). If C has the amalgamation property for the special case that A is empty, we say that
C has the joint embedding property (here, our assumption that the signature is relational
becomes important). The mentioned link between Ramsey theory and amalgamation is
that every class C of rigid finite relational structures that is closed under isomorphisms
and induced substructures, and that has the joint embedding and the Ramsey property
also has amalgamation property [12]. Classes of finite structures with countably many

1In some papers, a class C has the Ramsey property if and only if C satisfies an analogous property
where the partition arrow is not about embeddings, but induced substructures. The two variants are
closely related; for a discussion, see [12, 10].
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non-isomorphic structures that are closed under isomorphisms, induced substructures,
and have the amalgamation property are called amalgamation classes.

The age of a relational structure Γ is the class of all finite structures that embed into
Γ. A structure is homogeneous if any isomorphism between finite induced substructures
of Γ can be extended to an automorphism of Γ. When C is an amalgamation class, then
Fräıssé’s theorem shows that there exists a countable homogeneous structure Γ whose age
is C (see e.g. [9]). The structure Γ is unique up to isomorphism, and called the Fräıssé-limit
of C; these homogeneous limit structures will play an important role in the proof of our
main result. The significance of Nešetřil’s observation is that the transition to countable
homogeneous structures brings new tools for the systematic understanding of Ramsey
classes; and indeed, under some additional assumptions, there are many classification
results for homogeneous structures (such as the classification of all homogeneous directed
graphs [8]).

A strong amalgam of an amalgamation diagram (A,B1, B2, e1, e2) is an amalgam
(C, f1, f2) such that f1(e1(A)) = f2(e2(A)) = f1(B1) ∩ f2(B2). A class C has strong
amalgamation if every amalgamation diagram has a strong amalgam in C. We say that C
is a strong amalgamation class if C is closed under isomorphisms, induced substructures,
and has the strong amalgamation property. An example of a strong amalgamation class
is LO.

We write Aut(Γ) for the automorphism group of Γ. An orbit of Γ is meant to be
an orbit of Aut(Γ), that is, a set of the form {α(c) | α ∈ Aut(Γ)} for some element c
of the domain of Γ. Homogeneous structures Γ that arise as the Fräıssé-limits of strong
amalgamation classes can be characterized via algebraic closure. In this context, we define
the algebraic closure acl(A) of a finite subset A = {a1, . . . , an} of the domain of Γ to be
the set of all those elements of Γ which lie in finite orbits of the expansion (Γ, a1, . . . , an)
of Γ by the constants a1, . . . , an.

Proposition 1.1 (see (2.15) in [7]). The age of a homogeneous structure Γ has strong
amalgamation if and only if for any finite subset A of the domain of Γ, acl(A) = A.

Definition 1.2 ((3.9) in [7]). Let C1 and C2 be strong amalgamation classes with disjoint
signatures σ and τ . Then C1 ∧ C2 denotes the class of all finite (σ ∪ τ)-structures whose
σ-reduct is from C1 and whose τ -reduct is from C2.

It is clear that C1 ∧ C2 also has strong amalgamation. In Section 4, we prove the
following.

Theorem 1.3. Let C1 and C2 be strong amalgamation classes with the Ramsey property,
with disjoint finite signatures σ and τ . Then C1 ∧ C2 has the Ramsey property.

The following is an immediate consequence of Theorem 1.3 and the previously known
Ramsey results mentioned above.

Corollary 1.4. The following classes of finite structures are Ramsey.

1. The class of all permutations of a finite set (represented by two linear orders);
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2. The class of all finite sets carrying n linear orders;

3. The class of all finite posets with a linear extension and an additional arbitrary
linear order;

4. The class of all finite sets carrying two posets, a linear extension of the first, and a
linear extension of the second poset;

5. The class of all finite sets carrying a poset and a linear extension of it, and additional
linear order and a graph relation.

Item 1 in Corollary 1.4 has been obtained independently by Böttcher and Foniok [6]
and by Sokić [14]. To prove the statement in item 1, Sokić developed a technique called
cross construction; also see [15]. He also proved item 2 and 3 in Corollary 1.4. The present
work has been found independently from [15], and it would be interesting to compare our
approach with the approach in [15]. The other items in the list have been added mainly
for illustration reasons, and it is clear that the list can be prolonged easily.

