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NEW RATES FOR EXPONENTIAL APPROXIMATION AND THE
THEOREMS OF RÉNYI AND YAGLOM1

BY EROL A. PEKÖZ AND ADRIAN RÖLLIN2

Boston University and National University of Singapore

We introduce two abstract theorems that reduce a variety of complex ex-
ponential distributional approximation problems to the construction of cou-
plings. These are applied to obtain new rates of convergence with respect to
the Wasserstein and Kolmogorov metrics for the theorem of Rényi on random
sums and generalizations of it, hitting times for Markov chains, and to obtain
a new rate for the classical theorem of Yaglom on the exponential asymptotic
behavior of a critical Galton–Watson process conditioned on nonextinction.
The primary tools are an adaptation of Stein’s method, Stein couplings, as
well as the equilibrium distributional transformation from renewal theory.

1. Introduction. The exponential distribution arises as an asymptotic limit in
a wide variety of settings involving rare events, extremes, waiting times, and quasi-
stationary distributions. As discussed in the preface of Aldous (1989), the tremen-
dous difficulty in obtaining explicit bounds on the error of the exponential approx-
imation in more than the most elementary of settings apparently has left a gap in
the literature. The classical theorem of Yaglom (1947) describing the asymptotic
exponential behavior of a critical Galton–Watson process conditioned on nonex-
tinction, for example, has a large literature of extensions and embellishments [see
Lalley and Zheng (2011), e.g.] but the complex dependencies between offspring
have apparently not previously allowed for obtaining explicit error bounds. Stein’s
method, introduced in Stein (1972), is now a well-established method for obtaining
explicit bounds in distributional approximation problems in settings with depen-
dence [see Ross and Peköz (2007) for an introduction]. Results for the normal and
Poisson approximation, in particular, are extensive but also are currently very ac-
tively being further developed; see, for example, Chatterjee (2008) and Chen and
Röllin (2009).

There have been a few attempts to apply Stein’s method to exponential approx-
imation. Weinberg (2005) sketches a few potential applications but only tackles
simple examples thoroughly, and Bon (2006) only considers geometric convolu-
tions. Chatterjee, Fulman and Röllin (2006) breaks new ground by applying the
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method to a challenging problem in spectral graph theory using exchangeable
pairs, but the calculations involved are application-specific and far from elemen-
tary. In this article, in contrast, we develop a general framework that more con-
veniently reduces a broad variety of complex exponential distributional approxi-
mation problems to the construction of couplings. We provide evidence that our
approach can be fruitfully applied to nontrivial applications and in settings with
dependence—settings where Stein’s method typically is expected to shine.

The article is organized as follows. In Section 2, we present two abstract theo-
rems formulated in terms of couplings. We introduce a distributional transforma-
tion (the “equilibrium distribution” from renewal theory) which has not yet been
extensively explored using Stein’s method. We also make use of Stein couplings
similar to those introduced in Chen and Röllin (2009). In Section 3, we give ap-
plications using these couplings to obtain exponential approximation rates for the
theorem of Rényi on random sums and hitting times for Markov chains; our ap-
proach yields generalizations of these results not previously available in the liter-
ature. Furthermore, we consider the rate of convergence in the classical theorem
of Yaglom on the exponential asymptotic behavior of a critical Galton–Watson
process conditioned on nonextinction; this is the first place this latter result has
appeared in the literature. In Section 4, we then give the postponed proofs for the
main theorems.

2. Main results. In this section, we present the framework in abstract form
that will subsequently be used in concrete applications in Section 3. This frame-
work is comprised of two approaches that we will describe here and then prove in
Section 4.

To define the probability metrics used in this article, we need the sets of test
functions

FK = {I[· ≤ z]|z ∈ R},
FW = {h :R → R|h is Lipschitz, ‖h′‖ ≤ 1},

FBW = {h :R → R|h is Lipschitz, ‖h‖ ≤ 1 and ‖h′‖ ≤ 1}
and then the distance between two probability measures P and Q with respect to
F is defined as

dF (P,Q) := sup
f ∈F

∣∣∣∣
∫
R

f dP −
∫
R

f dQ

∣∣∣∣(2.1)

if the corresponding integrals are well-defined. Denote by dK, dW and dBW the
respective distances corresponding to the sets FK, FW and FBW. The subscripts
respectively denote the Kolmogorov, Wasserstein and bounded Wasserstein dis-
tances. We can use the following two relations:

dBW ≤ dW, dK(P,Exp(1)) ≤ 1.74
√

dW(P,Exp(1)).(2.2)
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The first relation is clear, as FBW ⊂ FW, and we refer to Gibbs and Su (2002) for
the second relation. It is worthwhile noting that the second inequality can yield
optimal bounds with respect to the dK metric. This is in contrast to normal approx-
imation where in fact dW and dK often exhibit the same order of convergence and
hence the corresponding equivalent of (2.2) for the normal distribution does not
yield optimal bounds on dK; cf. Corollary 3.4.

Our first approach involves a coupling with the equilibrium distribution from
renewal theory, and is related to the zero-bias coupling from Goldstein and Reinert
(1997) used for normal approximation [see also Bon (2006), Lemma 6, Goldstein
(2005, 2007) and Ghosh (2009)].

DEFINITION 2.1. Let X be a nonnegative random variable with finite mean.
We say that a random variable Xe has the equilibrium distribution w.r.t. X if for
all Lipschitz f

Ef (X) − f (0) = EXEf ′(Xe).(2.3)

It is straightforward that this implies

P(Xe ≤ x) = 1

EX

∫ x

0
P[X > y]dy(2.4)

and our first result below can be thought of as formalizing the notion that when
L (W) and L (We) are approximately equal then W has approximately an expo-
nential distribution.

THEOREM 2.1. Let W be a nonnegative random variable with EW = 1 and
let We have the equilibrium distribution w.r.t. W. Then, for any β > 0,

dK(L (W),Exp(1)) ≤ 12β + 2P[|We − W | > β](2.5)

and

dK(L (We),Exp(1)) ≤ β + P[|We − W | > β].(2.6)

If in addition W has finite second moment, then

dW(L (W),Exp(1)) ≤ 2E|We − W |(2.7)

and

dK(L (We),Exp(1)) ≤ E|We − W |;(2.8)

bound (2.8) also holds for dW(L (We),Exp(1)).

