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We �rst introduce the concept of manageable functions and then prove some new existence theorems related to approximate �xed
point property for manageable functions and �-admissible multivalued maps. As applications of our results, some new �xed point
theorems which generalize and improve Du’s �xed point theorem, Berinde-Berinde’s �xed point theorem, Mizoguchi-Takahashi’s
�xed point theorem, and Nadler’s �xed point theorem and some well-known results in the literature are given.

1. Introduction and Preliminaries

In 1922, Banach established the most famous fundamental
�xed point theorem (so-called the Banach contraction prin-
ciple [1]) which has played an important role in various �elds
of applied mathematical analysis. It is known that the Banach
contraction principle has been extended and generalized in
many various di
erent directions by several authors; see
[2–40] and references therein. An interesting direction of
research is the extension of the Banach contraction principle
to multivalued maps, known as Nadler’s �xed point theo-
rem [2], Mizoguchi-Takahashi’s �xed point theorem [3], and
Berinde-Berinde’s �xed point theorem [5] and references
therein.

Let us recall some basic notations, de�nitions, and well-
known results needed in this paper. �roughout this paper,
we denote by N and R the sets of positive integers and real
numbers, respectively. Let (�, �) be a metric space. For each� ∈ � and � ⊆ �, let �(�, �) = inf�∈��(�, 	). Denote by
N(�) the class of all nonempty subsets of�,C(�) the family
of all nonempty closed subsets of �, and CB(�) the family
of all nonempty closed and bounded subsets of�. A function

H : CB(�) ×CB(�) → [0,∞) de�ned by

H (�, �) = max{sup
�∈�

� (�, �) , sup
�∈�

� (�, �)} (1)

is said to be the Hausdor
 metric onCB(�) induced by the
metric � on �. A point V in � is a �xed point of a map �, if
V = �V (when � : � → � is a single-valued map) or V ∈ �V
(when� : � → N(�) is amultivaluedmap).�e set of �xed
points of � is denoted by F(�). �e map � is said to have
the approximate �xed point property [29–34] on � provided
inf�∈��(�, ��) = 0. It is obvious thatF(�) ̸= 0 implies that �
has the approximate �xed point property, but the converse is
not always true.

De�nition 1 (see [6, 13]). A function � : [0,∞) →[0, 1) is said to be an MT-�������� (or R-��������) if
lim sup�→ 
+ �(�) < 1 for all � ∈ [0,∞).

It is evident that if � : [0,∞) → [0, 1) is a
nondecreasing function or a nonincreasing function, then �
is aMT-function. So the set ofMT-functions is a rich class.
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Recently, Du [6] �rst proved the following characteriza-
tions ofMT-functionswhich are quite useful for proving our
main results.

�eorem 2 (see [6]). Let � : [0,∞) → [0, 1) be a function.
�en the following statements are equivalent.

(a) � is anMT-function.

(b) For each � ∈ [0,∞), there exist �(1)
 ∈ [0, 1) and �(1)
 > 0
such that �(�) ≤ �(1)
 for all � ∈ (�, � + �(1)
 ).

(c) For each � ∈ [0,∞), there exist �(2)
 ∈ [0, 1) and �(2)
 > 0
such that �(�) ≤ �(2)
 for all � ∈ [�, � + �(2)
 ].

(d) For each � ∈ [0,∞), there exist �(3)
 ∈ [0, 1) and �(3)
 > 0
such that �(�) ≤ �(3)
 for all � ∈ (�, � + �(3)
 ].

(e) For each � ∈ [0,∞), there exist �(4)
 ∈ [0, 1) and �(4)
 > 0
such that �(�) ≤ �(4)
 for all � ∈ [�, � + �(4)
 ).

(f) For any nonincreasing sequence {��}�∈N in [0,∞), one
has 0 ≤ sup�∈N�(��) < 1.

(g) � is a function of contractive factor [15]; that is, for any
strictly decreasing sequence {��}�∈N in [0,∞), one has0 ≤ sup�∈N�(��) < 1.

In 1989, Mizoguchi and Takahashi [3] proved a famous
generalization of Nadler’s �xed point theorem which gives a
partial answer of Problem 9 in Reich [4].

