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Abstract—We propose a new full-rate space-time block code
(STBC) for two transmit antennas which can be designed to
achieve maximum diversity or maximum capacity while enjoy-
ing optimized coding gain and reduced-complexity maximum-
likelihood (ML) decoding. The maximum transmit diversity
(MTD) construction provides a diversity order of 2Nr for any
number of receive antennas Nr at the cost of channel capac-
ity loss. The maximum channel capacity (MCC) construction
preserves the mutual information between the transmit and the
received vectors while sacrificing diversity. The system designer
can switch between the two constructions through a simple
parameter change based on the operating signal-to-noise ratio
(SNR), signal constellation size and number of receive antennas.
Thanks to their special algebraic structure, both constructions
enjoy low-complexity ML decoding proportional to the square of
the signal constellation size making them attractive alternatives to
existing full-diversity full-rate STBCs in [6], [3] which have high
ML decoding complexity proportional to the fourth order of the
signal constellation size. Furthermore, we design a differential
transmission scheme for our proposed STBC, derive the exact
ML differential decoding rule, and compare its performance with
competitive schemes. Finally, we investigate transceiver design
and performance of our proposed STBC in spatial multiple-
access scenarios and over frequency-selective channels.

Index Terms—Diversity, MIMO, space-time block codes,
single-carrier frequency-domain equalization.

I. INTRODUCTION

THE Vertical Bell Labs layered space-time (V-BLAST)
architecture, proposed in [7], is a well-known multi-

input multi-output (MIMO) system which operates at very
high spectral efficiency with low encoding and decoding com-
plexities. However, V-BLAST can not exploit the maximum
diversity available in a MIMO channel and, therefore, can
suffer appreciable performance loss.

Orthogonal STBCs (OSTBC) [1] [2], on the other hand,
are primarily designed to capture full transmit diversity of the
MIMO channel while keeping the decoding complexity linear
in the number of transmit antennas. Due to their orthogonal
structure constraint, OSTBC suffers from rate loss, e.g. the
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Alamouti scheme transmits 1 symbol per channel use which is
only half the maximum rate possible with two transmit anten-
nas. Moreover, with the exception of the Alamouti STBC with
1 receive antenna [1], OSTBC schemes do not preserve the
mutual information [17] between the received and the transmit
signal vectors due to the induced space-time correlation on the
channel matrix.

These observations motivated researches to design several
STBCs for Nt = 2 which not only achieve the capacity
of the underlying MIMO channel but also ensure maximum
diversity, thanks to their special algebraic structure. A number-
theoretic STBC construction, called B2,φ, was proposed in [3]
and proved to be a full-diversity capacity-achieving STBC.
For more than one receive antenna, the performance of B2,φ

was shown to be superior to the Alamouti STBC at the same
rate. Following the pioneering work of Damen et al, three
approaches that achieve the optimum diversity-multiplexing
gain tradeoff were proposed independently in [4], [5] and [6].
The schemes in [6] and [4] were shown to be identical (related
by an invertible transformation), have optimum coding gain,
and outperform the one in [3]. However, the main drawback
of the schemes in [3], [4] and [6] is the exponentially-growing
ML decoding complexity as a function of the number of
transmit antennas and constellation size.

In this paper, we derive a new STBC design for Nt = 2
transmit antennas and t = 2 time slots which enjoys low-
complexity ML decoding (quadratic in the constellation size)
with comparable performance with respect to the previous full-
diversity full-rate (FDFR) codes in [3], [4], [5], [6]. We reduce
the ML decoding complexity by exploiting the algebraic
structure of the code using a hybrid maximum-likelihood
interference cancellation (HMLIC) decoding algorithm which
we show to be ML optimal.

Our proposed code can be represented as a linear combi-
nation of two Alamouti codes and does not achieve the opti-
mum diversity-multiplexing tradeoff. However, by optimizing
the linear combination coefficients, we present maximum-
diversity and maximum-capacity constructions of the code,
maximize the coding gain, and analyze their properties. Sev-
eral applications of the proposed STBC design are investigated
including differential transmission, multi-user transmission
using spatial division multiple access, and broadband trans-
mission over frequency-selective channels.

Related code constructions were developed independently
in [8]- [13]. We have compared the coding gain achieved
by some of these codes with our code in Table I. As we
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TABLE I
CODING GAIN COMPARISON FOR DIFFERENT CONSTELLATION SIZES

4bpcu, θ = tan−1(0.5) 8bpcu, θ = tan−1(0.25)

Golden [6] 1.7889 1.7889

B2,φ [3] 0.2369 0.0591

Varanasi [4] 1.7889 1.7889

Sari [10]
√

2
√

2

MTD 0.8 0.2353

will show in Section VIII (c.f. Fig.4), these codes achieve
comparable performance to our proposed code at similar or
higher decoding complexity. In addition, we optimize our code
design analytically, develop its non-coherent (differential)
encoding/decoding scheme, and generalize it to frequency-
selective and multiple-access channels. All of these issues
were not considered in [8], [9], [10] and [13].

The rest of this paper is organized as follows. In Section
II, we describe the system model and briefly review the
code design criteria. In Section III, we present the code
design procedure and analyze its achievable diversity order
and mutual information. In Section IV, we present a reduced-
complexity ML decoding algorithm in Rayleigh flat-fading
channels while in Section V, we design the differential encoder
and the differential ML decoder. In Sections VI and VII we
show how to apply our code to multiple-access and frequency-
selective channels. Simulation results are presented in Section
VIII and the paper is concluded in Section IX.