Our second approach involves an adaptation of the linear Stein couplings intro-
duced in Chen and Röllin (2009).
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DEFINITION 2.2. A triple (W,W ′,G) of random variables is called a constant
Stein coupling if

E{Gf (W ′) − Gf (W)} = Ef (W)(2.9)

for all f with f (0) = 0 and for which the expectations exist.

Let

r1(F ) = sup
f ∈F ,

f (0)=0

|E{Gf (W ′) − Gf (W) − f (W)}|

and r2 = E|EW ′′
(GD)− 1|, where here and in the rest of the article D := W ′ −W .

The random variable W ′′ is defined on the same probability space as (W,W ′,G)

and can be used to simplify the bounds (it is typically chosen so that r2 = 0);
let D′ := W ′′ − W . At first reading one may simply set W ′′ = W (in which case
typically r2 �= 0); we refer to Chen and Röllin (2009) for a more detailed discussion
of Stein couplings. Our next result applies to general random variables, but useful
bounds can only be expected if they are coupled together so that r1(FW) is small.

THEOREM 2.2. Let W , W ′, W ′′ and G be random variables with finite first
moments such that also E|GD| < ∞ and E|GD′| < ∞. Then with the above defi-
nitions,

dW(L (W),Exp(1)) ≤ r1(FW) + r2 + 2r3 + 2r ′
3 + 2r4 + 2r ′

4,(2.10)

where

r3 = E
∣∣GDI[|D| > 1]∣∣, r ′

3 = E
∣∣(GD − 1)I[|D′| > 1]∣∣,

r4 = E|G(D2 ∧ 1)|, r ′
4 = E

∣∣(GD − 1)(|D′| ∧ 1)
∣∣.

The same bound holds for dBW with r1(FW) replaced by r1(FBW). Furthermore,
for any α, β and β ′,

dK(L (W),Exp(1))
(2.11)

≤ 2r1(FBW) + 2r2 + 2r5 + 2r ′
5 + 22(αβ + 1)β ′ + 12αβ2,

where

r5 = E
∣∣GDI[|G| > α or |D| > β]∣∣,

r ′
5 = E

∣∣(1 − GD)I[|G| > α or |D| > β or |D′| > β ′]∣∣.
2.1. Couplings. In this section, we present a way to construct the equilibrium

distribution more explicitly and also discuss a few constant Stein couplings.
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2.1.1. Equilibrium distribution via size biasing. Assume that EW = 1 and let
Ws have the size bias distribution of W , that is,

E{Wf (W)} = Ef (Ws)

for all f for which the expectation exist. Then, if U has the uniform distribution
on [0,1] independent of all else, We := UWs has the equilibrium distribution
w.r.t. W . Indeed, for any Lipschitz f with f (0) = 0 we have

Ef (W) = Ef (W) − f (0) = E{Wf ′(UW)} = Ef ′(UWs) = Ef ′(We).

We note that this construction was also considered by Goldstein (2009) and it
has been observed by Pakes and Khattree (1992) that for a nonnegative random
variable W with EW < ∞, we have that L (W) = L (UWs) if and only if W has
exponential distribution.

2.1.2. Exchangeable pairs. Let (W,W ′) be an exchangeable pair. Assume
that

EW(W ′ − W) = −λ + λR on {W > 0}.
Then, if we set G = (W ′ − W)/(2λ), we have r1(FBW) ≤ E|R| and r1(FW) ≤
E|RW |.

This coupling was used by Chatterjee, Fulman and Röllin (2006) to obtain
an exponential approximation for the spectrum of the Bernoulli–Laplace Markov
chain. In order to obtain optimal rates, Chatterjee, Fulman and Röllin (2006) de-
velop more application specific theorems than ours.

2.1.3. Conditional distribution of W given Ec. Let E be an event and let
p = P[E], where p is small. Assume that W ′ and Y are defined on the same prob-
ability space and that L (W ′) = L (W |Ec) and L (Y ) = L (W |E). Then, for any
Lipschitz f with f (0) = 0, and with G = (1 − p)/p,

E{Gf (W ′) − Gf (W)}
= 1 − p

p
Ef (W ′) − 1

p
Ef (W) + Ef (W)

= 1 − p

p
Ef (W ′) − 1 − p

p
E(f (W)|Ec) − E(f (W)|E) + Ef (W)

= 1 − p

p
Ef (W ′) − 1 − p

p
Ef (W ′) − Ef (Y ) + Ef (W)

= Ef (W) − E{Yf ′(UY )},
so that r1(FW) ≤ EY . This coupling is used by Peköz (1996) for geometric ap-
proximation in total variation. The Stein operator used there is a discrete version
of the Stein operator used in this article. Clearly, one will typically aim for an event
E ⊃ {W = 0} in order to have Y = 0.
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REMARK 2.1. The roles of W and W ′ from the previous coupling can
be reversed. Let E and p be as before. However, assume now that L (W) =
L (W ′|Ec) and L (Y ) = L (W ′|E). Then, it is again straightforward to see that
(W,W ′,−1/p) is a constant Stein coupling.

3. Applications.

3.1. Random sums. A classical result of Rényi (1957) states that L (p ×∑N
i=1 Xi) → Exp(1) as p → 0 when N has the Ge(p) distribution (independent

of all else) and Xi are i.i.d. with EXi = 1. There have been some generalizations
[see Brown (1990), Kalashnikov (1997) and the references therein]. Sugakova
(1995), in particular, gives uniform error bounds for independent but nonidenti-
cally distributed summands with identical means. Our next result can be viewed as
generalizing this to dependent summands and to nongeometric N . For a random
variable X, we denote by FX its distribution function and by F−1

X its generalized
inverse. We adopt the standard convention that

∑b
a = 0 if b < a.

