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NEW REPRESENTATIONS FOR A SEMI-MARKOV CHAIN

AND RELATED FILTERS

ROBERT ELLIOTT* AND W. P. MALCOLM

Abstract. In this article we investigate estimation for a partially observed
semi-Markov chain, or a Hidden semi-Markov Model (HsMM). We derive
semimartingale dynamics for a semi-Markov chain and give them in a new
vector form which explicitly exhibits the times at which jump-events occur
and the probabilities of state transitions. However, the most important result
is the new vector lattice state-space representation for a general finite-state,
discrete-time semi-Markov chain. On this space the semi-Markov chain and
its occupation times are a Markov process with dynamics described by finite
matrices. These representations are new. Finite dimensional recursive filters
are derived for a HsMM.

1. Introduction

Semi-Markov chains are related to renewal processes and have been used in
applications since their introduction over 60 years ago. Their general occupation-
time distributions o↵er a far richer class of models than standard Markov chains.
The two main contributions of this paper are;

(1) a new vector state-space representation for a general finite-state semi-
Markov chain which exhibits it as a Markov chain,

(2) the consequent extension to semi-Markov chains of the filtering, smoothing
and estimation results,

(3) the matrix and vector semimartingale dynamics for the semi-Markov chain.

Earlier references on semi-Markov processes include the books by Koski [8], Barbu
and Limnios [2], and van der Hoek and Elliott [10]. References on filtering include,
Krishnamurthy, Moore and Chung [9] and Elliott, Limnios and Swishchuk [5].
Filters for Markov modulated time series were obtained in the PhD Thesis [1].
The matrix representation in this paper of the dynamics is new.

2. Stochastic Dynamics

All processes are defined on a probability space
�
⌦,F , P

�
. Our process of

interest is a semi-Markov chain X =
�
Xk, k = 0, 1, 2, . . .

 
with arbitrary state

sojourn distributions. As is now standard the finite state space for the process
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2 ROBERT ELLIOTT AND W. P. MALCOLM

X is identified with the set of unit vectors S = {eee1, eee2, . . . , eeeN}, where eeei :=
(0, . . . , 0, 1, 0, . . . , 0)0 2 RN . We also write m 2 {1, 2, 3, . . . } exclusively as a time
index for state sojourns.

Notation 2.1. The initial state X0 2 S, is taken as given, or its probability dis-
tribution p0 = (p10, p

2
0, . . . , p

N
0 )0 2 [0, 1]N is known. The chain will change state at

random discrete times ⌧n. State transitions at these times are of the type eeei ! eeej ,
with i 6= j. We set ⌧0 := 0. Successive jump event times form a strictly increasing
sequence ⌧0 < ⌧1 < ⌧2 < ⌧3 . . . . Write Fk := �

�
Xu , u  k

 
and F =

�
Fu

 
u�0

for
the filtration generated by X.

We now define a time-homogeneous semi-Markov chain.

Definition 2.2. The stochastic process X is a time-homogeneous semi-Markov
process if

P
�
X⌧n+1 = eeej , ⌧n+1 � ⌧n = m | F⌧n

�
=

P
�
X⌧n+1 = eeej , ⌧n+1 � ⌧n = m | X⌧n = eeei

�
.

If X⌧n = ei we write this as q
�
eeej , eeei,m

�
.

This can be factorized as

P
�
⌧n+1 � ⌧n = m | X⌧n+1 = eeej , X⌧n = eeei

�
P
�
X⌧n+1 = eeej |X⌧n = eeei

�
= fj,i(m)pj,i,

say. Here

fj,i(m) := P
�
⌧n+1 � ⌧n = m | X⌧n+1 = ej , X⌧n = ei

�
and

pj,i := P
�
X⌧n+1 = ej | X⌧n = ei

�
.

Consequently

q
�
ei, ej ,m

�
= fj,i

�
m
�
pj,i . (2.1)

We can also consider the factorization

P (X⌧n+1 = eeej , ⌧n+1 � ⌧n = m|X⌧n = eeei) = P (⌧n+1 � ⌧n = m|X⌧n = eeei)⇥
P (X⌧n+1 = eeej |⌧n+1 � ⌧n = m,X⌧n = eeei)

= ⇡i(m)pj,i(m), say.

(2.2)

Here
⇡i(m) := P

�
⌧n+1 � ⌧n = m | X⌧n = ei

�
and

pj,i(m) := P
�
X⌧n+1 = ej | ⌧n+1 � ⌧n = m,X⌧n = ei

�
.