�eorem 3 (Mizoguchi and Takahashi [3]). Let (�, �) be a
complete metric space, let � : [0,∞) → [0, 1) be an MT-
function, and let � : � → CB(�) be a multivalued map.
Assume that

H (��, �	) ≤ � (� (�, 	)) � (�, 	) , (2)

for all �, 	 ∈ �. �enF(�) ̸= 0.
In 2007, M. Berinde and V. Berinde [5] proved the

following interesting �xed point theorem which generalized
and extended Mizoguchi-Takahashi’s �xed point theorem.

�eorem 4 (M. Berinde and V. Berinde [5]). Let (�, �) be a
complete metric space, let � : [0,∞) → [0, 1) be an MT-
function, let � : � → CB(�) be a multivalued map, and ≥ 0. Assume that

H (��, �	) ≤ � (� (�, 	)) � (�, 	) +  � (	, ��) , (3)

for all �, 	 ∈ �. �enF(�) ̸= 0.
In 2012, Du [6] established the following �xed point

theorem which is an extension of Berinde-Berinde’s �xed
point theorem and hence Mizoguchi-Takahashi’s �xed point
theorem.

�eorem 5 (Du [6]). Let (�, �) be a complete metric space, let� : � → CB(�) be a multivalued map, let � : [0,∞) →

[0, 1) be a MT-function, and let ℎ : � → [0,∞) be
a function. Assume that

H (��, �	) ≤ � (� (�, 	)) � (�, 	)
+ℎ (	) � (	, ��) ∀�, 	 ∈ �. (4)

�en � has a �xed point in�.

�e paper is organized as follows. In Section 2, we �rst
introduce the concept of manageable function and give
some examples of it. Section 3 is dedicated to the study of
some new existence theorems related to approximate �xed
point property for manageable functions and �-admissible
multivalued maps. As applications of our results, some new
�xed point theorems which generalize and improve Du’s
�xed point theorem, Berinde-Berinde’s �xed point theorem,
Mizoguchi-Takahashi’s �xed point theorem, and Nadler’s
�xed point theorem and some well-known results in the
literature are given in Section 4. Consequently, some of our
results in this paper are original in the literature, and we
obtain many results in the literature as special cases.

2. Manageable Functions

In this paper, we �rst introduce the concept of manageable
functions.

De�nition 6. A function $ : R×R → R is calledmanageable
if the following conditions hold:($1) $(�, �) < � − � for all �, � > 0;

($2) for any bounded sequence {��} ⊂ (0, +∞) and any
nonincreasing sequence {��} ⊂ (0, +∞), it holds that

lim sup
�→∞

�� + $ (��, ��)�� < 1. (5)

We denote the set of allmanageable functions by M̂an(R).
Here, we give simple examples of manageable function.

Example A. Let ' ∈ [0, 1). �en $ : R ×R → R de�ned by

$ (�, �) = '� − � (6)

is a manageable function.

Example B. Let � : R × R → R be any function. �en the
function $ : R ×R → R de�ned by$ (�, �)

= {{{
�� + 9 ln (� + 10) − �, if (�, �) ∈ [0, +∞) × [0, +∞) ,� (�, �) , otherwise,

(7)

is a manageable function. Indeed, let

2 (�) = ln (� + 10)� + 9 ∀� > −9. (8)
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�en 2(�) < 1 for all � > 0, and
$ (�, �) = {�2 (�) − �, if (�, �) ∈ [0, +∞) × [0, +∞) ,� (�, �) , otherwise. (9)

For any �, � > 0, we have
$ (�, �) = �2 (�) − � < � − �, (10)

so ($1) holds. Let {��} ⊂ (0, +∞) be a bounded sequence
and let {��} ⊂ (0, +∞) be a nonincreasing sequence. �en
lim�→∞�� = inf�∈N�� = 3 for some 3 ∈ [0, +∞). Since 2 is
continuous, we get

lim sup
�→∞

�� + $ (��, ��)�� = lim�→∞2 (��) = 2 (3) < 1, (11)

which means that ($2) holds. Hence, $ ∈ M̂an(R).
Example C. Let � : R × R → R be any function and let� : [0,∞) → [0, 1) be an MT-function. De�ne $ : R ×
R → R by

