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Abstract: This paper introduces a new method for real-time high-density impulsive noise elimination
applied to medical images. A double process aimed at the enhancement of local data composed of
Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem
with heavily noisy images is the lack of color information around corrupted pixels. We show that
the classic replacement techniques all come up against this problem, resulting in average restoration
quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the
Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window
nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are
investigated using the second window. This investigation phase increases the amount of useful
information within the first window. The remaining useful information that the second window
failed to produce in the case of a very strong connex noise concentration is then estimated using a
morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on
the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise
Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide
variety of existing approaches. Several noisy medical images are subjected to a second test. In this
test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the
Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable
gate array (FPGA) is suggested to implement the proposed method for real-time processing. The
proposed solution performs excellent quality restoration for images with high-density impulsive
noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the
PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images
in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.

Keywords: medical images; high-density impulsive noise; image processing; high-level synthesis; FPGA

1. Introduction

Noise reduction is a critical process in image processing. It is necessary to reduce the
level of noise present in an image to obtain clear, distinguishable shapes and structures.
Achieving this requires understanding the sources of noise in the image and using various
techniques to reduce these sources. Impulsive noise, also known as salt and pepper
noise, is a type of noise with a high dynamic range that results from extreme pixel values.
It is caused by errors in transmission, analog-to-digital conversion, and data acquisition.
Impulsive noise can be quite challenging to reduce from an image, as it is typically randomly
distributed, making it difficult to distinguish from the true image features. One strategy
for reducing impulsive noise is using median filtering, which replaces each pixel with
the median value of its neighbors [1–5]. This reduces the effect of impulsive noise while
preserving other image features. Another option is to use a non-linear filter, such as
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a morphological filter [6–9]. This smooths the edges of objects while preserving their
shapes and is effective at removing impulsive noise. Depending on the type of image to
be processed, the amount of noise in the image, or the constraints on the execution time,
several more sophisticated approaches have emerged. The weighted vector filters [10,11],
adaptive vector filters [12–19], hybrid vector filters [20,21], fuzzy vector filters [22–24], and
vector filters based on neural networks [25–28] are the most notable examples.

Our objective in this study is to create a real-time architecture that can restore, as accu-
rately as possible, medical images with high-density impulsive noise. The classification
accuracy of these kinds of images is directly related to the quality of the restoration that
is performed. Indeed, a variety of types of noise can distort medical images. Impulsive
noise, Rician noise, Gaussian noise as well as quantum mottle noise are among the most
common [29–32]. We are particularly interested here in impulsive noise. The classifica-
tion of medical images has received increased interest from scientists over the past three
decades [33]. In several clinical applications, medical images based on Magnetic Resonance
(MRI), Computed Tomography (CT), or Positron Emission Tomography (PET) allow the
diagnosis of pathologies, sometimes even very early. This allows the right plan for healing
to be put in place [34].

Recent literature contains a multitude of methods for denoising images with high-
density impulsive noise. There are first the methods employing the median filter. These
methods are the most prevalent in published works. The goal is to improve the median
filter’s ability to detect and restore corrupted pixels. Among these methods, we can
specifically mention the Adaptive Switching Weighted Median Filter (ASWM) [35], the
Noise Adaptive Fuzzy Switching Median Filter (NAFSM) [36], the Modified Decision-Based
Un-symmetric Trimmed Median Filter (MDBUTMF) [37], and the Adaptive Dynamically
Weighted Median Filter (ADWMF) [38]. There are also interpolation-based methods, such
as the Adaptive Decision Based Inverse Distance Weighted Interpolation (DBIDWI) [39]
and the Adaptive Decision based Kriging Interpolation Filter (ADKIF) [40]. A third family
of methods exploits probability and statistical calculations to restore high-density impulsive
noise images. Probabilistic Decision Based Filter (PDBF) [41], Adaptive Probability Filter
(APF) [42], and Based-on-Pixel Density Filter (BPDF) [43] are distinguished members of
this family. There are also proposals for methods that are less conventional, such as the
Adaptive Content based Closer Proximity Pixel Replacement Algorithm (ACCPPRA) [44]
based on a heuristic decision tree, the Adaptive Weighted Mean Filter (AWMF) [45] where
the noise candidate is replaced by the weighted mean of a specific window, and the
Adaptive Cardinal B-Spline Algorithm (ACBSA) [46] which perform a local cardinal B-
spline proprieties analysis. All of the methods listed here aim to restore images with
significant noise. They each exploit the neighborhood in their own way. This neighborhood
is severely lacking in data, with the majority of pixels being corrupted. Even though these
methods implicitly invoke an increase in useful information, none has explicitly proposed
a thorough investigation of the neighborhood with the intention of restoring it before
estimating the central corrupted pixel.

In this paper, we propose a deep investigation of the area around corrupted pixels
in order to obtain more useful information. Our algorithm performs a nested filtering
process using two windows. The first, called the main window, will be centered around the
noisy pixel. It will identify neighboring pixels in order to estimate its new value. These
neighboring pixels are mainly noisy and do not participate in the estimation of the final
value. To remedy this, a second window called the secondary window is launched around
each corrupt neighboring pixel. The mission of the secondary window is to collect as much
information as possible around each corrupt neighboring pixel and deduce its possible
value from the median of this information. This process will increase the amount of non-
noisy information around the main pixel to be corrected. Ideally, all noisy neighbors should
be corrected. This is not always the case when the noise is very loud. At this moment,
a morphological operation intervenes to complete the missing information. The nested
filtering process leaves gaps that a proposed addition operation in the sense of Minkowski
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fills [47]. The proposed method is referred to as “NFMO” (Nested Filtering followed by a
Morphological Operation) in the rest of this paper.