Approximations 2.3. If fj,i(m) does not depend upon ej we can write

P (⌧n+1 � ⌧n = m | X⌧n+1 = ej , X⌧n = ei) = P (⌧n+1 � ⌧n = m | X⌧n = ei)

= ⇡i(m).
(2.3)

That is, for each i, 1  i  N,
�
⇡i(m), m = 1, 2, 3, . . .

 
is a probability distribu-

tion on the positive integers. Then under this simplification

q
�
ej , ei,m

�
= ⇡i

�
m
�
pj,i . (2.4)
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Note that, as we assumed X is homogeneous in time, all these probabilities are
independent of n. If pj,i(m) does not depend upon m then from (2.2) we again
have:

q
�
ej , ei,m

�
= ⇡i(m)pj,i . (2.5)

The approximation given by equation (2.4) or equation (2.5) is that used by

Ferguson [7] However, in this paper we shall not discuss any approximations but
use the general decomposition

q
�
ej , ei,m

�
= ⇡i(m)pj,i(m). (2.6)

Notation 2.4. Write

Gi(m) := P
�
⌧n+1 � ⌧n  m | X⌧n = eeei

�
=

mX

`=1

⇡i(`),

Fi(m) := P
�
⌧n+1 � ⌧n > m | X⌧n = eeei

�
= 1�Gi(m).

We now provide the conditional probability for a state-transition to occur at
the next discrete time. This probability plays an important role in subsequent
calculations and is denoted by �i(m). Given some discrete-time k, write ⌧n for the
most recent transition-event time prior to k, (or at k), that is, ⌧n := max

`
{⌧`  k}.

Further, suppose that for some m, X⌧n+m�1 = ei. The probability of a transition-
event occuring at the next time ⌧n +m is

P
�
⌧n+1 = ⌧n +m | X⌧n+k�1 = X⌧n = ei

�
=

P (⌧n+1 = ⌧n +m | ⌧n+1 > ⌧n +m� 1, X⌧n = eeei) =
⇡i(m)

Fi(m� 1)
.

This result is from the definition of conditional probability.
Write A :=

�
⌧n+1 = ⌧n + m

 
, B :=

�
⌧n+1 > ⌧n + m � 1

 
and C :=

�
⌧n = ei

 
.

Then

P (⌧n+1 = ⌧n +m | X⌧n+m�1 = X⌧n = ei)

= P
�
A | B \ C

�

=
P
�
A \B | C

�

P
�
B | C

� ,

(but A \B = A as A ⇢ B, so it equals)

=
P
�
⌧n+1 = ⌧n +m | X⌧n = ei

�

P
�
⌧n+1 > ⌧n +m� 1 | X⌧n+m�1 = ei

� ,

=
⇡i(m)

Fi(m� 1)
.

Write �i(m) :=
⇡i(m)

Fi(m� 1)
.

Definition 2.5. For each index i, 1  i  N, we define the recursive process
hi
k :=

⌦
Xk, eeei

↵
+ hXk, eeeii hXk, Xk�1ihi

k�1, with hi
0 :=

⌦
X0, eeei

↵
2 {0, 1}. The hi

processes are non-zero only at times when X = ei . The process hi returns the
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cumulative time spent in state ei .

If hk =
NX

i=1

hi
k then h0 = 1 and hk = 1+

⌦
Xk, Xk�1

↵
hk�1. The process hk measures

the amount of time since the last transition event. This process is never zero.

2.1. Transition-Event Probabilities.

Lemma 2.6. Suppose i 6= j, 1  i, j  N . Then P
�
Xk+1 = eeej |Xk = eeei, hi

k

�
=

pj,i
�
hi
k

�
�i

�
hi
k

�
.

Proof. Write A :=
�
Xk+1 = ej

 
, B0 :=

�
⌧n+1 � ⌧n = hi

k

 
,

B00 :=
�
⌧n+1 > ⌧n + hi

k � 1
 
and C :=

�
X⌧n = ei = Xk

 
. Then

P
�
Xk+1 = ej | Xk = ei, h

i
k

�
= P

�
A \B0 | B00 \ C

�

=
P
�
A \B0 \B00 \ C

�

P
�
B00 \ C

� =
P
�
A \B0 \ C

�

P
�
B00 \ C

�

= P
�
A | B0 \ C

� P
�
B0 \ C

�

P
�
B00 \ C

�

(as B0 \B00 = B0)

= pj,i
�
hi
k

� ⇡i
�
hi
k

�

Fi

�
hi
k � 1

�

= pj,i
�
hi
k

�
�i

�
hi
k

�
.

⇤
Remark 2.7. We are assuming there is a jump from ei to a di↵erent ej , i 6= j, at

time k + 1. So,
NX

j=1
j 6=i

pj,i(k + 1) = 1.

Corollary 2.8. Under the same hypotheses,

P
�
Xk+1 = eeei | Xk = ei, h

i
k

�
= 1��i

�
hi
k

�

= 1�
⇣
�i

�
hi
k

� NX

j=1
j 6=i

pj,i
�
hi
k

�⌘

= 1�
NX

j=1
j 6=i

�
pj,i(h

i
k)�

i(hi
k)
�
.

Notation 2.9. For m = 1, 2, . . . , write A(m) for the N ⇥ N matrix with entries
ai,i(m) = 1��i(m) and aj,i(m) = pj,i(m)�i(m).