$ (�, �) = {�� (�) − �, if (�, �) ∈ [0, +∞) × [0, +∞) ,� (�, �) , otherwise. (12)

�en $ is amanageable function. Indeed, one can verify easily
that ($1) holds. Next, we verify that $ satis�es ($2). Let {��} ⊂(0, +∞) be a bounded sequence and let {��} ⊂ (0, +∞) be a
nonincreasing sequence. �en lim�→∞�� = inf�∈N�� = 3 for
some3 ∈ [0, +∞). Since� is anMT-function, by�eorem 2,
there exist �� ∈ [0, 1) and �� > 0 such that �(�) ≤ �a for all� ∈ [3, 3 + ��). Since lim�→∞�� = inf�∈N�� = 3, there exists�� ∈ N, such that

3 ≤ �� < 3 + �� ∀� ∈ N with � ≥ ��. (13)

Hence, we have

lim sup
�→∞

�� + $ (��, ��)�� = lim sup
�→∞

� (��) ≤ �� < 1, (14)

which means that ($2) holds. So we prove $ ∈ M̂an(R).
�e following result is quite obvious.

Proposition 7. Let 5 : R × R → R be a function. If there

exists $ ∈ M̂an (R) such that 5(�, �) ≤ $(�, �) for all �, � > 0,
then 5 ∈ M̂an (R).
Proposition 8. Let {$�}�∈N ⊂ M̂an (R). �en the following
statements hold.

(a) For each 6 ∈ N, the function $min

(�) : R × R → R,
de�ned by

$min

(�) (�, �) = min {$1 (�, �) , $2 (�, �) , . . . , $� (�, �)} , (15)

is a manageable function (i.e., $min

(�) ∈ M̂an (R) for
any 6 ∈ N).

(b) For each 6 ∈ N, the function $(�) : R×R → R, de�ned
by

$(�) (�, �) = 16 �∑�=1$� (�, �) , (16)

is a manageable function (i.e., $(�) ∈ M̂an (R) for
any 6 ∈ N).

Proof. Since $min

(�) (�, �) ≤ $1(�, �) for all �, � > 0, the conclusion
(a) is a direct consequence of Proposition 7. Next, we prove
the conclusion (b). Let 6 ∈ N be given. It is obvious that$(�)(�, �) < �−� for all �, � > 0. Let {��} ⊂ (0, +∞) be a bounded
sequence and let {��} ⊂ (0, +∞) be a nonincreasing sequence.
For any � ∈ N, we have

�� + $(�) (��, ��)�� = 1�� (�� + 16 �∑�=1$� (�, �))
= 16 �∑�=1 �� + $� (��, ��)�� . (17)

Because each $� satis�es ($2), we get
lim sup
�→∞

�� + $(�) (��, ��)�� = 16 lim sup
�→∞

( �∑
�=1

�� + $� (��, ��)�� )
≤ 16 �∑�=1(lim sup

�→∞

�� + $� (��, ��)�� )
< 1.

(18)

Hence, for each 6 ∈ N, the function $(�) is a manageable
function.

3. New Existence Results for
Manageable Functions and Approximate
Fixed Point Property

Recall that a multivalued map � : � → CB(�) is called
(1) a Nadler’s type contraction (or a multivalued 6-

contraction [3, 33]), if there exists a number 0 < 6 < 1
such that

H (��, �	) ≤ 6� (�, 	) ∀�, 	 ∈ �; (19)

(2) a Mizoguchi-Takahashi’s type contraction [33], if
there exists an MT-function � : [0,∞) → [0, 1)
such that

H (��, �	) ≤ � (� (�, 	)) � (�, 	) ∀�, 	 ∈ �; (20)

(3) A multivalued (D,  )-almost contraction [28, 29, 33],
if there exist two constants D ∈ (0, 1) and  ≥ 0 such
that

H (��, �	) ≤ D� (�, 	) +  � (	, ��) ∀�, 	 ∈ �; (21)
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(4) a Berinde-Berinde’s type contraction [33] (or a gener-
alized multivalued almost contraction [28, 29, 33]), if
there exists an MT-function � : [0,∞) → [0, 1)
and  ≥ 0 such that

H (��, �	) ≤ � (� (�, 	)) � (�, 	)
+  � (	, ��) ∀�, 	 ∈ �; (22)