THEOREM 3.1. Let X = (X1,X2, . . .) be a sequence of square integrable,
nonnegative random variables, independent of all else, such that, for all i ≥ 1,

E(Xi |X1, . . . ,Xi−1) = μi < ∞ almost surely.(3.1)

Let N be a positive, integer valued random variable with EN < ∞ and let M be a
random variable satisfying

P(M = m) = μmP(N ≥ m)/μ, m = 1,2, . . .(3.2)

with

μ = E
N∑

i=1

Xi = ∑
m≥1

μmP(N ≥ m).

Then, with W = μ−1 ∑N
i=1 Xi , we have

dW(L (W),Exp(1)) ≤ 2μ−1
(
E|XM − Xe

M | + sup
i≥1

μiE|N − M|
)
,(3.3)

where each Xe
i is a random variable having the equilibrium distribution w.r.t. Xi

given X1, . . . ,Xi−1. If, in addition, Xi ≤ C for all i and |N − M| ≤ K , then

dK(L (W),Exp(1)) ≤ 12μ−1
{
sup
i≥1

‖F−1
Xi

− F−1
Xe

i
‖ + CK

}
;(3.4)

if K = 0, the same bound also holds for unbounded Xi .
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PROOF. We first show that We := μ−1(
∑M−1

i=1 Xi + Xe
M) has the equilibrium

distribution w.r.t. W . For a given Lipschitz f , we write g(m) = f (μ−1 ∑m
i=1 Xi)

and we have

μE
[
g(M)

μM

− g(M − 1)

μM

]
= ∑

m≥0

P(N ≥ m)
(
g(m) − g(m − 1)

) = Eg(N)

and, for any integer m > 0,

Ef ′
(
μ−1

m−1∑
i=1

Xi + μ−1Xe
m

)
= μ

μm

E[g(m) − g(m − 1)]

[using (2.3), (3.1) and the assumptions on Xe
i ] that together give Ef ′(We) =

Ef (W). Then using

We − W = μ−1

{
(Xe

M − XM) + sgn(M − N)

N∨M∑
i=(M∧N)+1

Xi

}
(3.5)

we obtain (3.3) from (2.7). Letting β = μ−1{supi≥1 ‖F−1
Xi

− F−1
Xe

i
‖ + CK}, and

using Strassen’s theorem we obtain (3.4) from (2.5); the remark after (3.4) follows
similarly. �

REMARK 3.1. Let N ∼ Ge(p) and assume that the μi are bounded from
above and bounded away from 0. This implies in particular that μ � 1/p as p → 0.
Using

dW(L (N),L (M)) = inf
(N,M)

E|N − M|(3.6)

from Kantorovič and Rubinšteı̆n (1958) [see also Vallander (1973)], where the in-
fimum ranges over all possible couplings of N and M , we can replace E|N −M| in
(3.3) by the left-hand side of (3.6). To bound this quantity note first that from (3.2)
we have Eh(M) = E{μN

μp
h(N)} for every function h for which the expectations

exist. Note also that E(μN) = μp. Let h now be Lipschitz with Lipschitz constant
1 and assume without loss of generality that h(0) = 0, so that |h(N)| ≤ N . Then

|E{h(M) − h(N)}| =
∣∣∣∣E

{(
μN

μp
− 1

)
h(N)

}∣∣∣∣ ≤ E
∣∣∣∣
{
μN

μp
− 1

}
N

∣∣∣∣
≤

√
Var(μN)EN2

μp
≤

√
2 Var(μN)

μp2 .

Hence, under the assumptions of this remark, μ−1 supi μiE|N − M| is at most of
order Var(μN) as p → 0.

Next, we have an immediate corollary by coupling stochastically ordered ran-
dom variables.
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COROLLARY 3.1. In the setting in Theorem 3.1, assume either N ≤st M or
N ≥st M holds as well as that the Xi are independent and, for each i, we have
EXi = 1 and either Xi ≤st Xe

i or Xi ≥st Xe
i . Then

dW(L (W),Exp(1)) ≤ 2μ−1 sup
i≥1

∣∣∣∣1

2
EX2

i − 1
∣∣∣∣ + 2

∣∣∣∣EN2

2μ2 + 1

2μ
− 1

∣∣∣∣(3.7)

and, furthermore, if N has a Ge(p) distribution then

dK(L (W),Exp(1)) ≤ 2.47
(
p sup

i≥1

∣∣∣∣1

2
EX2

i − 1
∣∣∣∣
)1/2

.(3.8)

REMARK 3.2. A nonnegative random variable X with finite mean is said to
be NBUE (new better than used in expectation) if Xe ≤st X or NWUE (new worse
than used in expectation) if Xe ≥st X [see Shaked and Shanthikumar (2007) and
Sengupta, Chatterjee and Chakraborty (1995) for other sufficient conditions]. A
result similar to (3.8) appears as Theorem 6.1 in Brown and Ge (1984) with a larger
constant, though Brown (1990) and Daley (1988) subsequently derived significant
improvements.

EXAMPLE 3.1 (Geometric convolution of i.i.d. random variables). Assume
that N ∼ Ge(p) and that EX1 = 1. Since L (M) = L (N), we can set M = N .
Denote by δ(F ) the distance between L (X1) and Exp(1) as defined in (2.1) with
respect to the set of test functions F ; define δe(F ) analogously but between L (X)

and L (Xe). In this case, the estimates of Theorem 3.1 reduce to

dW(L (W),Exp(1)) ≤ 2pδe(FW),(3.9)

dK(L (W),Exp(1)) ≤ 12p‖F−1
X1

− F−1
Xe

1
‖(3.10)

which can be compared with the (slightly simplified)

dW(L (W),Exp(1)) ≤ pδ(FW) + 2pδ(F2),(3.11)

where

F2 = {f ∈ C1(R)|f ′ ∈ FW},
from Kalashnikov (1997), Theorem 3.1 for s = 2, page 151.