Example 2.10. Then for N = 3 and some hk = m,

A(m) :=

2

4
1��1(m) p1,2(m)�2(m) p1,3(m)�3(m)

p2,1(m)�1(m) 1��2(m) p2,3(m)�3(m)
p3,1(m)�1(m) p3,2(m)�2(m) 1��3(m)

3

5 .
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Notation 2.11. Define the matrices: ⇧(m) := (pi,j(m), 1  i, j  N) where
pi,i(m) = �1 and pj,i(m) = P

�
X⌧n+1 = eeej | ⌧n+1 � ⌧n = m, X⌧n = ei

�
, for i 6= j.

Write D(m) := diag
�
�1(m),�2(m), . . . ,�N (m)

�
.

Then A(m) = I +⇧(m)D(m), where I is the N ⇥N identity matrix.

For the case when N = 3,

⇧(m) =

2

4
�1 p1,2(m) p1,3(m)

p2,1(m) �1 p2,3(m)
p3,1(m) p3,2(m) �1

3

5 , D(m) =

2

4
�1(m) 0

0 �i(m) 0
0 0 �i(m)

3

5

and so A(m) = I + ⇧(m)D(m). This decomposition nicely separates the proba-
bilities of when the jump occurs and where it goes. A key result is the following
representation of the semi-Markov chain X.

Theorem 2.12. The semi-Markov chain X has the following semi-martingale

dynamics:

Xk+1 = A(hk)Xk +Mk+1 2 RN
.

Here Mk+1 is a martingale increment: E
⇥
Mk+1 | Xk, hk

⇤
= 0 2 RN

.

Proof. For i 6= j E
⇥⌦
Xk+1, ej

↵
| Xk = ei, hi

k

⇤
= P

�
Xk+1 = ej | Xk = ei, hi

k

�
=

aj,i
�
h(
ki)

�
from Lemma 2.6 and the definition of aj,i

�
hi
k

�
. For the transition Xk =

ei ! Xk+1 = ei,

E
⇥⌦
Xk+1, ei

↵
| Xk = ei, hi

k

⇤
= P

�
Xk+1 = ei | Xk = ei, hi

k

�
= ai,i

�
h(
ki)

�
from

Corollary 2.8 and the definition of ai,i
�
hi
k

�
. So E

⇥
Xk+1 | Xk, hk

⇤
= A

�
hk

�
Xk 2

RN and

E
⇥
Mk+1 | Xk, hk

⇤
= E

⇥
Xk+1 �A

�
hk

�
Xk | Xk, hk

⇤

= 0 2 RN .

That is Mk+1 is a (vector) martingale increment. ⇤

3. Lattice-based State-Space Dynamics

In this section we describe a countably infinite state space for a general semi-
Markov chain. In this state space the process (X,h) is in fact a Markov chain.
This property is known but the matrix representations are new.

3.1. Lattice-based State-Space. The complete description of the state of our
semi-Markov chainX at time k is given by the state of the chainXk 2

�
eee1, . . . , eeeN

 

and the number of time steps hk the chain has been in that state since the last
jump. To simplify the discussion here we suppose N = 3 so S =

�
eee1, eee2, eee3

 
.

A state space S for the chain Xk := (Xk, hk) can be identified with countably
many copies of S as follows: Elements of S can be thought of as infinite column
vectors so, for example,

�
e1, 1

�
corresponds to

�
1, 0, 0| {z }
h=1

| 0, 0, 0 | 0, · · ·
�0

and

(e2, `) corresponds to
�
0, 0, 0 | · · · | 0, 1, 0| {z }

hk=`

| 0, · · ·
�0
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with e2 = (0, 1, 0)0 in the `th block. As a basis of unit vectors for this X = (X,h)
process we take unit vectors eeei,n , 1  i  3, n = 1, 2, . . . . Here the i denotes the
state in {eee1, eee2, eee3} and the n corresponds to the sojourn time in state eeei since the
last jump at ⌧n . Recall S =

�
eee1, eee2, eee3

 
, so ei,n is in the nth block of

�
e1, e2, e3

�
.

Write S = {ei,n , 1  i  3, n = 1, 2, . . . }. There is a map from R3 to R3⇥N given
by
T : (↵1,↵2,↵3)0 !

�
(↵1,↵2,↵3), (↵1,↵2,↵3), · · ·

�0
.With IN the N⇥N unit matrix

this is given by the N⇥N matrix: T =
�
IN , IN , IN , . . .

�0
. The adjoint of this is a

map from RN⇥N to RN given by T ⇤ = (IN , IN , IN , . . . ).

3.2. State Transition Events. Note the counter hk = hk(Xk) starts at 1, the
first time X jumps to a new state. With the above notation (eeei, r) = eeei,r !
(eeei, r + 1) = eeei,(r+1) with probability

�
1 � �i(r)

�
, or (eeei, r) = eeei,r ! (eeej , 1) =

eeej,i, j 6= i, with probability pj,i(r)�i(r). For example, suppose at time 0 the

chain is in state (eee1, 1) = eee1,1 =
�
1, 0, 0 | 0, 0, 0 | · · ·

�0
. This can become either

eee1,2 = (eee1, 2) = (0, 0, 0 | 1, 0, 0 | 0, · · · )0 with probability
�
1 � �1(1)

�
, or e2,1 =�

eee2, 1) = (0, 1, 0|0, 0, 0|0, 0, · · ·
�0

with probability p2,1(r)�1(1), or

eee3,1 =
�
eee3, 1) = (0, 0, 1 | 0, 0, 0 | 0, · · ·

�0
with probability p3,1(r)�1(1). There is

then an infinite matrix C which describes these transitions.