To evaluate the performance of the proposed NFMO, we proceed in two steps. Initial
evaluation of NFMO is performed on the standard images Lena, Boat, and Baboon with
10% to 90% impulsive noise. Using the PSNR metric, the quality of images restoration is
compared to the performances of ASWM, NAFSM, MDBUTMF, ADWMF, DBIDWI, ADKIF,
PDBF, APF, BPDF, ACCPPRA, AWMF, and ACBSA in the case of Lena image. For Boat
and Baboon images, the comparison using the PSNR metric is performed with MDBUTMF,
DBIDWI, ADKIF, ACCPPRA, AWMF, and ACBSA. These methods were chosen for three
reasons: They deal with the issue of denoising images highly contaminated by impulsive
noise, are part of recent literature, and belong to a variety of families. A second, more
specific evaluation of the NFMO’s performance is proposed in this work. In fact, in addition
to the major contribution proposed by the NFMO, another substantial contribution is
introduced. A hardware implementation of the NFMO is proposed. Our goal is to provide
an embedded denoising algorithm that can be applied to medical images. As a result, a
second evaluation is carried out on a set of high-density impulsive noisy medical images.
The performance of the proposed NFMO is evaluated in terms of processing time and
quality of image restoration as measured by the PSNR and the NCD metrics.

Hardware acceleration has been utilized by the scientific community to minimize
implementation complexity. In [48], the authors employ two distinct hardware designs to
create conventional and multi-level median filters. Ref. [49] presents a unique 3× 3 window
median filtering approach based on a bit-serial sorting algorithm with fast operating speed
and minimal hardware complexity. In [50] is detailed a hardware implementation of
the Vector Median-Rational Hybrid Filters for color images. Using approximations, this
hardware design simplifies the implementation of relational functions. For effective Vector
Median Filter implementation, ref. [51] suggests a fast parallel design. Vector Median Filter
implementations in this design resemble L2 norms. Nevertheless, the creation of these
hardware designs takes longer, and they cannot be modified. These systems are constructed
and implemented using Low-Level Synthesis and Hardware Description Language (HDL)
on a Field-Programmable Gate Array (FPGA) circuit. Using a Low-Level Synthesis design,
the Register Transfer Level (RTL) description may be adjusted to generate an excellent
and efficient netlist. Developing an RTL description is arduous and time-consuming,
particularly for complicated applications [52–54]. In fact, each low-level circuit’s operations
must be specified. Complex systems can only be developed by hardware designers with
specific knowledge and abilities. In order to simplify the complexity of the FPGA design,
Low-Level Synthesis must be replaced by High-Level Synthesis (HLS) [55–57]. Using
software high-level languages (systemC, C/C + +, etc.), the HLS tool transforms coded
algorithms into a structural and behavioral RTL hardware description. As a consequence,
various commercial and academic HLS tools, such as Xilinx Vivado HLS, Intel OpenCL,
Catapult-C, and ROCCC, are being developed. Thus, the goal of this research is to build
several hardware designs for the NFMO’s proposed denoising algorithm utilizing HLS
flow. When creating these designs, the cost and speed of the FPGA were considered. Using
the Xilinx Zynq FPGA, the best-designed architecture will be built and evaluated.

This paper is organized as follows: In Section 2, MLVMF-based impulsive noise
detection is presented. This algorithm will be used to detect corrupted pixels in the
image. Proposed local data enhancement by nested filtering is the subject of Section 3,
while Section 4 explains the missing information estimation process performed by the
morphological tools. Section 5 shows the proposed NFMO performances using the standard
images Lena, Boat, and Baboon, as well as a set of medical images. Finally, Section 6
describes the HLS designs for the proposed NFMO.

2. MLVMF-Based Impulsive Noise Detection

The impulsive noise removal process consists of two main steps: finding the noise and
replacing the noisy pixel. Our first contribution in this work is to propose a method for
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replacing noisy pixels. For the detection phase, we are inspired by the very recent MLVMF
method [58]. We have shown in [58] that the MLVMF has a high accuracy of impulsive
noise detection, especially when the density of this noise is very high. In addition, the
MLVMF has been designed for a hardware implementation, which fits perfectly with our
final objective: to propose an embedded algorithm for the denoising of highly corrupted
medical images.

MLVMF uses a modified Laplacian filter with a rotation step of π/8 to observe the
intensity variations around each pixel of an image. Classic Laplacian filters typically employ
rotation steps of π/2 or π/4. Reducing the angle of rotation around the pixel enables the
use of additional information about its surrounding area. Figure 1 shows the first set of
filters used by the MLVMF to identify corrupted pixels. However, the identification process
can still fail in the presence of a significant amount of impulsive noise. Two or more pixels
with identical intensities (0 or 255) can be 4-connected or 8-connected if they are noisy.
The local second derivative surrounding this type of pixel will be incapable of detecting
significant variations. A second round of searching is initiated to identify the neighboring
noisy pixels. A second set of filters, described in Figure 2, calculates, in eight directions, the
intensity variations surrounding each pixel of the image, ignoring the eight pixels that are
immediately adjacent.