Noting δ(FW) ≤ 2δe(FW) (using the Kantorovich–Rubinstein theorem), let
Z ∼ Exp(1) and let h be a differentiable function with h(0) = 0. Then, recalling
that L (Ze) = L (Z), we have from (2.3) that Eh(Z) = Eh′(Z) and, using again
(2.3) for X and Xe,

Eh(X) − Eh(Z) = Eh′(Xe) − Eh′(Z).(3.12)

This implies

δ(F2) = dW(L (Xe
1),Exp(1))(3.13)
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and hence, from (2.8), we have δ(F2) ≤ δe(FW), so that (3.11) gives a bound
which is not as good as (3.9) if the bound is to be expressed in terms of δe(FW).

On the other hand, from (3.13) and the triangle inequality,

δe(FW) ≤ δ(FW) + dW(L (Xe
1),Exp(1)) = δ(FW) + δ(F2).

Hence, although much broader in applicability, our Theorem 3.1 yields results
comparable to those in the literature when specialized to the setting of geometric
convolutions.

THEOREM 3.2. Let X = (X1,X2, . . .) be a sequence of random variables with
EXi = μi and EX2

i < ∞. Let N , N ′ and N ′′ be nonnegative, square integrable,
integer valued random variables independent of the sequence X. Assume that

p := P[N = 0] > 0, L (N ′) = L (N |N > 0), N ′′ ≤ N ≤ N ′.

Define S(k, l) := Xk+1 + · · · + Xl for k < l and S(k, l) = 0 for k ≥ l. Let μ =
ES(0,N) and W = S(0,N)/μ. Then,

dW(L (W),Exp(1))

≤ qs

pμ
+ 4qE{S(N,N ′)(1 + S(N ′′,N))}

pμ2 + 4ES(N ′′,N)

μ
,

where q = 1 − p, s2 = VarE(S(N,N ′)|FN ′′) and Fk := σ(X1, . . . ,Xk). If, in ad-
dition,

Xi ≤ C, N ′ − N ≤ K1, N − N ′′ ≤ K2,(3.14)

for positive constants C, K1 and K2, then

dK(L (W),Exp(1)) ≤ qs

pμ
+ 22CK2

μ
+ 2C2K1(11K2 + 6K1)

pμ2 .(3.15)

PROOF. We make use of the coupling construction from Section 2.1.3. Let
E = {N = 0}, let Y = 0, let W ′ = μ−1 ∑N ′

i=1 Xi and likewise W ′′ = μ−1 ∑N ′′
i=1 Xi .

Then the conditions of Section 2.1.3 are satisfied with G = q/p and we can ap-
ply Theorem 2.2, in particular (2.11). We have r1(FBW) = 0 as proved in Sec-
tion 2.1.3. Note now that D = S(N,N ′) and D′ = S(N ′′,N). Hence, r2 = E|1 −
q(pμ)−1E(S(N,N ′)|FN ′′)|. As (2.9) implies that E(GD) = EW = 1, the variance
bound of r2 follows. The dW-bound follows from (2.10), using the rough estimates
r3 + r4 ≤ E|GD2| and r ′

3 + r ′
4 ≤ 2E|D′| + 2E|GDD′| as we assume bounded sec-

ond moments. To obtain the dK-bound choose α = G = q/p, β = CK1/μ and
β ′ = CK2/μ; then r5 = r ′

5 = 0. Hence, (2.11) yields

dK(L (W),Exp(1)) ≤ r2 + 22(αβ + 1)β ′ + 12αβ2.

Plugging in the value for r2 and the constants, the theorem is proved. �
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EXAMPLE 3.2 (Geometric convolution under local dependence). If N + 1 ∼
Ge(p) (that is, N is a geometric distribution starting at 0) we can choose N ′ =
N + 1, as L (N |N > 0) = L (N + 1) due to the well-known lack-of-memory
property; hence K1 = 1. Assume now there is a nonnegative integer m such that,
for each i, (X1, . . . ,Xi) is independent of (Xi+m+1,Xi+m+2, . . .). We can set
N ′′ = max(N − m,0), hence s2 ≤ VarμN+1, where μi := EXi . Assume also that
μi ≥ μ0 for some μ0 > 0, so that μ ≥ μ0/p. Hence, Theorem 3.2 yields

dK(L (W),Exp(1)) ≤
√

Var(μN+1)

μ0
+ 22Cpm

μ0
+ 2C2p(11m + 6)

μ2
0

.

Again, convergence is obtained if Var(μN+1) → 0 as p → 0; cf. Remark 3.1.

3.2. First passage times. Approximately exponential hitting times for Markov
chains have been widely studied; see Aldous (1989), Aldous and Brown (1992)
and Aldous and Brown (1993) for entry points to this literature. Let X0,X1, . . .

be a stationary ergodic Markov chain with a countable state space X , transition
probability matrix P = (Pi,j )i,j∈X and stationary distribution π = (πi)i∈X and let

L (Tπ,i) = L (inf{t ≥ 0 :Xt = i}) starting with L (X0) = π

be the hitting time on state i started according to the stationary distribution π and
let

L (Ti,j ) = L (inf{t > 0 :Xt = j}) starting with X0 = i

be the hitting time on state j starting from state i. We also say a stopping time Ti,π

is a stationary time starting from state i if L (XTi,π
|X0 = i) = π.

COROLLARY 3.2. With the above definitions, we have

dK(L (πiTπ,i),Exp(1)) ≤ 2πi + min{πiE|Tπ,i − Ti,i |,P(Tπ,i �= Ti,i)}.(3.16)

PROOF. Using a renewal argument to obtain P(Tπ,i = k) = πiP(Ti,i > k), it
is then straightforward to see that L (T e

i,i) = L (Tπ,i + U) when U is a uniform
random variable on [0,1], independent of all else: with f (0) = 0 and using (2.3)
we have

Ef ′(Tπ,i + U) = Ef (Tπ,i + 1) − f (Tπ,i)

= πi

∑
k

P(Ti,i > k)
(
f (k + 1) − f (k)

)

= πi

∑
k

∑
j>k

P(Ti,i = j)
(
f (k + 1) − f (k)

)

= πi

∑
j

∑
0≤k<j

P(Ti,i = j)
(
f (k + 1) − f (k)

)