II. SYSTEM MODEL AND DESIGN CRITERIA

Consider a vector of 4 information symbols, s =
[s1 s2 s3 s4]T where [·]T denotes the matrix transpose and
the information symbols sj , j = 1, · · · , 4, belong to a q-QAM
constellation and transmitted from Nt = 2 antennas during
t = 2 symbol periods. Define an Nt × t matrix u(s) as the
STBC codeword associated with the vector s with the entries
umν which is transmitted from m = 1, · · · , Nt antennas over
symbol periods ν = 1, · · · , t. The received signal matrix of
size (Nr × t) is given by

y =
√

ρ

Nt
Hu + w (1)

where H ∈ CNr×Nt denotes the channel matrix with en-
tries hrm representing the fading coefficients associated with
the mth transmit and the rth receive antenna. The channel
coefficients are samples of an independent and identically
distributed (i.i.d.) complex Gaussian random process with zero
mean and variance 0.5 per real dimension. The channel co-
efficients are assumed quasi-static flat-fading i.e. fixed during
one STBC transmission of t symbol periods. The noise matrix
w ∈ CNr×t has entries wrν which are drawn from a white
Gaussian distribution CN (0, σ2). The received signal matrix
y ∈ CNr×t is generated by stacking signal samples from the
Nr receive antennas at time slots 1, · · · , t. The normalization
factor

√
ρ

Nt
in (1) ensures that ρ is the SNR at each receive

antenna since E[tr{uu∗}] = Nt where E[·] and tr{·} are the
expectation and trace operations, respectively. Since it takes t
time slots (number of columns of u) to transmit p symbols

(size of the vector s), the transmission rate is defined as

Rs =
p

t
log2 q : bits per channel use (bpcu) (2)

where q is the cardinality of the signal constellation used. Note
that an STBC is said to be full-rate if Rmax

s = Nt symbols pcu.

III. PROPOSED 2 × 2 STBC DESIGN

A. Maximum Transmit Diversity (MTD) Construction

Divide the information symbols in s = [s1 s2 s3 s4]T

into two groups, each of which consists of two information
symbols. The symbols of the first group s

′
i are obtained

through a complex rotation applied to the original symbols
i.e. s

′
i = sie

jω , i = 1, 2 where ω is chosen as a function of
the signal constellation. Multiplying the symbols in the first
group by ejω provides the so-called ”signal space diversity”
1. Next, we encode each group with an Alamouti encoder i.e.

G1 : [s
′
1, s

′
2] �→

[
s
′
1 s

′
2

−s
′∗
2 s

′∗
1

]
=
[
V ′

1 V ′
2

]
(3)

G2 : [s3, s4] �→
[

s3 s4

−s∗4 s∗3

]
=
[
V1 V2

]
(4)

where V ′
i for i = 1, 2 represents the ith column of the

Alamouti code in (3). Similarly, Vj , j = 1, 2 is the jth column
of the Alamouti code in (4).
Construction Procedure:

Defining the real-valued matrix 2 R �
[

α1 β1

α2 β2

]
, we

generate the MTD STBC codeword as follows

u � diag
(
R
[
V ′

1 V ′
2

])
+ diag

(
R
[
V1 V2

]
J
)
J (5)

where the diag(·) operator constructs a diagonal matrix by

setting the off-diagonal elements to zero and J =
[

0 1
1 0

]
is the reversal matrix. Substituting from (3) and (4) into (5)
we get

u =
[

s
′
1α1 − s

′∗
2 β1 s∗3β1 + s4α1

s3α2 − s∗4β2 s
′∗
1 β2 + s

′
2α2

]
(6)

The matrix R is designed to maximize the coding gain and
guarantee full diversity of the proposed MTD code in (6) as
follows

Ψθ = arg max
θ1, θ2 ∈ [0, π/2]

s1 �= s2

{Gc} (7)

where
Gc = min

s1 �=s2
‖det [u(s1) − u(s2)]‖ �= 0 (8)

The angles θ1 and θ2 in (7) are related to α1, α2, β1 and β2

by the following relations

α1 = sin(θ1); β1 = cos(θ1); α2 = sin(θ2); β2 = cos(θ2) (9)

These definitions ensure that there is no transmit energy
increase due to STBC encoding, i.e. α2

1+β2
1 = 1 and similarly

1Using computer search to maximize coding gain, we found that the best
rotation angle for 4-QAM is ω = π/4.

2To simplify the analysis, we consider only a real-valued R. However, our
design procedure can be generalized to a complex-valued R as well.



RABIEI et al.: NEW RATE-2 STBC DESIGN FOR 2 TX WITH REDUCED-COMPLEXITY MAXIMUM LIKELIHOOD DECODING 3

α2
2 + β2

2 = 1.
Proposition 1:
Subject to the constraint that θ1 + θ2 = π/2, the solution to
the code design problem in (7) for the 4-QAM constellation
is given by

{θopt

1 , θopt

2 } = {arctan(2), arctan(
1
2
)} (10)

Proof: See Appendix I. �
Remarks:

1. Our proposed STBC in (6) has the property that the
average transmitted power is equal to the average original
signal constellation power, i.e. the power required to transmit
the linear combination of the information symbols equals the
power required to transmit the symbols individually. It also
induces a uniform average transmitted power per antenna in
all time slots, i.e., all entries in the codeword have the same
average power.

2. The same procedure can be followed to optimize θ1

and θ2 for other signal constellations. For example, for
the 16-QAM constellation, these optimum values are θ

′
1 =

arctan(4), θ
′
2 = arctan(0.25). The maximum coding gain for

4-QAM is found to be 0.8 and for 16-QAM is 0.2353.