(5) a Du’s strong type contraction, if there exist anMT-
function � : [0,∞) → [0, 1) and a function ℎ :� → [0,∞) such that

H (��, �	) ≤ � (� (�, 	)) � (�, 	)
+ ℎ (	) � (	, ��) ∀�, 	 ∈ �; (23)

(6) a Du’s weak type contraction, if there exist an MT-
function � : [0,∞) → [0, 1) and a function ℎ :� → [0,∞) such that

� (	, �	) ≤ � (� (�, 	)) � (�, 	) ∀	 ∈ ��. (24)

De�nition 9 (see [36–39]). Let (�, �) be a metric space and
let � : � → N(�) be a multivalued map. One says that � is�-admissible, if there exists a function � : � ×� → [0, +∞)
such that for each � ∈ � and 	 ∈ �� with �(�, 	) ≥ 1, one
has �(	, E) ≥ 1 for all E ∈ �	.

�e following existence theorem is one of themain results
of this paper.

�eorem 10. Let (�, �) be a metric space, let � : � → N(�)
be an �-admissible multivalued map, and $ ∈ M̂an (R). Let

Ω = {(� (�, 	) � (	, �	) , � (�, 	)) ∈ [0, +∞)
× [0, +∞) : � ∈ �, 	 ∈ ��} . (25)

If $(�, �) ≥ 0 for all (�, �) ∈ Ω and there exist �0 ∈ � and�1 ∈ ��0 such that �(�0, �1) ≥ 1, then the following statements
hold.

(a) �ere exists a Cauchy sequence {G�}�∈N in� such that

(i) G�+1 ∈ �G� for all � ∈ N,

(ii) �(G�, G�+1) ≥ 1 for all � ∈ N,

(iii) lim�→∞�(G�, G�+1) = inf�∈N�(G�, G�+1) = 0.
(b) inf�∈��(�, ��) = 0; that is, � has the approximate

�xed point property on �.

Proof. By our assumption, there exist �0 ∈ � and �1 ∈ ��0
such that �(�0, �1) ≥ 1. If �1 = �0, then �0 ∈ ��0 and

inf
�∈�

� (�, ��) ≤ � (�0, ��0) ≤ � (�0, �0) = 0, (26)

which implies inf�∈��(�, ��) = 0. Let G� = �0 for all � ∈ N.
�en {G�}�∈N is a Cauchy sequence in � and

lim�→∞� (G�, G�+1) = inf
�∈N

� (G�, G�+1) = � (�0, �0) = 0. (27)

Clearly, �(G�, G�+1) = �(�0, �1) ≥ 1 for all � ∈ N. Hence, the
conclusions (a) and (b) hold in this case. Assume �1 ∉ �0 or�(�0, �1) > 0. If �1 ∈ ��1, then, following a similar argument
as above, we can prove the conclusions (a) and (b) by taking
a Cauchy sequence {G�}�∈N with G1 = �0 and G� = �1 for
all � ≥ 2. Suppose �1 ∉ ��1. �us �(�1, ��1) > 0. De�neI : R ×R → R by

I (�, �) = {{{
� + $ (�, �)� , if (�, �) ∈ Ω \ {(0, 0)} ,0, otherwise. (28)

By ($1), we know that

0 < I (�, �) < 1 ∀ (�, �) ∈ Ω \ {(0, 0)} . (29)

Since $ ∈ M̂an(R) and $(�, �) ≥ 0 for all (�, �) ∈ Ω, we have
0 < � ≤ �I (�, �) ∀ (�, �) ∈ Ω \ {(0, 0)} . (30)

Clearly, (�(�0, �1)�(�1, ��1), �(�0, �1)) ∈ Ω \ {(0, 0)}. So, by
(29), we obtain

0 < I (� (�0, �1) � (�1, ��1) , � (�0, �1)) < 1. (31)

Let

J1 = ( � (�0, �1)√I (� (�0, �1) � (�1, ��1) , � (�0, �1)) − 1)
× � (�1, ��1) .