= πi

∑
j

P(Ti,i = j)f (j) = πiEf (Ti,i).
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We then have

dK(L (πiTπ,i),Exp(1)) ≤ πi + dK
(
L

(
πi(Tπ,i + U)

)
,Exp(1)

)
(3.17)

= πi + dK(L (πiT
e
i,i),Exp(1)),

where we use dK(L (Tπ,i),L (Tπ,i + U)) ≤ πi in the first line and L (T e
i,i) =

L (Tπ,i +U) in the second line. We obtain inequality (3.16) from (3.17) and (2.8),
and then using

E|Tπ,i + U − Ti,i | ≤ EU + E|Tπ,i − Ti,i | ≤ 0.5 + E|Tπ,i − Ti,i |
along with (3.17) and (2.6) using β = πi (since {|Tπ,i + U − Ti,i | > 1} implies
{Tπ,i �= Ti,i}). �

Below, whenever Ti,i and Ti,π are used together in an expression it assumed
they are both based on a single copy of the Markov chain.

COROLLARY 3.3. With the above definitions and ρ = P[Ti,i < Ti,π ],
dK(L (πiTπ,i),Exp(1))

(3.18)

≤ 2πi + min

{
πi

(
ETi,π + ρ sup

j

ETj,i

)
,

∞∑
n=1

∣∣P (n)
i,i − πi

∣∣}.

PROOF. Letting X0 = i, Tπ,i = inf{t ≥ 0 :XTi,π+t = i}, Ti,i = inf{t > 0 :Xt =
i} and A = {Ti,i < Ti,π } we have

|Tπ,i − Ti,i | ≤ (Tπ,i + Ti,π )IA + Ti,π IAc ≤ Ti,π + Tπ,iIA

and the first argument in the minimum of (3.18) follows from (3.16) after noting
E[Tπ,i |A] ≤ supj ETj,i .

For the second argument in the minimum, let X1,X2, . . . be the stationary
Markov chain and let Y0, Y1, . . . be a coupled copy of the Markov chain started
in state i at time 0, but let Y1, Y2, . . . be coupled with X1,X2, . . . according to
the maximal coupling of Griffeath (1974/75) so that we have P(Xn = Yn = i) =
πi ∧ P

(n)
i,i . Let Tπ,i and Ti,i be hitting times respectively defined on these two

Markov chains. Then

P(Tπ,i �= Ti,i) ≤ ∑
n

P(Xn = i, Yn �= i) + P(Yn = i,Xn �= i)

and since

P(Xn = i, Yn �= i) = πi − P(Xn = i, Yn = i)

= πi − πi ∧ P
(n)
i,i

= [πi − P
(n)
i,i ]+,
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and a similar calculation yields P(Yn = i,Xn �= i) = [P (n)
i,i − πi]+, and then we

obtain (3.18). �

EXAMPLE 3.3. With the above definitions and further assuming Xn is an m-
dependent Markov chain, we can let Ti,π = m and we thus have

dK(L (πiTπ,i),Exp(1))

≤ 2πi + min

{
πi

(
m + P(Ti,i < m) sup

j

ETj,i

)
,

m−1∑
n=1

∣∣P (n)
i,i − πi

∣∣}.

If we consider flipping a biased coin repeatedly, let T be the number of flips re-
quired until the beginning of a given pattern (that cannot overlap with itself) of
heads and tails of length k first appears as a run. The current run of k flips can be
encoded in the state space of a k-dependent Markov chain and then applying the
second result above we obtain

dK(L (πiTπ,i),Exp(1)) ≤ πi(k + 1).

Using the “de-clumping” trick of counting the flips T preceding the first appear-
ance of tails followed by k heads in row we have

dK(L (qpkTπ,i),Exp(1)) ≤ (k + 2)pk,

where p = 1 − q is the probability of heads. Similar results are obtained using
Poisson and geometric approximations respectively in Barbour, Holst and Janson
[(1992), page 164] and Peköz (1996).

Recall the definitions of NBUE and NWUE from Remark 3.2 and, as discussed
in Aldous and Fill (2010), that stationary reversible continuous-time Markov chain
hitting times are NWUE. The next results are immediate consequences of Theo-
rem 2.1 and (2.2). While (3.21) appears to be new, inequality (3.19) appears in
Brown (1990), Lemma 2.3. Inequality (3.20) with a larger constant of 3.119 ap-
pears in Brown and Ge [(1984), Theorem 3.6] for the NBUE case and in Brown
and Ge [(1984), equation (5.3)] for the NWUE case; this constant was later im-
proved in both cases to 1.41 for small ρ in Daley (1988), equation (1.7).

COROLLARY 3.4. If W is either NBUE or NWUE with EW = 1, finite second
moment and letting ρ = |1

2EW 2 − 1|, we have

dK(L (We),Exp(1)) ≤ ρ,(3.19)

dK(L (W),Exp(1)) ≤ 2.47ρ1/2(3.20)

and

dW(L (We),Exp(1)) ≤ ρ, dW(L (W),Exp(1)) ≤ 2ρ.(3.21)
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3.3. Critical Galton–Watson branching process. Let Z0 = 1,Z1,Z2, . . . be a
Galton–Watson branching process with offspring distribution ν = L (Z1). A the-
orem due to Yaglom (1947) states that, if EZ1 = 1 and VarZ1 = σ 2 < ∞, then
L (n−1Zn|Zn > 0) converges to an exponential distribution with mean σ 2/2. We
give a rate of convergence for this asymptotic under finite third moment of the
offspring distribution using the idea from Section 2.1.1. Though exponential limits
in this context are an active area of research [see, e.g., Lalley and Zheng (2011)],
the question of rates does not appear to have been previously studied in the lit-
erature. To this end, we make use the of construction from Lyons, Pemantle and
Peres (1995); we refer to that article for more details on the construction and only
present what is needed for our purpose.

THEOREM 3.3. For a critical Galton–Watson branching process with off-
spring distribution ν = L (Z1) such that EZ3

1 < ∞ we have

dW
(
L

(
2Zn/(σ

2n)|Zn > 0
)
,Exp(1)

) = O
(

logn

n

)
.