3.3. Dynamics for Xk :=
�
Xk, hk

�
. In the N = 3 state case and for some value

of m 2 {1, 2, . . . }, write

⇧(m) =

2

66664

0 p1,2(m)�2(m) p1,3(m)�3(m)

p2,1(m)�1(m) 0 p2,3(m)�3(m)

p3,1(i)�1(m) p3,2(m)�2(m) 0

3

77775

and D(m) = diag
�
1��1(m), 1��2(m), 1��3(m)

 
. With 0 representing the

3⇥ 3 zero matrix

C =

2

6664

⇧(1) ⇧(2) ⇧(3) · · ·
D(1) 0 0 · · ·
0 D(2) 0 · · ·
...

...
...

. . .

3

7775
. (3.1)

If we write the enlarged vectors as Xk then the semi-martingale dynamics of
the Markov chain can be written as Xk+1 = CXk + Mk+1 2 S. This gives
E
⇥
Xk+1 | Xk

⇤
= CXk and E

⇥
Xk+1 | X0

⇤
= Ck+1 X0 . At time k 2 {0, 1, 2, . . . }

the sojourn time hi
k cannot be more than k + 1 and the next possible value of hi

k
is k + 2. Consequently the size of C at time k is at most (k + 2)N ⇥ (k + 1)N.

For example, at time 0 the C matrix has the form C =


⇧(1)
D(1)

�
. At time 1 the C

matrix has the form

C =

2

4
⇧(1) ⇧(2)
D(1) 0
0 D(2)

3

5 and so on. (3.2)
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Consequently, at any finite time the C matrix is finite. Also the state space of
X at time k only has (k + 1)N elements. The size of the state space and the
corresponding matrices will also remain finite if the sojourn distributions all have
finite support.

4. Observation Dynamics

The filtering results of [6] are now adapted to this situation. Note that ifXk 2 S
then T ⇤ Xk = Xk 2 S. We suppose the Markov chain X is not observed directly.
Instead there is an observation sequence y =

�
y0, y1, . . . , yk, . . .

 
where

yk = c(Xk) + d(Xk)wk . (4.1)

The observations are of Xk = T ⇤ Xk rather than Xk . {wk, k = 0, 1, 2, } is a
sequence of i.i.d. N(0, 1) random variables. c(·) and d(·) are known real valued
functions. Note that any real function g(Xk) takes only the finite number of
values g(eee1), g(eee2), . . . , g(eeeN ). Write gk = g(eeek) and g = (g1, g2, . . . , gN )0 2 RN .
Then g(Xk) = hg, Xk i. Consequently there are vectors c = (c1, c2, . . . , cN ),
d = (d1, d2, . . . , dN ) such that c(Xk) = hc, Xk i and d(Xk) = hd, Xk i . We
suppose dk > 0 for k = 1, . . . , N.

Remark 4.1. We suppose the observation process y is scalar-valued. The extension
to a vector-valued y is straight forward.

5. Finite-Dimensional Recursive Filters

5.1. Change of Probability Measure Formulation. We suppose there is a
second ‘reference’ probability measure , P , under which 1.) the process X is
still a Markov chain with dynamics Xk+1 = CXk + Mk and 2.) the process
y = {y0, y1, . . . } is a sequence of i.i.d. N(0, 1) random variables. From P we now
construct the original probability P under which; 1.) the process X = T ⇤ X is a
semi-Markov chain with dynamics as above so Xk+1 = A

�
h(k)

�
Xk + Mk+1 and

2.) The process w = (w0, w1, . . . ) is a sequence of i.i.d. N(0, 1) random variables

where wk =
yk �

⌦
c, Xk

↵
⌦
d, Xk

↵ .

Definition 5.1. For k = 0, 1, 2, . . . write �k :=
�
⇣
(yk �

⌦
c, Xk

↵
)/
⌦
d, Xk

↵ ⌘

⌦
d, Xk

↵
�(yk)

,

where �(x) is the N(0, 1) density 1p
2⇡

exp� 1
2x

2 , and

⇤0,k :=
kY

`=0

�` . (5.1)

Recall Fk = �{X0, X1, . . . , Xk} and write Yk = �
�
y0, y1, . . . , yk

 
and Gk = �

�
X0,

. . . , Xk, y0, . . . , yk
 
. We consider the related filtrations {Fk}, {Yk} and {Gk}.

Definition 5.2. The original ‘real world’ probability P is defined in terms of P
by setting

dP

dP

��
Gk

= ⇤0,k .
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We can then prove

Lemma 5.3. Under P X is a semi-Markov chain with dynamics

Xk+1 = A
�
h(k)

�
Xk+Mk+1 and

�
wk, k = 0, 1, . . .

 
is a sequence of i.i.d. N(0, 1)

random variables where wk = (yk �
⌦
c, Xk

↵
)/
⌦
d, Xk

↵
.