Figure 1. The first set of filters used by the MLVMF to identify corrupted pixels [58]. Eight kernels
are proposed. From left to right from top to bottom: K1 at 0, K2 at π

4 , K3 at π
2 , K4 at 3π

4 , K5 at π
8 , K6 at

3π
8 , K7 at 5π

8 , and K8 at 7π
8 .

For each position (x, y) in the color image I(n×m× 3), MLVMF compute the absolute
value of the convolution product noted Vij between the kernel Ki and the image Ij.

Vij(x, y) =
∣∣Ki ⊗ Ij

∣∣ (1)

where j varies from 1 to 3, such as I1 is the image red component, I2 is image green compo-
nent, and I3 is the image blue component. The scan of the image is performed in the first
round with filters K1 to K8, and in the second round with filters K9 to K16. For each image
pixel, we, therefore, obtain 24 measurements of variation by round. To judge the impor-
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tance of the intensity variation around a pixel (x, y), we proceed as follows (Algorithm 1):

Algorithm 1. Thresholding process.

M1(x, y) = min[V ij(x, y), i = 1..8, j = 1..3]
if M1(x, y) > T % T is a predefined threshold

then (iind, jind) = index
(

min[V ij(x, y), i = 1..8, j = 1..3]
)

else
M2(x, y) = min[V ij(x, y), i = 9..16, j = 1..3]
if M2(x, y) > T

then (iind, jind) = index
(

min[V ij(x, y), i = 9..16, j = 1..3]
)

end
end
if Ijind (x, y) = 0 or 255

then pixel(x, y)is an impulsive noise
end

Figure 2. The second set of filters used by the MLVMF to identify corrupted pixels [58]. Eight more
kernels are proposed. From left to right from top to bottom: K9 to K16.

3. Local Data Enhancement by Nested Filtering

Once the MLVMF has detected all of the pixels corrupted by impulsive noise, two
windows of sizes sw1 and sw2 are created. The process of increasing information around
each noise pixel is as follows: Centered at each noise pixel p(x, y), the main window of size
sw1 will identify the neighborhood of this pixel. For each noise pixel pn(i, j){i 6= x; j 6= y}
in this neighborhood, the secondary window (the nested window) of size sw2 centered
at pn(i, j) will be used to search for all the non-noisy pixels. The noisy pixel pn(i, j) is
replaced by the median value of the non-noisy pixels found by the secondary window if it
exists. When the secondary window is done looking at the whole area outlined by the main
window, two options become clear: the first option occurs when the neighborhood defined
by the main window is completely restored. Typically, this occurs when the impulsive
noise present in the image is of low density. The second option takes place when part of
the neighborhood defined by the main window is restored while the rest of the corrupted
neighborhood keeps its noisy values. This option is more common when the impulsive
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noise present in the image is of high density. Edge handling is performed using the mirror
technique. Mirror size Ms is defined by: Ms = Int

(
sw1

2

)
+ Int

( sw2
2
)
.

Figure 3 shows an example of how nested filters can add to the information when the
density of impulse noise is 90%. In Figure 3, the double filtering process is used on a part
of the 512× 512 Lena standard image (red layer) that has 90% noise. Corrupted pixels are
assigned the value zero. The main filter of size sw1 = 7 (in green) is centered on the noisy
pixel with coordinates x = 100, y = 40 (also in green). Three useful values (in black) among
the 48 scanned by this filter are available. The rest of the pixels are noisy. It is the role of
the secondary filter of size sw2 = 5 (in blue) to position itself around these noisy pixels in
order to estimate their respective values if possible. 38 of the 45 noisy pixels were restored
thanks to this operation (new values in blue). The remaining 7 pixels keep their noisy
values (in red). The impulsive noise around these 7 pixels is so dense that no useful value
appears in the neighborhood created by the nested (secondary) filter. Several experimental
tests were carried out to measure the effect of the choice of sizes sw1 and sw2 of the main
and secondary windows. For an image of size 512× 512, the best restoration results are
given by sw1 = 7 and sw2 = 5. It is true that increasing the size of these two windows
can bring back more information, but at the risk of accentuating the redundancy. Thus, a
smoothing phenomenon may arise and bias the quality of the final image by eliminating
important details. On the other hand, if there is a lot of noise around a pixel and the size of
the windows is decreased, the useful information around the pixel will be reconstructed at
a very slow rate.

Figure 3. Double filtering process applied on a part of the 512 × 512 Lena standard image with 90%
noise. The main filter (window) is in green. The nested (secondary) filter (window) is in blue.

4. Missing Information Estimation by Morphological Operations

As mentioned in Section 3, if there is a lot of noise in an image, the process of adding
more useful information around each noise pixel may not be enough. An additional
operation is required for nested filtering. If we consider the set of pixels provided by the
secondary window scan in addition to the already existing non-noisy pixels as an “object”
set, and if we consider the remainder of the noise-corrupted pixels as a “non-object” set,
then the binary configuration for the morphological operators is very appropriate. Let us
consider B as a 4-connex structuring element:

B =

0 1 0
1
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the origin of B. For each remaining noise pixel of the nested filtering phase, we
propose a particular dilatation operation in order to estimate a new value of this pixel.
Let X denote the set of pixels provided by the secondary window scan in addition to the
already existing non-noisy pixels. Let E denote the space including all pixels inside the
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main window. Proposed dilatation process starts when the structuring element B, located
by its origin, is moved on all positions of the space E. For each position corresponding
to a non-restored pixel pE, we check if B intersect X. The non-noisy pixels belonging to
this intersection are candidates to replace the non-restored pixel pE. To avoid information
redundancy during this dilatation phase, the choice of the replacing pixel will be made
by alternating the maximum and minimum of the candidate values. Figure 4 shows
an example of the proposed dilatation operation. Based on the result provided by the
nested filtering processing of Figure 3, the structuring element B (in black) is positioned
on the first non-restituted pixel of the previous phase. Two useful values are detected: 231
and 234. Starting the alternation with the maximum, the new value of the pixel will be
estimated at 234. The process continues from left to right and from top to bottom for all
the noisy pixels until scanning the entire main window (in green). Figure 4 also shows
that inside the main window (in green), centered on the noisy pixel (also in green), all the
information has been reconstructed, first by nested filtering and then by the morphological
operation of dilatation. Initially, only three useful values among the 48 possible values in the
7× 7 neighborhood of the corrupted pixel are available to replace it. The proposed approach
succeeds after a deep investigation of the neighborhood to provide an estimate of the
remaining 45 values. It is now enough to replace the noisy pixel with the median value of its
new neighborhood. In the example of Figure 4, the new value of the noisy pixel will be 231.

Figure 4. Dilatation operation applied on a part of the 512 × 512 Lena standard image with 90%
noise. The main filter (window) is in green. The structuring element B is in black.

5. NFMO Performances
5.1. NFMO Performances Evaluation Using the Standard Lena Image

Performance evaluation denoising is typically done using the PSNR metric. By com-
paring the original image to the denoised image and measuring the amount of distortion,
the PSNR provides a measure of the quality of the denoising process. For further analysis,
the PSNR of a denoised image should typically be between 22 and 24 dB, with higher
values indicating better denoising performance. As a result, it is an excellent metric for
assessing the performance of denoising algorithms. Equations (3)–(5) define the PSNR:

PSNR = 10 log
(

2552

MSE

)
, (3)

MSEl =
1

nm

n

∑
i=1

m

∑
j=1

(Il(i, j)− Icl(i, j))2, (4)

MSE =
MSEr + MSEg + MSEb

3
, (5)

where l is the color channel index of a color image (r = red, g = green, b = blue). The initial
image is denoted by I. The filtered image is denoted by Ic. n is the number of rows and m
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is the number of columns in an image. First, a PSNR comparison is performed between our
proposed NFMO and the MLVMF. The MLVMF is based on the detection of noisy pixels
by investigating the surroundings of each pixel of the image thanks to the 16 Laplacian
filters presented in Figures 1 and 2. Once noisy pixels are detected, the median is used to
replace each of these pixels. The proposed NFMO uses the same approach to detect noisy
pixels. Then, two nested filters and a dilation operation are used to estimate all pixels in
the neighborhood and derive the replacement value. Table 1 shows PSNR values for both
MLVMF and NFMO applied to the 512× 512 Lena standard image corrupted with different
impulsive noise densities (from 10% to 90%). We notice, thanks to Table 1, that the two
methods give very close PSNR values up to a noise density equal to 30%. Beyond this value,
the proposed NFMO becomes more and more efficient as the noise density increases. This
result validates our proposition. The increase in useful information around noisy pixels
has more impact when the neighborhood is poor (i.e., when the noise density is high).

Table 1. Performances of the MLVMF and performances of the proposed NFMO method at different
noise densities (from 10% to 90%) for PSNR on the Lena standard image.

Noise in % → 10% 30% 50% 70% 90%

MLVMF 43.58 37.86 30.01 23.95 19.67
NFMO (PA) 42.92 38.65 35.99 33.13 29.99

The quality of the proposed NFMO image restoration is now compared to the perfor-
mances of ASWM, NAFSM, MDBUTMF, ADWMF, DBIDWI, ADKIF, PDBF, APF, BPDF,
ACCPPRA, AWMF, and ACBSA using the PSNR metric. Three factors influenced the
selection of these methods: They deal with the problem of denoising images that have been
heavily contaminated by impulsive noise, they are recent, and they belong to a variety of
families. In Table 2, the chosen methods are listed, along with a description of how they
work. The Lena standard image is used in this step. Table 3 shows the PSNR performances
of selected methods as well as the performances of the proposed NFMO method at different
noise densities (from 10% to 90%) on the Lena standard image. Figure 5 illustrates the
PSNR variation as a function of the impulsive noise density injected into the Lena image.
The PSNR variations of the 12 selected methods are presented in grayscale. The proposed
NFMO method’s PSNR variation is displayed in red. The proposed method works, as
shown by the results in Table 3 and Figure 5. Beyond 50% impulsive noise, the NFMO
gives the best PSNR and, therefore, the best denoising quality of all the methods. The local
data enhancement proposed in the case of an image too poor in useful pixels succeeds in
providing the best estimate of the corrupted pixels. Additionally, the deep investigation
that the NFMO performs makes more sense when the noise is very loud. Indeed, below
50% of the impulsive noise injected, the NFMO gives a very good result without being
exceptional. The lower the noise, the more useful information is available. The increase in
information, in this case, loses its meaning. Figure 6 shows a visual qualitative evaluation
of the performance of the NFMO applied to the Lena 512 × 512 color image with impul-
sive noise of density 10%, 30%, 50%, 70%, and 90%. We can clearly notice the very good
reconstruction of the image with all its details.
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Table 2. Operational principles of the selected methods: Performances evaluation phase.