PROOF. First, we construct a size-biased branching tree as in Lyons, Pemantle
and Peres (1995). We assume that this tree is labeled and ordered, in the sense that,
if w and v are vertices in the tree from the same generation and w is to the left of
v, then the offspring of w is to the left of the offspring of v, too. Start in generation
0 with one vertex v0 and let it have a number of offspring distributed according
to the size-bias distribution of ν. Pick one of the offspring of v0 uniformly at
random and call it v1. To each of the siblings of v1, attach an independent Galton–
Watson branching process with offspring distribution ν. For v1 proceed as for v0,
that is, give it a size-biased number of offspring, pick one at uniformly at random,
call it v2, attach independent Galton–Watson branching process to the siblings of
v2 and so on. It is clear that this will always give an infinite tree as the “spine”
v0, v1, v2, . . . of the tree will never die out.

We next need some notation. Denote by Sn the total number of particles in
generation n. Denote by Ln and Rn, respectively, the number of particles to the
left (exclusive vn) and to the right (inclusive vn), respectively, of vertex vn, so that
Sn = Ln + Rn. We can describe these particles in more detail, according to the
generation at which they split off from the spine. Denote by Sn,j the number of
particles in generation n that stem from any of the siblings of vj (but not vj itself).
Clearly, Sn = 1 + ∑n

j=1 Sn,j , where the summands are independent. Likewise, let
Ln,j and Rn,j , respectively, be the number of particles in generation n that stem
from the siblings to the left and right, respectively, of vj (note that Ln,n and Rn,n

are just the number of siblings of vn to the left and to the right, respectively).
We have the relations Ln = ∑n

j=1 Ln,j and Rn = 1 + ∑n
j=1 Rn,j . Note that, for

fixed j , Ln,j and Rn,j are in general not independent, as they are linked through
the offspring size of vj−1.
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Now let R′
n,j be independent random variables such that

L (R′
n,j ) = L (Rn,j |Ln,j = 0)

and, with An,j = {Ln,j = 0}, define

R∗
n,j = Rn,j IAn,j

+ R′
n,j IAc

n,j
= Rn,j + (R′

n,j − Rn,j )IAc
n,j

.(3.22)

Define also R∗
n = 1 +∑n

j=1 R∗
n,j . Let us collect a few facts which we will then use

to give the proof of the theorem:

(i) for any nonnegative random variable X the size-biased distribution of L (X)

is the same as the size-biased distribution of L (X|X > 0);
(ii) Sn has the size-biased distribution of Zn;

(iii) given Sn, the vertex vn is uniformly distributed among the particles of the
nth generation;

(iv) L (R∗
n) = L (Zn|Zn > 0);

(v) E{R′
n,j IAc

n,j
} ≤ σ 2P[Ac

n,j ];
(vi) E{Rn,j IAc

n,j
} ≤ γP[Ac

n,j ], where γ = EZ3
1;

(vii) P[Ac
n,j ] ≤ σ 2P[Zn−j > 0] ≤ C(ν)/(n − j + 1) for some absolute constant

C(ν).

Statement (i) is easy to verify, (ii) follows from Lyons, Pemantle and Peres (1995),
equation (2.2), (iii) follows from Lyons, Pemantle and Peres (1995), comment after
(2.2), (iv) follows from Lyons, Pemantle and Peres (1995), proof of Theorem C(i).
Using independence,

E{R′
n,j IAc

n,j
} = ER′

n,jP[Ac
n,j ] ≤ σ 2P[Ac

n,j ],
where the second inequality is due to Lyons, Pemantle and Peres (1995), proof
of Theorem C(i), which proves (v). If Xj denotes the number of siblings of vj ,
having the size bias distribution of Z1 minus 1, we have

E{Rn,j IAc
n,j

} ≤ E{XjIAc
n,j

} ≤ ∑
k

kP[Xj = k,Ac
n,j ]

≤ ∑
k

kP[Xj = k]P[Ac
n,j |Xj = k]

≤ ∑
k

k2P[Xj = k]P[Ac
n,j ] ≤ γP[Ac

n,j ],

hence (vi). Finally,

P[Ac
n,j ] = E{P[Ac

n,j |Xj ]} ≤ E{XjP[Zn−j > 0]} ≤ σ 2P[Zn−j > 0].
Using Kolmogorov’s estimate [see Lyons, Pemantle and Peres (1995), Theo-
rem C(i)], we have limn→∞ nP[Zn > 0] = 2/σ 2, which implies (vii).
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We are now in the position to prove the theorem using (2.5) of Theorem 2.1.
Let c = 2/σ 2. Due to (iv) we can set W = cR∗

n/n. Due to (i) and (ii), Sn has the
size bias distribution of R∗

n . Let U be an independent and uniform random variable
on [0,1]. Now, Rn − U is a continuous random variable taking values on [0, Sn]
and, due to (iii), has distribution L (USn); hence we can set We = c(Rn − U)/n.
It remains to bound E|W − We|. From (3.22) and using (v)–(vii), we have

nc−1E|W − We| ≤ EU + E|R∗
n − Rn| ≤ 1 +

n∑
j=1

E{R′
n,j IAc

n,j
+ Rn,j IAc

n,j
}

≤ 1 + C(ν)

n∑
j=1

σ 2 + γ

n − j + 1
≤ 1 + C(ν)(σ 2 + γ )(1 + logn).

Hence, for a possibly different constant C(ν),

E|W − We| ≤ C(ν) logn

n
.

Plugging this into (2.7) yields the final bound. �

4. Proofs of main results. Our results are based on the Stein operator

Af (x) = f ′(x) − f (x)(4.1)

and the corresponding Stein equation

f ′(w) − f (w) = h(w) − Eh(Z), w ≥ 0(4.2)

previously studied (independently of each other and, in the case of the first two,
independent of the present work) by Weinberg (2005), Bon (2006) and Chatterjee,
Fulman and Röllin (2006). It is straightforward that the solution f to (4.2) can be
written as

f (w) = −ew
∫ ∞
w

(
h(x) − Eh(Z)

)
e−x dx.(4.3)

We next need some properties of the solution (4.3). Some preliminary results
can be found in Weinberg (2005), Bon (2006), Chatterjee, Fulman and Röllin
(2006) and Daly (2008). We give self-contained proofs of the following bounds.