(32)

Taking into account �(�0, �1) ≥ 1, �(�1, ��1) > 0, and the
last inequality, we get J1 > 0. Since
� (�1, ��1) < � (�1, ��1) + J1

= � (�0, �1)√I (� (�0, �1) � (�1, ��1) , � (�0, �1))
× � (�1, ��1) ,

(33)

there exists �2 ∈ ��1 such that �2 ̸= �1 and
� (�1, �2) < � (�0, �1)√I (� (�0, �1) � (�1, ��1) , � (�0, �1))

× � (�1, ��1) .
(34)

If �2 ∈ ��2, then the proof can be �nished by a similar
argument as above. Otherwise, we have �(�2, ��2) > 0. Since� is � -admissible, we obtain �(�1, �2) ≥ 1. By taking
J2 = ( � (�1, �2)√I (� (�1, �2) � (�2, ��2) , � (�1, �2)) − 1)

× � (�2, ��2) ,
(35)
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then there exists �3 ∈ ��2 with �3 ̸= �2 such that

� (�2, �3) < � (�1, �2)√I (� (�1, �2) � (�2, ��2) , � (�1, �2))× � (�2, ��2) .
(36)

By induction, if ��−1, ��, ��+1 ∈ � is known satisfying ��−1 ∈���, ��+1 ∈ ���+2, �(��, ���) > 0, �(��−1, ��) ≥ 1, and
0 < � (��, ��+1)
< � (��−1, ��)√I (� (��−1, ��) � (��, ���) , � (��−1, ��))
× � (��, ���) , 6 ∈ N,

(37)

then, by taking

J� = ( � (��−1, ��)√I (� (��−1, ��) � (��, ���) , � (��−1, ��)) − 1)× � (��, ���) ,
(38)

one can obtain ��+2 ∈ ���+1 with ��+2 ̸= ��+1 such that

� (��+1, ��+2)
< � (��, ��+1)√I (� (��, ��+1) � (��+1, ���+1) , � (��, ��+1))× � (��+1, ���+1) .

(39)

Hence, by induction, we can establish sequences {��} in �
satisfying, for each � ∈ N,

�� ∈ ���−1,� (��−1, ��) > 0,
� (��, ���) > 0,
� (��−1, ��) ≥ 1,

� (��, ��+1) < � (��−1, ��)√I (� (��−1, ��) � (��, ���) , � (��−1, ��))
× � (��, ���) .

(40)

By (30), we have

� (��−1, ��) � (��, ���)
≤ � (��−1, ��) I (� (��−1, ��) � (��, ���) , � (��−1, ��))

for each � ∈ N.
(41)

Hence, for each � ∈ N, by combining (40) and (41), we get

� (��, ��+1) < √I (� (��−1, ��) � (��, ���) , � (��−1, ��))× � (��−1, ��) ,
(42)

which means that the sequence {�(��−1, ��)}�∈N is strictly
decreasing in (0, +∞). So

' := lim�→∞� (��, ��+1) = inf
�∈N

� (��, ��+1) ≥ 0 exists. (43)

By (41), we have

� (��−1, ��) � (��, ���) ≤ � (��−1, ��) ∀� ∈ N, (44)

which means that {�(��−1, ��)�(��, ���)}�∈N is a bounded
sequence. By ($2), we have
lim sup
�→∞

I (� (��−1, ��) � (��, ���) , � (��−1, ��)) < 1. (45)

Now, we claim ' = 0. Suppose ' > 0.�en, by (45) and taking
lim sup in (42), we get

' ≤ √lim sup
�→∞

I (� (��−1, ��) � (��, ���) , � (��−1, ��))' < ',
(46)

a contradiction. Hence we prove

lim�→∞� (��, ��+1) = inf
�∈N

� (��, ��+1) = 0. (47)

To complete the proof of (a), it su�ces to show that {��}�∈N
is a Cauchy sequence in �. For each � ∈ N, let

O� := √I (� (��−1, ��) � (��, ���) , � (��−1, ��)). (48)

�en O� ∈ (0, 1) for all � ∈ N. By (42), we obtain

� (��, ��+1) < O�� (��−1, ��) ∀� ∈ N. (49)

From (45), we have lim sup�→∞ O� < 1, so there exist � ∈[0, 1) and �0 ∈ N, such that

O� ≤ � ∀� ∈ N with � ≥ �0. (50)