B. Maximum Channel Capacity (MCC) Construction

It can be shown that the eigenvalue distribution of the
equivalent channel matrix for the MTD STBC in (6) is not
the same as that of the original channel matrix due to the
induced space-time correlation, hence this design is not an
information lossless STBC [3]. Therefore, as we increase Nr

or the constellation size, the MTD construction loses coding
gain. It is possible, however, to re-design the code to preserve
the mutual information between the transmit and received
vectors as summarized in the following proposition.
Proposition 2:
Let P be a 2 × 2 transformation matrix. Introducing R

′ �[
a1 b1

a2 b2

]
= P R, where R is defined in (5), our goal is to

design P such that the STBC

v � diag
(
R

′ [
V ′

1 V ′
2

])
+ diag

(
R

′ [ V1 V2

]
J
)

J

=
[

s
′
1a1 − s

′∗
2 b1 s∗3b1 + s4a1

s3a2 − s∗4b2 s
′∗
1 b2 + s

′
2a2

]
(11)

is information lossless. This is achieved by the following R
′

R
′
=
[

α1 β1

β2 α2

]
(12)

where α1, β1, α2, β2 are the MTD design parameters.
Comparing the forms of R

′
and R, we can see that the

MTD and MCC constructions are related through a simple
permutation of the elements on the second row of R.
Proof: See Appendix II. �

IV. DECODING

In this section, we propose a reduced-complexity decoding
algorithm which achieves the performance of full ML decod-
ing. Since the MTD and MCC constructions have the same
algebraic structure (i.e. linear combination of two Alamouti
STBC), the same decoding algorithm can be used for both con-
structions. To decode the STBC schemes in [3], [4], [5], [6],
a size-q4 exhaustive ML search has to be performed over all 4
information symbols transmitted in each codeword. Therefore,
real-time implementation of these schemes is challenging in
practical systems, especially for large signal constellations.
Any suboptimal receiver such as zero-forcing, minimum mean
square error (MMSE) or ordered successive interference can-
cellation (OSIC), will degrade their performance significantly
compared to full ML decoding. Hence, the ultimate goal
of these STBC schemes which is to achieve the optimum
diversity-multiplexing trade-off would not be accomplished
due to this performance loss. While the sphere decoding
algorithm is one of the most efficient methods for solving the
integer least square problem with finite constellations [17], it
does not provide polynomial decoding complexity for large
problem sizes [18]. Here, the problem size is defined as the
number of symbols that are to be jointly decoded. In fact, the
expected complexity of sphere decoding which is defined as
the sum of the number of lattice points inside the sphere of
radius r, grows exponentially with the problem size [18]. This
is primarily due to the fact that for low-to-intermediate SNR
levels or ill-conditioned channel matrices, the probability of
finding a lattice point inside the sphere makes r so large that
it captures a substantial fraction of the lattice points. For our
code, we perform a conditional ML search to decode s

′
2 and

s3 and cancel their interference from the received signals fol-
lowed by simple matched-filtering for information symbols s

′
1

and s4. This algorithm achieves the optimum ML performance
since the resulting equivalent channel after cancellation of the
first two symbols is orthogonal and, therefore, ML decoding is
equivalent to simple matched-filtering. Assuming transmission
of MCC, by expanding (1) and taking the complex conjugate
of yr2 for r = 1, · · · , Nr, we can re-write (1) as follows

Y =
√

ρ

Nt
Hs

′
+ w

′
(13)

where Y = [y11, y
∗
12, · · · , yNr1, y

∗
Nr2]

T and s
′

=
[s

′
1, s

′∗
2 , s3, s

∗
4]

T and w
′
= [w1, w

∗
2 , · · · , w∗

2Nr
]T . The equiva-

lent channel matrix H is

H =

⎡
⎢⎢⎢⎢⎢⎣

h11a1 −h11b1 h12a2 −h12b2

h∗
12b2 h∗

12a2 h∗
11b1 h∗

11a1

...
...

...
...

hNr1a1 −hNr1b1 hNr2a2 −hNr2b2

h∗
Nr2b2 h∗

Nr2a2 h∗
Nr1b1 h∗

Nr1a1

⎤
⎥⎥⎥⎥⎥⎦ (14)

Canceling s
′
2 and s3, the second and the third columns of

H are eliminated. Denoting the resulting equivalent channel
matrix (after cancellation) by H, we can write

Y = H

[
s
′
1

s∗4

]
+ W (15)
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It can be easily verified that the columns of H are orthogonal
to each other and therefore ML decoding of s

′
1 and s∗4 is

decoupled.

V. DIFFERENTIAL TRANSMISSION

Channel estimation in a fast time-varying communication
environment is computationally expensive and can result in
substantial data rate loss due to training overhead. More-
over, considering the increased number of unknown channel
coefficients in a MIMO system, it is sometimes desirable
to eliminate channel estimation at the receiver at the cost
of some performance loss. In this section, we investigate
differential transmission for our proposed code and derive
the exact ML differential decoding metric. Furthermore, we
derive a suboptimal reduced-complexity differential decoding
metric and compare its performance with the differential ML
decoder for both the MTD and Golden codes. Interestingly,
the suboptimal and the ML differential decoding metrics for
our code achieve almost the same performance while there is
a bigger performance loss for the Golden code. 3

A. Differential Encoder

Assuming differential transmission of M MTD 4codewords
and denoting the kth transmitted codeword by X(k) for
0 ≤ k ≤ M − 1. The differential scheme is initialized by
transmitting X(0) = I2, where I2 is the 2×2 identity matrix,
and proceeds as follows

B(k) = X(k − 1)u(k); X(k) =
B(k)√

e(k)
(16)

The total transmitted energy from all antennas is constrained
to be a constant independent of Nt; i.e.

E

[
Nr∑
r=1

Nt∑
m=1

|xm,r(k)|2
]

= t (17)

where X(k − 1) and X(k) are the transmitted codewords
at times (k − 1) and k, respectively, and e(k) is the energy
normalizer i.e. e(k) = tr{B(k)BH (k)}

t . Hence, the energy
constraint in (17) is satisfied since

t = E

[
Nr∑
r=1

Nt∑
m=1

|xm,r(k)|2
]

= E
[
tr
{
X(k)XH(k)

}]

= E

[
tr

{
B(k)BH(k)
tr{B(k)BH (k)}

t

}]

= E
[

t

tr{B(k)BH(k)}
tr{B(k)BH(k)}

]
(18)

Keeping the average transmitted energy constant is critical
here in the differential encoder since the MTD code is not or-
thogonal and successive multiplication of the codewords may
cause its energy to blow up or diminish. The corresponding

3We emphasize that conventional differential OSTBC schemes [20] [21]
do not apply to the non-orthogonal STBC considered in this paper.