That is, under P yk = hc,Xki+ hd,Xkiwk .

Proof. For a proof see [4]. ⇤
Recall from §3.1, that the chain X has dynamics Xk+1 = CXk + Mk+1 2 S.

We suppose, as in §4, that the observation process is yk = c(Xk)+d(Xk)wk, where
Xk = T ⇤ Xk . As above

�k =
�
⇣
(yk �

⌦
c, Xk

↵
)/
⌦
d, Xk

↵⌘

⌦
d, Xk

↵
�(yk)

.

Write �i
k =

�
⇣
(yk � ci)/di

⌘

di�(yk)
and ⇤0,k =

Qk
`=0 �`. However, for any n = 1, 2, . . . ,

T ⇤eeei,n = eeei so, for example,
⌦
c, eeei

↵
= ci =

⌦
c, T ⇤eeei,ni =

⌦
Tc, eeei,n

↵
and �k can be

written in terms of the full state Xk :

�k =
�
⇣�

yk �
⌦
Tc, Xk

↵�
/
⌦
Td, Xk

↵⌘

⌦
Td, Xk

↵
�(yk)

.

5.2. A Finite-dimensional recursive filter for X. Write �k = E
⇥
⇤kXk | Yk

⇤

for the unnormalized conditional expected value of Xk given the observations Yk

to time k. Again suppose N = 3, write �3(yk+1) := diag
�
�1
k+1(yk+1), �2

k+1(yk+1),
�3
k+1(yk+1)

 
and �(yk1) := diag

�
�3(yk+1), �3(yk+1), �3(yk+1), . . .

 
. We then

have the recursion.

Theorem 5.4. �k+1 = �(yk+1)C �k with �0 given by X0, or its probability distri-

bution.

Proof.

�k+1 = E
⇥
⇤k+1Xk+1 | Yk+1

⇤

=
1X

n=1

NX

i=1

E
⇥
⇤k�k+1

⌦
Xk+1 , ei,n

↵
| Yk+1

⇤
eeei,n

= (yk+1)
1X

n=1

NX

i=1

�i
k+1(yk+1)E

⇥
⇤k

⌦
C Xk , eeei,n

↵
| Yk

⇤
eeei,n

=
1X

n=1

NX

i=1

�i
k+1(yk+1)hC�k , eeei,jieeei,n = �(yk+1)C �k .

⇤
Remark 5.5. As noted above, at any finite time, or if the sojourn distributions
have finite support, the matrices C are of finite dimension.
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6. Parameter Estimation

Recall that with ai,i(m) = 1��i(m), aj,i(m) = pj,i(m)�i(m) and N = 3, then

D(m) = diag
�
a1,1(m), a2,2(m), a3,3(d)

 
, ⇧(m) = 0+

X

i,j2M
i 6=j

ai,j(m) and

C =

2

6664

⇧(1) ⇧(2) ⇧(3) . . .
D(1) 0 0 . . .
0 D(2) 0 . . .
...

...
...

. . .

3

7775
.

The dynamics of the chain Xk 2 S are given by Xk+1 = C Xk +Mk+1 2 S. With
Xk := T ⇤ Xk the observation process is given by

yk =
⌦
c, Xk

↵
+
⌦
d, Xk

↵
wk

and for some eeei,n, this is

yk =
⌦
c, T ⇤eeei,n

↵
+
⌦
d, T ⇤eeei,n

↵
wk

=
⌦
Tc, eeei,n

↵
+
⌦
Td, eeei,n

↵
wk, for i 2 {1, 2, . . . , N} and n 2 {1, 2, . . . }.

We wish to estimate the parameters of the model, that is the c,d 2 RN and the
aj,i(k), 1  i, j  N, i 6= j. Note we need only estimate the o↵-diagonal elements
aj,i(k) of the matrices ⇧(k).

Now N j,i
k (m) =

Pk
`=1

⌦
X`�1 , eeei,m

↵ ⌦
X`, eeej,i

↵
gives the number of jumps from

state eeeim to state eeej,1 up to time k. J i
k(m) =

Pk
`=1

⌦
X`�1 , eeei,m

↵
gives the amount

of time spent in state eeei,m up to time k. We also need estimates for sums of the
form

Gi
k =

kX

`=1

f(y`)
⌦
X`�1 , eeei

↵
=

kX

`=1

lX

m=1

f(y`)
⌦
X`�1 , T

⇤eeei,m
↵
.

Here the function f(·) is any bounded mapping. As in [6] we first consider the un-
normalized vector estimate �

�
N ji

k (m)Xk

�
:= E

⇥
⇤kN

j,i
k (m)Xk | Yk

⇤
, A recursion

for this quantity is given by:

Lemma 6.1.