Homogeneous structures with a finite relational signature are ω-categorical, that is,
their first-order theory has only one countable model up to isomorphism. We can weaken
the assumption of having a finite signature slightly, and prove the following stronger
version which captures several additional interesting classes (see Corollary 1.8).

Theorem 1.5. Let C1 and C2 be strong amalgamation classes with ω-categorical Fräıssé-
limits. If C1 and C2 have disjoint relational signatures and the Ramsey property, then
C1 ∧ C2 is also Ramsey.

To show the Ramsey property for even more classes, we would also like to be able to
generate Ramsey classes that only have one linear order in their signature; this can be
accomplished using the following proposition whose proof can be found in Section 5.

Proposition 1.6. Let C1 and LO ∧ C2 be Ramsey classes with strong amalgamation
and ω-categorical Fräıssé-limits, and suppose that C1, C2, and LO have pairwise disjoint
relational signatures. Then C1 ∧ C2 has the Ramsey property.

Proposition 1.6 is a versatile tool to construct a variety of new Ramsey classes. To
state many examples, we make the following definitions.

Definition 1.7. Write

• T for the class of all finite tournaments,

• G for the class of all finite graphs,

• Fn for the class of all finite Kn-free graphs,

• ~T for the class of all linearly ordered finite tournaments,

• ~G for the class of all linearly ordered finite graphs,
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• ~Fn for the class of all linearly ordered finite Kn-free graphs,

• ~P for the class of all linearly extended finite posets,

• ~C for the class of all convexely ordered binary branching C-relations on a finite set,

• ~V for the class of all finite affine vector spaces V , equipped with a ‘natural order’
(see [10]); the vector spaces will be represented as relational structures with an
infinite signature that contains a relation symbol for every affine equation.

Corollary 1.8. Let C1 be one of the classes ~T, ~G, ~Fn, ~P, ~C, ~V, and let C2 be one of the
classes T,G,Fn. Then C1 ∧ C2 has the Ramsey property.

Also Corollary 2.4 covers examples of particular interest; for example the class ~C ∧ T

will be discussed at the end of Section 2.

2 Topological Dynamics

Our combinatorial result translates nicely into a result that shows that certain intersec-
tions of extremely amenable groups are again extremely amenable, based on a connection
between Ramsey theory and topological dynamics (Theorem 2.3). In fact, our presenta-
tion of the proof of Theorem 1.5 makes use of this connection, and so we briefly present
it in the following.

Let us first mention that the property of ω-categoricity of a structure Γ can be char-
acterized in terms of the automorphism group of Γ; this has been shown Engeler, Sveno-
nius, and Ryll-Nardzewski, and we state it for easy reference. When Γ is a τ -structure
with domain D, and R ⊆ Dk, then we say that R has a first-order definition in Γ if
there exists a first-order formula ϕ with k free variables over the signature τ such that
R = {(d1, . . . , dk) ∈ Dk | ϕ(d1, . . . , dn) holds in Γ}.

Theorem 2.1 (see Theorem 6.3.1 and Corollary 6.3.3 in [9]). A countable structure is
ω-categorical if and only if its automorphism group is oligomorphic, that is, has only
finitely many orbits of n-tuples, for all n. If Γ is ω-categorical, then all relations that are
preserved by all automorphisms of Γ have a first-order definition in Γ.

We say that R has a quantifier-free definition in Γ if ϕ can be chosen to be without
quantifiers.

Proposition 2.2 (see (2.22) in [7]). When Γ is ω-categorical, then Γ is homogeneous if
and only if Γ has quantifier-elimination, that is, every first-order definable relation in Γ
also has a quantifier-free definition.

A topological group G is called extremely amenable if every continuous action of G
on a compact Hausdorff space has a fixed point. We say that a homogeneous structure Γ
is Ramsey if the class of all finite induced substructures that embed into Γ is a Ramsey
class. The following is the central result from [10].
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Theorem 2.3 (Theorem 4.8 in [10]). Let Γ be a countable ordered homogeneous structure.
Then the following are equivalent.