4The same approach can be followed for the MCC code as well.

received signal blocks over codeword transmissions k and k−1
are

[Y (k − 1) Y (k)] = [H(k − 1)X(k − 1) H(k)X(k)]
+ [W (k − 1) W (k)]

(19)

Substituting (16) into (19) and applying the quasi-static chan-
nel assumption H(k) = H(k − 1), we can write

Y (k) =
Y (k − 1)u(k)√

e(k)
+ W̃ (k) (20)

where the equivalent noise matrix seen by the differential
decoder is given by

W̃ (k) = W (k) − W (k − 1)u(k)√
e(k)

(21)

B. Differential Decoding

Due to the non-orthogonality of the MTD code, its ML
differential decoding can not be performed using simple linear
processing as in OSTBC [21] and an exhaustive search is
needed in general whose complexity increases exponentially
with the constellation size and the number of transmit anten-
nas. Starting from (19), we can derive the ML decoding rule
for our non-orthogonal differential MTD as follows. Define

YE � [Y (k) Y (k − 1)]
= H(k) [X(k) X(k − 1)] + [W (k) W (k − 1)]

= H(k)
[
X(k − 1)u

′
(k) X(k − 1)

]
+ [W (k) W (k − 1)]

= H(k)X(k − 1)
[
u

′
(k) I2

]
+ [W (k) W (k − 1)]

� HEG + WE

(22)

where HE � H(k)X(k − 1) and u
′
(k) = u(k)√

e(k)
. Since

WE = [W (k) W (k − 1)] is AWGN and independent of
G, we can write the exact ML decoding metric as follows

JML = argmin ‖YE − HEG‖2 (23)

We can eliminate the dependence of JML on HE by
differentiating JML with respect to HE to find the choice
of HE which minimizes JML. Using the the derivative rules
of a quadratic function consists of a matrix and vectors we
get

HE = (Y (k)u
′H(k)+Y (k−1))(I2+u

′
(k)u

′H(k))−1 (24)

Substituting back for HE from (24) into (23), we get

JML = argmin{‖Y (k) − (Y (k)u
′H(k) + Y (k − 1))

(I2 + u
′
(k)u

′H(k))−1u
′
(k)‖2

+ ‖Y (k − 1) − (Y (k)u
′H(k) + Y (k − 1))

(I2 + u
′
(k)u

′H(k))−1‖2}
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This metric is very complex to implement. Using (20), the
following approximate ML decoder can be derived by mini-
mizing the following suboptimal5 metric

J approx

ML = argmin

∥∥∥∥∥Y (k) − Y (k − 1)u(k)√
e(k)

∥∥∥∥∥
2

(25)

The performances of the metrics J approx

ML and JML will be
compared in Section VIII for both the MTD construction
and the Golden code. Note that JML collapses to J approx

ML

for orthogonal STBC6. Even more important are the two
observations that the differential MTD code outperforms the
differential Golden code and that the performance gap between
differential and coherent decoding is less for the MTD code
than for the Golden code.

VI. MULTIPLE-ACCESS CHANNELS

Without loss of generality, we consider two perfectly-
synchronous users each using the MCC STBC7 of Section III-
B trying to access the base station using spatial division mul-
tiple access (SDMA) with signal-to-interference-noise ratio
(SINR) of 0 dB; i.e. both users are operating at the same power
level which is a very challenging scenario. The base station
processes the received signals from the two users during t = 2
time slots. For the linear decorrelation of the two users to be
possible at the base station, we need Nr ≥ 4 receive antennas
since there are 8 information symbols from the two users to
be jointly decoded. The uplink input-output model can be
written in terms of the equivalent channel matrix including
the interference from the other user by generalizing (13) as
follows[ Y1

Y2

]
=
√

ρ

Nt

[ H1 Q1

Q2 H2

] [
s

′
1

s
′
2

]
+
[

w
′
1

w
′
2

]
(26)

where Yi for i = 1, 2 are the received signal vectors of
length 2Nr each, Hi for i = 1, 2 are the 2Nr × 4 channel
matrices between each user and the base station and Qj for
j = 1, 2 are the 2Nr × 4 channel matrices corresponding
to interference from the other user. Multiplying by the linear
decorrelator matrix D, the base station receiver cancels the
interference from the other user at the expense of possible
noise enhancement 8[ Ỹ1

Ỹ2

]
=
√

ρ

Nt

[ H̃ 0
0 Q̃

] [
s

′
1

s
′
2

]
+ D

[
w

′
1

w
′
2

]
(27)

Define the following partitioning of the decorrelator matrix

D �
[ D1 D2

D3 D4

]
. Then to decouple the two users as in

(27), we must have

D2 = −D1Q1(H2
HH2)−1H2

H

D3 = −D4Q2(H1
HH1)−1H1

H
(28)

The autocorrelation matrix of the filtered noise at the output
of the decorrelator is given by Rw′w′ = σ2DDH . Therefore,

5This metric is suboptimal since the equivalent noise term W̃(k) in (20)
is not white and is dependent on u

′
(k).

6This can be easily verified by substituting u
′
(k)u

′H(k) = I2 in the
expression for JML.

7The same approach can be used for MTD code as well.
8For simplicity, a zero-forcing design for D is considered in this paper,

however, the MMSE design derivation is straightforward.

D1 and D4 can be designed to make the filtered noise variance
equal to the original white noise variance as follows (the
details are straightforward and omitted here because of space
limitations.)

D1 =
[
I + Q1(H2

HH2)−1Q1
H
]− 1

2

D4 =
[
I + Q2(H1

HH1)−1Q2
H
]− 1

2
(29)

The second stage of decoding consists of performing ML
detection on the decoupled information vectors s

′
1 and

s
′
2 from each user separately. This can be done using the

reduced-complexity HMLIC algorithm proposed in Section
IV for the single-user case.