LEMMA 4.1 (Properties of the solution to the Stein equation). Let f be the
solution to (4.2). If h is bounded, we have

‖f ‖ ≤ ‖h‖, ‖f ′‖ ≤ 2‖h‖.(4.4)

If h is Lipschitz, we have

|f (w)| ≤ (1 + w)‖h′‖, ‖f ′‖ ≤ ‖h′‖, ‖f ′′‖ ≤ 2‖h′‖.(4.5)
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For any a > 0 and any ε > 0, let

ha,ε(x) := ε−1
∫ ε

0
I[x + s ≤ a]ds.(4.6)

Define fa,ε as in (4.3) with respect to ha,ε . Define ha,0(x) = I[x ≤ a] and fa,0
accordingly. Then, for all ε ≥ 0,

‖fa,ε‖ ≤ 1, ‖f ′
a,ε‖ ≤ 1,(4.7)

|fa,ε(w + t) − fa,ε(w)| ≤ 1, |f ′
a,ε(w + t) − f ′

a,ε(w)| ≤ 1(4.8)

and, for all ε > 0,

|f ′
a,ε(w + t) − f ′

a,ε(w)| ≤ (|t | ∧ 1) + ε−1
∫ t∨0

t∧0
I[a − ε ≤ w + u ≤ a]du.(4.9)

PROOF. Write h̃(w) = h(w) − Eh(Z). Assume now that h is bounded. Then

|f (w)| ≤ ew
∫ ∞
w

|h̃(x)|e−x dx ≤ ‖h‖.

Rearranging (4.2) we have f ′(w) = f (w) + h̃(w), hence

|f ′(w)| ≤ |f (w)| + |h̃(w)| ≤ 2‖h‖.
This proves (4.4). Assume now that h is Lipschitz. We can further assume without
loss of generality that h(0) = 0 as f will not change under shift; hence we may
assume that |h(x)| ≤ x‖h′‖. Thus,

|f (w)| ≤ ew
∫ ∞
w

x‖h′‖e−x dx = (1 + w)‖h′‖,
which is the first bound of (4.5). Now, differentiate both sides of (4.2) to obtain

f ′′(w) − f ′(w) = h′(w),(4.10)

hence, analogous to (4.3), we have

f ′(w) = −ew
∫ ∞
w

h′(x)e−x dx.

The same arguments as before lead to the second and third bound of (4.5).
We now look at the properties of fa,ε . It is easy to check that

fa,0(x) = (ex−a ∧ 1) − e−a, f ′
a,0(x) = ex−aI[x ≤ a](4.11)

is the explicit solution to (4.10) with respect to ha,0. Now, it is not difficult to see
that, for ε > 0, we can write

fa,ε(x) = ε−1
∫ ε

0
fa,0(x + s) ds
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and this fa,ε satisfies (4.2). These representations immediately lead to the bounds
(4.7) and (4.8) for ε ≥ 0 from the explicit formulas (4.11). Now let ε > 0; observe
that, from (4.10),

f ′(x + t) − f ′(x) = (
f (x + t) − f (x)

) + (
h(x + t) − h(x)

)
.

Again from (4.11), we deduce that |fa,ε(x + t)−fa,ε(x)| ≤ (|t |∧ 1), which yields
the first part of the bound (4.9). For the second part, assume that t > 0 and write

ha,ε(x + t) − ha,ε(x) =
∫ t

0
h′

a,ε(x + s) ds = −ε−1
∫ t

0
I[a − ε ≤ x + u ≤ a]du.

Taking the absolute value this gives the second part of the bound (4.9) for t > 0;
a similar argument yields the same bound for t < 0. �

The following lemmas are straightforward and hence given without proof.

LEMMA 4.2 (Smoothing lemma). For any ε > 0

dK(L (W),L (Z)) ≤ ε + sup
a>0

|Eha,ε(W) − Eha,ε(Z)|,

where ha,ε are defined as in Lemma 4.1.

LEMMA 4.3 (Concentration inequality). For any random variable V ,

P[a ≤ V ≤ b] ≤ (b − a) + 2dK(L (V ),Exp(1)).

For the rest of the article, write κ = dK(L (W),Exp(1)).

PROOF OF THEOREM 2.1. Let  := W − We. Define I1 := I[|| ≤ β]; note
that We may not have finite first moment. With f as in (4.2) with respect to (4.6),
the quantity Ef ′(We) is well defined as ‖f ′‖ < ∞, and we have

E{f ′(W) − f (W)}
= E

{
I1

(
f ′(W) − f ′(We)

)} + E
{
(1 − I1)

(
f ′(W) − f ′(We)

)} =: J1 + J2.

Using (4.7), |J2| ≤ P[|| > β]. Now, using (4.10) and in the last step Lemma 4.3,

J1 = E
{
I1

∫ 

0
f ′′(W + t) dt

}

= E
{
I1

∫ 

0

(
f ′(W + t) − ε−1I[a − ε ≤ W + t ≤ a])dt

}

≤ E|I1| +
∫ 0

−β
P[a − ε ≤ W + t ≤ a]dt ≤ 2β + 2βε−1κ.
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Similarly,

J1 ≥ −E|I1| −
∫ β

0
P[a − ε ≤ W + t ≤ a]dt ≥ −2β − 2βε−1κ,

hence |J1| ≤ 2β + 2βε−1κ . Using Lemma 4.2 and choosing ε = 4β ,

κ ≤ ε + P[|| > β] + 2β + 2βε−1κ ≤ P[|| > β] + 6β + 0.5κ.

Solving for κ proves (2.5).
To obtain (2.6), write

E{f ′(We) − f (We)} = E{f (W) − f (We)}
= E

{
I1

(
f (W) − f (We)

)} + E
{
(1 − I1)

(
f (W) − f (We)

)}
.