• Aut(Γ) is extremely amenable.

• Γ is Ramsey.

This result and other known facts have the following consequence for the special case
that Γ is additionally ω-categorical.

Corollary 2.4. Let Γ be an ω-categorical countable homogeneous structure. Then the
following are equivalent.

1. Γ is Ramsey.

2. For all finite substructures A,B of Γ it holds that Γ→ (B)A2 .

3. Aut(Γ) is extremely amenable.

4. Γ is Ramsey, and there is a quantifier-free definition of a linear order over Γ.

Proof. The equivalence between the first two items is based on compactness argument
and a standard fact that can be found in many text-books on Ramsey theory. For the
equivalence of the last two items, recall that we color embeddings, and not induced sub-
structures, so the Ramsey property implies rigidity. The equivalence of rigidity and the
existence of a linear order which is preserved by all automorphisms of Γ for Ramsey struc-
tures Γ is stated in Proposition 4.3 in [10]. Note that our additional assumption that Γ
is ω-categorical implies that such a linear order has a first-order definition over Γ (Theo-
rem 2.1). Finally, homogeneity and ω-categoricity of Γ imply by Proposition 2.2 that we
can even find a quantifier-free definition over Γ.

We would like to comment on the consequence of Corollary 2.4 which says that Fräıssé-
limits of Ramsey classes always have a definable linear order. Recall that Ramsey classes
only contain rigid structures; so it is natural to ask whether more generally there is a
definable linear order in every Fräıssé-limit of an amalgamation class of rigid structures
(without the assumption that the class has the Ramsey property). This turns out to be
false, and Dugald Macpherson communicated the following example to the author, an
example which he credits to Peter Cameron.

Consider the class C ∧ T (in the terminology of Definition 1.7). We claim that this
class only contains rigid structures. To see this, let α be an automorphism of a structure
A from this class. Note that there exists a partition V1 ∪ V2 of the vertices of A such that
for all x, y ∈ V1 and u, v ∈ V2 we have C(x, y, u) and C(u, v, y). Then either α(V1) = V1

and α(V2) = V2, or α(V1) = V2 and α(V2) = V1. The same argument can be applied to
the structures induced in A by V1 and by V2. Repeating this argument, we finally obtain
that α2 = id. But then α must be the identity, for if α(x) = y and x and y are distinct,
then either (x, y) or (y, x) is an edge in the tournament; but then (α(x), α(y)) = (y, x) is
an edge as well, which is impossible in tournaments.

the electronic journal of combinatorics 21(2) (2014), #P2.22 6



On the other hand, we claim that there is no order definable in the Fräıssé-limit Γ
of C ∧ T. To see this, recall that Γ has quantifier-elimination by Corollary 2.2, so it
can be checked exhaustively that none of the finitely many quantifier-free formulas with
variables x, y defines a linear order in Γ. As a consequence of Corollary 2.4, the class
C ∧ T is not Ramsey. But the structures in this class can be expanded by a linear order
so that the resulting class of expansions has the Ramsey property: this is a consequence
of Corollary 1.8, since ~C ∧ T has the Ramsey property.

3 Model-Complete Cores

In our proofs, we make use of the concept of model-complete cores of ω-categorical struc-
tures. A structure Γ is called a core if every endomorphism2 of Γ is an embedding. A
first-order theory T is called model-complete if all embeddings between models of T pre-
serve all first-order formulas. An ω-categorical structure Γ has a model-complete theory
if and only if all self-embeddings e of Γ are locally generated by the automorphisms of Γ,
that is, for every finite tuple t of elements from Γ there exists an automorphism α of Γ
such that e(t) = α(t) (see e.g. Theorem 3.6.11 in [2]). In this case, we say that Γ is model-
complete. Note that by the above, when Γ is homogeneous, then Γ is model-complete.

The following has been shown in [1] (also see [3]).

Theorem 3.1. Every ω-categorical structure is homomorphically equivalent3 to a model-
complete core ∆, which is unique up to isomorphism, and again ω-categorical or finite.
The expansion of ∆ by all existential positive definable relations is homogeneous.