Proposition 3:
The equivalent channel matrices H̃ and Q̃ at the output of
the decorrelator in (27) have two pairs of orthogonal columns
and, therefore, HMLIC detection is ML-optimal for both
decorrelated users analogous to the single-user case.
Proof: See Appendix III. �

VII. FREQUENCY-SELECTIVE CHANNELS

In this section, we show how to integrate our MTD
STBC code with equalization for transmission over frequency-
selective channels 9. This is achieved by implementing it at a
block level to combat the frequency selectivity of the channel
and performing MMSE-based single-carrier frequency-domain
equalization (SC-FDE) [19] to decode the transmitted infor-
mation blocks. The MMSE SC-FDE has two major advantages
over orthogonal frequency division multiplexing (OFDM).
First, it has a lower peak-to-average ratio (PAR) which makes
it suitable especially for our proposed MTD and MCC codes
since they transmit linear combinations of the information
symbols which can result in high PAR. Second, the SC-
FDE has lower sensitivity to carrier frequency offset than
OFDM. When the channel maximum delay spread exceeds
the symbol period, transmissions are impaired by inter-symbol
interference (ISI). Assume that the maximum delay spread
between the Nr× Nt channel paths is L and define hrm(l) as
the lth channel tap between the mth transmit antenna and the
rth receive antenna where r ∈ [1, Nr], m ∈ [1, Nt], l ∈ [0, L].
We generate 4 information blocks each of length N and
combine them in the time domain so that after DFT processing
at the receiver, we get the MTD code structure in the frequency
domain. To make the channel matrices circulant, a cyclic prefix
of length L is appended at the end of each information block
in the time domain. Denoting the nth symbol of the kth
transmitted block over the mth transmit antenna by uk

m(n)
we can write

uk
1(n) = α1s

k
1(n) − β1s

∗k
2 ([N − n]N )

uk
2(n) = α2s

k
3(n) − β2s

∗k
4 ([N − n]N )

(30)

where [·]N is the modulo-N operation. Equation (30) can be
represented in vector notation as follows

uk
1 = α1s

k
1 − β1s

k
2 ; uk

2 = α2s
k
3 − β2s

k
4

(31)

9The same approach can be used for the MCC code as well.
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where [·] stands for the complex-conjugate operation over a
vector of length N . The received block from the rth receive
antenna during the kth block transmission in the time domain
is given by

yk
r = Hc1r

(
α1s

k
1 − β1s

k
2

)
+ Hc2r

(
α2s

k
3 − β2s

k
4

)
+ wk

r

(32)

where Hcmr is the circulant channel matrix from the mth
transmit antenna to the rth receive antenna. Assuming quasi-
static channels, the channel taps remain constant over two
consecutive block transmissions. Performing the same block
processing for the (k + 1)th block transmission, the (k + 1)th
received block in the time domain is given by

yk+1
r = Hc1r

(
β1s

k+1
3 + α1s

k+1
4

)
+ Hc2r

(
α2s

k+1
2 + β2s

k+1
1

)
+ wk+1

r

(33)

Since all channel matrices are circulant, they can be diago-
nalized using the DFT orthonormal matrix F whose (p, q)
element is given by F (p, q) = 1√

N
exp(−j 2πpq

N ) for 0 ≤
p, q ≤ N − 1. At the receiver, the time domain blocks are
transformed to the frequency domain by first removing the
cyclic prefix and then multiplying by F as follows

Y k
r � Fyk

r

= FF HDr1F
(
α1s

k
1 − β1s

k
2

)
+ FF HDr2F

(
α2s

k
3 − β2s

k
4

)
+ Fwk

r

= Dr1

(
α1S

k
1 − β1S

∗k
2

)
+ Dr2

(
α2S

k
3 − β2S

∗k
4

)
+ W k

r

(34)

where Sk
i = Fsk

i , i = 1, · · · , 4 are the transmitted blocks in
the frequency domain and Drm is N × N diagonal matrix
with (n, n) element given by

Drm(n, n) =
1√
N

L∑
l=0

hr,m(l)e−j 2πnl
N

m = 1, 2 r = 1, · · · , Nr

(35)

Following the same procedure, one can derive the received
block during the (k + 1)th block transmission to be

Y k+1
r = Dr1

(
β1S

∗k+1
3 + α1S

k+1
4

)
+ Dr2

(
α2S

k+1
2 + β2S

∗k+1
1

)
+ W k+1

r

(36)

Taking the element-wise complex conjugation of Y k+1
r and

collecting all the received blocks from the Nr receive anten-
nas, we get the system of equations in the frequency domain
shown in (37) at the top of the next page. Note that (37) can
be viewed as a frequency-domain vectorized-form of the time-
domain relations in (13). Also note that performing HMLIC
to decode (37) is not possible because equalization is done in
the frequency-domain where the lattice structure (due to the
signal constellation) has been destroyed by the application of
the DFT matrix. Instead, we consider the MMSE estimate of
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5 RX 4bpcu MTD
5 RX 4bpcu MCC

Fig. 1. Comparison of MTD and MCC constructions with different number of
receive antennas and different spectral efficiencies. 4 and 8 bpcu are equivalent
to using 4-QAM and 16-QAM, respectively.

the nth element of each of 4 received blocks in the frequency-
domain which is given by

Ŝk(n) =
(

DH(n, n)D(n, n) +
Nt

ρ
I4

)−1

DH(n, n)Y k(n)

(38)
where Ŝk(n) = [Sk

1 (n) S∗k
2 (n) Sk

3 (n) S∗k
4 (n)]T is a

4 × 1 vector of the MMSE estimates of the nth symbols
from each of the 4 information blocks. Similarly, D(n, n) is a
2Nr×4 matrix constructed from the channel gains Drm(n, n)
at the nth frequency-domain bin defined in (35). In addition,
Y k(n) = [Y k

1 (n) Y ∗k+1
1 (n) · · ·Y k

Nr
(n) Y ∗k+1

Nr
(n)]t is

the vector of the nth elements from each of the 4 received
blocks. Therefore, MMSE-based SC-FDE is performed over
the nth elements of the 4 information blocks in the frequency
domain. Stacking all symbol estimates in vectors, they can be
transformed back to the time domain followed by a slicer to
decode the information blocks.