�
�
N j,i

k (m)Xk

�
= �(yk+1)C�

�
N j,i

k (m)Xk

�
+ aj,i(m)

⌦
�k, eeei,m

↵
eeej,i

where �k is determined by Theorem 5.4.
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Proof. Suppose �k and �
�
N j,i

k (m)Xk

�
have been determined. Then

E
h
⇤k+1N

j,i
k+1(m)Xk+1 | Yk+1

i

= E
h
⇤k�k+1

�
N j,i

k (n) +
⌦
Xk+1, eeej,i

↵ ⌦
Xk, eeei,m

↵�
Xk+1 | Yk+1

i

(similarly to Theorem 5.4 this is)

= �(yk+1)
mX

p,q=1

E
h
⇤kN

j,i
k (m)hC Xk, eeep,qi|Yk+1

i
eeep,q+

E
h
⇤k�k+1

⌦
Xk+1, eeej,i

↵ ⌦
Xk, eeei,m

↵
| Yk+1

i
eeej .

The result follows. ⇤
Similarly we can establish:

Lemma 6.2. With �
�
J i
k(m)Xk

�
= E

⇥
⇤kJ i

k(m)Xk | Yk

⇤

�
�
J i
k+1(m)Xk+1

�
= �(yk+1)C�

�
J i
k(m)Xk

�
+
⌦
�k, eeei,m

↵
�(yk+1)Ceeei,m .

Proof.

E
⇥
⇤k+1J

i
k+1(m)Xk+1 | Yk+1

⇤

= E
⇥
⇤k�k+1

�
J i
k(m) +

⌦
Xk, eeei,m

↵�
Xk+1 | Yk+1

⇤

= �(yk+1)C�
�
J i
k(m)Xk

�
+
⌦
�k, eeei,m

↵
�(yk+1)Ceeei,m .

⇤
In general, with �(Gi

k Xk) = E
⇥
⇤kGi

k Xk | Yk

⇤
we have

Lemma 6.3.

�
�
Gi

k+1Xk+1

�
= �

�
yk+1)C�

�
Gi

k Xk

�
+ f(yk+1)

kX

m=1

⌦
�k, eeei,m

↵
Ceeei,m .

Remark 6.4. Now
⌦
Xk,111

↵
= 1 for all k, where 111 is an infinite column vector of

1s. Therefore, for example,
⌦
�
�
N j,i

k (m)Xk,111
↵
gives an unnormalized estimate for

�
�
N j,i

k (m)
�
.

In turn these provide estimates such as baj,i(m) =
�
�
N j,i

k (m)
�

�
�
J i
k(m)

� for i 6= j, and

for the other parameters of the model as in [4].

7. Smoothers

Suppose 0  k  T and we have observed
�
y0, y1, . . . , yT

 
. We wish to find

E
⇥
Xk | YT

⇤
. Write ⇤k+1,T =

QT
`=k+1 �` . Using Bayes’ theorem again, (see [4])

and the reference measure of §5.1.

E
⇥
Xk | YT

⇤
=

E
⇥
⇤0,TXk | YT

⇤

E
⇥
⇤0,T | YT

⇤ .



SEMI-MARKOV CHAIN REPRESENTATIONS AND FILTERS 11

Now ⇤0,t = ⇤0,k⇤k+1,T and E
⇥
⇤0,TXk | YT

⇤
= E

⇥
⇤0,kXkE [⇤k+1,T | YT ,Fk]YT

⇤
.

However, X is Markov so E [⇤k+1,T | YT ,Fk] = E [⇤k+1,T | YT , Xk ].

Definition 7.1. For 1  i  N and n 2 {1, 2, . . . , k + 1} write viT,T (n) = 1 and

vik,T (n) = E
⇥
⇤k+1,T | YT , Xk = eeei,n

⇤
. Set

vk,T :=
⇣
v1k,t(1) . . . v

N
k,T (1) | v1k,T (2) . . . vNk,T (2) | ⇥ · · · | v1(k + 1) . . . vNk,T (k + 1)

⌘
.

Theorem 7.2. The process v satisfies the backward dynamics

vk,T = C⇤ �
�
yk+1

�
vk,T , with vT,T = (1, 1, . . . , 1)0 2 R(k+1)N . (7.1)

Proof. For eeei,n 2 S consider

⌦
vk,T , eeei,n

↵
= vik,T (n)

= E
h
⇤k+2,T ,�k+1 | YT , Xk = eeei,n

i

=
k+1X

m=1

NX

i=1

E
h⌦

Xk+1, eeej,m
↵
⇤k+2,T | YT , Xk = eeei,n

i
�j
k+1(yk+1)

=
k+1X

m=1

NX

i=1

E
h
hXk+1, eeej,miE

⇥
⇤k+2,T | YT , Xk+1 = eeej,m, Xk = eeei,n

⇤ ����

YT , Xk = eeei,n
i
�j
k+1(yk+1)

=
k+1X

m=1

NX

i=1

E
h
hXk+1, eeej,mi hvk+1,T , eeej,mi|YT , Xk = eeei,n

i
�j
k+1(yk+1)

=
k+1X

m=1

NX

i=1

Cjm,in(k) hvk+1,T , eeej,mi�j
k+1(yk+1).

and the result follows. ⇤

Theorem 7.3. An unnormalized smoothed estimate for Xk given observations�
y0, y1, . . . yT

 
is

qk,T = E
⇥
⇤0,TXk | YT

⇤
= diag�k · vk,T .