The structure ∆ in Theorem 3.1 will be called the model-complete core of Γ. We need
the following observation.

Proposition 3.2. The model-complete core ∆ of an ω-categorical homogeneous structure
Γ is homogeneous.

Proof. Let h be a homomorphism from Γ to ∆, and let i be a homomorphism from ∆ to
Γ. Suppose that f is an isomorphism between two finite substructures A,A′ of ∆. The
restriction of i to A and to A′ is an isomorphism as well, since otherwise the endomorphism
x 7→ h(i(x)) of ∆ would not be an embedding, contradicting the assumption that ∆ is
a core. By homogeneity of Γ there exists an automorphism α of Γ that extends the
isomorphism i ◦ f ◦ i−1 between i(A) and i(A′). The mapping e : x 7→ h(αi(x)) is an
endomorphism of ∆, and therefore an embedding. Since ∆ is a model-complete core,
this mapping is locally generated by the automorphisms of ∆, and in particular there
exists an automorphism β of ∆ such that β(x) = e(x) = f(x) for all x ∈ A. This proves
homogeneity of ∆.

We now prove the following.

2An endomorphism of Γ is a homomorphism from Γ to Γ.
3Two structures Γ and ∆ are homomorphically equivalent if there is a homomorphism from Γ to ∆

and a homomorphism from ∆ to Γ.
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Theorem 3.3. Let Γ be ω-categorical, homogeneous, and Ramsey, and let ∆ be the model-
complete core of Γ. Then ∆ is also Ramsey.

Proof. First note that ∆ is homogeneous, by Proposition 3.2. Let h be a homomorphism
from Γ to ∆, and let i be a homomorphism from ∆ to Γ.

Let P,H be two finite substructures of ∆. By Corollary 2.4, it suffices to prove that
∆ → (H)P2 . Note that i(P ) induces in Γ a copy of P since otherwise the endomorphism
x 7→ h(i(x)) of ∆ would not be an embedding. Moreover, for every copy Q of P in Γ we
have that h(Q) induces a copy of P in ∆. To see this, let α be the automorphism of Γ
that maps i(P ) to Q; such an α exists by homogeneity of Γ. Then e : x 7→ h(αi(x)) must
be an embedding, and e(P ) = h(Q) which proves the claim.

Let χ :
(

∆
P

)
→ {1, 2} be arbitrary. We define a map ξ :

(
Γ
P

)
→ {1, 2} by setting

ξ(q) := χ(h ◦ q) for every q ∈
(

Γ
P

)
. Since Γ is Ramsey, there exists a g ∈

(
Γ
H

)
such that

ξ is constant on
(
g[H]
P

)
. Then h ◦ g ∈

(
∆
H

)
, and it suffices to show that χ is constant on(

h◦g[H]
P

)
. By an argument similar as given above, the restriction h′ of h to g[H] is an

embedding, and the image of h′ induces a copy M of H in ∆. Let p1, p2 ∈
(
h◦g[H]

P

)
. Then

h−1 ◦ p1, h
−1 ◦ p2 ∈

(
g[H]
P

)
, and therefore ξ(h−1 ◦ p1) = ξ(h−1 ◦ p1), and χ(p1) = χ(p2).

4 The Full Product Structure

Let Γ1 and Γ2 be two structures with the same domain D and with disjoint signatures
σ and τ , respectively. The full product Γ1 � Γ2 of Γ1 and Γ2 is a (σ ∪ τ)-structure with
domain D2 defined as follows. For each k-ary R ∈ σ, the structure Γ1�Γ2 has the relation

RΓ1�Γ2 =
{

((a1, b1), . . . , (ak, bk)) | (a1, . . . , ak) ∈ RΓ1 , b1, . . . , bk ∈ D
}
,

and for each k-ary R ∈ τ , it has the relation

RΓ1�Γ2 =
{

((a1, b1), . . . , (ak, bk)) | (b1, . . . , bk) ∈ RΓ2 , a1, . . . , ak ∈ D
}
.

The proof of the following is straightforward (Proposition 3.3.13 in [2]).