VIII. SIMULATION RESULTS

In this section, we present simulation results for our new
code (both MTD and MCC constructions) and compare it with
the Golden and B2,φ codes in [6] and [3], respectively. We
also compare the performance of our code with the recently
proposed STBCs in [8], [9], [10].

A natural question to ask at this point is when to use MTD
or MCC constructions? To answer this question, the BER per-
formances of the MTD and MCC constructions are compared
under different transmission scenarios in Fig.1. It can be seen
from this figure that when the number of receive antennas
and the spectral efficiency are small, the MTD construction
achieves better performance since achieving full diversity
is more critical than full capacity under these scenarios.
However, as we increase the number of receive antennas, the
capacity of the underlying MIMO channel will increase and
hence preserving the mutual information between the transmit
and the received signal vectors becomes more crucial. The
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⎡
⎢⎢⎢⎢⎣

Y k
1

Y
∗k+1
1

...
Y k

Nr

Y ∗k+1
Nr

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

D11α1 −D11β1 D12α1 −D12β1

D12
∗α2 D12

∗β2 D11
∗α2 D11

∗β2

...
...

...
...

DNr1α1 −DNr1β1 DNr2α1 −DNr2β1

DNr2
∗α2 DNr2

∗β2 DNr1
∗α2 DNr1

∗β2

⎤
⎥⎥⎥⎦
⎡
⎣ Sk

1
S∗k

2
Sk

3
S∗k

4

⎤
⎦+

⎡
⎢⎢⎢⎢⎣

Wk
1

W
∗k+1
1

...
Wk

Nr

W∗k+1
Nr

⎤
⎥⎥⎥⎥⎦ (37)
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Fig. 2. Bit error rate performance of the MTD code with Nr = 2 and the
spectral efficiency of 4 bits pcu.

same trend also holds as we increase the signal constellation
size and the MCC construction becomes preferable in this case
as well.

Next, in Fig.2 the BER comparison is extended to Nr = 2
and a transmission rate of 4 bits pcu. It is clear that the
MTD code outperforms the Alamouti and B2,φ codes over
all SNR values considered and has less than 1dB performance
loss (at high SNR) compared to the Golden code [6] since
the MTD code does not achieve full channel capacity [17].
However, the reduced ML decoding complexity of the MTD
code still makes it attractive for practical implementation
compared to the Golden code. It can be seen from Fig.2,
that if we use the same low-complexity HMLIC algorithm
to decode the Golden code, the BER degrades significantly
since the Golden code’s equivalent channel (after interference
cancellation) is not orthogonal and hence matched-filtering is
highly suboptimal.

Next, we examine in Fig.3 the BER of our MCC code in
comparison with the Alamouti, Golden and B2,φ codes for
Nr = 5 at a spectral efficiency of 4 bits pcu where we observe
about 4dB loss for the Alamouti code compared to the other
3 codes. This is expected because the Alamouti code is not
information lossless for Nr > 1. Note that although our MCC
code suffers from a diversity loss compared to the Golden
and B2φ codes, their performance is nearly identical to our
code for the considered SNR range which is typical for many
wireless channels.

Fig.4 shows a performance comparison of MTD with those
of [8], [10]10, and [9] with Nr = 2 and spectral efficiency

10As pointed out in [13], the codes in [8] and [9] are identical.
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Fig. 3. Bit error rate performance of the MCC code with Nr = 5 and the
spectral efficiency of 4 bits pcu.
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Fig. 4. Comparison between MTD and MCC with the codes in [8], [9] and
[10] and . The dashed curves are for comparison of MCC with others using
5 receive antennas. The solid curves are for comparison of MTD with others
using 2 receive antennas. Spectral efficiency is 4 bits pcu.

of 4 bits pcu. In the same figure, MCC is compared with the
schemes in [8], [9] and [10] in the presence of Nr = 5 receive
antennas and spectral efficiency of 4 bits pcu. As it can be seen
from this figure, if the right construction i.e. MTD or MCC
is used in the right transmission environment, then the BER
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ML assuming differential

transmission for the MTD and Golden codes with QPSK constellation and 1
and 2 receive antennas.

performances of these schemes are almost the same.
It is interesting to note here that although the coding gain

of our MTD code construction is inferior to the coding gains
of the codes in [9], [10], [4] (as Table I shows), the error
rate performance is almost identical for all of these codes.
This observation corroborates the observation made in [16]
that the error rate in STBC systems is not only determined
by the coding and diversity gains but also by the number of
nearest neighbors.

Fig.5 depicts the BER performance of our MCC code for
Nr = 2 receive antennas for two different transmission rates
of 4 bits pcu and 8 bits pcu. It is clear that the diversity loss
compared to the Golden code [6] is noticeable only for the
lower-rate scenario of 4 bits pcu and SNR greater than 12 dB.
For the higher-rate scenario of 8 bits pcu, the performance of
our code is almost identical to the Golden code for SNR less
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Fig. 7. BER performance comparison between the single-user and two-user
scenarios with the MCC code assuming QPSK constellation.
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Fig. 8. BER performance of the MMSE SC-FDE receiver with the MTD
code compared with V-BLAST for different channel delay spread L = 3, 5, 7
at the rate of 4 bits pcu and Nr = 2.

than 25 dB and it outperforms the Alamouti code for all SNR
values under consideration.