6 Abstract and Applied Analysis

For any � ≥ �0, since O� ∈ (0, 1) for all � ∈ N and � ∈ [0, 1),
taking into account (49) and (50) concludes that

� (��, ��+1) < O�� (��−1, ��)< ⋅ ⋅ ⋅ < O�O�−1O�−2 ⋅ ⋅ ⋅ O�0� (�0, �1)≤ ��−�0+1� (�0, �1) .
(51)

Put �� = (��−�0+1/(1 − �)) �(�0, �1), � ∈ N. ForR, � ∈ N withR > � ≥ �0, we have from the last inequality that

� (��, ��) ≤ �−1∑
�=�

� (��, ��+1) < ��. (52)

Since � ∈ [0, 1), lim�→∞�� = 0. Hence
lim�→∞ sup {� (��, ��) : R > �} = 0. (53)

So {��} is a Cauchy sequence in�. LetG� = ��−1 for all � ∈ N.
�en {G�}�∈N is the desired Cauchy sequence in (a).

To see (b), since �� ∈ ���−1 for each � ∈ N, we have

inf
�∈�

� (�, ��) ≤ � (��, ���) ≤ � (��, ��+1) ∀� ∈ N. (54)

Combining (47) and (54) yields

inf
�∈�

� (�, ��) = 0. (55)

�e proof is completed.

Applying �eorem 10, we can establish the following
new existence theorem related to approximate �xed point
property for �-admissible multivalued maps.

�eorem 11. Let (�, �) be a metric space and let � : � →
N(�) be an �-admissible multivalued map. Suppose that there
exists anMT-function � : [0,∞) → [0, 1) such that
� (�, 	) � (	, �	) ≤ � (� (�, 	)) � (�, 	) ∀	 ∈ ��. (56)

If there exist �0 ∈ � and �1 ∈ ��0 such that �(�0, �1) ≥ 1,
then the following statements hold.

(a) �ere exists $ ∈ M̂an (R) such that $(�, �) ≥ 0 for all(�, �) ∈ Ω, where
Ω = {(� (�, 	) � (	, �	) , � (�, 	)) ∈ [0, +∞)

× [0, +∞) : � ∈ �, 	 ∈ ��} . (57)

(b) �ere exists a Cauchy sequence {G�}�∈N in� such that

(i) G�+1 ∈ �G� for all � ∈ N,

(ii) �(G�, G�+1) ≥ 1 for all � ∈ N,

(iii) lim�→∞�(G�, G�+1) = inf�∈N�(G�, G�+1) = 0.
(c) inf�∈��(�, ��) = 0; that is, � has the approximate

�xed point property on �.

Proof. De�ne $ : R ×R → R by

$ (�, �) = {�� (�) − �, if (�, �) ∈ [0, +∞) × [0, +∞) ,0, otherwise. (58)

By Example C, we know $ ∈ M̂an(R). By (56), we obtain$(�, �) ≥ 0 for all (�, �) ∈ Ω. �erefore (a) is proved. It is
obvious that the desired conclusions (b) and (c) follow from
�eorem 10 immediately.

�e following interesting results are immediate from
�eorem 11.

Corollary 12. Let (�, �) be a metric space and let � : � →
CB(�) be an �-admissible multivaluedmap. Assume that one
of the following conditions holds.

(L1) there exist an MT-function � : [0,∞) → [0, 1)
and a function ℎ : � → [0,∞) such that

� (�, 	)H (��, �	) ≤ � (� (�, 	)) � (�, 	)
+ℎ (	) � (	, ��) ∀�, 	 ∈ �; (59)

(L2) there exist an MT-function � : [0,∞) → [0, 1)
and  ≥ 0 such that� (�, 	)H (��, �	) ≤ � (� (�, 	)) � (�, 	)

+ � (	, ��) ∀�, 	 ∈ �; (60)

(L3) there exist two constants D ∈ (0, 1) and  ≥ 0 such that
� (�, 	)H (��, �	) ≤ D� (�, 	) +  � (	, ��) ∀�, 	 ∈ �;

(61)

(L4) there exists an MT-function � : [0,∞) → [0, 1)
such that

� (�, 	)H (��, �	) ≤ � (� (�, 	)) � (�, 	) ∀�, 	 ∈ �;
(62)

(L5) there exists a number 0 < 6 < 1 such that
� (�, 	)H (��, �	) ≤ 6� (�, 	) ∀�, 	 ∈ �. (63)

If there exist �0 ∈ � and �1 ∈ ��0 such that �(�0, �1) ≥ 1,
then the following statements hold.