Proposition 4.1. Suppose that Γ1 and Γ2 are ordered, with disjoint signatures and the
same domain D. Then the automorphism group of Γ1 � Γ2 is the product action of the
direct product Aut(Γ1)× Aut(Γ2) on D2.

Note that we use here that Γ1 and Γ2 are ordered: for Γ1 := (D;E1) and Γ2 := (D;E2)
where both E1 and E2 denote the equality relation {(x, x) |x ∈ D}, the automorphism
group of Γ1 � Γ2 contains all permutations, and this is clearly not the product action of
Aut(Γ1)× Aut(Γ2) on D2.

Proposition 4.2. Let Γ1 and Γ2 be ordered homogeneous structures with the same domain
D and disjoint signatures. Then Γ := Γ1 � Γ2 is homogeneous as well.
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Proof. Since Γ1 and Γ2 are ordered, the relation {((x, y), (u, v)) | x = u} and the rela-
tion {((x, y), (u, v)) | y = v} are preserved by isomorphisms between finite substructures
of Γ. Hence, an isomorphism µ between finite substructures of Γ gives rise to isomor-
phisms between finite substructures of Γ1 and Γ2, respectively. Those can be extended
to automorphisms α, β of Γ1 and Γ2, by homogeneity. Then (x, y) 7→ (α(x), β(y)) is an
automorphism of Γ which extends µ.

The following is also known under the name product Ramsey theorem.

Proposition 4.3. Let Γ1 and Γ2 be ω-categorical structures with the same domain D
and disjoint signatures. When Aut(Γ1) and Aut(Γ2) are extremely amenable, then the
automorphism group of Γ := Γ1 � Γ2 is oligomorphic and extremely amenable.

Proof. It is easy to bound the number of orbits of n-tuples in Γ by the number of orbits of
n-tuples of Γ1 and Γ2, so Γ can be seen to be ω-categorical. When G1 and G2 are extremely
amenable groups, then G1 × G2 is extremely amenable as well (see Lemma 6.7 in [10]).
The statement follows since Aut(Γ1 � Γ2) is the product action of Aut(Γ1)×Aut(Γ2) on
D2 by Proposition 4.1.

Strong amalgamation will be used via the following lemma. A relation is called injec-
tive if it only contains tuples with pairwise distinct entries.

Lemma 4.4. Let τ be a relational signature, and let Γ be a homogeneous τ -structure such
that the class of all finite τ -structures that embed into Γ has the strong amalgamation
property. Suppose moreover that all relations of Γ are injective. Then every finite structure
F that homomorphically maps to Γ also has an injective homomorphism to Γ.

Proof. Let f be a homomorphism from F to Γ such that the range f(F ) of f is maximal.
If f is injective, we are done, otherwise F has elements u and v such that f(u) = f(v). Let
A be the structure induced by f(F )\{f(u)} in Γ, and let B1 and B2 be two disjoint copies
of the structure induced by f(F ) in Γ. Let e1 be the embedding of A into B1 that maps an
element of f(F ) \ {f(u)} to its copy in B1. Similarly, there is an embedding e2 : A→ B2

that maps an element of f(F ) \ {f(u)} to its copy in B2. By strong amalgamation of
the age of Γ, there exist embeddings f1 : B1 → Γ and f2 : B2 → Γ such that f1[e1[A]] =
f2[e2[A]] = f1[B1]∩f2[B2]. Then the mapping f ′ : F → Γ defined by f ′(w) = f1(e1(f(w)))
if w 6= u, and defined by f ′(w) = f2(e2(f(w))) if w 6= v, is well-defined. To see that it is a
homomorphism, note that when R(x1, . . . , xn) holds in F , then at most one of the xi can
be mapped to f(u) since the tuples of R in Γ have only pairwise distinct entries. Since
f(x) 6= f(y) implies that f ′(x) 6= f ′(y), and since moreover f ′(u) 6= f ′(v), the function f ′

also has a larger range than f , a contradiction.