Proof.

E
⇥
⇤0,T hXk, eeei,ni | YT ] = E

h
⇤0,k

⌦
Xk, eeei,n

↵
E
⇥
⇤k+1,T | YT , Xk = ei,n

⇤
YT

i

= h�k, eeei,n
↵ ⌦

vk,T , eeei,n
↵
.

Therefore

E
⇥
⇤0,TXk | YT

⇤
=

k+1X

m=1

NX

i=1

h�k, eeei,ni hvk,T , eeei,nieeei,n = diag �k · vk,T .

⇤
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8. Simulation Study

8.1. Example Stochastic Dynamics. The indirectly observed X-process we
consider is a three-state semi Markov chain with distinct classes for its sojourn
distributions. The distributions for the states e1, e2 and e3 are, respectively, a
Dirac distribution with full mass on 5, a finite distribution on the the natural
numbers {2, 3, 5} with corresponding probabilities

�
0.3, 0.5, 0.2

 
and a geometric

distribution with parameters 0.35. The (column stochastic) transition matrix used
to simulate an embedded Markov chain, (from which we construct a semi Markov

chain realisation) has the form

2

4
0 3/10 1/4
1/3 0 3/4
2/3 7/10 0

3

5. The initial distribution used

for X0 was uniform across the state space. The �i(h) probabilities for the model
we describe here are listed in Table 1. Given that the sojourns distributions for

Table 1. End-of-Sojourn Probabilities

Sojourn : h=1 h=2 h=3 h=4 h=5 h=6 · · ·
�1(h) 0 0 0 0 1 0 · · ·
�2(h) 0 0.3 0.71 0 1 0 · · ·
�3(h) 0.35 0.35 0.35 0.35 0.35 0.35 · · ·

the states e1 and e2 are both finite, the corresponding support for �1(h) and
�2(h) is also finite. However, the state e3 has a geometric sojourn, this means
�3(h) is constant on N. The observation dynamics used were given above by
equation (4.1), with parameter values c(e1) = �1, c(e2) = 1 and c(e3) = 2,
each determined by the state of X at time k, and d(e1) = 1.2, d(e2) = 0.4 and
d(e3) = 0.2, also determined by the state of X at time k. The inclusion of one or
more geometric sojourns in a semi Markov model (or indeed any other candidate
sojourn distribution defined on N) means that the matrix C defined at (3.1) will
be an infinite matrix. Consequently a suitable truncation of the matrix C must
be used. For the simulation study we assumed that the maximum realized state
sojourn (for the geometric distribution) was no more hMax = 50, (for a geometric
distribution parameter of 0.35, the event that h > 50 has measure approximately
equal to 4.42250e -10). Consequently our C matrix had dimensions 150⇥ 150.

8.2. Results. The recursive filter given in Theorem 5.4 generates a sequence
of unnormalized probabilities distributions {�`}`�0. These unnormalized prob-
abilities are joint distributions for the random variables X 2 {e1, e2, e3} and
h 2

�
1, 2, . . . , hMax

 
. The corresponding normalized estimated densities for X

and for h are easily recovered from the normalized version of �k by marginalisa-
tion. In our example we compute Maximum a Posteriori (MAP) estimates from
these densities. In Figure 1 we show a realization of the observed process

�
y`
 
`�0

,
the partially observed semi Markov process X and the filtered estimate of X. For
clarity, the independent variable on these plots is marked only at the embedded
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chain transition times, ⌧0, ⌧1, . . . . Similarly, in Figure 2, we plot the exact h-
process and the MAP estimates of h marginalized from each �k. Comparing the
estimates of X in Figure 1 with the estimates of h in Figure 2, we can see that the
expected dependence between X and h is clear, as errors in these estimators ap-
pear in the same time regions, for example k 2 {7, 8, 9, 10} and in k 2 {28, 29, 30}.
It is encouraging that at the times following these regions the filter has recovered.

Figure 1. The uppermost plot shows the observation process.
The middle plot shows the exact X process. The bottom plot is
the filtered estimate of X.

Figure 2. The uppermost plot is the exact h-process. The bot-
tom plot in this figure is the filtered estimate of h.
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9. An Exact Filter for the State and State-Sojourn Time

In this section we provide a second, direct, derivation for the recursive fil-
ter of Theorem 5.4. Given the semi-Markov chain X and the observation pro-
cess y of Section 4 we wish to obtain joint conditional estimates of Xk and
hk given Yk = �{y0, y1, . . . , yk}. Suppose F : {1, 2, . . . } ! R is an arbitrary
function. We consider E

⇥
hXk, eeeiiF

�
hi
k

�
| Yk

⇤
for any i 2 {1, 2, . . . , N}. We

wish to find E
⇥⌦
Xk, ei

↵
F
�
hi
k

�
| Yk

⇤
. Using the Bayes’ rule of [4], this equals

E
⇥
⇤k

⌦
Xk, ei

↵
F
�
hi
k

�
| Yk

⇤

E
⇥
⇤k | Yk

⇤ . The denominator here is derived from the numerator

by taking F = 1 and summing over i.