Method Full Denomination Year Family Principle

ASWM [35] Adaptive Switching
Weighted Median filter 2016 Median Filter-Based

The noise detection step compares the
corrupted candidate to the local mean
value to determine whether a pixel is
“noise-free” or “noisy”. An adaptive
weighted median filter replaces noisy
pixels with weighted median values.

NAFSM [36] Noise Adaptive Fuzzy
Switching Median filter 2010 Median Filter-Based

A histogram determines the
contaminated pixel. The filtering step
processes the noisy pixel while
maintaining the noise-free pixel
components. Local maximums at the
histogram ends help the algorithm
find the erroneous pixel. A Boolean
noisy mask identifies the noisy pixel.
The noisy pixel receives 0, and the rest
receive 1. The predicted correction
term replaces a noisy pixel during
filtering based on the mask’s notation.

MDBUTMF [37]
Modified Decision-Based
Un-symmetric Trimmed
Median Filter

2011 Median Filter-Based

If brightness levels fall between the
contrasting gray values, the pixel
element is unchanged. MDBUTMF
regulates intermediate pixels.

ADWMF [38] Adaptive Dynamically
Weighted Median Filter 2017 Median Filter-Based

A weighted median filter with a
simple impulse detector is used. Noise
density determines window size.
After detecting impulsive noise, the
weighted median filter gives the noisy
element zero weight in the next frame.

DBIDWI [39]
Adaptive Decision Based
Inverse Distance Weighted
Interpolation

2017 Interpolation-Based

Inverse distance-weighted
interpolations replace noisy pixels.
Based on nearby non-noisy pixels,
this interpolation predicts damaged
pixel values.

ADKIF [40] Adaptive Decision Based
Kriging Interpolation Filter 2018 Interpolation-Based

The algorithm processes only noisy
pixels. A weighted interpolation
replaces the faulty pixel. If a
processing window has less than three
non-noisy pixels, the window
increases adaptively.

PDBF [41] Probabilistic Decision
Based Filter 2016 Probability and Statistics

Based on the anticipated noise density,
the filter employs either TM (Trimmed
Median) or PETM (Patch Else
Trimmed Median), resulting in
improved denoising performance.

APF [42] Adaptive Probability Filter 2018 Probability and Statistics

In order to identify noise, the pixel is
compared to its neighboring pixel to
establish its appropriateness as an
image element. To replace the
processing pixel, the number of
noise-free pixel components is
computed and compared to the pixel’s
estimated threshold value. If no
noise-free components are discovered,
the mean filter is used in their place.
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Table 2. Cont.

Method Full Denomination Year Family Principle

BPDF [43] Based-on-Pixel
Density Filter 2018 Probability and Statistics

A range is selected between the two
extremes values around a pixel. The
algorithm searches for at least one
pixel inside and beyond that range.
Beyond the range, it is presumed that
the pixel is noise-free. If so, the most
repeated pixel intensity is searched for
a second time. The median of the
repeating pixel is substituted for the
processing pixel.

ACCPPRA [44]
Adaptive Content based
Closer Proximity Pixel
Replacement Algorithm

2020 Heuristic Decision Tree

Calculate the Euclidean distance
between the processed pixel and
nearby non-corrupted pixels. The
technique expands the window if the
processing kernel has no non-noisy
pixels. The median of pixels that occur
more frequently in the current
processing window replaces
erroneous pixels based on
Euclidean distance.

AWMF [45] Adaptive Weighted
Mean Filter 2014 Mean filter-Based

The method progressively increases
the window size until the maximum
and minimum values of two
succeeding windows match. The
current pixel may be noisy if its value
matches the highest or lowest. The
window weighted mean replaces the
noise candidate.

ACBSA [46] Adaptive Cardinal
B-Spline Algorithm 2012 Cardinal B-Spline Analysis

This approach conducts a cardinal
B-spline analysis and application for
picture noise removal. To apply
cardinal B-splines, one must study the
cardinal B-many spline’s qualities.
Here, cardinal B-splines’
approximation function and compact
support are used.

Table 3. Performances of selected methods and performances of the proposed NFMO method at
different noise densities (from 10% to 90%) for PSNR on the Lena standard image.

Noise in % → 10% 30% 50% 70% 90%

ASWM 42.54 36.09 32.16 28.61 23.11
NAFSM 39.36 34.52 31.88 25.66 20.11
MDBUTMF 40.76 34.82 32.98 26.46 21.18
ADWMF 38.68 34.44 28.68 24.46 21.33
DBIDWI 43.01 38.50 35.68 32.44 28.45
ADKIF 44.48 40.02 35.85 32.48 27.11
PDBF 42.87 39.89 35.72 31.11 24.15
APF 43.55 40.77 36.14 32.64 25.53
BPDF 41.17 38.34 34.17 27.63 22.78
ACCPPRA 45.71 40.89 36.09 32.91 28.04
AWMF 39.37 36.94 34.57 31.38 25.97
ACBSA 41.90 37.10 33.80 29.80 26.60
NFMO (PA) 42.92 38.65 35.99 33.13 29.99
NFMO (PA)rank (out of 13) 5th 5th 3rd 1st 1st
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Figure 5. The variation of the PSNR according to the impulsive noise density injected into the Lena
image. In grayscale, the PSNR variations of the 12 selected methods. The PSNR variation for the
proposed NFMO method is shown in red.