The following is the central lemma connecting the Fraisse-limit of C1 ∧ C2 with the
full product of the Fraisse-limits of C1 and C2, so that we can ultimately use the product
Ramsey theorem.
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Lemma 4.5. Let C1 and C2 be strong amalgamation classes of ordered structures, with
disjoint signatures σ and τ , such that all relations of C1 and all relations of C2 are injective.
Let Γ be the Fräıssé-limit of C1 ∧ C2 with domain D, and suppose that Γ is ω-categorical.
Let Γ1 and Γ2 be the σ- and τ -reduct of Γ, respectively. If Γ1 and Γ2 are cores, then the
following structures are isomorphic.

1. Γ

2. the substructure induced by {(d, d) | d ∈ D} in Γ1 � Γ2

3. the model-complete core of Γ1 � Γ2

Proof. It is straightforward to verify that d 7→ (d, d) is an isomorphism between Γ and
the substructure of Γ1 � Γ2 induced by {(d, d) | d ∈ D}.

To find an isomorphism between Γ and the model-complete core of Γ1 �Γ2, it suffices
to show that Γ is a model-complete core, and that Γ is homomorphically equivalent
to Γ1 � Γ2. We then use that the model-complete core is unique up to isomorphism
(Theorem 3.1), which gives us the desired isomorphism. Model-completeness of Γ follows
from homogeneity. To show that Γ is a core, let e be an endomorphism of Γ. Then e is
an endomorphism of the σ-reduct Γ1 of Γ, and an endomorphism of the τ -reduct of Γ2 of
Γ. Since both Γ1 and Γ2 are cores, e must be an embedding of Γ into Γ, which is what
we wanted to show.

We finally show that Γ1�Γ2 and Γ are homomorphically equivalent. For one direction,
recall that Γ maps to Γ1 � Γ2 via the mapping d 7→ (d, d). For the other direction, it
suffices to show that every finite substructure F of Γ1 � Γ2 homomorphically maps to
Γ, by a standard compactness argument and ω-categoricity of Γ (see e.g. Lemma 3.1.5
in [2]). By Lemma 4.4, there is an injective homomorphism h1 from the σ-reduct of F to
Γ1 (recall here that the order of Γ1 is by assumption strict). Similarly, there is an injective
homomorphism h2 from the τ -reduct of F into Γ2. Let U be the (σ ∪ τ)-structure with
the same domain as F , and with relations defined as follows: for each R ∈ σ of arity k, a
k-tuple t of elements of U is in RU if and only if h1(t) is in RΓ1 . Similarly we define RU for
relations R ∈ τ , with h2 taking the role of h1 and Γ2 taking the role of Γ1. Clearly, h1 is
an embedding of the σ-reduct U1 of U into Γ1, and h2 is an embedding of the τ -reduct U2

of U into Γ2. Therefore, U1 ∈ C1 and U2 ∈ C2. By definition of C := C1∧C2, we have that
U ∈ C, and there is an embedding e of U into Γ. Then e is the desired homomorphism
from F to Γ.

Proof of Theorem 1.5. Let Γ be the Fräıssé-limit of C1 ∧ C2, and let Γ1 and Γ2 be the
σ- and τ -reduct of Γ, respectively. It can be shown by a straightforward back-and-forth
argument that Γ1 and Γ2 are also homogeneous, and hence isomorphic to the Fräıssé-
limit of C1 and C1, respectively. Therefore, Γ1 and Γ2 are ω-categorical by assumption.
Moreover, since C1 and C2 have the Ramsey property, by Corollary 2.4 there are linear
orders <Γ1 and <Γ2 with quantifier-free first-order definitions ϕ1 and ϕ2 in Γ1 and Γ2,
respectively.
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Let Γ∗1 be the structure with the same domain as Γ1 whose relations are exactly the
injective relations that are first-order definable in Γ1. Note that this includes in particular
the linear order <Γ1 , and so Γ∗1 is ordered. Since Γ∗1 contains an n-ary relation for each
orbit of n-tuples of distinct elements from Γ, we have that Γ∗1 is homogeneous and a core,
and has the same (oligomorphic) automorphism group as Γ1. Moreover, observe that the
algebraic closure operator only depends on the automorphism group of Γ1, and it follows
by Proposition 1.1 that that also the age of Γ∗1 has strong amalgamation. We write σ∗ for
the signature of Γ∗1.