Hence, using Taylor’s expansion along with the bounds (4.7) for ε = 0,

|Ef ′(We) − f (We)| ≤ ‖f ′‖E|I1| + P[|| > β] ≤ β + P[|| > β],
which gives (2.6).

Assume now in addition that W has finite variance so that We has finite mean.
Then

|E{f ′(W) − f (W)}| = |E{f ′(W) − f ′(We)}| ≤ ‖f ′′‖E||.
From the bound (4.5), (2.7) follows. Also,

|E{f ′(We) − f (We)}| ≤ ‖f ′‖E||
which yields (2.8) from (4.7) with ε = 0; the remark after (2.8) follows
from (4.5). �

PROOF THEOREM 2.2. Let f be the solution (4.2) to (4.3), hence f (0) = 0,
and assume that f is Lipschitz. From the fundamental theorem of calculus, we
have

f (W ′) − f (W) =
∫ D

0
f ′(W + t) dt.

Multiplying both sides by G and comparing it with the left-hand side of (4.2), we
have

f ′(W) − f (W) = Gf (W ′) − Gf (W) − f (W)

+ (1 − GD)f ′(W ′′)
+ (1 − GD)

(
f ′(W) − f ′(W ′′)

)
− G

∫ D

0

(
f ′(W + t) − f ′(W)

)
dt.
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Note that we can take expectation component-wise due to the moment assump-
tions. Hence,

Eh(W) − Eh(Z) = R1(f ) + R2(f ) + R3(f ) − R4(f ),

where

R1(f ) = E{Gf (W ′) − Gf (W) − f (W)},
R2(f ) = E{(1 − GD)f ′(W ′′)},
R3(f ) = E

{
(1 − GD)

(
f ′(W) − f ′(W ′′)

)}
,

R4(f ) = E
{
G

∫ D

0

(
f ′(W + t) − f ′(W)

)
dt

}
.

Assume now that h ∈ FBW and f the solution to (4.2). Then from (4.4) and (4.5)
we obtain ‖f ‖ ≤ 1, ‖f ′‖ ≤ 1 and ‖f ′′‖ ≤ 2. Hence, f ∈ FBW, |R1(f )| ≤ r1(FBW)

and |R2(f )| ≤ r2. Furthermore,

|R3(f )| ≤ E
∣∣(1 − GD)

(
f ′(W ′′) − f ′(W)

)∣∣
≤ 2E{|1 − GD|I[|D′| > 1]} + 2E{|1 − GD|(|D′| ∧ 1)}
= 2r ′

3 + 2r ′
4

and

|R4(f )| ≤ E
∣∣∣∣G

∫ D

0

(
f ′(W + t) − f ′(W)

)
dt

∣∣∣∣
≤ 2E

∣∣GDI[|D| > 1]∣∣ + 2E|G(D2 ∧ 1)|
= 2r3 + 2r4.

This yields the dBW results. Now let h ∈ FW and f the solution to (4.2). Then,
from (4.4) and (4.5), we have |f (x)| ≤ (1 + x), ‖f ′‖ ≤ 1 and ‖f ′′‖ ≤ 2, hence
the bounds on R2(f ), R3(f ) and R4(f ) remain, whereas now f ∈ FW and, thus,
|R1(f )| ≤ r1(FW). This proves the dW estimate.

Now let f be the solution to (4.2) with respect to ha,ε as in (4.6). Then, from
(4.7), we have ‖f ‖ ≤ 1 and ‖f ′‖ ≤ 1, hence f ∈ FBW, |R1(f )| ≤ r1(FBW) and
|R2(f )| ≤ r2. Let I1 = I[|G| ≤ α, |D| ≤ β ′, |D′| ≤ β ′]. Write

R3(f ) = E
{
(1 − I1)(1 − GD)

(
f ′(W ′′) − f ′(W)

)}
+ E

{
I1(1 − GD)

(
f ′(W ′′) − f ′(W)

)} =: J1 + J2.

Using (4.7), |J1| ≤ r ′
5 is immediate. Using (4.9) and Lemma 4.3,

|J2| ≤ E
∣∣(GD − 1)I1

(
f ′(W ′′) − f ′(W)

)∣∣
≤ (αβ + 1)β ′ + (αβ + 1)ε−1

∫ β ′

−β ′
P[a − ε ≤ W + u ≤ a]du
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≤ (αβ + 1)β ′ + (αβ + 1)ε−1
∫ β ′

−β ′
(ε + 2κ)du

= 3(αβ + 1)β ′ + 4(αβ + 1)β ′ε−1κ.

Similarly, let I2 = I[|G| ≤ α, |D| ≤ β] and write

R4(f ) = E
{
G(1 − I2)

∫ D

0

(
f ′(W + t) − f ′(W)

)
dt

}

+ E
{
GI2

∫ D

0

(
f ′(W + t) − f ′(W)

)
dt

}
=: J3 + J4.

By (4.7), |J3| ≤ r5. Using again (4.9) and Lemma 4.3,

|J4| ≤ E
{
GI2

∫ D∨0

D∧0
|f ′(W + t) − f ′(W)|dt

}

≤ αE
{∫ β

−β

[
(|t | ∧ 1) + ε−1

∫ t∨0

t∧0
I[a − ε ≤ W + u ≤ a]du

]
dt

}

≤ αβ2 + αε−1E
{∫ β

−β

∫ t∨0

t∧0
(ε + 2κ) dudt

}
= 2αβ2 + 2αβ2ε−1κ.

Using Lemma 4.2 and collecting the bounds above, we obtain

κ ≤ ε + r1(FBW) + r2 + |J1| + |J2| + |J3| + |J4|
≤ ε + r1(FBW) + r2 + r5 + r ′

5 + 3(αβ + 1)β ′ + 2αβ2

+ (
4(αβ + 1)β ′ + 2αβ2)

ε−1κ

so that, setting ε = 8(αβ + 1)β ′ + 4αβ2,

κ ≤ ε + r1(FBW) + r2 + r5 + r ′
5 + 11(αβ + 1)β ′ + 6αβ2 + 0.5κ.

Solving for κ yields the final bound. �
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