Figure 6. Qualitative evaluation of the NFMO performances applied to the Lena 512× 512 color
image. (a) Original Lena image. Top (b–f) Noised Lena images with noise density 10%, 30%, 50%,
70%, and 90%. Down (b–f) Filtered Lena Images by NFMO.

To better observe the performance of the proposed algorithm, we performed two
additional tests on the standard images “Boat” and “Baboon”. We compare the PSNR
performance of our proposed NFMO with the MDBUTMF, DBIDWI, ADKIF, ACCPPRA,
AWMF, and ACBSA methods. Table 4 shows the PSNR performances of these methods as
well as the PSNR performances of the proposed NFMO method at different noise densities
(from 10% to 90%) on the Boat standard image. Table 5 shows the same comparison study
performed on the Baboon standard image. Figures 7 and 8 illustrate the PSNR variation as
a function of the impulsive noise density injected, respectively, into the Boat and Baboon
images. The PSNR variations of the six selected methods are presented in grayscale. The
proposed NFMO method’s PSNR variation is displayed in red. Figures 9 and 10 show a
visual qualitative evaluation of the performance of the NFMO applied, respectively, to
the Boat and Baboon 512 × 512 images with impulsive noise of density 10%, 30%, 50%,
70%, and 90%. These two test sets confirm the results obtained on the Lena image. The
NFMO is efficient in the case of a low noise density and becomes more and more efficient
when the noise density increases, giving the best values of PSNR among the other methods.
It is, however, necessary to specify that a statistical validation of the proposed method
to confirm the very satisfactory results found would be important. This requires further
statistical study using a dataset of at least 100 images.



Diagnostics 2023, 13, 1709 12 of 21

Table 4. Performances of selected methods and performances of the proposed NFMO method at
different noise densities (from 10% to 90%) for PSNR on the Boat standard image.

Noise in % → 10% 30% 50% 70% 90%

MDBUTMF 32.11 29.67 26.15 21.71 18.81
DBIDWI 36.95 33.77 30.45 27.86 24.33
ADKIF 36.20 33.07 30.02 27.05 22.41
ACCPPRA 37.17 33.51 30.27 27.87 23.76
AWMF 34.31 31.35 29.10 26.45 21.75
ACBSA 35.90 31.22 28.33 24.72 22.19
NFMO (PA) 36.24 33.40 30.42 29.18 27.20
NFMO (PA)rank (out of 7) 3rd 3rd 2nd 1st 1st

Table 5. Performances of selected methods and performances of the proposed NFMO method at
different noise densities (from 10% to 90%) for PSNR on the Baboon standard image.

Noise in % → 10% 30% 50% 70% 90%

MDBUTMF 29.92 28.41 27.08 24.07 19.24
DBIDWI 31.15 29.79 26.98 24.74 22.12
ADKIF 31.88 29.64 26.90 24.80 22.01
ACCPPRA 32.41 29.82 26.99 24.72 22.28
AWMF 30.78 28.69 26.63 24.60 21.42
ACBSA 31.17 28.13 25.71 22.54 20.65
NFMO (PA) 32.12 29.77 27.17 25.90 24.42
NFMO (PA)rank (out of 7) 2nd 3rd 1st 1st 1st

Figure 7. The variation of the PSNR according to the impulsive noise density injected into the Boat
image. In grayscale, the PSNR variations of the selected methods. The PSNR variation for the
proposed NFMO method is shown in red.

5.2. NFMO Performances Evaluation with Medical Images

The objective of this work is to provide a real-time filtering tool for medical images
presenting strong impulsive noise. We have proposed a new method for replacing noisy
pixels capable of restoring highly noisy images with very good quality. We are interested
here in the quantitative and qualitative evaluation of the performance of the NFMO algo-
rithm applied to a set of medical images. Medical images are selected from the Retinal
Fundus Multi-Disease Image Dataset (RFMiD) 2.0 [59], the Alzheimer’s Dataset available
in the Kaggle platform [60], and the COVID-19 Image Repository [61]. Six images were
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chosen to perform the experimental tests. CI1 and CI2 consist of brain MRI images with
moderate dementia. CI3 and CI4 show color retina fundus: CI3 shows an anterior ischemic
optic neuropathy, while CI4 shows coloboma in the macula and optic disc. CI5 and CI6
are chest x-ray images presenting, respectively, a moderate case and an advanced case of
COVID-19. All these images have been normalized to a size of 256× 256. Figure 7 shows
the selected images.

Figure 8. The variation of the PSNR according to the impulsive noise density injected into the Baboon
image. In grayscale, the PSNR variations of the selected methods. The PSNR variation for the
proposed NFMO method is shown in red.

Figure 9. Qualitative evaluation of the NFMO performances applied to the Boat 512× 512 image.
(a) Original Boat image. Top (b–f) Noised Boat images with noise density 10%, 30%, 50%, 70%, and
90%. Down (b–f) Filtered Boat Images by NFMO.