Next, we compare in Fig.6 the BER performance of the
JML and J approx

ML differential decoder metrics for the MTD
and Golden codes with Nr = 1, 2 and 4-QAM constellation.
Thanks to the special algebraic structure of the MTD code, the
performance gap between the two metrics is not as high as that
of the Golden code for Nr = 1. Furthermore, it is clear that
the differential MTD code outperforms the differential Golden
code by about 2.2dB at high SNR for Nr = 1. Moreover,
comparing the performances of the MTD and Golden code
differential schemes with their corresponding coherent ones
shown in Fig.6 at BER of 10−3, there is a loss of about
4.2dB for the MTD code and 5.8dB for the Golden code.
These losses exceed the theoretical minimum of 3dB which
is achieved by orthogonal STBC. For Nr = 2, there is still
about 1.8dB performance improvement with respect to the
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differential Golden code despite the fact that the Golden code
performs better than the MTD code with coherent detection
for Nr = 2.

Fig.7 compares the BER of the MCC code in the single-
user case with Nr = 2 and HMLIC detection with the two-user
case assuming Nr = 4 and SINR = 0 dB using two differ-
ent detection algorithms. The first algorithm is the reduced-
complexity two-stage receiver consisting of a decorrelator
followed by HMLIC and the second algorithm is the joint size-
q8 ML search over all 8 information symbols of both users.
The decorrelator stage uses the two extra receive antennas to
cancel the two information streams of the other user and hence
achieve the single-user performance. On the other hand, the
full joint ML receiver uses the two additional receive antennas
to achieve higher spatial diversity and better performance than
the single-user case at the expense of a much higher decoding
complexity.

Finally, the BER performance of the MTD code is in-
vestigated for the frequency-selective channel scenario with
L = 3, 5, 7 and a block size of N = 64. As it can be seen
from Fig.8, the MMSE-based SC-FDE is clearly capable of
capturing multi-path diversity and outperforms V-BLAST at a
spectral efficiency of 4 bits pcu and Nr = 2.

IX. CONCLUSION

We designed a closed-form rate-2 space-time block code
for two transmit antennas through a judicious application of
rotation and linear combination operations on two parallel
Alamouti codes. We presented two different constructions of
the proposed code design, related through a simple trans-
formation, where one construction maximizes the diversity
gain while the other one guarantees the information lossless
property. Both constructions were further optimized analyt-
ically to maximize coding gain and their special algebraic
structure was exploited to design a low-complexity ML de-
coding algorithm. Through extensive simulation results, we
demonstrated the advantage of our proposed code in striking
a practical performance-complexity tradeoff comparable to the
most competitive existing schemes. Furthermore, we derived
the optimum non-coherent (differential) ML decoding metric
for our code and approximated it by a near optimum metric
at much lower decoding complexity. Finally, we showed how
to apply our proposed code in multiple-access and frequency-
selective channels by carefully integrating its decoder with
interference cancellation and equalization algorithms, respec-
tively.

APPENDIX A
PROOF OF PROPOSITION 1

Equations (7) and (8) can be can be combined as follows

Ψθ = max
θ

min
s�=0

‖ det[u(s1) − u(s2)]‖

= min
s �=0

max
θ

‖(|sd
1|2 + |sd

4|2)α1β2 − (|sd
2|2 + |sd

3|2)β1α2

+ α1α2(sd
1s

d
2 − sd

3s
d
4) − β1β2

[
(sd

1)
∗(sd

2)
∗ − (sd

3)
∗(sd

4)
∗] ‖
(39)

where sd
1 = s

′
1−s̄

′
1, s

d
2 = s

′
2−s̄

′
2, s

d
3 = s3−s̄3, s

d
4 = s4−s̄4 are

the difference of the information symbols in the two distinct

codewords. Substituting (9) into (39) and introducing the
variable θ = θ1, we can simplify the coding gain expression
as follows

Ψθ = min
s �=0

max
θ

‖ det[u(s1) − u(s2)]‖

= min
s �=0

max
θ

∥∥A sin2(θ) − B cos2(θ) + jC sin(2θ)
∥∥ (40)

where

A = |sd
1|2 + |sd

4|2; B = |sd
2|2 + |sd

3|2

C = 
{sd
1s

d
2} − 


{
sd
3s

d
4

} (41)

where 
{·} is the imaginary part operation. Given any feasible
values of the constellation-dependent parameters A, B, C, the
maximization over θ can be performed by differentiating (40)
with respect to θ and setting the result to zero which produces
the constellation-independent solution of θ = kπ

2 , and a
constellation-dependent solution (which maximizes the coding
gain) given by

θopt = arctan

√√√√√√√
2B2 − 4

(
C2 − 1

2
AB

)

2A2 − 4
(

C2 − 1
2
AB

) (42)

substituting back the optimum rotation angle θopt into the
expression in (40) we get

Ψθ = min
s�=0

∥∥A sin2(θopt) − B cos2(θopt) + jC sin(2θopt)
∥∥ (43)

which gives an expression for the coding gain as a function
of the constellation points. Minimization of (43) over s �= 0
for the 4-QAM constellation gives constellation points which
when substituted back in (42) result in θopt = arctan(0.5) as
the solution of the optimum rotation angle as we claimed in
(10).