(a) �ere exists $ ∈ M̂an(R) such that $(�, �) ≥ 0 for all(�, �) ∈ Ω, where
Ω = {(� (�, 	) � (	, �	) , � (�, 	)) ∈ [0, +∞)× [0, +∞) : � ∈ �, 	 ∈ ��} . (64)

(b) �ere exists a Cauchy sequence {G�}�∈N in� such that

(i) G�+1 ∈ �G� for all � ∈ N,

(ii) �(G�, G�+1) ≥ 1 for all � ∈ N,

(iii) lim�→∞�(G�, G�+1) = inf�∈N�(G�, G�+1) = 0.
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(c) inf�∈��(�, ��) = 0; that is, � has the approximate
�xed point property on �.

Proof. It su�ces to verify the conclusion under (L1). Note �rst
that, for each � ∈ �, �(	, ��) = 0 for all 	 ∈ ��. So, for each� ∈ �, by (L1), we obtain� (�, 	) � (	, �	) ≤ � (� (�, 	)) � (�, 	) ∀	 ∈ ��, (65)

which means (56) holds. �erefore, the conclusion follows
from�eorem 11.

In Corollary 12, if we take � : � × � → [0, +∞) by�(�, 	) = 1 for all �, 	 ∈ �, then we obtain the following
existence theorem.

Corollary 13. Let (�, �) be a metric space and let � :� → CB(�) be a multivalued map. Assume that one of the
following conditions holds.

(1) � is a Du’s weak type contraction;

(2) � is a Du’s strong type contraction;

(3) � is a Berinde-Berinde’s type contraction;

(4) � is a multivalued (D,  )-almost contraction;

(5) � is a Mizoguchi-Takahashi’s type contraction;

(6) � is a Nadler’s type contraction.

�en the following statements hold.

(a) �ere exists $ ∈ M̂an(R) such that $(�, �) ≥ 0 for all(�, �) ∈ D, where

D = {(� (	, �	) , � (�, 	)) ∈ [0, +∞)
× [0, +∞) : � ∈ �, 	 ∈ ��} . (66)

(b) �ere exists a Cauchy sequence {G�}�∈N in� such that

(i) G�+1 ∈ �G� for all � ∈ N,

(ii) lim�→∞�(G�, G�+1) = inf�∈N�(G�, G�+1) = 0.
(c) inf�∈��(�, ��) = 0; that is, � has the approximate

�xed point property on �.

4. Some Applications to Fixed Point Theory

De�nition 14 (see [36–39]). Let (�, �) be a metric space and
let � : � × � → [0, +∞) be a function. � is said to have the
property (�) if any sequence {��} in � with �(��, ��+1) ≥ 1
for all � ∈ N and lim�→∞�� = V, we have �(��, V) ≥ 1 for all� ∈ N.

�eorem 15. Let (�, �) be a complete metric space and let � :� → CB(�) be an �-admissible multivalued map. Suppose
that there exists anMT-function � : [0,∞) → [0, 1) such
that� (�, 	) � (	, �	) ≤ � (� (�, 	)) � (�, 	) ∀	 ∈ ��. (67)

If there exist �0 ∈ � and �1 ∈ ��0 such that �(�0, �1) ≥ 1, and
one of the following conditions is satis�ed:

(H1) � is H-continuous (i.e., �� → V implies H(���, �V)→ 0 as � → ∞);

(H2) � is closed (i.e.,U�� := {(�, 	) ∈ �×� : 	 ∈ ��}; the
graph of � is a closed subset of� × �);

(H3) the map 2 : � → [0,∞) de�ned by 2(�) = �(�, ��)
is l.s.c.;

(H4) for any sequence {E�} in � with �(E�, E�+1) ≥ 1,E�+1 ∈ �E�, � ∈ N, and lim�→∞E� = �, one has
lim�→∞�(E�, ��) = 0,

then � admits a �xed point in�.