Notation 9.1. Suppose there are unnormalized probabilities �i
k(n) such that

E
⇥
⇤khXk, eiiF

�
hi
k

�
| Yk

⇤
=

1X

n=1

F (n)�i
k(n) .

However, as noted in Section 3.3, hi
k  k + 1 so �i

k(n) = 0 for n > k + 1 and the

sum here is only up to n = k + 1. As in section 5 write �i
k(yk) =

�
�
(yk � ci)/di

�

di�(yk)
.

We shall obtain the following recursions for the �

Theorem 9.2. For n = 1

�i
k(1) = �i

k(yk)
NX

j=1
j 6=i

k+1X

n=1

ai,j(n)�
j
k�1(n) . (9.1)

For 1 < n  k + 1

�i
k(n) = �i

k(yk)ai,i(n� 1)�i
k�1(n� 1) . (9.2)

Proof. Suppose i 2 {1, 2, . . . , N} and F : {1, 2, . . . } ! R is an arbitrary function
so, as above,

E[⇤khXk, eiiF (hi
k) | Yk] =

k+1X

n=1

F (n)�i
k(n)

= E
⇥
⇤k�1�khXk, eeeiiF

�
hXk, eeeiihXk, eeeii hXk�1, eeeiihi

k�1

�
| Yk

⇤

= �i
k(yk)E

⇥
⇤k�1hXk, eeeiiF

�
1 + hXk�1, eeeiihi

k�1

�
| Yk�1

⇤

= �i
k(yk)

NX

j=1

E
⇥
⇤k�1hXk�1, eeejihXk, eeeiiF

�
1 + hXk�1, eeeiihi

k�1

�
| Yk�l

⇤

= �i
k(yk)

NX

j=1
j 6=i

E
⇥
⇤k�1hXk�1, eeejihXk, eeeiiF (1) | Yk�1

⇤

+ �i
k(yk)E

⇥
⇤k�1hXk�1, eeeiihXk, eeeiiF (1 + hi

k�1) | Yk�1

⇤
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= �i
k(yk)

NX

j=1
j 6=i

E[⇤k�1hXk�1, eeeji hA
�
hj
k�1

�
Xk�1, eeeii⇥

F (1) | Yk�1

⇤
+ �i

k(yk)E
⇥
⇤k�1hXk�1, eeeii⇥

hA
�
hi
k�1

�
Xk�1, eeeiiF

�
1 + hi

k�1

�
| Yk

⇤

= �i
k(yk)

NX

j=1
j 6=i

F (1)E
⇥
⇤k�1hXk�1, eeeji aij

�
hj
k�1

�
| Yk�1

⇤

+ �i
k(yk)E [⇤k�1hXk�1, eeeiiai,i

�
hi
k�1

�
F
�
1 + hi

k�1

�
| Yk�1

⇤

= �i
k(yk)F (1)

nX

j=1
j 6=i

E
⇥
⇤k�1hXk�1, eeejiai,j

�
hj
k�1

�
| Yk�1

⇤

+ �i
k(yk)E

⇥
⇤k�1hXk�1, eeeiiai,i

�
hi
k�1

�
F
�
1 + hi

k�1

�
| Yk�1

⇤

= �i
k(yk)F (1)

NX

j=1
j 6=i

k+1X

n=1

ai,j(n)�
j
k�1(n) + �i

k(yk)
k+1X

n=1

aii(n)F (1 + n)�i
k�1(n)

= �i
k(yk)F (1)

NX

j=1
j 6=i

k+1X

n=1

ai,j(n)�
j
k�1(n)+�i

k(yk)
k+1X

m=2

ai,i(m�1)F (m)�i
k�1(m�1)

= �i
k(yk)F (1)

NX

j=1
j 6=i

ai,j(n)�
j
k�1(n) + �i

k(yk)
k+1X

n=2

ai,i(n� 1)F (n)�i
k�1(n� 1).

(9.3)

Now F is an arbitrary function F : {1, 2, . . . } ! R. Consider an F such that
F (1) = 1 and F (n) = 0 if n 6= 1. Then from (9.3)

�i
k(1) = �i

k(yk)
NX

j=1
j 6=i

k+1X

n=1

ai,j(n)�
j
k�1(n).

This is the recursion for �i
k(1), the unnormalized conditional probability given Yk

that at time k hi
k(Xk) = 1 and xk = eee. Now consider another F which is such

that F (m) = 1 for some m > 1 and F (m) = 0 otherwise. Then from (A.3)
and (5.4):

�i
k(m) = �i

k(yk)ai,i(m� 1)�i
k�1(m� 1).

This is the recursion for �i
, (k� 1), the unnormalized conditional probability given

Yk that, at time k, hi
k = m and Xk = ei. This provides a coordinate-wise version

of Theorem 5.4. ⇤

Remark 9.3. Note that, as in the earlier results, the recursions only involve finite
sums.
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