APPENDIX B
PROOF OF PROPOSITION 2

Considering y =
√

ρ
Nt

Hv + w, the conditional mutual
information between y and v for a given channel realization
can be written as

I(y, v|H) � log2 det
(

INr +
1
σ2

HRvvHH

)
(44)

Therefore, the ergodic capacity is obtained by maximizing the
expected value of I(y, v|H) over all channel realizations

Co(Nr) = arg max
trace(Rvv)=P

EH[I(y, v|H)] (45)

where P is the total transmit power and Co(Nr) is the
original channel capacity also known as the open-loop channel
capacity. Substituting Rvv = Ev[vvH ] = P

Nt
INt in (44) and

taking the expectation with respect to H we get

Co(Nr) = EH

[
log2 det

(
INr +

ρ

Nt
HHH

)]
(46)

where ρ = P/σ2 is the SNR at each receive antenna.
Considering the space-time correlation induced on the channel
matrix H by the structure of v in (13), one can obtain the
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equivalent channel matrix H given in (14). A new capacity
Cn(Nr) can be computed for the new equivalent channel
H which is different, in general, from the original capacity
Co(Nr). The difference between the two capacities (if any) i.e.
ΔC = Co(Nr) − Cn(Nr) quantifies as the information loss
due to space-time coding. The capacity of the new equivalent
channel Cn(Nr) is given by [7]

Cn(Nr) =
1
2

arg max EH

[
log2 det

(
I2Nr +

1
σ2

HRssHH

)]

subject to Rss =
P
Nt

I2Nt

=
1
2

EH

[
log2 det

(
I2Nr +

ρ

Nt
HHH

)]
(47)

Lemma 1:
Let Λ = diag(λ1, λ2) be the diagonal matrix containing

the two non-zero eigenvalues of HHH , which is the Wishart
matrix associated with open-loop channel matrix H . Then
Λ

′
= diag(λ1, λ1, λ2, λ2) is the diagonal matrix consisting

of all 4 non-zero eigenvalues of HHH if and only if

a2
1 + b2

1 = 1; a2
2 + b2

2 = 1; a1b2 − b1a2 = 0 (48)

Proof :
Assuming Nt = 2 and Nr ≥ 2, the rank of the Nr × Nt

channel matrix H is 2. Therefore, the non-zero eigenvalues
of HHH are the roots of the characteristic equation

λ2 + (c1 + c3)λ + c1c3 − |c2|2 = 0 (49)

which can be shown to be the only two eigenvalues of HHH .
In (48), we define

c1 =
Nr∑
i=1

|hi1|2; c2 =
Nr∑
i=1

hi1h
∗
i2; c3 =

Nr∑
i=1

|hi2|2 (50)

When the 3 conditions in (48) are met, it can be easily verified
that the characteristic polynomial of the Wishart matrix HHH

is of the form

λ2Nr−4[λ2 + (c1 + c3)λ + c1c3 − |c2|2]2 = 0 (51)

with (2Nr−4) zeros and two sets of doubly-repeated eigenval-
ues; i.e. {λ1, λ1} and {λ2, λ2}. Note that we are considering
the case Nr ≥ Nt = 2. Performing an eigenvalue decomposi-
tion of HHH and substituting in (47) we get

Cn(Nr) =
1
2

EH

[
log2 det

(
I2Nr +

ρ

Nt
HHH

)]

=
1
2

log2 det
(

I2Nr +
ρ

Nt
Λ

′
)

=
1
2

log2

Nt=2∏
i=1

(
1 +

ρ

Nt
λi

)2

= Co(Nr)

(52)

which shows that our MCC code is information lossless for
any Nr. Note that the optimum values for design parameters
αi, βi for i = 1, 2 derived for the MTD construction in Section
III-A satisfy the conditions in (48) with the ordering given
in (12) and, therefore, are used for the MCC construction
as well. The price paid is the loss in diversity order of
the MCC code which is still acceptable (c.f. Section V) for

the low-to-medium SNR range that MIMO wireless links
typically operate at and for large signal constellations where
the effects of coding gain optimization become more critical
on performance.

APPENDIX C
PROOF OF PROPOSITION 3

Considering the first user, the equivalent channel H̃ can be
derived as follows

H̃ = D1H1 + D2Q2

= D1

(
H1 − Q1(H2

HH2)−1H2
HQ2

) (53)

Permutation of the fourth and the second columns of Hi or
Qi in (26) puts these equivalent channel matrices in the form

Hπ =
[

A1 · · · ANr

B1 · · · BNr

]t

(54)

where Ai and Bi for i = 1, · · · , Nr have Alamouti structure.
Note that column permutations on the channel matrix corre-
spond to changing the positions of the information symbols
and result in an equivalent system of equations. To see if H̃
has the same structure as H, we note that

HH
π Hπ =

[ ∑Nr

i=1 AH
i Ai

∑Nr

i=1 AiBH
i∑Nr

i=1 AH
i Bi

∑Nr

i=1 BH
i Bi

]
4×4

(55)

It can be easily verified that the multiplication of any two
Alamouti matrices results in an Alamouti matrix. Therefore,
HH

π Hπ is a block Alamouti matrix. Now, to prove Proposition
3, it suffices to prove that the inverse of (55) has block-
Alamouti structure since (53) consists only of multiplication
and inversion of block-Alamouti matrices.

Lemma 2: Invariance of block-Alamouti matrices under
inversion:
Consider the block matrix inverse identity[

U X
T W

]−1

=
[

U−1 + U−1XS−1T U−1 −U−1XS−1

−S−1T U−1 S−1

]
(56)

where S is the Schur complement of U given by S = W −
T U−1X . Using (56) to evaluate the inverse of (55) and using
the fact that

U−1 =

(
Nr∑
i=1

AH
i Ai

)−1

=

⎛
⎝ Nr∑

i=1

|hi1|2α2
1 +

Nr∑
j=1

|hj2|2β2
1

⎞
⎠

−1

I2

(57)

it can be seen that all the operations in (56) involve block-
Alamouti matrix multiplications and inversions which can be
shown to have block-Alamouti structure. Therefore, the ma-
trix (HH

π Hπ)−1 has block-Alamouti structure and it follows
immediately that (53) has block-Alamouti structure. Similarly,
it can be shown that

Q̃ = D4

(
H2 − Q2(H1

HH1)−1H1
HQ1

)
(58)

has two pairs of columns which are orthogonal to each other.
Therefore, we can perform HMLIC for each user separately
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and achieve the performance of full ML search over all
information symbols. The overall multi-user decoder will not
be ML-optimal due to the sub-optimality of the first-stage
decorrelator. However, its complexity grows only proportional
to cq2 (for c users) compared to a complexity of q4c for the
full ML detector resulting in a substantial complexity savings.
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