Figure 10. Qualitative evaluation of the NFMO performances applied to the Baboon 512× 512 color
image. (a) Original Baboon image. Top (b–f) Noised Baboon images with noise density 10%, 30%,
50%, 70%, and 90%. Down (b–f) Filtered Baboon Images by NFMO.
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The performance evaluation of the NFMO on the selected medical images is carried out
using two measures: the PSNR, which provides a measure of the quality of the denoising
process, and the NCD (Normalized Color Difference), which provides a measure of the
color distortion caused by the pixel replacement process. The value of the NCD is inversely
proportional to the quality of restoration. The closer the colors in the filtered image are to
the colors of the original image, the lower the NCD. NCD is calculated as follows:

NCD =
∑n

i=1 ∑m
j=1

√
(Y(i, j)−Yc(i, j))2 + (U(i, j)−Uc(i, j))2 + (V(i, j)−Vc(i, j))2

∑n
i=1 ∑m

j=1

√
(Y(i, j))2 + (U(i, j))2 + (V(i, j))2

, (6)

where Y is luminance of the original image, Yc is the luminance of the filtered image, U and
V are the chrominance components of the original image, Uc and Vc are the chrominance
components of the filtered image. Figure 11 also shows that the selected medical images
can be color images or grayscale images. This does not affect our algorithm. Indeed, we
have defined as the input of the proposed code a color image, which is therefore presented
in the form of three layers: R, G, and B. A test is carried out during the reading of the
image. If the image has a single layer, then it is a grayscale image. The algorithm then
adds two other similar layers, and the noising and denoising processes can then begin. By
adding these two layers, the image remains the same in terms of visual appearance, i.e., a
grayscale image, but the noise can still attack any pixel of any layer. As for the NCD metric,
it still remains valid since it requires three layers, which is the case thanks to the test phase
explained above. The NCD provides a measure of the color distortion caused by the pixel
replacement process, which remains valid even in the case of a grayscale image as long as
it is presented in three layers and the noise affects these three layers independently. Table 6
shows measurements of the PSNR and NCD for the six medical images with different
amounts of impulsive noise (from 10% to 90%). Figures 12 and 13 reproduce the results of
Table 6, highlighting the evolution of the PSNR and NCD measurements when the density
of the impulsive noise increases. Figure 14 shows a visual qualitative evaluation of the
performance of the NFMO applied to the selected medical images with impulsive noise of
density equal to 90%.

Figure 11. Medical images selected from the Retinal Fundus Multi-Disease Image Dataset (RFMiD)
2.0, Alzheimer’s Dataset available in the Kaggle platform, and COVID-19 Image Repository. From
left to right: CI1, CI2, CI3, CI4, CI5, and CI6.

Table 6. Performances of NFMO in terms of PSNR and NCD were applied to six medical images at
different noise densities.

Noise in % → 10% 30% 50% 70% 90%

Metrics → NCD PSNR NCD PSNR NCD PSNR NCD PSNR NCD PSNR

CI1 0.0462 43.35 0.0633 39.42 0.0800 37.13 0.0963 35.17 0.1248 31.94
CI2 0.1290 43.10 0.1442 39.08 0.1574 36.46 0.1672 34.71 0.1775 31.05
CI3 0.0048 39.75 0.0131 37.42 0.0208 35.20 0.0281 34.34 0.0371 33.45
CI4 0.0061 39.29 0.0165 37.58 0.0262 36.36 0.0350 35.76 0.0462 34.11
CI5 0.0396 42.25 0.0563 37.99 0.0710 35.67 0.0843 33.91 0.1031 31.33
CI6 0.0520 37.51 0.0738 33.46 0.0924 31.18 0.1071 29.78 0.1293 27.84
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Figure 12. The evolution of the NCD when the impulsive noise density increases for CI1, CI2, CI3,
CI4, CI5, and CI6.

Figure 13. The evolution of the PSNR when the impulsive noise density increases for CI1, CI2, CI3,
CI4, CI5, and CI6.

The filtering operation by the proposed approach on medical images succeeded in
restoring the original visual information even in the presence of very high-density im-
pulsive noise. The CI3 and CI4 images present the best results in terms of denoising
quality (high PSNR) and color fidelity (low NCD). This result makes perfect sense given
the low frequency of repeating patterns in CI3 and CI4 compared to the rest of the test
images. However, even though the CI1, CI2, CI5, and CI6 images all have a dominant
texture, the measured PSNRs are still high, and the color distortion (NCD) is low. The
visual evaluation presented in Figure 14 confirms the measurements in Table 6. We can
note the great similarity between the original images and the filtered images, even in
the absence of 90% of useful pixels. This is precisely the point of the local data enhance-
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ment offered by the NFMO. The average execution time of the proposed NFMO under
Core™i7–1165g7@2.80ghz Intel processor reaches 471 sec per 256 × 256 color image when
corrupted by 90% density noise. Deep investigation based on nested double filtering is
indeed very costly in terms of computation time. Additionally, this calculation time is
proportional to the density of the injected noise since the number of pixels to be corrected
is greater when the density of the injected noise is high. Section 6 describes a proposed
High-Level Synthesis (HLS) architecture for the NFMO filter to reduce execution time and
enable real-time computation.

Figure 14. Qualitative evaluation of the NFMO performances applied to the selected medical images.
First column: Original images Middle column: Original images corrupted by impulsive noise at 90%.
Last column: Filtered images.