Analogously we define the structure Γ∗2 from Γ2; we choose the signature τ ∗ for Γ∗2
such that τ ∗ is disjoint from σ∗. Finally, let Γ∗ be the (τ ∗ ∪ σ∗)-structure whose domain
equals the domain of Γ1 and Γ2 and which is given uniquely by the requirement that it
is both an expansion of Γ∗1 and an expansion of Γ∗2. Then Aut(Γ∗) = Aut(Γ), because
an orbit of an n-tuple t in Γ is uniquely given by the orbit of t in Γ∗1 and the orbit of t
in Γ∗2. Since Γ∗ contains relation symbols for tuples of pairwise distinct elements for the
orbits of n-tuples in Γ1 and in Γ2, it is for the same reason homogeneous and therefore
the Fräıssé-limit of its age. Theorem 2.1 implies that the automorphism group of Γ∗ is
oligomorphic because Γ is ω-categorical, and that Γ∗ is ω-categorical.

The groups Aut(Γ∗1) = Aut(Γ1) and Aut(Γ∗2) = Aut(Γ2) are oligomorphic, and ex-
tremely amenable by Corollary 2.4. By Proposition 4.2, Γ∗1 � Γ∗2 is homogeneous, and
by Proposition 4.3, Aut(Γ∗1 � Γ∗2) is extremely amenable. Then Theorem 3.3 (again in
combination with Corollary 2.4) shows that the model-complete core of Γ∗1 � Γ∗2 has an
extremely amenable automorphism group G. By Lemma 4.5, the model-complete core of
Γ∗1 � Γ∗2 is isomorphic to Γ∗, and hence Aut(Γ∗) = Aut(Γ) is extremely amenable. We
conclude by Corollary 2.4 that C1 ∧ C2 has the Ramsey property.

5 Forgetting one order

We finally prove Proposition 1.6: let C1 and LO ∧ C2 be Ramsey classes with strong
amalgamation and ω-categorical Fräıssé-limits, and suppose that C1, C2, and LO have
pairwise disjoint relational signatures. We have to show that C1 ∧ C2 has the Ramsey
property.

Proof of Proposition 1.6. We use the fact that C3 := C1 ∧ (LO ∧ C2) has the Ramsey
property by Theorem 1.5. Let Γ be the Fräıssé-limit of C1. By Corollary 2.4, there is a
linear order < on the elements of Γ that has a quantifier-free first-order definition ϕ(x, y)
in Γ.

To show that C1 ∧ C2 has the Ramsey property, let A and B be from C1 ∧ C2. Let
A′, B′ be the expansion of A,B by the relation < defined by ϕ over A and B, respectively.
Note that A′, B′ ∈ C3. Since C3 has the Ramsey property, there exists a C ′ ∈ C3 such that
C ′ → (B′)A

′
r . Let C be the reduct of C ′ where we drop the relation <. We claim that C →

(B)Ar . Let χ :
(
C
A

)
→ {1, . . . , r} be arbitrary. We define a coloring χ′ :

(
C′

A′

)
→ {1, . . . , r}

as follows. Let e be an arbitrary embedding of A′ into C ′. Since A is a reduct of A′, and
C is a reduct of C ′ with the same signature, the mapping e is also an embedding of A into
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C. Therefore, e is in the range of χ, and we can define χ′(e) := χ(e). Since C ′ → (B′)A
′

r ,
there exists an f ∈

(
C′

B′

)
such that χ′ is constant c on

(
f [B′]
A′

)
. By the same argument as

above, f is also an embedding of B into C. We claim that χ is constant on
(
f [B]
A

)
. Let

e be an arbitrary embedding of A into f [B]. Recall that A′ and B′ are the expansion
of A and B by the relation < defined by ϕ. Since embeddings preserve quantifier-free
formulas, e preserves in particular ϕ. Therefore, the mapping e is an embedding of A′

into the substructure f [B′] of C ′. In particular, e is in the range of χ′, and χ′(e) = c. It
follows that χ(e) = c, which concludes the proof that χ is constant on

(
f [B]
A

)
.
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