Proof. Applying �eorem 11, there exists a Cauchy sequence{G�}�∈N in� such that

G�+1 ∈ �G�,� (G�, G�+1) ≥ 1 ∀� ∈ N. (68)

By the completeness of�, there exists V ∈ � such that G� →
V as � → ∞.

Now, we verify V ∈ F(�). If (H1) holds, since � is H-
continuous on �, G�+1 ∈ �G� for each � ∈ N, and G� → V

as � → ∞, we get

� (V, �V) = lim�→∞� (G�+1, �V) ≤ lim�→∞H (�G�, �V) = 0,
(69)

which implies �(V, �V) = 0. By the closeness of �V, we have
V ∈ �V. If (H2) holds, since � is closed, G�+1 ∈ �G� for each� ∈ N, and G� → V as � → ∞, we have V ∈ F(�). Suppose
that (H3) holds. Since {G�}�∈N is convergent in�, we have

lim�→∞� (G�, G�+1) = 0. (70)

Since� (V, �V) = 2 (V) ≤ lim inf�→∞ 2 (G�) ≤ lim�→∞� (G�, G�+1) = 0,
(71)

we obtain �(V, �V) = 0, and hence V ∈ F(�). Finally, assume
(H4) holds. �en we obtain� (V, �V) = lim�→∞� (G�, �V) = 0. (72)

Hence V ∈ �V. �erefore, in any case, we prove V ∈ F(�).
�is completes the proof.

�eorem 16. Let (�, �) be a complete metric space and let � :� → CB(�) be an �-admissible multivalued map. Suppose
that there exist anMT-function � : [0,∞) → [0, 1) and a
function ℎ : � → [0,∞) such that
� (�, 	)H (�x, �	) ≤ � (� (�, 	)) � (�, 	)+ ℎ (	) � (	, ��) ∀�, 	 ∈ �. (73)

If there exist �0 ∈ � and �1 ∈ ��0 such that �(�0, �1) ≥ 1, and
one of the following conditions is satis�ed:

(S1) � isH-continuous;
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(S2) � is closed;

(S3) the map 2 : � → [0,∞) de�ned by 2(�) = �(�, ��)
is l.s.c.;

(S4) the function � has the property (�),
then � admits a �xed point in�.

Proof. It is obvious that (73) implies (67). If one of the
conditions (S1), (S2), and (S3) is satis�ed, then the desired
conclusion follows from �eorem 15 immediately. Suppose
that (S4) holds. We claim that (H4) as in �eorem 15 is
satis�ed. Let {E�} be in � with �(E�, E�+1) ≥ 1, E�+1 ∈ �E�,� ∈ N, and lim�→∞E� = �. Since � has the property (�),�(E�, �) ≥ 1 for all � ∈ N. So, it follows from (73) that

lim�→∞� (E�+1, ��) ≤ lim�→∞H (�E�, ��)
≤ lim�→∞� (E�, �)H (�E�, ��)
≤ lim�→∞ {� (� (E�, �)) � (E�, �)+ℎ (�) � (�, E�+1)} = 0,

(74)

which implies lim�→∞�(E�, ��) = 0. Hence (H4) holds. By
�eorem 15, we also proveF(�) ̸= 0. �e proof is completed.

Applying �eorem 16, we can give a short proof of Du’s
�xed point theorem.

Corollary 17 (Du [[6]). Let (�, �) be a complete metric space,
let� : � → CB(�) be a multivalued map, let � : [0,∞) →[0, 1) be a MT-function, let and ℎ : � → [0,∞) be a
function. Assume that

H (��, �	) ≤ � (� (�, 	)) � (�, 	)
+ℎ (	) � (	, ��) ∀�, 	 ∈ �. (75)

�enF(�) ̸= 0.
Proof. Take � : � × � → [0, +∞) by �(�, 	) = 1
for all �, 	 ∈ �. �en (75) implies (73). Moreover, � is
an �-admissible multivalued map and the function � has
the property (�). �erefore the conclusion follows from
�eorem 16.

Remark 18. �eorems 15 and 16 and Corollary 17 all gen-
eralize and improve Berinde-Berinde’s �xed point theorem,
Mizoguchi-Takahashi’s �xed point theorem, Nadler’s �xed
point theorem, and Banach contraction principle.
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