6. NFMO Real-Time Implementation

When combined with FPGA, the HLS process gives engineers a useful tool for quickly
exploring the design space based on a high-level programming language (such as SystemC
or C/C++) that describes how the system works. So, the HLS has turned into a useful
and effective tool that could increase the amount of work that can be done during the
design process and shorten the time it takes to finish a design cycle. In this situation,
a number of HLS tools have been made, such as the Xilinx Vivado HLS tool, which
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gives a number of steps or directives for making the best hardware design for every
algorithm. In fact, the RESOURCE directive makes it possible to construct arrays either as
registers or as memory. In addition to this, the ALLOCATION directive may be used to
improve the efficiency with which the arithmetic operation is performed. In addition to
this, the ALLOCATION directive may be used to improve the efficiency with which the
arithmetic operation is performed. Additionally, the loops can be pipelined, not unrolled, or
fully/partially unrolled using the PIPELINE and UNROLL directives to improve the speed
of loop iterations (i.e., to reach a higher throughput). Figure 15 displays the block diagram
of the NFMO filter’s built hardware architecture. From a specified C/C + + code, the Xilinx
Vivado HLS 18.1 tool performs the generating process. In order to boost the throughput
of our NFMO filter, our architecture employs 5 DMA (Direct Memory Access) to transmit
5 images lines in parallel. The suggested NFMO’s hardware design is composed of 7× 7
and 5× 5 nested filters. Each denoised 24-bit RGB pixel is concatenated and stored in
256× 256× 24-bit internal memory. Certain directives (such as PARTITION and PIPELINE)
are progressively added to the NFMO C/C++ code to improve the architecture. Thus, we
build numerous NFMO hardware designs. Then, we preserve the optimal design, which
strikes a balance between hardware cost and processing time. The hardware requirements
for the various NFMO designs on the Zynq XCZU9EG FPGA in terms of Lookup-Table
(LUT), Flip-Flops (FF), BRAM blocks, and DSP blocks are presented in Table 7.

Figure 15. Proposed NFMO filter block diagram.
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Table 7. FPGA resources and NFMO-designed architectures’ performance.

LUT FF BRAM_18K DSP48E Cycles

Solution 1 12,023 (4%) 5099 (1%) 121 (7%) 16 (0.5%) 220,023,441
Solution 2 49,535 (18%) 44,656 (8%) 121 (7%) 612 (24%) 5,503,836
Solution 3 54,667 (20%) 49,776 (9%) 140 (8%) 613 (24%) 2,688,422

Table 7 displays Solution 1’s hardware design without optimization. It is evident
that this technique is not resource-hungry, but filtering the entire image needs a huge
number of clock cycles. Solution 1 requires 1913 milliseconds for 256× 256 color image
with a clock frequency of 115 MHz and 90% density noise. We propose to implement the
PIPELINE directive in Solution 2. The cost of hardware grows yet remains significantly
below the system’s maximum capacity. In contrast, the number of clock cycles drops by
97.5%. Hence, an image may be processed in 48 milliseconds. In order to further reduce
the number of clock cycles, Solution 3 includes the PARTITION directive, which allows
the filtering window (Figure 15) to be divided into tiny blocks and promotes parallel data
access. Solution 3 achieves a computation time of 23 milliseconds, which is 83 times quicker
than Solution 1. More hardware resources will be required, yet hardware capacity will
not be exceeded. Lastly, it should be noted that the software implementation of Section 5
yielded the same filtering quality with both Solution 2 and Solution 3.

7. Conclusions

In this work, a real-time tool for the elimination of high-density impulsive noise is
proposed. Applied to heavily corrupted medical images, the proposed algorithm achieves
excellent restoration quality. Two major contributions are at the center of this paper. The
first consists of a new algorithm for replacing noisy pixels. This algorithm increases the
useful local information to allow a better estimation of the pixel. This operation is based on
double-nested filtering followed by a morphological operation of dilation, hence the name
of this new method: the NFMO. Nested filtering is very efficient. The NFMO achieves
the best performance in terms of denoising quality (PSNR) among the most recent and
best-known methods in the literature when impulsive noise density exceeds 50%. Applied
to medical images, NFMO restores color information with excellent PSNR and NCD metrics.
These images are characterized by the presence of repetitive patterns and, in some cases,
a predominantly black background. Visual information is, therefore, not very diversified.
The results obtained in this paper show that the performance of the NFMO increases with
the density of the impulsive noise injected while also being very good when this density is
low. This is a very original result, opening perspectives on the uses of the NFMO in several
other fields in addition to medical imaging. The very good quality of denoising obtained
by the NFMO has, however, a cost. The nested nature of the proposed method required
quite a lot of computational time. The second contribution in this paper solves this problem.
A hardware architecture is proposed, allowing the filtering of corrupted 256× 256 images
with 90% impulsive noise in an average of 23 milliseconds. When integrated into the
medical image acquisition chain, the proposed tool can guarantee excellent filtered image
quality, allowing for better manual or artificial intelligence-based diagnosis.

In this work, we are interested in impulsive noise that can bias medical images.
However, other types of noise can also attack these images. In particular, the Rician noise,
which is very common in MRI images, or even the quantum mottle noise, which attacks CT
and X-ray images. How will our proposed NFMO behave in front of these types of noises?
If the reconstitution of the signal by the NFMO must logically work since it is based on
useful existing information, the detection by the modified Laplacian filters of Rician-type
noises or even quantum mottle noise remains to be validated. It is quite possible that slight
or deep modifications must be made to the detection phase. Future work will focus on
deepening the investigation into this issue.
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